Title:
Identification of metal-organic framework materials for adsorptive separation of the rare gases: applicability of IAST and effects of inaccessible regions

Thumbnail Image
Author(s)
Van Heest, Timothy Milner
Authors
Advisor(s)
Sholl, David S.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
School of Chemical and Biomolecular Engineering
School established in 1901 as the School of Chemical Engineering; in 2003, renamed School of Chemical and Biomolecular Engineering
Organizational Unit
Series
Supplementary to
Abstract
A collection of >3000 MOFs with experimentally confirmed structures were screened for performance in three binary separations: Ar/Kr, Kr/Xe, and Xe/Rn. 70 materials were selected for further analysis, and calculations were performed to account for inaccessible regions. Single component GCMC calculations were performed to parameterize IAST calculations on these 70 materials, and the curve fitting problem in IAST was discussed. IAST calculations were confirmed with extensive binary GCMC calculations. For each binary separation, materials were identified with predicted performance that surpasses the state of the art. "Reverse selective" materials, for which a smaller gas species is preferably adsorbed over a larger species, were explained on the basis of surface fractal geometry, computed via a corrected surface area calculation. The effect of temperature on separation performance was also examined.
Sponsor
Date Issued
2012-04-06
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI