On-line refueling for the advanced high temperature reactor

Thumbnail Image
Avigni, Pietro
Petrovic, Bojan
Alexeev, Alexander
Associated Organization(s)
Supplementary to
Several academic and commercial organizations around the world are developing the Fluoride salt-cooled High-temperature Reactor (FHR) technology, due to its safety features and potential to generate high temperature energy for electricity and process heat applications. The Advanced High Temperature Reactor (AHTR) being considered in this study is a FHR design developed at Oak Ridge National Laboratory (ORNL) and based on the use of graphite as moderator, TRISO particles as fuel and FLiBe as coolant. The AHTR reference design is based on a traditional batch refueling approach, which requires to shut down the reactor and replace/reshuffle a certain amount of fuel assemblies in the core at a specific frequency. Several options have been evaluated in the design process, in order to maximize the lifetime of a single batch and optimize the use of fuel. However, the relatively short cycle and poor fuel utilization are intrinsic features of this family of reactors, due to the low heavy metal loading in the core and insufficient moderation, which are competing aspects in terms of core volume fraction. Since the fuel is expected to be more expensive than the fuel of light water reactors (LWR), this issue might challenge the economic viability of the AHTR. In order to eliminate or ameliorate this issue, a novel approach to refueling has been developed, consisting in continuous on-power refueling, or on-line refueling, in which the refueling procedure is performed at full power or partially reduced power (the reactor is not shut down) and a single assembly is removed per each refueling operation. A systematic neutronic and thermal-hydraulic analysis approach has been developed and performed to assess the viability and safety of the refueling operations, followed by the evaluation of the core design requirements and a quantification of the economic advantages deriving from the implementation of this procedure.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI