Organizational Unit:
Humanoid Robotics Laboratory
Humanoid Robotics Laboratory
Permanent Link
Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)
ArchiveSpace Name Record
Publication Search Results
Now showing
1 - 3 of 3
-
ItemEquations of Motion for Dynamically Stable Mobile Manipulators(Georgia Institute of Technology, 2010-12-14) Dantam, Neil ; Kolhe, Pushkar ; Stilman, Mike
-
ItemDynamic Pushing Strategies for Dynamically Stable Mobile Manipulators(Georgia Institute of Technology, 2010-05) Kolhe, Pushkar ; Dantam, Neil ; Stilman, MikeThis paper presents three effective manipulation strategies for wheeled, dynamically balancing robots with articulated links. By comparing these strategies through analysis, simulation and robot experiments, we show that contact placement and body posture have a significant impact on the robot's ability to accelerate and displace environment objects. Given object geometry and friction parameters we determine the most effective methods for utilizing wheel torque to perform non-prehensile manipulation.
-
ItemThe Motion Grammar: Linguistic Perception, Planning, and Control(Georgia Institute of Technology, 2010) Dantam, Neil ; Stilman, MikeWe present the Motion Grammar: a novel unified representation for task decomposition, perception, planning, and hybrid control that provides a computationally tractable way to control robots in uncertain environments with guarantees on completeness and correctness. The grammar represents a policy for the task which is parsed in real-time based on perceptual input. Branches of the syntax tree form the levels of a hierarchical decomposition, and the individual robot sensor readings are given by tokens. We implement this approach in the interactive game of Yamakuzushi on a physical robot resulting in a system that repeatably competes with a human opponent in sustained game-play for matches up to six minutes.