Organizational Unit:
Humanoid Robotics Laboratory

Research Organization Registry ID
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Autonomous Environment Manipulation to Assist Humanoid Locomotion
    (Georgia Institute of Technology, 2014) Levihn, Martin ; Nishiwaki, Koichi ; Kagami, Satoshi ; Stilman, Mike
    Legged robots have unique capabilities to traverse complex environments by stepping over and onto objects. Many footstep planners have been developed to take advantage of these capabilities. However, legged robots also have inherent constraints such as a maximum step height and distance. These constraints typically limit their reachable space, independent of footstep planning. Thus, we propose that robots such as humanoid robots that have manipulation capabilities should use them. A robot should autonomously modify its environment if necessary. We present a system that enabled a real robot to use a box to create itself a stair step or place a board on the ground to cross a gap, allowing it to reach its otherwise unreachable goal configuration.
  • Item
    Dynamic Chess: Strategic Planning for Robot Motion
    (Georgia Institute of Technology, 2011-05) Kunz, Tobias ; Kingston, Peter ; Stilman, Mike ; Egerstedt, Magnus B.
    We introduce and experimentally validate a novel algorithmic model for physical human-robot interaction with hybrid dynamics. Our computational solutions are complementary to passive and compliant hardware. We focus on the case where human motion can be predicted. In these cases, the robot can select optimal motions in response to human actions and maximize safety. By representing the domain as a Markov Game, we enable the robot to not only react to the human but also to construct an infinite horizon optimal policy of actions and responses. Experimentally, we apply our model to simulated robot sword defense. Our approach enables a simulated 7-DOF robot arm to block known attacks in any sequence. We generate optimized blocks and apply game theoretic tools to choose the best action for the defender in the presence of an intelligent adversary.