Organizational Unit:
Humanoid Robotics Laboratory
Humanoid Robotics Laboratory
Permanent Link
Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)
ArchiveSpace Name Record
Publication Search Results
Now showing
1 - 2 of 2
-
ItemReal-Time Path Planning for a Robot Arm in Changing Environments(Georgia Institute of Technology, 2010-10) Kunz, Tobias ; Reiser, Ulrich ; Stilman, Mike ; Verl, AlexanderWe present a practical strategy for real-time path planning for articulated robot arms in changing environments by integrating PRM for Changing Environments with 3D sensor data. Our implementation on Care-O-Bot 3 identifies bottlenecks in the algorithm and introduces new methods that solve the overall task of detecting obstacles and planning a path around them in under 100 ms. A fast planner is necessary to enable the robot to react to quickly changing human environments. We have tested our implementation in real-world experiments where a human subject enters the manipulation area, is detected and safely avoided by the robot. This capability is critical for future applications in automation and service robotics where humans will work closely with robots to jointly perform tasks.
-
ItemRobot Limbo: Optimized Planning and Control for Dynamically Stable Robots Under Vertical Obstacles(Georgia Institute of Technology, 2010-05) Teeyapan, Kasemsit ; Wang, Jiuguang ; Kunz, Tobias ; Stilman, MikeWe present successful control strategies for dynamically stable robots that avoid low ceilings and other vertical obstacles in a manner similar to limbo dances. Given the parameters of the mission, including the goal and obstacle dimensions, our method uses a sequential composition of IO-linearized controllers and applies stochastic optimization to automatically compute the best controller gains and references, as well as the times for switching between the different controllers. We demonstrate this system through numerical simulations, validation in a physics-based simulation environment, as well as on a novel two-wheeled platform. The results show that the generated control strategies are successful in mission planning for this challenging problem domain and offer significant advantages over hand-tuned alternatives.