Title:
Assembly of Lead-free Bumped Flip-Chip with No-Flow Underfills

Thumbnail Image
Author(s)
Wong, C. P.
Zhang, Zhuqing
Authors
Person
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Lead-free solder reflow process has presented challenges to no-flow underfill material and assembly. The currently available no-flow underfill materials are mainly designed for eutectic Sn–Pb solders. This paper presents the assembly of lead-free bumped flip-chip with developed no-flow underfill materials. Epoxy resin/HMPA/metal AcAc/Flux G system is developed as no-flow underfills for Sn/Ag/Cu alloy bumped flip-chips. The solder wetting test is conducted to demonstrate the fluxing capability of the underfills for lead-free solders. A 100% solder joint yield has been achieved using Sn/Ag/Cu bumped flip-chips in a no-flow process. A scanning acoustic microscope is used to observe the underfill voiding. The out-gassing of HMPA at high curing temperatures causes severe voiding inside the package. A differential scanning calorimeter (DSC) is used to study the curing degree of the underfill after reflow with or without post-cure. The post-curing profiles indicate that the out-gassing of HMPA would destroy the stoichiometric balance between the epoxy and hardener, and result in a need for high temperature post-cure. The material properties of the underfills are characterized and the influence of underfill out-gassing on the assembly and material properties is investigated. The impact of lead-free reflow on the material design and process conditions of no-flow underfill is discussed.
Sponsor
Date Issued
2002-04
Extent
272158 bytes
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI