##
Person:
Goldman,
Daniel I.

Goldman,
Daniel I.

##### Permanent Link

##### Associated Organization(s)

Organizational Unit

##### ORCID

##### ArchiveSpace Name Record

24 results

## Publication Search Results

Now showing
1 - 10 of 24

Item

#### Colloquium: Biophysical principles of undulatory self-propulsion in granular media

2014
,
Goldman, Daniel I.

Biological locomotion, movement within environments through self-deformation, encompasses a
range of time and length scales in an organism. These include the electrophysiology of the nervous
system, the dynamics of muscle activation, the mechanics of the skeletal system, and the interaction
mechanics of such structures within natural environments like water, air, sand, and mud. Unlike the
many studies of cellular and molecular scale biophysical processes, movement of entire organisms
(like flies, lizards, and snakes) is less explored. Further, while movement in fluids like air and water is
also well studied, little is known in detail of the mechanics that organisms use to move on and within
flowable terrestrial materials such as granular media, ensembles of small particles that collectively
display solid, fluid, and gaslike behaviors. This Colloquium reviews recent progress to understand
principles of biomechanics and granular physics responsible for locomotion of the sandfish, a small
desert-dwelling lizard that “
swims” within sand using undulation of its body. Kinematic and muscle
activity measurements of sand swimming using high speed x-ray imaging and electromyography are
discussed. This locomotion problem poses an interesting challenge: namely, that equations that
govern the interaction of the lizard with its environment do not yet exist. Therefore, complementary
modeling approaches are also described: resistive force theory for granular media, multiparticle
simulation modeling, and robotic physical modeling. The models reproduce biomechanical and
neuromechanical aspects of sand swimming and give insight into how effective locomotion arises
from the coupling of the body movement and flow of the granular medium. The argument is given that
biophysical study of movement provides exciting opportunities to investigate emergent aspects of
living systems that might not depend sensitively on biological details.

Item

#### Force and flow at the onset of drag in plowed granular media

2014
,
Gravish, Nick
,
Umbanhowar, Paul B.
,
Goldman, Daniel I.

We study the transient drag force F[subscript D] on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how F[subscript D] varies as a function of the medium’s initial volume fraction, φ. The force response of the granular material differs above and below the granular critical state,
φ[subscript c], the volume fraction which corresponds to the onset of grain dilatancy. For φ<φ[subscript c] F[subscript D] increases monotonically with displacement and is independent of drag velocity for the range of
velocities examined (<10 cm/s). For φ>φ[subscript c], F[subscript D] rapidly rises to a maximum and then decreases over further displacement. The maximum force for φ>φ[subscript c] increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in
F[subscript D] for φ>φ[subscript c] are associated with maxima in the spatially averaged shear strain field. For
φ>φ[subscript c] the shear strain occurs in a narrow region in front of the plate, a shear band. For φ<φ[subscript c] the shear strain is not localized, the shear band fluctuates in space and time, and the average shear increases monotonically with displacement. Laser
speckle measurements made at the granular surface ahead of the plate reveal that for φ<φ[subscript c] particles are in motion far from the intruder and shearing region. For φ>φ[subscript c], surface particles move only during the formation
of the shear band, coincident with the maxima in F[subscript D], after which the particles remain immobile until the sheared region reaches the measurement region.

Item

#### Entangled granular media

2012-05-17
,
Gravish, Nick
,
Franklin, Scott V.
,
Hu, David L.
,
Goldman, Daniel I.

We study the geometrically induced cohesion of ensembles of granular“u particles” that mechanically entangle through particle interpenetration. We vary the length-to-width ratio l/w of the u particles and form them into freestanding vertical columns. In a laboratory experiment, we monitor the response of the columns to sinusoidal vibration (with peak acceleration Γ). Column collapse occurs in a characteristic time τ which follows the relationτ∝exp(Γ/Δ). Δ resembles an activation energy and is maximal at intermediate l/w. A simulation reveals that optimal strength results from competition between packing and entanglement

Item

#### Granular impact and the critical packing state

2010-07-15
,
Umbanhowar, Paul B.
,
Goldman, Daniel I.

Impact dynamics during collisions of spheres with granular media reveal a pronounced and nontrivial dependence on volume fraction ϕ. Postimpact crater morphology identifies the critical packing state ϕcps, where sheared grains neither dilate nor consolidate, and indicates an associated change in spatial response. Current phenomenological models fail to capture the observed impact force for most ϕ; only near ϕcps is force separable into additive terms linear in depth and quadratic in velocity. At fixed depth the quadratic drag coefficient decreases (increases) with depth for ϕ<ϕcps (ϕ>ϕcps). At fixed low velocity, depth dependence of force shows a Janssen-type exponential response with a length scale that decreases with increasing ϕ and is nearly constant for ϕ>ϕcps.

Item

#### The Effectiveness of Resistive Force Theory in Granular Locomotion

2014
,
Zhang, Tingnan
,
Goldman, Daniel I.

Resistive force theory (RFT) is often used to analyze the movement of microscopic
organisms swimming in fluids. In RFT, a body is partitioned into infinitesimal segments, each of which generates thrust and experiences drag. Linear superposition of forces from elements over the body allows prediction of swimming velocities and efficiencies. We show that RFT quantitatively describes the movement of animals and robots that move on and within dry granular media (GM), collections of particles that display solid, fluid, and gas-like features. RFT works well when the GM is slightly
polydisperse, and in the “frictional fluid” regime such that frictional forces dominate
material inertial forces, and when locomotion can be approximated as confined to a
plane. Within a given plane (horizontal or vertical) relationships that govern the force
versus orientation of an elemental intruder are functionally independent of the granular medium. We use the RFT to explain features of locomotion on and within granular
media including kinematic and muscle activation patterns during sand-swimming by
a sandfish lizard and a shovel-nosed snake, optimal movement patterns of a Purcell 3-link sand-swimming robot revealed by a geometric mechanics approach, and legged locomotion of small robots on the surface of GM. We close by discussing
situations to which granular RFT has not yet been applied (such as inclined granular
surfaces), and the advances in the physics of granular media needed to apply RFT in
such situations.

Item

#### Mechanics of undulatory swimming in a frictional fluid

2012-12
,
Ding, Yang
,
Sharpe, Sarah S.
,
Masse, Andrew
,
Goldman, Daniel I.

The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a ‘‘granular frictional fluid’’ and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

Item

#### Drag induced lift in granular media

2011-01-14
,
Ding, Yang
,
Gravish, Nick
,
Goldman, Daniel I.

Laboratory experiments and numerical simulation reveal that a submerged intruder dragged horizontally at a constant velocity within a granular medium experiences a lift force whose sign and magnitude depend on the intruder shape. Comparing the stress on a flat plate at varied inclination angle with the local surface stress on the intruders at regions with the same orientation demonstrates that intruder lift forces are well approximated as the sum of contributions from flat-plate elements. The plate stress is deduced from the force balance on the flowing media near the plate.

Item

#### Effect of Volume Fraction on Granular Aavalanche Dynamics

2014
,
Gravish, Nick
,
Goldman, Daniel I.

We study the evolution and failure of a granular slope as a function of prepared volume fraction, φ0. We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45◦
angle while we monitor the
motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the
tilt process depended sensitively on φ0∈ [0.58–0.63] and differed above or below the granular critical state,
φc, defined as the onset of dilation as a function of increasing volume fraction. For
φ0−φc < 0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ0 = 7.7 ± 1.4◦
and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θm =28.5 ± 1.0◦. Granular material at φ0 − φc > 0 did not
experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ0 = 32.1 ± 1.5◦ prior to the onset of an avalanche at θm = 35.9 ± 0.7◦. Both θ0
and θm increased with φ0 and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest,
θR = 22 ± 2◦, was independent of φ0. From side-view high-speed video, we measured the velocity field of
intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by φ0, with
φ0 − φc < 0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor
flow at φ0 − φc > 0. Our study elucidates how initial conditions—including volume fraction—are important
determinants of granular slope stability and the onset of avalanches.

Item

#### Lift-off dynamics in a simple jumping robot

2012-10-26
,
Aguilar, Jeffrey
,
Lesov, Alex
,
Wiesenfeld, Kurt
,
Goldman, Daniel I.

We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot’s resonant frequency f0. Two distinct jumping modes emerge: a simple jump, which is optimal above f0, is achievable with a squat maneuver, and a peculiar stutter jump, which is optimal below f0, is generated with a countermovement. A simple dynamical model reveals how optimal lift-off results from nonresonant transient dynamics.

Item

#### Force and flow transition in plowed granular media

2010-09-06
,
Gravish, Nick
,
Umbanhowar, Paul B.
,
Goldman, Daniel I.

We use plate drag to study the response of granular media to localized forcing as a function of volume fractionϕ. A bifurcation in the force and flow occurs at the onset of dilatancy ϕ [subscript c]. Below ϕ [subscript c] rapid fluctuations in the drag force F [subscript D] are observed. Above ϕ [subscript c] fluctuations in F [subscript D] are periodic and increase in magnitude with ϕ. Velocity field measurements indicate that the bifurcation in F [subscript D] results from the formation of stable shear bands above ϕ [subscript c] which are created and destroyed periodically during drag. A friction-based wedge flow model captures the dynamics for ϕ >ϕ [subscript c].

- «
- 1 (current)
- 2
- 3
- »