Title:
Matchmaker: Manifold Breps for Non-manifold r-sets
Matchmaker: Manifold Breps for Non-manifold r-sets
Files
Authors
Rossignac, Jarek
Cardoze, David Enrique Fabrega
Cardoze, David Enrique Fabrega
Authors
Person
Advisors
Advisors
Associated Organizations
Organizational Unit
Series
Series
Collections
Supplementary to
Permanent Link
Abstract
Many solid modeling construction techniques produce non-manifold r-sets (solids). With each non-manifold model N we can associate a family of manifold solid models that are infinitely close to N in the geometric sense. For polyhedral solids, each non-manifold edge of N with 2k incident faces will be replicated k times in any manifold model M of that family. Furthermore, some non-manifold vertices of N must also be replicated in M, possibly several times. M can be obtained by defining, in N, a single adjacent face TA(E,F) for each pair (E,F) that combines an edge E and an incident face F. The adjacency relation satisfies TA(E,TA(E,F))=F. The choice of the map A defines which vertices of N must be replicated in M and how many times. The resulting manifold representation of a non-manifold solid may be encoded using simpler and more compact data-structures, especially for triangulated model, and leads to simpler and more efficient algorithms, when it is used instead of a non-manifold representation for a variety of tasks, such as simplification, compression, interference detection or rendering. Most choices of the map A lead to invalid (self-intersecting) boundaries and to unnecessary vertex replications for M. We propose an efficient algorithm, called Matchmaker, which computes a map A, such that there exists an infinitely small perturbation of the vertices and edges of M that produces a valid (non self-intersecting) boundary of a manifold solid. Furthermore, our approach avoids most unnecessary vertex replications.
Sponsor
Date Issued
1999
Extent
122094 bytes
Resource Type
Text
Resource Subtype
Technical Report