Title:
Erdos-Posa theorems for undirected group-labelled graphs

Thumbnail Image
Author(s)
Yoo, Youngho
Authors
Advisor(s)
Yu, Xingxing
Advisor(s)
Person
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Supplementary to
Abstract
Erdős and Pósa proved in 1965 that cycles satisfy an approximate packing-covering duality. Finding analogous approximate dualities for other families of graphs has since become a highly active area of research due in part to its algorithmic applications. In this thesis we investigate the Erdős-Pósa property of various families of constrained cycles and paths by developing new structural tools for undirected group-labelled graphs. Our first result is a refinement of the flat wall theorem of Robertson and Seymour to undirected group-labelled graphs. This structure theorem is then used to prove the Erdős-Pósa property of A-paths of length 0 modulo p for a fixed odd prime p, answering a question of Bruhn and Ulmer. Further, we obtain a characterization of the abelian groups Γ and elements l ∈ Γ for which A-paths of weight l satisfy the Erdős-Pósa property. These results are from joint work with Robin Thomas. We extend our structural tools to graphs labelled by multiple abelian groups and consider the Erdős-Pósa property of cycles whose weights avoid a fixed finite subset in each group. We find three types of topological obstructions and show that they are the only obstructions to the Erdős-Pósa property of such cycles. This is a far-reaching generalization of a theorem of Reed that Escher walls are the only obstructions to the Erdős-Pósa property of odd cycles. Consequently, we obtain a characterization of the sets of allowable weights in this setting for which the Erdős-Pósa property holds for such cycles, unifying a large number of results in this area into a general framework. As a special case, we characterize the integer pairs (l, z) for which cycles of length l mod z satisfy the Erdős-Pósa property. This resolves a question of Dejter and Neumann-Lara from 1987. Further, our description of the obstructions allows us to obtain an analogous characterization of the Erdős-Pósa property of cycles in graphs embeddable on a fixed compact orientable surface. This is joint work with Pascal Gollin, Kevin Hendrey, O-joung Kwon, and Sang-il Oum.
Sponsor
Date Issued
2022-06-14
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI