Title:
Energy-Constrained Multi-UAV Coverage Path Planning for an Aerial Imagery Mission Using Column Generation

Thumbnail Image
Author(s)
Choi, Younghoon
Choi, Youngjun
Briceno, Simon
Mavris, Dimitri N.
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Organizational Unit
Series
Supplementary to
Abstract
This paper presents a new Coverage Path Planning (CPP) method for an aerial imaging mission with multiple Unmanned Aerial Vehicles (UAVs). In order to solve a CPP problem with multicopters, a typical mission profile can be defined with five mission segments: takeoff, cruise, hovering, turning, and landing. The traditional arc-based optimization approaches for the CPP problem cannot accurately estimate actual energy consumption to complete a given mission because they cannot account for turning phases in their model, which may cause non-feasible routes. To solve the limitation of the traditional approaches, this paper introduces a new route-based optimization model with column generation that can trace the amount of energy required for all different mission phases. This paper executes numerical simulations to demonstrate the effectiveness of the proposed method for both a single UAV and multiple UAV scenarios for CPP problems.
Sponsor
Date Issued
2019-03
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI