Organizational Unit:
University Center of Excellence for Photovoltaics

Research Organization Registry ID
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Understanding the Role of Forming Gas on the Screen-Printed Crystalline Silicon Solar Cell Front Grid
    (Georgia Institute of Technology, 2006-09) Ebong, Abasifreke ; Kim, Dong Seop ; Yelundur, Vijay ; Upadhyaya, V. ; Rounsaville, Brian ; Upadhyaya, A. D. ; Tate, K. ; Rohatgi, Ajeet
    In this paper we report on the role of forming gas anneal on the fill factor of a small area cell and efficiency loss due to scaling the cell area. Solar cells that are under-fired and those fired at the optimum peak firing cycle showed very marginal response to forming gas anneal. Forming gas anneal is most effective for over-fired cells. The high temperature for the over-fired cells is believed to enhance Ag crystallites growth and the formation of a thick glass layer between the Ag front grid and silicon material. The forming gas anneal aids in reducing the glass to its metal, increase the conductivity of the glass and decrease the contact resistance. Solar cells with four different areas (4-cm(2), 49-cm(2), 100-cm(2) and 156-cm(2)) that were fired at the optimized peak firing temperature showed excellent fill factors without the forming gas anneal treatment. The fill factor was not a strong function of the area even though individually the n-factor and series resistance varied due to edge recombination. The efficiency and short circuit current density showed a quadratic relation with the cell area. The short circuit current density showed a difference of 3.2 mA/cm2 between the 4-cm2 and 156-cm2 cells. The short circuit current density decreased with area due to shading, diffusion length and back surface recombination velocity or Leff, front surface recombination velocity, and area loss due to edge isolation. Improved understanding of these effects coupled with grid design and process optimization can bridge the gap between the small and large area cells.
  • Item
    18% Large Area Screen-Printed Solar Cells on Textured MCZ Silicon with High Sheet Resistance Emitter
    (Georgia Institute of Technology, 2006-05) Ebong, Abasifreke ; Upadhyaya, V. ; Rounsaville, Brian ; Kim, Dong Seop ; Tate, K. ; Rohatgi, Ajeet
    In this paper we report on high efficiency screen-printed 49 cm(2) solar cells fabricated on randomly textured float zone (1.2 Ω-cm) and magnetic Czochralski (MCz) silicon with resistivities of 1.2 and 4.8 Ω-cm, respectively. A simple process involving POCl3 diffused emitters, low frequency PECVD silicon nitride deposition, Al back contact print, Ag front grid print followed by co-firing of the contacts and forming gas anneal produced efficiencies of 17.6% on 1.2 Ω-cm textured float zone Si, 17.9% on 1.2 Ω-cm MCz Si and 18.0% on 4.8 Ω-cm MCz Si. A combination of high sheet resistance emitter (~95 Ω-/ ) and the surface texturing resulted in a short circuit current density of 37.8 mA/cm(2) in the 4.8 Ω-cm MCz cell, 37.0 mA/cm(2) in the 1.2 Ω-cm(2) MCz cell and 36.5 mA/cm(2) in the 1.2 Ω-cm(2) float zone cell. The open circuit voltages were consistent with the base resistivities of the two materials. The fill factors were in the range of 0.760-0.770 indicating there is considerable room for improvement. Detailed modeling and analysis is performed to explain the cell performance and provide guidelines for achieving 20% efficient screen-printed cells on MCZ Si.
  • Item
    2D-Modeling and Development of Interdigitated Back Contact Solar Cells on Low-Cost Substrates
    (Georgia Institute of Technology, 2006-05) Kim, Dong Seop ; Meemongkolkiat, Vichai ; Ebong, Abasifreke ; Rounsaville, Brian ; Upadhyaya, V. ; Das, A. ; Rohatgi, Ajeet
    Two-dimensional numerical simulations were performed to derive design rules for low-cost, high-efficiency interdigitated back contact (IBC) solar cells on a low-cost substrate. The IBC solar cells were designed to be fabricated using either the conventional screen printing or photolithography metallization processes. Bulk lifetime, bulk resistivity, contact spacing (pitch), contact opening width, recombination in the gap between the p(+) BSF and n(+) emitter, and the ratio of emitter width to pitch have been used as key variables in the simulations. It is found that short circuit current density (J(sc)) is not only a strong function of the bulk lifetime but also the emitter coverage of the rear surface. Fill factor (FF) decreases as the emitter coverage increases because the majority carriers need to travel a longer distance through the substrate for longer emitter width. The simulated IBC results were compared with those for conventional screen printed solar cells. It was found that the IBC solar cell outperforms the screen printed (SP) solar cell when the bulk lifetime is above 50 μs due to higher V(oc) and J(sc), which suggests that higher performance can be realized on low-cost substrates with the IBC structure.
  • Item
    A Comprehensive Study of the Performance of Silicon Screen-Printed Solar Cells Fabricated with Belt Furnace Emitters
    (Georgia Institute of Technology, 2005-06) Ebong, Abasifreke ; Yelundur, Vijay ; Upadhyaya, V. ; Rounsaville, Brian ; Upadhyaya, A. D. ; Tate, K. ; Rohatgi, Ajeet ; Kalejs, Juris P.
    ABSTRACT: In this paper we report on the screen-printed solar cells fabricated on three types of silicon materials; float zone (FZ), HEM multicrystalline and EFG ribbon with POCl3 and belt furnace diffused emitters. The belt furnace diffused emitters involved one- and two-side phosphorus spin-on to assess the contaminating effect of the IR belt. The solar cells with POCl3 emitters and co-firing of screen-printed contacts produced efficiencies of 17.3% on FZ, 16.4% on HEM and 15.5% on EFG ribbon silicon. Solar cells with two-side phosphorus emitters diffused on the belt furnace, produced efficiencies of 17.2%, 16.0%, and 15.1%, respectively, on FZ, HEM and EFG ribbon silicon. However, appreciably lower efficiencies of 15.5%, 15.5%, and 14.1% were obtained, respectively, on FZ, HEM and EFG ribbon silicon for belt-diffused emitters with only one-side phosphorus spin-on with the other side on the belt. This difference in efficiency is reflected in Voc loss for the belt-diffused emitters compared to the POCl(3) emitter cells. The IQE measurements supported that solar cells with belt-diffused emitter with two-side phosphorus spin-on and POCl(3) emitter cells had comparable Jsc. However, the cell with phosphorus spin-on on one-side gave much lower IQE because of poor bulk lifetime or the contamination due to direct contact with the belt. These results indicate that the belt emitters can account for appreciable loss in the performance of the many current commercial cells; however, this loss can be regained by applying phosphorus dopant to both side of the wafer.
  • Item
    High Efficiency Screen-Printed Planar Solar Cells on Single Crystalline Silicon Materials
    (Georgia Institute of Technology, 2005-01) Ebong, Abasifreke ; Hilali, Mohamed M. ; Upadhyaya, V. ; Rounsaville, Brian ; Ebong, I. ; Rohatgi, Ajeet
    In this paper we report on the fabrication, characterization and analysis of high efficiency planar screen-printed solar cells with high sheet resistance emitter ~ 100 Ω/square. Three single crystalline materials were used in this study including; boron doped magnetically stabilized Cz (MCz), gallium-doped Cz (GaCz) and float zone (FZ). For these three materials, a wide range of resistivities was investigated including Fz - 0.6-4.1 Ω-cm, MCz - 1.2-5.3 Ω-cm and Ga-Cz 2.6-33 Ω-cm. Energy conversion efficiencies of 17.7% were achieved on both Fz (0.6-Ω-cm) and MCz (1.2-Ω-cm) while 16.9% was obtained on GaCz silicon material. The 17.7% efficiency achieved on these two materials is the highest energy conversion efficiency reported on a planar screen-printed silicon solar cell. These results demonstrate the importance of high sheet resistance emitter in achieving high efficiency manufacturable solar cells.