Wartell, Roger M.

Associated Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    The formation of adjacent triplex-duplex domains in DNA
    (Georgia Institute of Technology, 1999-02) Nam, Kang Hoon ; Abhiraman, Saraswathy ; Wartell, Roger M.
    The ability of single-stranded DNA oligomers to form adjacent triplex and duplex domains with two DNA structural motifs was examined. Helix–coil transition curves and a gel mobility shift assay were used to characterize the interaction of single-stranded oligomers 12–20 nt in length with a DNA hairpin and with a DNA duplex that has a dangling end. The 12 nt on the 5'-ends of the oligomers could form a triplex structure with the 12 bp stem of the hairpin or the duplex portion of the DNA with a dangling end. The 3'-ends of the 17–20 nt strands could form Watson–Crick pairs to the five base loop of the hairpin or the dangling end of the duplex. Complexes of the hairpin DNA with the singlestranded oligomers showed two step transitions consistent with unwinding of the triplex strand followed by hairpin denaturation. Melting curve and gel competition results indicated that the complex of the hairpin and the 12 nt oligomer was more stable than the complexes involving the extended single strands. In contrast, results indicated that the extended single-stranded oligomers formed Watson–Crick base pairs with the dangling end of the duplex DNA and enhanced the stability of the adjacent triplex region.
  • Item
    The catabolite activator protein stabilizes its binding site in the E. coli lactose promoter
    (Georgia Institute of Technology, 1985-10-25) DeGrazia, Henry ; Abhiraman, Saraswathy ; Wartell, Roger M.
    The effect of catabolite activator protein, CAP, on the thermal stability of DNA was examined. Site specific binding was studied with a 62 bp DNA restriction fragment containing the primary CAP site of the E. coli lactose (lac) promoter. A 144 bp DNA containing the lac promoter region and a 234 bp DNA from the pBR322 plasmid provided other DNA sites. Thermal denaturation of protein-DNA complexes was carried out in a low ionic strength solvent with 40% dimethyl sulfoxide, DMSO. In this solvent free DNA denatured below the denaturation temperature of CAP. The temperature stability of CAP for site specific binding was monitored using an acrylamide gel electrophoresis assay. Results show that both specific and non-specific CAP binding stabilize duplex DNA. Site specific binding to the 62 bp DNA produced a 13.3 degrees C increase in the transition under conditions where non-specific binding stabilized this DNA by 2-3 degrees C.