Title:
Power distribution network modeling and microfluidic cooling for high-performance computing systems

dc.contributor.advisor Bakir, Muhannad S.
dc.contributor.author Zheng, Li
dc.contributor.committeeMember Naeemi, Azad
dc.contributor.committeeMember Brand, Oliver
dc.contributor.committeeMember Yalamanchili, Sudhakar
dc.contributor.committeeMember Graham, Samuel
dc.contributor.department Electrical and Computer Engineering
dc.date.accessioned 2016-01-07T17:38:49Z
dc.date.available 2016-01-07T17:38:49Z
dc.date.created 2015-12
dc.date.issued 2015-11-16
dc.date.submitted December 2015
dc.date.updated 2016-01-07T17:38:49Z
dc.description.abstract A silicon interposer platform with microfluidic cooling is proposed for high-performance computing systems. The key components and technologies for the proposed platform, including electrical and fluidic microbumps, microfluidic vias and heat sinks, and simultaneous flip-chip bonding of the electrical and fluidic microbumps, are developed and demonstrated. Fine-pitch electrical microbumps of 25 µm diameter and 50 µm pitch, fluidic vias of 100 µm diameter, and annular-shaped fluidic microbumps of 150 µm inner diameter and 210 µm outer diameter were fabricated and bonded. Electrical and fluidic tests were conducted to verify the bonding results. Moreover, the thermal and signaling benefits of the proposed platform were evaluated based on thermal measurements and simulations, and signaling simulations. Compared to the conventional air cooling, significant reductions in system temperature and thermal coupling are achieved with the proposed platform. Moreover, the signaling performance is improved due to the reduced temperature, especially for long interconnects on the silicon interposer. A numerical power distribution network (PDN) simulator is developed based on distributed circuit models for on-die power/ground grids, package- and board- level power/ground planes, and the finite difference method. The simulator enables power supply noise simulation, including IR-drop and simultaneous switching noise, for a full chip with multiple blocks of different power, decoupling capacitor, and power/ground pad densities. The distributed circuit model is further extended to include TSVs to enable simulations for 3D PDN. The integration of package- and board- level power/ground planes enables co-simulation of die-package-board PDN and exploration of new PDN configurations.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/54449
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Power distribution network
dc.subject Power supply noise
dc.subject Numerical modeling
dc.subject Silicon interposer
dc.subject Microfluidic cooling
dc.title Power distribution network modeling and microfluidic cooling for high-performance computing systems
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Bakir, Muhannad S.
local.contributor.corporatename School of Electrical and Computer Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 752d9ed4-97ec-4a80-9920-4b4d3e762de1
relation.isOrgUnitOfPublication 5b7adef2-447c-4270-b9fc-846bd76f80f2
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
ZHENG-DISSERTATION-2015.pdf
Size:
20.05 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.86 KB
Format:
Plain Text
Description: