Applicability of Cytocompatible ALD Barrier Films as Protective Barriers for Biological Implants

Thumbnail Image
Adstedt, Katarina
Realff, Mary Lynn
Associated Organizations
Supplementary to
The ability of atomic layer deposited (ALD) metal oxide films to serve as protective, encapsulating barriers for biological implants is determined through testing the corrosion resistance and degradation behavior of the films. Using plasma enhanced ALD (PE-ALD), metal-oxides are deposited at 100 oC onto gold electrodes. Through MTT cell proliferation assay, the films are determined to be cytologically compatible and will not cause harm to the implant host. Using electrochemical impedance spectroscopy (EIS), the films establish their relative chemical stabilities within three different biological environments, phosphate buffer solution (PBS), simulated sweat and simulated saliva. The resulting data from the EIS measurements demonstrates the rate of degradation for the four respective films and exhibits which films are best suited as protective barriers for biological implants. ALD Al2O3 is not suitable as an encapsulating layer as it demonstrates no corrosion resistance. Within PBS, ALD TiO2 establishes itself as the most stable film barrier while within simulated sweat and saliva ALD ZrO2 is the most chemically stable. The viability of ALD films in biological solutions and their enhanced corrosion resistances opens up the possibility for a new class of materials that can be used for the protection of bioimplants and wearable devices.
Date Issued
Resource Type
Resource Subtype
Undergraduate Thesis
Rights Statement
Rights URI