Person:
Payan, Alexia P.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Impact of Adverse Weather on Commercial Helicopter Pilot Decision-Making and Standard Operating Procedures
    (Georgia Institute of Technology, 2021-08) Speirs, Andrew H. ; Ramee, Coline ; Payan, Alexia P. ; Mavris, Dimitri N. ; Feigh, Karen M.
    Helicopter pilots face unique challenges with regard to adverse weather when compared to fixed-wing pilots. Rotorcraft typically operate at lower altitudes in off-field areas that are not always well covered by weather reporting stations. Although recent technological advances have increased the amount of weather data that pilots can access in the cockpit, weather remains a factor in 28% of fatal helicopter accidents. In this work, commercial helicopter pilots were surveyed and interviewed to better understand how they gather and process weather information, what the perceived limitations of current weather tools are, and how their decision-making process is affected by the information they gather and/or receive. Pilots were found to use a wide variety of weather sources for their initial go or no-go decision during the preflight phase, but use fewer weather sources in the cockpit while in-flight. Pilots highlighted the sparsity and sometimes inaccuracy of the weather information available to them in their prototypical operational domain. To compensate, they are forced to rely on local and experiential weather knowledge to supplement weather reports while still working to mitigate other external pressures. Based on the literature and on results from this work, recommendations are made to address the weather-related gaps faced by the rotorcraft community. This includes the installation of additional weather reporting stations outside of airports and densely populated areas, the further promotion of the HEMS tool to helicopter pilots in all industries, the development of weather tools capable of visualizing light precipitation such as fog, and the development of in-flight graphical displays that can help reduce the cognitive workload of interpreting weather information.
  • Item
    Analysis of Weather-Related Helicopter Accidents and Incidents in the United States
    (Georgia Institute of Technology, 2021-08) Ramee, Coline ; Speirs, Andrew H. ; Payan, Alexia P. ; Mavris, Dimitri N.
    Helicopters typically operate at lower altitudes than fixed-wing aircraft and can take-off and land away from airports. Thus, helicopter pilots have decreased access to weather information due to connectivity issues or sparsity of weather coverage in those areas and at those altitudes. Moreover, regulations allow most rotorcraft to operate in marginal weather conditions. Therefore, weather is a challenge to rotorcraft operations. In this study, rotorcraft events in the United States between 2008 and 2018 in which weather was determined to be a factor are analyzed using the National Transportation Safety Board aviation database. Results show that weather was a factor in 28% of rotorcraft fatal accidents. Wind was involved in most incidents but more rarely involved in fatalities. Bad visibility conditions due to a combination of low illumination and clouds were responsible for most fatal weather-related accidents. Personal flights had the highest accident and incident rates. Finally, the Helicopter Air Ambulance industry had the largest number of incidents and accidents related to visibility conditions out of all other industries. The authors recommend improving awareness of the conditions in which weather events occur and improving training to maintain control of the aircraft in windy conditions or during inadvertent instrument meteorological conditions.
  • Item
    Helicopter Operations Weather Information Survey Dataset
    (Georgia Institute of Technology, 2020-11-23) Payan, Alexia P. ; Ramee, Coline ; Speirs, Andrew ; Mavris, Dimitri N. ; Feigh, Karen M.
    To better understand the kind of weather information used by rotorcraft operators and get their opinion on the weather products that are available to them, the research team created an online survey. The survey consisted of three main sections: 1) Demographics, 2) Flight environment, and 3) Safety Operations. The information collected was used to analyze the number and types of weather information sources used by pilots in different phases of flight, identify differences between industries and study pilots training for adverse weather conditions. The data contained here is an anonymized version of answers to the survey.