Organizational Unit:
Wallace H. Coulter Department of Biomedical Engineering

Research Organization Registry ID
https://ror.org/02j15s898
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 184
  • Item
    A Coupled Global Registration and Segmentation Framework With Application to Magnetic Resonance Prostate Imagery
    (Georgia Institute of Technology, 2010-10) Gao, Yi ; Sandhu, Romeil ; Fichtinger, Gabor ; Tannenbaum, Allen R.
    Extracting the prostate from magnetic resonance (MR) imagery is a challenging and important task for medical image analysis and surgical planning. We present in this work a unified shape-based framework to extract the prostate from MR prostate imagery. In many cases, shape-based segmentation is a two-part problem. First, one must properly align a set of training shapes such that any variation in shape is not due to pose. Then segmentation can be performed under the constraint of the learnt shape. However, the general registration task of prostate shapes becomes increasingly difficult due to the large variations in pose and shape in the training sets, and is not readily handled through existing techniques. Thus, the contributions of this paper are twofold. We first explicitly address the registration problem by representing the shapes of a training set as point clouds. In doing so, we are able to exploit the more global aspects of registration via a certain particle filtering based scheme. In addition, once the shapes have been registered, a cost functional is designed to incorporate both the local image statistics as well as the learnt shape prior. We provide experimental results, which include several challenging clinical data sets, to highlight the algorithm’s capability of robustly handling supine/prone prostate registration and the overall segmentation task.
  • Item
    Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging
    (Georgia Institute of Technology, 2010-06) Gholami, Behnood ; Haddad, Wassim M. ; Tannenbaum, Allen R.
    Pain assessment in patients who are unable to verbally communicate is a challenging problem. The fundamental limitations in pain assessment in neonates stem from subjective assessment criteria, rather than quantifiable andmeasurable data. This often results in poor quality and inconsistent treatment of patient pain management. Recent advancements in pattern recognition techniques using relevance vector machine (RVM) learning techniques can assist medical staff in assessing pain by constantly monitoring the patient and providing the clinician with quantifiable data for pain management. The RVMclassification technique is a Bayesian extension of the support vector machine (SVM) algorithm, which achieves comparable performance to SVMwhile providing posterior probabilities for class memberships and a sparser model. If classes represent “pure” facial expressions (i.e., extreme expressions that an observer can identify with a high degree of confidence), then the posterior probability of the membership of some intermediate facial expression to a class can provide an estimate of the intensity of such an expression. In this paper, we use the RVM classification technique to distinguish pain from nonpain in neonates as well as assess their pain intensity levels. We also correlate our results with the pain intensity assessed by expert and nonexpert human examiners.
  • Item
    Texture Mapping via Optimal Mass Transport
    (Georgia Institute of Technology, 2010-05) Dominitz, Ayelet ; Tannenbaum, Allen R.
    In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover’s metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations.
  • Item
    Affine Registration of label maps in Label Space
    (Georgia Institute of Technology, 2010-04) Rathi, Yogesh ; Malcolm, James G. ; Bouix, Sylvain ; Tannenbaum, Allen R. ; Shenton, Martha E.
    Two key aspects of coupled multi-object shape analysis and atlas generation are the choice of representation and subsequent registration methods used to align the sample set. For example, a typical brain image can be labeled into three structures: grey matter, white matter and cerebrospinal fluid. Many manipulations such as interpolation, transformation, smoothing, or registration need to be performed on these images before they can be used in further analysis. Current techniques for such analysis tend to trade off performance between the two tasks, performing well for one task but developing problems when used for the other. This article proposes to use a representation that is both flexible and well suited for both tasks. We propose to map object labels to vertices of a regular simplex, e.g. the unit interval for two labels, a triangle for three labels, a tetrahedron for four labels, etc. This representation, which is routinely used in fuzzy classification, is ideally suited for representing and registering multiple shapes. On closer examination, this representation reveals several desirable properties: algebraic operations may be done directly, label uncertainty is expressed as a weighted mixture of labels (probabilistic interpretation), interpolation is unbiased toward any label or the background, and registration may be performed directly. We demonstrate these properties by using label space in a gradient descent based registration scheme to obtain a probabilistic atlas. While straightforward, this iterative method is very slow, could get stuck in local minima, and depends heavily on the initial conditions. To address these issues, two fast methods are proposed which serve as coarse registration schemes following which the iterative descent method can be used to refine the results. Further, we derive an analytical formulation for direct computation of the “group mean” from the parameters of pairwise registration of all the images in the sample set. We show results on richly labeled 2D and 3D data sets.
  • Item
    Deform PF-MT: Particle Filter With Mode Tracker for Tracking Nonaffine Contour Deformations
    (Georgia Institute of Technology, 2010-04) Vaswani, Namrata ; Rathi, Yogesh ; Yezzi, Anthony ; Tannenbaum, Allen R.
    We propose algorithms for tracking the boundary contour of a deforming object from an image sequence, when the nonaffine (local) deformation over consecutive frames is large and there is overlapping clutter, occlusions, low contrast, or outlier imagery. When the object is arbitrarily deforming, each, or at least most, contour points can move independently. Contour deformation then forms an infinite (in practice, very large), dimensional space. Direct application of particle filters (PF) for large dimensional problems is impractically expensive. However, in most real problems, at any given time, most of the contour deformation occurs in a small number of dimensions ("effective basis space") while the residual deformation in the rest of the state space ("residual space") is small. This property enables us to apply the particle filtering with mode tracking (PF-MT) idea that was proposed for such large dimensional problems in recent work. Since most contour deformation is low spatial frequency, we propose to use the space of deformation at a subsampled set of locations as the effective basis space. The resulting algorithm is called deform PF-MT. It requires significant modifications compared to the original PF-MT because the space of contours is a non-Euclidean infinite dimensional space.
  • Item
    A Geometric Approach to Joint 2D Region-Based Segmentation and 3D Pose Estimation Using a 3D Shape Prior
    (Georgia Institute of Technology, 2010-03-03) Dambreville, Samuel ; Sandhu, Romeil ; Yezzi, Anthony ; Tannenbaum, Allen R.
    In this work, we present an approach to jointly segment a rigid object in a two-dimensional (2D) image and estimate its three-dimensional (3D) pose, using the knowledge of a 3D model. We naturally couple the two processes together into a shape optimization problem and minimize a unique energy functional through a variational approach. Our methodology differs from the standard monocular 3D pose estimation algorithms since it does not rely on local image features. Instead, we use global image statistics to drive the pose estimation process. This confers a satisfying level of robustness to noise and initialization for our algorithm and bypasses the need to establish correspondences between image and object features. Moreover, our methodology possesses the typical qualities of region-based active contour techniques with shape priors, such as robustness to occlusions or missing information, without the need to evolve an infinite dimensional curve. Another novelty of the proposed contribution is to use a unique 3D model surface of the object, instead of learning a large collection of 2D shapes to accommodate the diverse aspects that a 3D object can take when imaged by a camera. Experimental results on both synthetic and real images are provided, which highlight the robust performance of the technique in challenging tracking and segmentation applications.
  • Item
    Population Analysis of the Cingulum Bundle using the Tubular Surface Model for Schizophrenia Detection
    (Georgia Institute of Technology, 2010-02-16) Mohan, Vandana ; Sundaramoorthi, Ganesh ; Kubicki, Marek ; Terry, Douglas ; Tannenbaum, Allen R.
    We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.
  • Item
    Segmentation of the Endocardial Wall of the Left Atrium using Local Region-Based Active Contours and Statistical Shape Learning
    (Georgia Institute of Technology, 2010-02-14) Gao, Yi ; Gholami, Behnood ; MacLeod, Robert S. ; Blauer, Joshua ; Haddad, Wassim M. ; Tannenbaum, Allen R.
    Atrial fibrillation, a cardiac arrhythmia characterized by unsynchronized electrical activity in the atrial chambers of the heart, is a rapidly growing problem in modern societies. One treatment, referred to as catheter ablation, targets specific parts of the left atrium for radio frequency ablation using an intracardiac catheter. Magnetic resonance imaging has been used for both pre- and and post-ablation assessment of the atrial wall. Magnetic resonance imaging can aid in selecting the right candidate for the ablation procedure and assessing post-ablation scar formations. Image processing techniques can be used for automatic segmentation of the atrial wall, which facilitates an accurate statistical assessment of the region. As a first step towards the general solution to the computer-assisted segmentation of the left atrial wall, in this paper we use shape learning and shape-based image segmentation to identify the endocardial wall of the left atrium in the delayed-enhancement magnetic resonance images.
  • Item
    An efficient numerical method for the solution of the L₂optimal mass transfer problem
    (Georgia Institute of Technology, 2010-02-05) Haber, Eldad ; Rehman, Tauseef ur ; Tannenbaum, Allen R.
    In this paper we present a new computationally efficient numerical scheme for the minimizing flow approach for the computation of the optimal L₂mass transport mapping. In contrast to the integration of a time dependent partial differential equation proposed in [S. Angenent, S. Haker, and A. Tannenbaum, SIAM J. Math. Anal., 35 (2003), pp. 61–97], we employ in the present work a direct variational method. The efficacy of the approach is demonstrated on both real and synthetic data.
  • Item
    An Unsupervised Learning Approach for Facial Expression Recognition using Semi-Definite Programming and Generalized Principal Component Analysis
    (Georgia Institute of Technology, 2010-01-08) Gholami, Behnood ; Haddad, Wassim M. ; Tannenbaum, Allen R.
    In this paper, we consider facial expression recognition using an unsupervised learning framework. Specifically, given a data set composed of a number of facial images of the same subject with different facial expressions, the algorithm segments the data set into groups corresponding to different facial expressions. Each facial image can be regarded as a point in a high-dimensional space, and the collection of images of the same subject resides on a manifold within this space. We show that different facial expressions reside on distinct subspaces if the manifold is unfolded. In particular, semi-definite embedding is used to reduce the dimensionality and unfold the manifold of facial images. Next, generalized principal component analysis is used to fit a series of subspaces to the data points and associate each data point to a subspace. Data points that belong to the same subspace are shown to belong to the same facial expression.