Person:
Dai, Sheng

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Mineral weathering and bedrock weakening: Modeling microscale bedrock damage under biotite weathering
    ( 2019) Shen, Xianda ; Arson, Chloé ; Ferrier, Ken L. ; West, Nicole ; Dai, Sheng
    Bedrock weakening is of wide interest because it influences landscape evolution, chemical weathering, and subsurface hydrology. A longstanding hypothesis states that bedrock weakening is driven by chemical weathering of minerals like biotite, which expand as they weather and create stresses sufficient to fracture rock. Here we build on recent advances in rock damage mechanics to develop a model for the influence of multi-mineral chemical weathering on bedrock damage, which is defined as the reduction in bedrock stiffness. We use biotite chemical weathering as an example application of this model to explore how the abundance, aspect ratio, and orientation affect the time-dependent evolution of bedrock damage during biotite chemical weathering. Our simulations suggest that biotite abundance and aspect ratio have a profound effect on the evolution of bedrock damage during biotite chemical weathering. These characteristics exert particularly strong influences on the timing of the onset of damage, which occurs earlier under higher biotite abundances and smaller biotite aspect ratios. Biotite orientation, by contrast, exerts a relatively weak influence on damage. Our simulations further show that damage development is strongly influenced by the boundary conditions, with damage initiating earlier under laterally confined boundaries than under unconfined boundaries. These simulations suggest that relatively minor differences in biotite populations can drive significant differences in the progression of rock weakening. This highlights the need for observations of biotite abundance, aspect ratio, and orientation at the mineral and field scales, and motivates efforts to upscale this microscale model to investigate the evolution of the macroscale fracture network.
  • Item
    Natural hydrate-bearing sediments: Physical properties and characterization techniques
    (Georgia Institute of Technology, 2013-07-02) Dai, Sheng
    An extensive amount of natural gas trapped in the subsurface is found as methane hydrate. A fundamental understanding of natural hydrate-bearing sediments is required to engineer production strategies and to assess the risks hydrates pose to global climate change and large-scale seafloor destabilization. This thesis reports fundamental studies on hydrate nucleation, morphology and the evolution of unsaturation during dissociation, followed by additional studies on sampling and pressure core testing. Hydrate nucleation is favored on mineral surfaces and it is often triggered by mechanical vibration. Continued hydrate crystal growth within sediments is governed by capillary and skeletal forces; hence, the characteristic particle size d10 and the sediment burial depth determine hydrate morphologies in natural sediments. In aged hydrate-bearing sand, Ostwald ripening leads to patchy hydrate formation; the stiffness approaches to the lower bound at low hydrate saturation and the upper bound at high hydrate saturation. Hydrate saturation and pore habit alter the pore size variability and interconnectivity, and change the water retention curve in hydrate-bearing sediments. The physical properties of hydrate-bearing sediments are determined by the state of stress, porosity, and hydrate saturation. Furthermore, hydrate stability requires sampling, handling, and testing under in situ pressure, temperature, and stress conditions. Therefore, the laboratory characterization of natural hydrate-bearing sediments faces inherent sampling disturbances caused by changes in stress and strain as well as transient pressure and temperature changes that affect hydrate stability. While pressure core technology offers unprecedented opportunities for the study of hydrate-bearing sediments, careful data interpretation must recognize its inherent limitations.