Person:
Payan, Alexia P.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 15
  • Item
    Air Traffic Flow Identification and Recognition in Terminal Airspace through Machine Learning Approaches
    (Georgia Institute of Technology, 2024-01) Zhang, Wenxin ; Payan, Alexia P. ; Mavris, Dimitri N.
    In modern aviation, a significant amount of data is generated during routine operations and collected using technologies like Automatic Dependent Surveillance-Broadcast (ADS-B). The abundance of such data presents great potential for utilizing emerging data analysis techniques like machine learning to enhance the future of aviation. This paper presents a methodology that leverages clustering and classification models for offline identification and online recognition of air traffic flows. This research utilizes real trajectories in the terminal area of Zurich Airport to train and assess various machine learning models. To prepare the raw trajectory data for analysis, we apply a preprocessing step to clean and resample the data. Clustering is performed using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm, and its performance is compared to Density-Based Spatial Clustering of Applications with Noise (DBSCAN). For classification of the data, we employ two ensemble methods, Random Forest and Extreme Gradient Boosting (XGBoost), and compare their outcomes with those of Long Short-term Memory (LSTM). Our results demonstrate the superior reliability of OPTICS compared to the baseline method for clustering, and the ensemble models perform as effectively as the deep learning model, but with shorter training times due to their relative simplicity. The proposed methodology enhances the understanding of air traffic flows at specific airports and facilitates subsequent trajectory-centric tasks such as anomaly detection, trajectory prediction, and conflict detection, ultimately contributing to the improvement of safety in the terminal airspace.
  • Item
    Decision-Making and Optimization Framework for the Design of Emerging Satellite Constellations
    (AIAA, 2023-01) Koerschner, Marc A. ; Krishnan, Kavya Navaneetha ; Payan, Alexia P. ; Mavris, Dimitri N.
    With the parallel increase in global orbital debris due to passive object collisions, as well as in the number of proposed low earth orbit mega-constellations, in anti-satellite missile tests, and the fielding of new satellites, there is an inherent need for a framework to optimize the design of Low Earth Orbit (LEO) mega-constellations to avoid collisions while maintaining the functionality of the constellation. In this paper, we aim to provide a framework that unifies these considerations in the conceptual design phase of mega-constellations. We start with a discussion of metrics of importance for the design of mega-constellations, namely coverage, collision risk, collision avoidance, and station-keeping costs. With these metrics defined, we utilize the first principles of orbital mechanics and statistical models to analyze potential alternative mega-constellation designs. These designs are then optimized using Non-denominated Sorting Genetic Algorithm 2 (NSGA2) with our own defined objective function to create a repository of Pareto optimal configurations. We then showcase how a multi-criteria decision-making methodology can be utilized by a variety of unique stakeholders and subject-matter experts to select an optimal constellation design for a given scenario. A Pareto Frontier collection with optimal solutions of 10 constellations was produced by the framework. Radar plots to assess the significance of the weighted metric of the framework shows several trading options for conceptual designs of the constellations. We finally discuss the scope, limitations, applications, and future work for various scenarios.
  • Item
    Emergency Planning for Aerial Vehicles by Approximating Risk with Aerial Imagery and Geographic Data
    (Georgia Institute of Technology, 2022-01) Harris, Caleb M. ; Kim, Seulki ; Payan, Alexia P. ; Mavris, Dimitri N.
    Urban Air Mobility and Advanced Air Mobility require the certification of novel electrified, vertical takeoff and landing, and autonomous aerial vehicles. These vehicles will operate at lower altitudes, in more dense environments, and with limited recovery abilities. Therefore, emergency landing scenarios must be considered broadly to understand the risks in some situations of flight failures. This work provides a preflight planning tool to assist these vehicles when emergency landing is required in crowded environments by fusing geographic data about the population, geometric data from lidar scans, and semantic data about land cover from aerial imagery. The Pix2Pix Conditional GAN is trained on Washington D.C. datasets to predict eight classifications at a 1m resolution. The information from this detection phase is transformed into a costmap, or riskmap, to use in planning the path to the safest landing locations. Multiple combinations of the cost layers are investigated in three test scenarios. The Rapidly Exploring Random Tree (RRT) algorithm efficiently searches for an alternative path that minimizes risk during emergency landing. The tool is demonstrated through three scenarios in the D.C. area. The objective is that the tool allows for the safe operation of UAM and AAM vehicles through crowded regions by providing confidence to the local population and federal regulators.
  • Item
    Machine Learning Enabled Turbulence Prediction Using Flight Data for Safety Analysis
    (International Council of the Aeronautical Sciences (ICAS), 2021-09) Emara, Mariam ; dos Santos, Marcos ; Chartier, Noah ; Ackley, Jamey ; Puranik, Tejas G. ; Payan, Alexia P. ; Kirby, Michelle R. ; Pinon, Olivia J. ; Mavris, Dimitri N.
    The hazards posed by turbulence remain an important issue in commercial aviation safety analysis. Turbulence is among the leading cause of in-flight injury to passengers and flight attendants. Current methods of turbulence detection may suffer from sparse or inaccurate forecast data sets, low spatial and temporal resolution , and lack of in-situ reports. The increased availability of flight data records offers an opportunity to improve the state-of-the-art in turbulence detection. The Eddy Dissipation Rate (EDR) is consistently recognized as a reliable measure of turbulence and is widely used in the aviation industry. In this paper, both classification and regression supervised machine learning models are used in conjunction with flight operations quality assurance (FOQA) data collected from 6,000 routine flights to estimate the EDR (and thereby turbulence severity) in future time horizons. Data from routine airline operations that encountered different levels of turbulence is collected and analyzed for this purpose. Results indicate that the models are able to perform reasonably well in predicting the EDR and turbulence severity around 10 seconds prior to encountering a turbulence event. Continuous deployment of the model enables obtaining a near-continuous prediction of possible future turbulence events and builds the capability towards an early warning system for pilots and flight attendants.
  • Item
    Analysis of Weather-Related Helicopter Accidents and Incidents in the United States
    (Georgia Institute of Technology, 2021-08) Ramee, Coline ; Speirs, Andrew H. ; Payan, Alexia P. ; Mavris, Dimitri N.
    Helicopters typically operate at lower altitudes than fixed-wing aircraft and can take-off and land away from airports. Thus, helicopter pilots have decreased access to weather information due to connectivity issues or sparsity of weather coverage in those areas and at those altitudes. Moreover, regulations allow most rotorcraft to operate in marginal weather conditions. Therefore, weather is a challenge to rotorcraft operations. In this study, rotorcraft events in the United States between 2008 and 2018 in which weather was determined to be a factor are analyzed using the National Transportation Safety Board aviation database. Results show that weather was a factor in 28% of rotorcraft fatal accidents. Wind was involved in most incidents but more rarely involved in fatalities. Bad visibility conditions due to a combination of low illumination and clouds were responsible for most fatal weather-related accidents. Personal flights had the highest accident and incident rates. Finally, the Helicopter Air Ambulance industry had the largest number of incidents and accidents related to visibility conditions out of all other industries. The authors recommend improving awareness of the conditions in which weather events occur and improving training to maintain control of the aircraft in windy conditions or during inadvertent instrument meteorological conditions.
  • Item
    Impact of Adverse Weather on Commercial Helicopter Pilot Decision-Making and Standard Operating Procedures
    (Georgia Institute of Technology, 2021-08) Speirs, Andrew H. ; Ramee, Coline ; Payan, Alexia P. ; Mavris, Dimitri N. ; Feigh, Karen M.
    Helicopter pilots face unique challenges with regard to adverse weather when compared to fixed-wing pilots. Rotorcraft typically operate at lower altitudes in off-field areas that are not always well covered by weather reporting stations. Although recent technological advances have increased the amount of weather data that pilots can access in the cockpit, weather remains a factor in 28% of fatal helicopter accidents. In this work, commercial helicopter pilots were surveyed and interviewed to better understand how they gather and process weather information, what the perceived limitations of current weather tools are, and how their decision-making process is affected by the information they gather and/or receive. Pilots were found to use a wide variety of weather sources for their initial go or no-go decision during the preflight phase, but use fewer weather sources in the cockpit while in-flight. Pilots highlighted the sparsity and sometimes inaccuracy of the weather information available to them in their prototypical operational domain. To compensate, they are forced to rely on local and experiential weather knowledge to supplement weather reports while still working to mitigate other external pressures. Based on the literature and on results from this work, recommendations are made to address the weather-related gaps faced by the rotorcraft community. This includes the installation of additional weather reporting stations outside of airports and densely populated areas, the further promotion of the HEMS tool to helicopter pilots in all industries, the development of weather tools capable of visualizing light precipitation such as fog, and the development of in-flight graphical displays that can help reduce the cognitive workload of interpreting weather information.
  • Item
    Use of Machine Learning to Create a Database of Wires for Helicopter Wire Strike Prevention
    (Georgia Institute of Technology, 2021-01-04) Harris, Caleb M. ; Achour, Gabriel ; Payan, Alexia P. ; Mavris, Dimitri N.
    Rotorcraft collisions with wires and power lines have been a major cause of accidents over the past decades. They are rather difficult to predict and often result in fatalities. For this reason, there is a push to provide pilots with additional information regarding wires in the surrounding environment of the helicopter. However, the precise locations of power lines and other aerial wires are not available in any centralized database. This work proposes the development of a wire database in two phases. First, power line structures are detected from aerial imagery using deep learning techniques. Second, the complete power grid network is predicted using a centralized many-to-many graph search. The two-step framework produces an approximate medium-voltage grid stored as a set of connected line segments in GPS coordinates. Experiments are conducted in Washington D.C. using openly available datasets. Results show that utility pole locations can be predicted from satellite imagery using deep learning methods and a full grid network can be generated to a level of detail depending on computational power and available data for inference in the graph search. Even with limited computational resources and a noisy dataset, over a a fourth of the grid network is directly predicted within a range of seven meters, and the majority of the network is visually inferred from nearby detections. Moving forward, the goal is to apply the proposed framework to larger regions of the U.S., with rural and urban environments, to map all wires and cables that are a threat to rotorcraft safety.
  • Item
    Improving Courier Service Network Efficiency through Consolidations
    (Georgia Institute of Technology, 2021-01-04) Zhang, Wenxin ; Payan, Alexia P. ; Mavris, Dimitri N.
    Service network design is a significant consideration for courier companies because an efficient design reduces operating costs while maintaining service quality. While companies typically rely on subject-matter experts knowledge to modify their service network design on a regular basis based on changes in demand, some of them have also developed an optimization-driven approach to improve the design of their service network in the long-term. Typically, service networks are based on a hub-and-spoke design. However, operating costs may be reduced by adding consolidations on the pickup and/or the delivery routes into and out of hubs. Consolidations are locations where packages can be aggregated from multiple spokes to go into a hub or can be disaggregated to be delivered to multiple destinations from a hub. This service network design feature ultimately reduces the number of aircraft used on each route and therefore decreases the operating costs. In this study, we use Integer Programming with hierarchical objectives to generate consolidation options. The proposed algorithm accounts for network-wide demand considerations and aims at reducing costs from operating several modes of transportation by minimizing the number of consolidation locations while ensuring that every package is served and gets delivered on time at its intended destination. The algorithm is being implemented on the entire domestic U.S. market and has the flexibility to generate one or more consolidation options for each group of packages going from a given origin to a given destination. Results from the optimization are compared to solutions from a heuristic approach based on a series of geographical and operational rules. Results show that the optimization approach is able to generate better consolidation options compared to the heuristic approach. In particular, allowing packages to consolidate at a maximum of three consolidation locations results in a two percent reduction in the total costs over individual days of operations, and in nearly a one percent reduction in the total costs over a week of operations, for similar computational times. Although these reductions seem small, operating costs for courier companies tend to be in the millions or billions of dollars. Therefore, even a one percent reduction is significant.
  • Item
    Helicopter Operations Weather Information Survey Dataset
    (Georgia Institute of Technology, 2020-11-23) Payan, Alexia P. ; Ramee, Coline ; Speirs, Andrew ; Mavris, Dimitri N. ; Feigh, Karen M.
    To better understand the kind of weather information used by rotorcraft operators and get their opinion on the weather products that are available to them, the research team created an online survey. The survey consisted of three main sections: 1) Demographics, 2) Flight environment, and 3) Safety Operations. The information collected was used to analyze the number and types of weather information sources used by pilots in different phases of flight, identify differences between industries and study pilots training for adverse weather conditions. The data contained here is an anonymized version of answers to the survey.
  • Item
    Optimal Siting of Sub-Urban Air Mobility (sUAM) Ground Architectures using Network Flow Formulation
    (Georgia Institute of Technology, 2020-06) Venkatesh, Nikhil ; Payan, Alexia P. ; Justin, Cedric Y. ; Kee, Ethan C. ; Mavris, Dimitri N.
    Air Mobility (AM) operating models have steadily made their way into public conscience over the past decade due to increased research activity pioneered by large technology corporations such as Uber and Amazon. Estimates concur that there are around 250 startup businesses with 22 major players working on such technologies with over $25 billion dollars in venture capital funding in 2017[1]. Given the meteoric rise of Air Mobility as one of the leading 21st century disruptive technologies, research effort across the spectrum of functions that can make AM concepts a reality are burgeoning - ranging from vehicle design to operations planning. More specifically, research efforts within the operations planning space deal with service route identification, ground infrastructure (such as charging stations and ports) placement and others. To this effect, the present study seeks to evaluate the feasibility and tractability of a formalized optimization method towards the siting of "vertiports" - ground infrastructure that aids the embarkation and disembarkation of AM commuters - as applied to a Sub-Urban Air Mobility (sUAM) operating model. Mixed-Integer Programming (MIP) formulations offer qualified benefits over other heuristic methods and the authors are confident of their relative performance given the proven track record of such methods in solving generalized facility location problems (GFLP). In this study, two optimization problems were considered: capacitated vertiport siting, where any vertiport considered would need to adhere to capacity constraints; and uncapacitated vertiport siting, where any vertiport considered does not have any capacity limit and can service unlimited demand. Results indicate that a network flow formulation using an MIP methodology is able to adequately place vertiports for sUAM business operations to satisfy demand flows associated with home-work commute.