Person:
Adibi, Ali

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques
    (Georgia Institute of Technology, 2006-02) Huang, Jiandong ; Reinke, Charles M. ; Jafarpour, Aliakbar ; Momeni, Babak ; Soltani, Mohammad ; Adibi, Ali
    We experimentally studied W1 triangular-lattice photonic crystal waveguides (PCWs) fabricated on semiconductor-on-insulator substrates using phase-sensitive lock-in techniques. In addition to the improved signal-to-noise ratio for power transmission measurements, we observed two large group delay peaks at frequencies corresponding to the photonic mode gap and parity changes of Bloch modes inside the PCWs.
  • Item
    Nonlinear finite-difference time-domain method for the simulation of anisotropic, chi((2)), and chi((3)) optical effects
    (Georgia Institute of Technology, 2006-01) Reinke, Charles M. ; Jafarpour, Aliakbar ; Momeni, Babak ; Soltani, Mohammad ; Khorasani, Sina ; Adibi, Ali ; Xu, Yong ; Lee, Reginald K.
    A two-dimensional (2-D) finite-difference timedomain (FDTD) code for the study of nonlinear optical phenomena, in which both the slowly varying and the rapidly varying components of the electromagnetic fields are considered, has been developed. The algorithm solves vectorial Maxwell’s equations for all field components and uses the nonlinear constitutive relation in matrix form as the equations required to describe the nonlinear system. The stability of the code is discussed and its effectiveness is demonstrated through the simulations of self-phase modulation (SPM) and second-harmonic generation (SHG). The authors also show that the combination of nonlinear effects with PCs can result in a significant improvement in device size and integrability, using the example of a Mach–Zehnder interferometer (MZI).