Person:
Brown, Marilyn A.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Making Buildings Part of the Climate Solution by Overcoming Information Gaps through Benchmarking
    (Georgia Institute of Technology, 2012-09) Cox, Matthew ; Brown, Marilyn A. ; Sun, Xiaojing
    This paper focuses on the impact of benchmarking the energy performance of U.S. commercial buildings by requiring utilities to submit energy data to a uniform database accessible to building owners and tenants. Understanding how a commercial building uses energy has many benefits; in particular, it helps building owners and tenants focus on poor-performing buildings and subsystems, and enables high-performing buildings to participate in various certification programs that can lead to higher occupancy rates, rents, and property values. Through analysis chiefly utilizing the Georgia Tech version of the National Energy Modeling System (GT-NEMS), updating input discount rates and the impact of benchmarking shows a reduction in energy consumption of 5.6% in 2035 relative to the Reference case projection of the Annual Energy Outlook 2011. It is estimated that the benefits of a national benchmarking policy would outweigh the costs, both to the private sector and society broadly. However, its geographical impact would vary substantially, with the South Atlantic and New England regions benefiting the most. By reducing the discount rates used to evaluate energy-efficiency investments, benchmarking would increase the purchase of energy-efficient equipment thereby reducing energy bills, CO2 emissions, and conventional air pollution.
  • Item
    Making Buildings Part of the Climate Solution by Enforcing Aggressive Commercial Building Codes
    (Georgia Institute of Technology, 2012-09) Sun, Xiaojing ; Brown, Marilyn A. ; Jackson, Roderick ; Cox, Matthew
    This paper examines the impact of an aggressive commercial building codes policy in the United States. The policy would require both new construction and existing buildings that undergo major modifications to comply with higher building shell efficiency and more stringent equipment standards similar to the latest versions of the ASHRAE 90.1 Standard. Using the Georgia Tech version of the National Energy Modeling System (GT-NEMS), we estimate that the building codes policy could reduce the energy consumption of commercial buildings by 0.94 Quads in 2035, equal to 4% of the projected energy consumption of commercial buildings in that year. In the four targeted end-uses – space heating and cooling, water heating and lighting – estimated energy consumption would be 17%, 15%, 20% and 5% less than the Reference case forecast in 2035, respectively. The reduction of electricity and natural gas prices along with the consumption decline could save commercial consumers $12.8 billion in energy bills in 2035 and a cumulative $110 billion of bill savings between 2012 and 2035. The environmental benefits of the policy could also be significant. In 2035, 47 MMT of CO2 emissions could be avoided, generating cumulative benefits of $17 billion by 2035. The estimated benefit-cost ratio of this policy within the commercial sector is 1.4, with a resulting net benefit of $59 billion. The positive spillover effect of this policy would lead to an even higher economy-wide benefit-cost ratio.
  • Item
    Making Buildings Part of the Climate Solution by Pricing Carbon Efficiently
    (Georgia Institute of Technology, 2012-07) Brown, Marilyn A. ; Cox, Matthew ; Sun, Xiaojing
    This report examines the impact of instituting an economy-wide tax on CO₂ emissions in the United States, focusing especially on the changes such a tax would have on the energy and carbon profile of the commercial buildings sector. In terms of energy intensity, a carbon tax is estimated to deliver faster and deeper reductions in the commercial sector than in the rest of the economy. Still, its 6.3% energy intensity improvement falls short of the Better Buildings goal of a 20% increase in the energy efficiency of commercial buildings by 2020. On the other hand, the carbon tax scenario nearly meets the Waxman-Markey and Copenhagen economy-wide carbon reduction goals for 2020, due partly to a more carbon-lean power sector. The effects of carbon taxes on commercial buildings would be technologically transformational and geographically widespread. While energy expenditures would rise and more capital would be required for energy-efficiency upgrades, the avoided pollution and the reduced CO₂ emissions would generate significant human health and ecosystem benefits. To be successful, a broad community of constituents would need to accept the temporal mismatch between immediate costs and long-term benefits.
  • Item
    Myths and Facts about Clean Electricity in the U.S. South
    (Georgia Institute of Technology, 2011-09) Brown, Marilyn A. ; Gumerman, Etan ; Sun, Xiaojing ; Kim, Gyungwon ; Sercy, Kenneth
    This paper identifies six myths about clean electricity in the southern U.S. These myths are either propagated by the public at-large, shared within the environmental advocacy culture, or spread imperceptibly between policymakers. Using a widely accepted energy-economic modeling tool, we expose these myths as half-truths and the kind of conventional wisdom that constrains productive debate. In so doing, we identify new starting points for energy policy development. Climate change activists may be surprised to learn that it will take more than a national Renewable Electricity Standard or supportive energy efficiency policies to retire coal plants. Low-cost fossil generation enthusiasts may be surprised to learn that clean generation can save consumers money, even while meeting most demand growth over the next 20 years. This work surfaces the myths concealed in public perceptions and illustrates the positions of various stakeholders in this large U.S. Region.