Organizational Unit:
Center for the Science and Technology of Advanced Materials and Interfaces

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    How Do We Create and Process Materials for Flexible, Transparent Electronic Circuitry?
    (Georgia Institute of Technology, 2018-03-29) Marks, Tobin
    This lecture focuses on the challenging design, realization, understanding, and implementation of new materials families for unconventional electronics. Fabrication methodologies to achieve these goals include high-throughput, large-area, high-resolution printing techniques. Materials design topics will include: 1. Rationally designed high-mobility p- and n-type organic semiconductors for printed organic CMOS, 2. Self-assembled high-k nanodielectrics enabling ultra-large capacitance, low leakage, high breakdown fields, minimal trapped interfacial charge, and device radiation hardness, 3. Polycrystalline and amorphous oxide semiconductors for printable transparent and mechanically flexible electronics, 4. Combining these materials sets to fabricate a thin-film transistor-based circuitries, 5. The relevance of these advances to unconventional photovoltaics.
  • Item
    Disorder-Order Transitions in p-Conjugated Polymers
    (Georgia Institute of Technology, 2016-12-02) Köhler, Anna
    The aggregation of p-conjugated materials significantly impacts on the photophysics, and thus on the performance of optoelectronic devices. Nevertheless, we know comparatively little about the laws governing aggregate formation of p-conjugated materials from solution. In this talk, I shall compare, discuss and summarize how aggregates form for three different types of compounds, that is, homopolymers, donor-acceptor type polymers and low molecular weight compounds. To understand how aggregates form, we employ temperature dependent optical spectroscopy, which is a simple yet powerful tool for such investigations. I shall discuss how optical spectra can be analysed to identify distinct conformational states and to obtain quantitative information on changes in the inter-chain coupling, the conjugation length and the oscillator strength upon aggregate formation. We find aggregate formation to proceed alike in all these compounds by a coil-to-globule like first order phase transition. Notably, the chain expands before it collapses into a highly ordered dense state. I will address the role of side chains and the impact of changes in environmental polarization.