Person:
Zhu, Cheng

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 29
  • Item
    Analysis of microstructure, deformation and permeability of salt/sand mixtures during creep
    (Georgia Institute of Technology, 2017-07) Shen, Xianda ; Zhu, Cheng ; Arson, Chloé
    The impact of impurities on salt healing properties is studied through creep tests performed on brine saturated granular salt with various quartz contents. Quartz grains act as shields that reduce dissolution at salt grain contacts and decrease the creep rate. Non-smooth creep curves are obtained for specimens with 50% quartz contents, due to sequential pore collapse. Micro-CT images acquired before creep, after creep, and after unloading, show that pore-to-pore distances decrease with quartz contents and that the creep rate decreases as the mean area of the salt grain contacts increases. Based on grain scale thermodynamic models, we show that creep deformation is controlled by diffusion - not dissolution-precipitation. Permeability evolution is less sensitive to porosity than to void radius and spacing, which control pore connectivity. The proposed modeling framework can be used in any crystalline material to relate microscopic reaction rates to macroscopic deformation rates.
  • Item
    Self-consistent micromechanical approach for damage accommodation in rock-like polycrystalline materials
    (Georgia Institute of Technology, 2017) Pouya, Ahmad ; Zhu, Cheng ; Arson, Chloé
    In quasi-brittle polycrystalline materials, damage by cracking or cleavage dominates plastic and viscous deformation. This paper proposes a micromechanical model for rock-like materials, incorporating the elastic-damage accommodation of the material matrix, and presents an original method to solve the system of implicit equations involved in the formulation. A self-consistent micromechanical approach is used to predict the anisotropic behavior of a polycrystal in which grain inclusions undergo intragranular damage. Crack propagation along planes of weakness with various orientation distributions at the mineral scale is modeled by a softening damage law and results in mechanical anisotropy at the macroscopic scale. One original aspect of the formulated inclusionmatrix model is the use of an explicit expression of the Hill’s tensor to account for matrix ellipsoidal anisotropy. To illustrate the model capabilities, a uniaxial compression test was simulated for a variety of polycrystals made of two types of mineral inclusions with each containing only one plane of weakness. Damage always occurred in only one mineral type: the damaging mineral was that with a smaller shear modulus (respectively higher bulk modulus) when bulk modulus (respectively shear modulus) was the same. For two minerals with the same shear moduli but different bulk moduli, the maximum damage in the polycrystal under a given load was obtained at equal mineral fractions. However, for two minerals with different shear moduli, the macroscopic damage was not always maximum when the volume fraction of two minerals was the same. When the weakness planes’ orientations in the damaging mineral laid within a narrow interval close to the loading direction, the macroscopic damage behavior was more brittle than when the orientations were distributed over a wider interval. Parametric studies show that upon proper calibration, the proposed model can be extended to understand and predict the micro-macro behavior of different types of quasi-brittle materials.
  • Item
    Prediction of viscous cracking and cyclic fatigue of salt polycrystals using a joint-enriched Finite Element Model
    (Georgia Institute of Technology, 2016-09) Zhu, Cheng ; Pouya, Amade ; Arson, Chloé
    We present a new Joint-enriched Finite Element Method (JFEM) to predict viscous damage and fatigue in halite polycrystals in 2D. Different visco-plastic finite elements are used to represent grains of different orientations, and joint elements are used for modeling crack propagation. Simulations of uniaxial creep tests show that, as it could be predicted theoretically, viscous shear deformation in grains causes geometric incompatibilities. Numerical results also show that the transition between secondary and tertiary creep corresponds to inter-granular crack coalescence. The JFEM model captures the mechanical behavior of halite under cyclic loading, mainly: (a) Higher stress amplitude, lower confining stress, and lower loading frequency increase deformation and damage; (b) The polycrystal’s Young’s modulus decreases exponentially with the number of cycles; (c) The behavior is similar for different loading directions. Simulations with intra- and inter- granular joint elements show that most stress concentrations occur in intra-granular joints where several angular grains are in contact. Results of creep tests obtained with the JFEM are compared to those obtained with an inclusion-matrix model that accounts for damage accommodation due to grain breakage. Both the JFEM and inclusion-matrix models are calibrated against experimental creep tests to: (a) Produce a Young’s modulus of 23 GPa for the polycrystal; (b) Match secondary creep strain rates; (c) Match the time of tertiary creep initiation. In the inclusion-matrix model, the absence of grain geometric rearrangement results in a brutal failure just after the first grain breakage that triggers tertiary creep. Moreover, the JFEM model highlights the development of crack patterns upon viscous deformation. The JFEM is of great promise to understand complex phenomena of viscous accommodation coupled with grain interface debonding.
  • Item
    Microstructure-based modeling of damage and healing in salt rock with application to geological storage
    (Georgia Institute of Technology, 2016-06-24) Zhu, Cheng
    Most mineral and energy resources such as ore, petroleum, natural gas, and geothermal energy are recovered from the earth. Nuclear waste repositories and CO2 storage systems are buried underground. Recovery of mineral resources, storage of energy, and disposal of waste involve changes in coupled mechanical and transport rock properties. The evolution of pores and cracks during thermo-hydro-chemo-mechanical coupled processes governs the variations of macroscopic properties. This research investigates the modeling of damage and healing in rocks with applications in geological storage. This presentation focuses on salt rock, which is used as a model material to study rock microstructure evolution under various stress paths, and to understand the microscopic processes that lead to macroscopic mechanical recovery. We developed two different techniques based on continuum damage mechanics (CDM) and micromechanics. The first method enriches the framework of CDM with fabric descriptors. We carried out creep tests on granular salt to infer the form of fabric tensors from microstructure observation. Net damage evolution is governed by a diffusion equation. Macroscopic and microscopic model predictions highlight the increased efficiency of healing with time and temperature. The other method is based on a self-consistent homogenization scheme, in which the viscoplastic and damage behavior of halite polycrystals is upscaled from mono-crystal slip mechanisms. The model provides micro-mechanical interpretations to important aspects of salt rock viscoplastic and fatigue behavior. We implemented the micromechanical model in a finite element program to characterize crack patterns in salt polycrystals and predict damage around a salt cavern used for high-pressure gas storage. This study is expected to improve the fundamental understanding of damage and healing in rocks, and the long-term assessment of geological storage facilities.
  • Item
    Damage and healing model of stiffness and permeability for salt rock: microstructure imaging, fabric processes and continuum mechanics
    (Georgia Institute of Technology, 2016-06) Zhu, Cheng ; Arson, Chloé
    In this study, we proposed a fabric-enriched Continuum Damage Mechanics model to investigate the coupled influence of damage and healing on the mechanical and transport properties of salt rock. In order to infer the form of fabric tensors, we carried out creep tests on granular salt assemblies under constant temperature and humidity conditions and used micro-computed tomography for microstructure characterization. Using microscope imaging and micro-CT scanning, we analyzed the probability distributions of crack radius, void areas and crack spacing and used them as a basis to derive macroscopic evolution laws. A stress path comprising a tensile loading, a compressive unloading, a creep-healing stage, and a reloading was simulated. As expected, stiffness decreases (respectively increases) and permeability increases (respectively decreases) upon damage (respectively healing). Results also highlight the increased efficiency of healing with temperature. The micro-macro relationships established by statistical image analysis also provide the evolution of microstructure descriptors during the test. Simulations show that permeability changes are controlled by changes in crack connectivity, which dominate changes of porosity. The proposed framework is expected to improve the fundamental understanding of coupled processes that govern microstructure changes and subsequent variations of stiffness and permeability in salt rock, which will allow the assessment of the long-term performance of geological storage facilities.
  • Item
    Mechanical Behavior and Microstructure Development in Consolidation of Nominally Dry Granular Salt
    (Georgia Institute of Technology, 2016-06) Ding, Jihui ; Chester, Frederick M. ; Chester, Judith S. ; Zhu, Cheng ; Arson, Chloé
    Uniaxial consolidation of granular salt is carried out to study the mechanical behavior and fabric development in a material that deforms by microscopic brittle and intracrystalline-plastic processes. Dry granular salt is sieved to produce well-sorted size fractions. The granular salt is consolidated in a heated cell at axial stresses up to 90 MPa and temperatures of 100 - 200 ˚C to document stress-consolidation relationships and microstructural development. Polished and chemically-etched petrographic sections of salt samples prior to and after deformation at 150˚C are studied using transmitted- and reflected-light optical microscopy. We show that temperature has profound effect on porosity reduction during consolidation. At tested conditions, the dominant deformation mechanism is crystal plasticity; brittle deformation is largely suppressed. Samples consolidated at higher maximum axial stress develop higher overall dislocation densities. The distribution of dislocations, however, is strongly heterogeneous from grain to grain because of the complex grain-scale loading geometries and the distribution of intragranular flaws such as fluid inclusions. Static recrystallization occurs in some highly strained areas, but overall is minor at 150˚C. The experiments help to improve our understanding of consolidation, and serve to guide the fabrication of synthetic rock salt as experimental material, as well as to inform and test constitutive models of deformation of granular salt for engineering needs.
  • Item
    Chemo-Mechanical Damage and Healing of Granular Salt: Micro-macro modeling
    (Georgia Institute of Technology, 2016-06) Xianda, Shen ; Zhu, Cheng ; Arson, Chloé
    A micro-macro chemo-mechanical model of damage and healing is proposed to predict the evolution of salt stiffness and deformation upon micro-crack propagation, opening, closure and rebonding, which is the result of pressure solution. We hypothesize that at a given grain contact, the surface area of the contact dictates which mechanism dominates the rate of healing. Based on thermodynamic equations of dissolution, diffusion and precipitation, we establish a formula for the critical contact area that marks the transition between diffusion-dominated kinetics and dissolution-precipitation-dominated kinetics. We relate the change of contact area to the change of solid volume in the Representative Elementary Volume, and we define net damage as the sum of the mechanical damage and the chemical porosity change. A continuum-based damage mechanics framework is used to deduce the change of salt stiffness with net damage. A stress path comprising a tensile loading, a compressive unloading, a creep– healing stage and a reloading is simulated. Stiffness degradation and residual strain development are observed with the evolution of damage under tensile loading. Unilateral effects of crack closure can be predicted by the model upon compression. Our micromacro model also allows predicting the evolution of the probability distribution of contact areas upon healing, as well as the consequent decrease of net damage and recovery of stiffness. The proposed modeling framework is expected to shed light on coupled healing processes that govern microstructure changes and subsequent variations of deformation rate, stiffness and permeability in salt rock, and to allow the assessment of long-term behavior of geological storage facilities in salt.
  • Item
    Micro-mechanical analysis of salt creep tests with a joint-enriched Finite Element model
    (Georgia Institute of Technology, 2016-06) Zhu, Cheng ; Pouya, Ahmad ; Arson, Chloé ; Ding, Jihui ; Chester, Frederick M. ; Chester, Judith S.
    In this study, micro-mechanisms that govern the viscous and damage behavior of salt polycrystal during creep processes are investigated. A Finite Element model is designed with POROFIS, in which surface elements represent salt grains and joint elements represent inter-granular contacts. Microscopic observations of salt thin sections serve as a basis to design the mesh, which includes voids. We compare three strategies to predict microscopic damage in the salt polycrystal: (1) inter-granular damage represented by damage propagation in joint elements; (2) intra-granular damage represented by stiffness degradation in grain surface elements; (3) damage in both surface and joint elements. We simulate creep tests in conditions typical of Compressed Air Energy Storage. The three models capture polycrystal stiffness degradation and the initiation, propagation and coalescence of cracks that originate from geometric incompatibilities and local stress concentrations. The model with damageable joints presents a more ductile behavior and captures a smooth transition between steady state and tertiary state creep. This research is expected to improve the fundamental understanding of viscous damage mechanisms in salt rock for geostorage applications, and bring new insights on numerical modeling of multi-scale damage processes in crystalline materials.
  • Item
    Numerical study of the influence of fluid viscosity on wellbore spalling in drained fractured rock
    (Georgia Institute of Technology, 2015-07) Jin, W. ; Zhu, Cheng ; Arson, Chloé ; Pouya, A.
    The objective of this work is to model the influence of shear stresses induced by viscous fluid flow on wellbore spalling. We simulated a drop of stress and pore pressure at the wall of a meter-scale borehole with a plane strain Finite Element model. The rock mass was modeled as a jointed continuum. Block sliding was predicted from the tangential displacements in the joint after the shear failure criterion was reached. Simulations show that: (1) Higher far field stresses induce more normal stress in the joints, which prevents the occurrence of shear plastic strains in the joints and reduces block sliding at the wall; (2) Shear stresses and consequent shear plastic strains that are induced by viscous fluid flow in the joints are higher for higher fluid viscosities, and decrease over time as the blocks on each side of the joint slide on each other; (3) In joints that are in contact with the borehole, a change of one order of magnitude in the fluid viscosity results in a change in joint shear stress by a factor of 2. Results suggest that if drainage had been simulated over a longer period of time or for a smaller borehole diameter, the failure criterion would have been reached on a larger zone around the borehole, which could have a critical impact on the risk of borehole spalling. The numerical approach proposed in this work is expected to be useful to recommend wellbore operation modes so as to avoid excessive spalling and clogging.
  • Item
    Fabric-enriched Modeling of Anisotropic Healing induced by Diffusion in Granular Salt
    (Georgia Institute of Technology, 2015-07) Zhu, Cheng ; Arson, Chloé
    This study aims to model anisotropic damage (i.e. increase of porosity and loss of stiffness) and healing (i.e. recovery of stiffness) in salt rock subject to microcrack initiation, propagation, and rebonding. We introduce enriched fabric tensors in a Continuum Damage Mechanics model to link micro-crack evolution with macroscopic deformation rates. We carry out creep tests on granular salt assemblies to infer the form of fabric descriptors. We use moments of probability of fabric descriptors to find relationships between microstructural and phenomenological variables. Creep processes in salt include glide, cross-slip, diffusion, and dynamic recrystallization. We assume that healing is predominantly governed by diffusive mass transfer. We model the corresponding crack cusp propagation on grain faces by means of a two-dimensional diffusion equation. We calibrate this grainscale healing model against experimental measures of crack cusp propagation distance. We simulate the opening, closure and rebonding of three orthogonal families of micro-cracks during a compression-tension loading cycle. Multi-scale model predictions illustrate the evolution of stiffness, deformation, and crack geometry during the anisotropic damage and healing process, and highlight the increased healing efficiency with time. We expect that the proposed modeling approach will provide more precise and reliable performance assessments on geological storage facilities in salt rock.