Organizational Unit:
Wallace H. Coulter Department of Biomedical Engineering

Research Organization Registry ID
https://ror.org/02j15s898
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Haptic interaction between naive participants and mobile manipulators in the context of healthcare
    (Georgia Institute of Technology, 2014-04-08) Chen, Tiffany L.
    Human-scale mobile robots that manipulate objects (mobile manipulators) have the potential to perform a variety of useful roles in healthcare. Many promising roles for robots require physical contact with patients and caregivers, which is fraught with both psychological and physical implications. In this thesis, we used a human factors approach to evaluate system performance and participant responses when potential end users performed a healthcare task involving physical contact with a robot. We performed four human-robot interaction studies with 100 people who were not experts in robotics (naive participants). We show that physical contact between naive participants and human-scale mobile manipulators can be acceptable and effective in a variety of healthcare contexts. In this thesis, we investigated two forms of touch-based (haptic) interaction relevant to healthcare. First, we studied how participants responded to physical contact initiated by an autonomous robotic nurse. On average, people responded favorably to robot-initiated touch when the robot indicated that it was a necessary part of a healthcare task. However, their responses strongly depended on what they thought the robot's intentions were, which suggests that this will be an important consideration for future healthcare robots. Second, we investigated the coordination of whole-body motion between human-scale robots and people by the application of forces to the robot's hands and arms. Nurses found this haptic interaction to be intuitive and preferred it over a standard gamepad interface. They also navigated the robot through a cluttered healthcare environment in less time, with fewer collisions, and with less cognitive load via haptic interaction. Through a study with expert dancers, we demonstrated the feasibility of robots as dance-based exercise partners. The experts rated a robot that used only haptic interaction to be a good follower according to subjective measures of dance quality. We also determined that healthy older adults were accepting of using a robot for partner dance-based exercise. On average, they found the robot easy and enjoyable to use and that it performed a partnered stepping task well. The findings in this work make several impacts on the design of robots in healthcare. We found that the perceived intent of robot-initiated touch significantly influenced people's responses. Thus, we determined that autonomous robots that initiate touch with patients can be acceptable in some contexts. This result highlights the importance of considering the psychological responses of users when designing physical human-robot interactions in addition to considering the mechanics of performing tasks. We found that naive users across three user groups could quickly learn how to effectively use physical interaction to lead a robot during navigation, positioning, and partnered stepping tasks. These consistent results underscore the value of using physical interaction to enable users of varying backgrounds to lead a robot during whole-body motion coordination across different healthcare contexts.
  • Item
    Biological, simulation, and robotic studies to discover principles of swimming within granular media
    (Georgia Institute of Technology, 2010-11-08) Maladen, Ryan Dominic
    The locomotion of organisms whether by running, flying, or swimming is the result of multiple degree-of-freedom nervous and musculoskeletal systems interacting with an environment that often flows and deforms in response to movement. A major challenge in biology is to understand the locomotion of organisms that crawl or burrow within terrestrial substrates like sand, soil, and muddy sediments that display both solid and fluid-like behavior. In such materials, validated theories such as the Navier-Stokes equations for fluids do not exist, and visualization techniques (such as particle image velocimetry in fluids) are nearly nonexistent. In this dissertation we integrated biological experiment, numerical simulation, and a physical robot model to reveal principles of undulatory locomotion in granular media. First, we used high speed x-ray imaging techniques to reveal how a desert dwelling lizard, the sandfish, swims within dry granular media without limb use by propagating a single period sinusoidal traveling wave along its body, resulting in a wave efficiency, the ratio of its average forward speed to wave speed, of approximately 0.5. The wave efficiency was independent of the media preparation (loosely and tightly packed). We compared this observation against two complementary modeling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot which was designed to swim within granular media. We used these mechanical models to vary the ratio of undulation amplitude (A) to wavelength (λ) and demonstrated that an optimal condition for sand-swimming exists which results from competition between A and λ. The animal simulation and robot model, predicted that for a single period sinusoidal wave, maximal speed occurs for A/ λ = 0.2, the same kinematics used by the sandfish. Inspired by the tapered head shape of the sandfish lizard, we showed that the lift forces and hence vertical position of the robot as it moves forward within granular media can be varied by designing an appropriate head shape and controlling its angle of attack, in a similar way to flaps or wings moving in fluids. These results support the biological hypotheses which propose that morphological adaptations of desert dwelling organisms aid in their subsurface locomotion. This work also demonstrates that the discovery of biological principles of high performance locomotion within sand can help create the next generation of biophysically inspired robots that could explore potentially hazardous complex flowing environments.