Neural-Network Augmentation of Existing Linear Controllers

Loading...
Thumbnail Image
Author(s)
Sharma, Manu
Calise, Anthony J.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Organizational Unit
Organizational Unit
Series
Supplementary to:
Abstract
A method to augment existing linear controllers with a multilayer neural network is presented. The neural network is adapted online to ensure desired closed-loop response in the face of parametric plant uncertainty; no off-line training is required. The benefit of this scheme is that the neural-network output is simply added to the nominal control signal, thereby preserving the existing control architecture. Furthermore, the nominal control signal is only modified if the desired closed-loop response is not met. This method applies to a large class of modern and classical linear controllers. Stability guarantees are provided via Lyapunov-like analysis, and the efficacy of this scheme is illustrated through two numerical examples.
Sponsor
Date
2005-01
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI