Title:
Comparison of Dielectric Surface Passivation of Monocrystalline and Multicrystalline Silicon

dc.contributor.author Brody, Jed
dc.contributor.author Rohatgi, Ajeet
dc.contributor.corporatename Georgia Institute of Technology. University Center of Excellence for Photovoltaic Research and Education
dc.date.accessioned 2008-12-15T16:38:42Z
dc.date.available 2008-12-15T16:38:42Z
dc.date.issued 2002-05
dc.description Presented at the 29th IEEE Photovoltaic Specialists Conference; New Orleans, Louisiana; May 17-24, 2002. ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. en
dc.description.abstract Reducing solar cell thickness is an attractive way to reduce material costs. However, model calculations in this paper show that if rear surface recombination velocity (S) is greater than about 1000 cm/s, a 100-μm-thick screen-printed cell on solar-grade material has a lower efficiency than a 300-μm-thick cell. The literature demonstrates that S < 1000 cm/s is readily achievable on monocrystalline materials. However, S on multicrystalline silicon (mc-Si) seems less thoroughly investigated. In this study, string ribbon mc-Si wafers of different resistivities are passivated with a thermal oxide, plasma-enhanced chemical vapor deposition (PECVD) nitride, and an oxide/nitride stack. For comparison, float zone (FZ) and Czochralski (Cz) monocrystalline wafers are passivated identically. By analyzing measured lifetimes under 500 nm and 1000 nm illumination, upper and lower limits on S are determined. For most of the monocrystalline wafers investigated in this study, the upper limit on S is less than 1000 cm/s, while for most of the multricrystalline wafers, 1000 cm/s falls within the error bars. Thus, thinning monocrystalline silicon should improve cell performance; however, it is difficult to conclude from this data that solar cell efficiency will improve when reducing thickness for the specified mc-Si materials and passivation technologies. In fact, results strongly suggest that S on string ribbon mc-Si is higher than S on identically passivated FZ. en
dc.identifier.uri http://hdl.handle.net/1853/26156
dc.language.iso en_US en
dc.publisher Georgia Institute of Technology en
dc.subject Monocrystalline silicon cells en
dc.subject Multicrystalline silicon cells en
dc.subject Solar cells en
dc.title Comparison of Dielectric Surface Passivation of Monocrystalline and Multicrystalline Silicon en
dc.type Text
dc.type.genre Proceedings
dspace.entity.type Publication
local.contributor.author Rohatgi, Ajeet
local.contributor.corporatename School of Electrical and Computer Engineering
local.contributor.corporatename College of Engineering
local.contributor.corporatename University Center of Excellence for Photovoltaics
relation.isAuthorOfPublication b7cc3b55-ebc6-42fd-b859-107fb271b10d
relation.isOrgUnitOfPublication 5b7adef2-447c-4270-b9fc-846bd76f80f2
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
relation.isOrgUnitOfPublication 93ace8d3-7479-459e-b63d-27aff6118464
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
brody.pdf
Size:
97.35 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: