Person:
Goel, Ashok K.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Learning About and Through Biologically Inspired Design
    (Georgia Institute of Technology, 2008-06-22) Vattam, Swaroop ; Helms, Michael E. ; Goel, Ashok K. ; Yen, Jeannette ; Weissburg, Marc J.
    Biologically inspired design (BID) uses biological systems as analogues to develop solutions for design problems. Although designers have been looking to nature for inspiration for eons, only recently is BID gaining in importance as a wide-spread movement in design for environmentally-conscious sustainable development (e.g., Benyus 1997). But it is the tendency of the “products” of BID to be radically innovative (Forbes 2005; French 1998; Vogel 2000) that makes BID an interesting case for research in design creativity.
  • Item
    Biologically-Inspired Innovation in Engineering Design: a Cognitive Study
    (Georgia Institute of Technology, 2007) Vattam, Swaroop ; Helms, Michael E. ; Goel, Ashok K.
    Biologically-inspired design uses analogous biological phenomena to develop solutions for engineering problems. Understanding, learning and practicing this approach to design is challenging because biologists and engineers speak different languages, have different perspectives on design, with different constraints on design problems and different resources for realizing an abstract design. In Fall 2006, we attended ME/ISyE/MSE/PTFe/BIOL 4803: Biologically-Inspired Design, an interdisciplinary introductory course for juniors and seniors offered at Georgia Tech. We collected course materials, took class notes, observed teacher-student and student-student interactions in the classroom. We also observed some sessions of a few interdisciplinary teams of students engaged in their design projects outside the classroom. We then analyzed the observations in terms of existing cognitive theories of design, modeling, and analogy. The goals of this cognitive study were to (1) understand the cognitive basis of biologically-inspired innovation in engineering design, (2) identify opportunities for enabling more effective learning of biologically-inspired design, and (3) examine the implications for developing computational tools for facilitating effective biologically-inspired design. This report summarizes our main observations about learning biologically-inspired design, and presents our preliminary analysis of biologically-inspired design in a classroom setting.