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ABSTRACT: The design of lightweight links 
for robotic manipulators results in flexible 
links. Accurate control of lightweight ma- 
nipulators during the large changes in con- 
figuration common to robotic tasks requires 
dynamic models that describe both the rigid- 
body motions, as well as  the flexural vibra- 
tions. This paper describes a linear state- 
space model for a single-link flexible manip- 
ulator and compares simulation of the model 
to measurements made on a 4-ft-long direct- 
drive arm. 

Introduction 
The model discussed in this  paper  forms 

the base for  an in-depth investigation into the 
control of flexible manipulators [ I ] .  One 
method being investigated for modeling flex- 
ible manipulators [2]  relies heavily on iden- 
tification of the flexible manipulator and its 
input/output relationships from measure- 
ments. The modeling process selected for this 
work depends on parameters available from 
the hardware design and insight into the ef- 
fects of state feedback on link vibrations. 

The initial sections discuss the modeling 
process and steps taken to verify physical 
parameters as well as program implementa- 
tion. The latter section compares simulations 
of the model to experimental measurements. 

Model  Generation 
This section describes the formation of a 

linear state-space model for flexible manip- 
ulators. The process of forming the model 
will be outlined in this section. The first step 
of the process is to describe the position of 
every point along the flexible manipulator. 
A linear combination of vibratory modes to 
describe flexible deflections and a rigid-body 
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motion of the center of mass are selected. A 
manipulator with a rigid-body rotation and 
flexible “clamped-mass” mode is depicted 
in Fig. 1 .  

The flexible deflections are described by 
an infinite series of separable modes. Sepa- 
rability in this instance refers to describing 
the flexible deflections as a series of assumed 
modes [ 3 ] ,  which are products of two func- 
tions, each of which is a function of a single 
variable: one a function of a spatial variable 
and the other a function of time. This is noted 
as 

w(x, t)  = m - ) q , ( O ,  

f o r i  = 1, 2 ,  . . - , n  (1) 

This separability is important in  later  phases, 
when the model is formed in terms of tirne- 
varying variables only. 

Next, the kinetic and potential energies are 
derived. The distributed character of the 
flexible manipulator is taken  into account via 
integral expressions over  the mass of the en- 
tire system in forming the energy expres- 
sions.  The integra1 for calculating the kinetic 
energy (KE) has the following form: 

where iz, the absolute velocity vector,  and 
mass, range over the entire system. The po- 
tential energy (PE) of the system is stored in 
the flexible modes and can be attributed to 
“modal stiffnesses” K , ,  which are evaluated 
by integrals over  the length of  the  link, which 
account for bending energy. 

Lagrange’s equations of motion can be 
formed from the energies: 

where the zj are the coordinates and Q, are 
the generalized work terms associated with 
each coordinate. Turning the computational 
crank on the various differentials and inte- 
grals results in a coupled set of second-order 
dynamic equations with familiar form; 

z = [e, q,(t), m .  . , qn(t)l (6 )  

Here, M is a mass matrix, K represents stiff- 
ness, and Q the input. The dynamic equa- 
tions are easily organized into a state-space 
model, as shown in  Eq. (7). The  motor 
torque at  the  joint  and  the generalized work 
terms, Qi, are related by the rotation of the 
joint, which occurs with each variable. Ex- 
amination of the form of the model reveals 
the expected result that the  coupling between 
the modes and the rigid-body motion occur 
from inertial terms of the mass matrix. 

Equation (7) depicts a 2(n + 1)-order lin- 
ear model, where n is the number of included 
modes. Nonlinear terms arise from the eval- 
uation of Eq. (2) for the kinetic energy. The 
model is linearized by noting that the am- 
plitude of the vibrations is small compared 
to the length of the beam 
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Fig. 1. Flexible manipulator. 
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Mode  Selection  and  Frequency 
Determinant 

The remaining task in generating a trial 
model is the selection of the flexible modes 
to be  used in forming the constant mass and 
stiffness matrices. 

The path chosen in this work is to select 
admissible functions as candidates. which 
are solutions to closely related problems. 
These solutions are eigenfunctions for  se- 
lected “clamped-mass’‘ and “pinned-mass” 
boundary-value problems. “Cl&rnped“ de- 
scribes a boundary condition where the joint 
is fixed against rotation, “pinned” describes 
a  joint with motor inertia free to rotate. and 
“mass“ describes the condition of the pay- 
load at the  other beam boundary. The  ad- 
missible functions will then satisfy the dif- 
ferential equation, the essential or geometric 
boundary conditions. and the natural bound- 
ary conditions of the free-vibration problem. 

Trial mode shapes were obtained by solv- 
ing the differential equation for a Bemoulli- 
Euler beam with selected boundary condi- 
tions. The problem is formulated in terms of 
a frequency determinant for the determina- 
tion of the eigenfunctions and associated fre- 
quencies. 

Experimental  Setup 
This section describes the experimental 

system used  in examining the model. The 
system consists of a flexible arm with pay- 
load,  DC torque motor with servo-amp. sig- 
nal conditioning with A/D conversion for 
data acquisition. 16-bit computer system for 
implementation of control algorithms. and 
DIA conversion for torque signal output. 

The processor is equipped for hardware 
computation of floating-point operations with 
a characteristic time for 32-bit multiplica- 
tions of 19 psec.  A torque motor is driven 
by a high internal gain DC servo-amp con- 
figured  with a  sense resistor on the motor 
output to act as  a current source.  The phys- 
ical configuration of the flexible arm, torque 
motor, and sensors is represented in Fig. 2. 
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Fig. 2. Flexible beam apparatus. 

Table 1 identifies the important parameters 
of the beam, which were used as inputs to 
the modeling process. 

Table 1 
System  Parameters 

Flexible  Beam 

Material Aluminum 606 1-T6 .jO_ “e?;? ~ 

Length 48 in.  
Moment of Inertia 4.12E-4 in.‘ 

Parameter  and  Program  Verification 

This section describes experiments con- 
ducted to veri@ system parameters and pro- 
gram implementation of the model genera- 
tion process. Initially. the frequencies 
determined via the Bernoulli-Euler beam 
equations with clamped-mass and pinned- 
mass boundary conditions are compared to 
measured eigenvalues of the beam. This  ex- 
amines beam length, modulus. and density 
parameters. as well as the suitability of the 
chosen boundary conditions. 

Figure 3 shows a measured transfer func- 
tion from random torques input by the motor 
to strain at the base of the beam.  The peaks 
correspond to clamped-mass modes, as the 
clamped boundary condition results in modes 
having maximum moments at the base of the 
beam. The valleys are associated with 
pinned-mass modes. as this boundary con- 
dition results in modes that have small mo- 
ments. which rotate the motor inertia. Mar- 
tin [4] discusses measurement zeros. which 
occur in flexible structures. 

The vibratory modes were additionally 
calculated by the frequency determinant 
method. Table 2 compares the measured 
modal frequencies to those computed using 
the Bernoulli-Euler beam. The application of 
the Bernoulli-Euler formulation to the 
clamped-mass case agrees very well with the 
measured frequencies. however, the pinned- 
mass conditions were not as  accurate. 
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Fig. 3. Frequency response for clamped 
beam. 

The poorer agreement for the pinned case 
is attributed to the friction found in  the  joint 
hardware: this is a difficult condition to 
model  and  may have a significant effect for 
the small-amplitude motions used during the 
tests. 

The next step checked the model genera- 
tion algorithm. Normalization of the modal 
masses allows the checking of the compu- 
tations by examining the diagonal compo- 
nents of the stiffness matrix.  Normally, for 
second-order systems. the natural frequency 
is the square root of the stiffness divided by 
the mass.  Thus. the normalized stiffnesses 
should correspond to the squares of the modal 
frequencies input to the process. 

A program was implemented that solved 
vibratory modes. calculated the mass and 
stiffness integrals. and computed the dy- 
namic equations. The algorithm was checked 
for both the clamped-mass and pinned-mass 
modes. Table 3 presents a comparison of the 
modal frequencies input to the modeling pro- 
cess to the square roots of K,. The results 
are very good: however. it was necessar): to 
use higher precision computations for the 
higher modes. 

Dynamic  Response  Comparison 

The previous section provides confidence 
that the beam parameters have been properly 
identified and modeled by the Bemoulli-Eu- 
ler beam. The computational procedure has 
additionally been checked.  The major ques- 

Table 2 
Comparison of Modal Frequencies, Hz 

Mode  Measured  Calculated  Measured 

136.352 
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Table 3 
Comparison of Frequencies  Determined by Stiffness  Computations, Hz 

Clamped Mass Pinned & h s s  

Input  Stiffness”’  Input 

2.096 2.096 9.732 9.732 
13.989 13.989 31.608 31.608 
40.552 40.524 62.683 62.683 
81.225 81.225 148.768 148.768 

136.352 136.344 216.048 214.621 

tions concerning the model can now be in- 
vestigated: 

Choosing the modal candidates. 
Required model order. 
Is  a linear model of the coupling ade- 
quate? 
The following paragraphs describe simu- 

lations and experiments conducted to gain 
insight into the answers to these questions. 
The simplest and best understood controller 
for flexible arms is a collocated controller, 
that is,  a control system where the measure- 
ment and actuation are located at the same 
point. A collocated controller was imple- 
mented for the experimental system that ap- 
plied a position gain to joint  angle measure- 
ments and  a rate gain to angular velocity 
measurements. 

The position gain was selected to provide 
the rigid-body mode with a characteristic 
time of 1  sec.  The rate gain was selected to 
provide a damping ratio of 0.7. Higher gains 
could be selected that stress the impact of 
flexibility on  the control strategy: however, 
the chosen gains provide a good starting point 
well within the operating parameters of the 
system. In addition, the system displayed 
linear behavior over  a large range of gains. 

Figure 4 displays the measured response 
of the experimental system to a  step change 
in desired joint  angle. Strain measurements 
presented in the figure, while not used in the 

controller, provide an indication of the rel- 
ative modal amplitudes. 

The dynamic model was discretized and 
simulated for  the  step angle change. Small 
amounts of damping (typically damping ra- 
tios ranging from 0.007 to  0.010, based on 
transfer function measurements using an im- 
pulse hammer as the input and strain at the 
base as the output [5]) were introduced into 
the model for the flexible modes. In addi- 
tion, hysteretic joint friction was modeled as 
coulomb friction [6] and was included in the 
digital simulation. Inclusion of modal damp 
ing and hysteresis in the simulations im- 
proved the agreement of the models, espe- 
cially in the time interval following the large 
initial transients. 

Figure 5 shows the results for  a model im- 
plemented with five clamped-mass modes, 
while Fig.  6 presents a model using two 
clamped-mass modes. The last  case  simu- 
lated used five pinned-mass modes as inputs 
to the modeling process. This is presented in 
Fig. 7. 

The simulations based upon clamped-mass 
modes agree best with measured responses. 
Surprisingly, the model implemented with 
only two clamped-mass modes agrees almost 
as well as, if not better than,  the higher order 
model. The poorer agreement of the higher 
order model is probably due to poor esti- 
mation of the damping by use of the impulse 
hammer measurements. Additional damping 

Time ( s e n d s )  

Fig. 4. Measured step response. 
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Fig. 5. Simulated response, five clamped- 
mass modes. 

Fig. 6. Simulated response, hvo clamped- 
mass modes. 

in the higher modes from the joint  is likely 
when the joint is in motion. Should large- 
amplitude vibrations occur in the higher fre- 
quencies, as shown in Fig. 5, larger  models, 
including the higher flexible modes, would 
be required. This presentation may be some- 
what misleading, as better determination of 
damping for the higher modes could provide 
better results. It is apparent that a dominant 
portion of the response is adequately char- 
acterized by as few as two modes. 

Summary and Discussion 
A modeling process to generate  a  linear 

model for use in controlling flexible manip- 
ulators was presented and compared to ex- 
perimental measurements for a joint angle 
position and rate feedback controller. The 
model eigenvalues agreed well with experi- 
mentally determined frequencies of the vi- 
bratory modes. Damping values imple- 
mented in the model, which were determined 
from clamped-mass measurements with the 
manipulator’s joint fixed, appeared to be the 
major source of discrepancy in the measured 
transient responses. The actual responses 
tended to damp out faster than the predic- 
tion, indicating increased damping of the vi- 
bratory modes occurring during large manip- 
ulator motions. 

Fig. 7. Simulated responses: five pinned- 
mass modes. 
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Qualitatively,  the  dominant  parts  of  the 
transient  responses  were  characterized  by  in- 
clusion of as  few as two  assumed  flexible 
modes in the  dynamic  model.  Future work 
focuses on quantifying  model  performance; 
specifically, norms of  the  state  errors  are 
being  considered.  The  quantitative  measures 
could  be  used  to  optimize  model  parameters 
or  evaluate  accuracy of modeling  techniques 
and  assumptions. 

The  selection  of  appropriate  trial  mode 
shapes  must  consider  the  feedback  law  to  be 
implemented,  as  the  applied  torque  domi- 
nates  the  boundary  condition  at  the  base of 
the link.  Clamped-mass  modes  yielded  good 
results for the  simple  collocated  controller 
and  were used extensively in later slate feed- 
back  experiments [ l ]  using  the  vibratory 
mode  variables. 
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Out of Control. 

“Nice  artwork,  kiddo! I’ve got a gut  feeling  that a great  many  people 
will make  a living off that  third  line  someday!” 
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