Title:
Chattahoochee-Apalachicola Rivers Water Quality Sampling a Lagrangian Sampling Project

dc.contributor.author Fuller, Robert C. en_US
dc.contributor.corporatename North Georgia College & State University en_US
dc.date.accessioned 2014-03-27T20:16:57Z
dc.date.available 2014-03-27T20:16:57Z
dc.date.issued 2013-04
dc.description Proceedings of the 2013 Georgia Water Resources Conference, April 10-11, 2013, Athens, Georgia. en_US
dc.description.abstract The field work portion of this project began September 22, 2012, with an expected completion date of November 10, 2012. The field work will involve traveling by canoe down the entire Chattahoochee-Apalachicola River system from the source spring near Chattahoochee Gap to the Gulf of Mexico, collecting water quality data, documenting illegal incursions into the river channel, and gathering such other information as may seem to be valuable. As of September 30, 2012, 89.4 miles of the river system has been covered. What makes this project unique and of particular value will be the Lagrangian design of the observations. The purpose of a Lagrangian sampling scheme is to follow an initial mass or “parcel” of water as it moves through its containing channel, tracking changes to the water’s constituents over space and time. Hydraulic modeling work done by others was used to make initial estimates of average river velocities along the length of the system, which were used to calculate doses of a tracking dye sufficient to be detected but not so large as to violate EPA guidelines. Rhodamine WT dye was chosen for tracking and it was detected using a fluorometer. The concept of an initial water mass is used in recognition of the fact that a small mass of water emerging from the source spring will be increasingly dispersed as the mass moves downstream due to the mixing within the channel and the variability of water velocity across the channel. Because of this, it is easier to think of trying to follow the centroid of the dispersing mass than it is to think of predicting the likely position of a single molecule that emerges from the source. Due to low rhodamine WT doses used, the dye is re-dosed at roughly 25 to 50 kilometer intervals along the system. en_US
dc.description.sponsorship Sponsored by: Georgia Environmental Protection Division; U.S. Department of Agriculture, Natural Resources Conservation Service; Georgia Institute of Technology, Georgia Water Resources Institute; The University of Georgia, Water Resources Faculty. en_US
dc.description.statementofresponsibility This book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views o en_US
dc.identifier.uri http://hdl.handle.net/1853/51500
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries GWRI2013. Water Quality Issues en_US
dc.subject Water resources management en_US
dc.subject Sampling and analysis en_US
dc.subject Lagrangian sampling en_US
dc.title Chattahoochee-Apalachicola Rivers Water Quality Sampling a Lagrangian Sampling Project en_US
dc.type Text
dc.type.genre Proceedings
dspace.entity.type Publication
local.contributor.corporatename Georgia Water Resources Institute
local.contributor.corporatename School of Civil and Environmental Engineering
local.contributor.corporatename College of Engineering
local.relation.ispartofseries Georgia Water Resources Conference
relation.isOrgUnitOfPublication 8873b408-9aff-48cc-ae3c-a3d1daf89a98
relation.isOrgUnitOfPublication 88639fad-d3ae-4867-9e7a-7c9e6d2ecc7c
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isSeriesOfPublication e0bfffc9-c85a-4095-b626-c25ee130a2f3
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
4.5.3_fuller.pdf
Size:
145.19 KB
Format:
Adobe Portable Document Format
Description: