A New Two-Scale Decomposition Approach for Large-Eddy Simulation of Turbulent Flows

Loading...
Thumbnail Image
Author(s)
Kemenov, Konstantin A.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Supplementary to:
Abstract
A novel computational approach, Two Level Simulation (TLS), was developed based on the explicit reconstruction of the small-scale velocity by solving the small-scale governing equations on the domain with reduced dimension representing a collection of one-dimensional lines embedded in the three-dimensional flow domain. A coupled system of equations, that is not based on an eddy-viscosity hypothesis, was derived based on the decomposition of flow variables into the large-scale and the small-scale components without introducing the concept of filtering. Simplified treatment of the small-scale equations was proposed based on modeling of the small-scale advective derivatives and the small-scale dissipative terms in the directions orthogonal to the lines. TLS approach was tested to simulate benchmark cases of turbulent flows, including forced isotropic turbulence, mixing layers and well-developed channel flow, and demonstrated good capabilities to capture turbulent flow features using relatively coarse grids.
Sponsor
Date
2006-06-22
Extent
5973185 bytes
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI