Title:
Assembly of Lead-free Bumped Flip-Chip with No-Flow Underfills

dc.contributor.author Wong, C. P.
dc.contributor.author Zhang, Zhuqing
dc.date.accessioned 2006-07-07T20:11:09Z
dc.date.available 2006-07-07T20:11:09Z
dc.date.issued 2002-04
dc.description ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. en
dc.description.abstract Lead-free solder reflow process has presented challenges to no-flow underfill material and assembly. The currently available no-flow underfill materials are mainly designed for eutectic Sn–Pb solders. This paper presents the assembly of lead-free bumped flip-chip with developed no-flow underfill materials. Epoxy resin/HMPA/metal AcAc/Flux G system is developed as no-flow underfills for Sn/Ag/Cu alloy bumped flip-chips. The solder wetting test is conducted to demonstrate the fluxing capability of the underfills for lead-free solders. A 100% solder joint yield has been achieved using Sn/Ag/Cu bumped flip-chips in a no-flow process. A scanning acoustic microscope is used to observe the underfill voiding. The out-gassing of HMPA at high curing temperatures causes severe voiding inside the package. A differential scanning calorimeter (DSC) is used to study the curing degree of the underfill after reflow with or without post-cure. The post-curing profiles indicate that the out-gassing of HMPA would destroy the stoichiometric balance between the epoxy and hardener, and result in a need for high temperature post-cure. The material properties of the underfills are characterized and the influence of underfill out-gassing on the assembly and material properties is investigated. The impact of lead-free reflow on the material design and process conditions of no-flow underfill is discussed. en
dc.format.extent 272158 bytes
dc.format.mimetype application/pdf
dc.identifier.citation IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, no. 2, April 2002, 113-119 en
dc.identifier.uri http://hdl.handle.net/1853/10763
dc.language.iso en_US en
dc.publisher Georgia Institute of Technology en
dc.publisher.original Institute of Electrical and Electronics Engineers, Inc., New York
dc.subject Flip-chip devices en
dc.subject Lead-free solder en
dc.subject Material properties en
dc.subject No-flow underfill en
dc.subject Solder joint yield en
dc.subject Underfill out-gassing en
dc.title Assembly of Lead-free Bumped Flip-Chip with No-Flow Underfills en
dc.type Text
dc.type.genre Article
dspace.entity.type Publication
local.contributor.author Wong, C. P.
local.contributor.corporatename School of Materials Science and Engineering
local.contributor.corporatename College of Engineering
relation.isAuthorOfPublication 76540daf-1e96-4626-9ec1-bc8ed1f88e0a
relation.isOrgUnitOfPublication 21b5a45b-0b8a-4b69-a36b-6556f8426a35
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
CPWongIEEE01.pdf
Size:
265.78 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: