Title:
In situ monitoring of reactive ion etching using a surface micromachined integrated resonant sensor

Thumbnail Image
Author(s)
Morris, Bryan George Oneal
Authors
Advisor(s)
May, Gary S.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
This research explores a novel in-situ technique for monitoring film thickness in the reactive etching process that incorporates a micromachined sensor. The sensor correlates film thickness with changes in resonant frequency that occurs in the micromachined platform during etching. The sensor consists of a platform that is suspended over drive and sense electrodes on the surface of the substrate. As material is etched from the platform, its resonant vibrational frequency shifts by an amount that is proportional to the amount of material etched, allowing etch rate to be inferred. This RIE monitoring methodology exploits the accuracy of resonant micromechanical structures, whereby shifts in the fundamental resonant frequency measure a physical parameter. A majority of these systems require free-standing mechanical movement and utilize a sacrificial layer process as the key technique to develop and release the structure on a substrate. A sacrificial layer technique that incorporates a low temperature sacrificial polymer was utilized to develop and release the suspended RIE sensor with excellent performance and is capable of fabricating other low cost, high performance and reliable suspended MEMS devices. The integration of sensors and electronic circuitry is a dominant trend in the semiconductor industry, and much work and research has been devoted to this effort. The RIE sensor relies on capacitive transduction to detect small capacitance changes and the resulting change in resonant frequency during the RIE process. The RIE sensor's overall performance is limited by the interface circuit, and integration with the proper circuit allows the RIE sensor to function as a highly sensitive measure of etch rate during the RIE process. A capacitive feedback charge amplifier interface circuit, when configured with the RIE senor at the input achieves very low noise sensing of capacitance changes and offers the potential for wide dynamic range and high sensitivity. As an application vehicle, process control was demonstrated in the PlasmaTherm SLR series RIE system located in the Georgia Tech Microelectronics Research Center.
Sponsor
Date Issued
2009-08-18
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI