Person:
Rossignac,
Jarek
Rossignac,
Jarek
Permanent Link
Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record
Publication Search Results
Now showing
1  2 of 2

ItemSOT: Compact Representation for Triangle and Tetrahedral Meshes(Georgia Institute of Technology, 2010) Rossignac, Jarek ; Gurung, ToprajThe Corner Table (CT) represents a triangle mesh by storing 6 integer references per triangle (3 vertex references in the Vertex table and 3 references to opposite corners in the Opposite table, which accelerate access to adjacent triangles). The Compact Half Face (CHF) representation extends CT to tetrahedral meshes, storing 8 references per tetrahedron (4 in the Vertex table and 4 in the Opposite table). We use the term Vertex Opposite Table (VOT) to refer to both CT and CHF and propose a sorted variation, SVOT, which is inspired by tetrahedral mesh encoding techniques and which works for both triangle and tetrahedral meshes. The SVOT does not require additional storage and yet provides, for each vertex, a reference to an incident corner from which the star (incident cells) of the vertex may be traversed at a constant cost per visited element. We use the corner operators for querying and traversing the triangle meshes while for tetrahedral meshes, we propose a set of powerful wedgebased operators. Improving on the SVOT, we propose our Sorted Opposite Table (SOT) variation, which eliminates the Vertex table completely and hence reduces storage requirements by 50% to only 3 references per triangle for triangle meshes and 4 references and 9 bits per tetrahedron for tetrahedral meshes, while preserving the vertextoincidentcorner references and supporting the corner operators and our wedge operators with a constant average cost. The SVOT and SOT representation work on manifold meshes with boundaries.

ItemSAM: Steady Affine Motions(Georgia Institute of Technology, 20091123) Rossignac, Jarek ; Vinacua, ÀlvarAn affine motion is a continuous map from time value t to an affinity A subscript t. It is a SAM (Steady Affine Motion), when A subscript t = A superscript t. Although the beauty of a motion is subjective, the above equation provides one mathematical characterization and includes the screw ("universal instantaneous") motion and the golden ("mirabilis") spiral. Although a real matrix, A superscript t, may not exist, we show that it does for a dense set of affinities A covering a significant range of rotations and shears around the identity and that it may be computed efficiently and robustly in two and three dimensions using closed form expressions. SAMs have remarkable properties. For example, the velocity of any point remains constant, both in the global (fixed) and local (moving) frames, which facilitates the exact computation of derived entities, such as the envelope surfaces used to define the boundary of a swept volume. We say that a pattern of features F subscript i is steady when there exists an affinity M such that F subscript i = M superscript i F subscript 0. Each M superscript i is a frame of a SAM and may be computed as A superscript (i/n), where A is the afiine relation F subscript n = A F subscript 0 between the first and the last feature. This option makes it possible to edit directly the feature count n or the cumulative transformation A.