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PROJECT 3730 -AIR/SHEET INTERACTIONS

Project Leader: Cyrus K. Aidun

PROGRAM OBJECTIVES

The objectives of this project are to: a) gain a better understanding of the fluid dynamics

and the structural mechanics of sheet flutter; b) correlate the onset of break or sheet

damage ("pain threshold") with the sheet flutter characteristics (e.g., frequency, speed, ... )

and the sheet's structural properties; and c) extened of the results to analysis of blade

deformation and vibration in coating processes.

The interactions between fluid flow and flexible solid boundaries will be examined with

applications to processes in paper manufacturing. The primary application is in sheet

vibration induced by interactions between the sheet and the adjacent air stream which

results in operational difficulties and web breaks.

SUMMARY OF PROGRESS

This is the second year of this project, and many of the initial tasks involving development of the

techniques required for computational and experimental studies of the air/sheet interactions have

been completed.

We are developing a computational program to evaluate the three-dimensional surface deformation

of the substrate under load and transform of coordinates from global to the local surface

deformation system. The initial computational experiments demonstrated the potential of this

approach in terms of air/sheet interactions, as well as optimization of moisture removal from the

dryer section. Based on the initial two-dimensional, low-speed computations, the PAC members

(Ben Thorp, Chairman) suggested that we file an invention disclosure form for a more effective

ventilation in the dryer section. The Invention Disclosure is attached to this report.

The two-dimensional program for the solution of the full equations governing the fluid flow with

rigid boundaries has been completed. Several sample problems have been solved to confirm the

correctness and accuracy of the formulation and the solution methodology. The complete

formulation for this part of the program is outlined below.
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In the last report, we outlined the results from a series of wind tunnel experiments to evaluate the

system for an in-depth study of sheet fluttering and mechanisms of reducing the vibration and

consequent sheet breaks. Problems with these experiments were identified and resolved. The

samples used in the wind-tunnel experiments were Bond #4 printing paper, Letter Print (IPST

Letterhead) paper, unbleached paperboard (Corrugating Medium), and light-weighted "trace"

paper. Once the computational methods are fully developed, the experimental data can be used

to evaluate the solution.

BACKGROUND

The fluttering of a moving web is often analyzed by using the "threadline" model, one that

assumes the entire width of the web deflects together, and neglects cross-directional variation of

web motion. This model was studied by Pramila [1], who combined separate theories of the

dynamics of axially moving material and hydrodynamics to include aerodynamic terms in the

model By simply adding the mass of surrounding air to the mass of the web, an "added mass"

model was obtained. Pramila also assumed that the web is in an infinite air space and all the

surrounding air move at the same speed as the web. In later studies, it has been demonstrated

that the interaction between web and surrounding air is an important contributor to web

instability and should therefore be taken into account.

In a later article, Pramila [2] assumes the air to be stationary, moving only in planes

perpendicular to the x-axis. This consideration was taken into account by summing the added

mass to the first term of the equation of motion only, rather than to all inertia terms, as was done

in Pramila [1]. Although analytical results showed that the rate of decrease of natural frequency

fares slightly better on this assumption, no definite conclusion could be drawn.

The "threadline model" was used again by Chang and Moretti [3] to study the out-of-plane

flutter of a moving web. They showed that each of the dynamic terms in the governing equation

- namely the transverse acceleration, Coriolis, and centrifugal forces - are affected differently by

the air, depending on the air flow and the surrounding enclosure. They also determined the

influence of parallel air flow and detected two different instabilities - steady deflection and

flutter.

In the article by Race et al. [4], an investigation into the air movement induced by felts and

fabrics was undertaken. The object was to determine the cause of sheet flutters experienced in f
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first dryer sections of newsprint-making machines, with special attention placed on the surface

roughness and permeability of the felt or fabric. The study also tested the claim that, by using

felts and fabrics of high permeability of the dryer sections of paper machines, an induced

ventilation effect will be obtained, resulting in an increase of the drying rate. What the study

found was that the volume of air "pumped" through a fabric is dependent only on the fabric

permeability itself and not on the surface roughness as was presupposed. It also found that the

ventilating effect resulting from the use of a fabric is governed not only by the felt permeability,

but by the machine speed, too. These findings helped papermakers to eliminate the possibility

of surface roughness as a contributor to the problems of sheet flutter and provide them with a

better idea of where to use felt or fabric at different parts of the papermaking machine.

In studying the physics of paper machine sheet flutter, Soininen [5] suggested that air flows do

not generally create the edge flutter as often assumed, but instead, the edge flutter produces such

air flows that the transversal wave energy component is dissipated to the air. He, then,

concluded that the main reason for sheet flutter is a variation of basis weight of the sheet.

The idea of visualizing air flows by colored smoke documented by Sieverding and Bosche [6]

was also used in these preliminary experiments with a limited degree of success.

PHYSICALLY BASED COMPUTATIONAL ANALYSIS

Computational analysis based upon physical principles represents a promising technique

in investigation of many papermaking processes. The dynamics of a deformable object in

response to some applying force can be analyzed by including the relevant physical

properties of the solid and the liquid phases. The deformable model is governed by the

mechanical laws of continuous bodies whose shapes can change over time. These

principles, expressed in the form of dynamic differential equations, unify the description

of shape and motion. By solving the equations numerically, a realistic analysis of the

problem involving the interaction of the deformable object with the surrounding fluid

becomes possible. By varying input parameters, the dependency of the system's behavior

on physical parameters or boundary conditions may be examined. The two cases that we

shall consider are the elastohydrodynamics of blade coating and the air/sheet interactions

in this project. The basic principles and approach in analyzing both cases are virtually the

same.

Report 13
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In this project, however, we focus on air/sheet interactions. This problem consists of a

deformable sheet under tension and exposed to varying air interactions. These variations

include the sheet velocity and the air/sheet angle of attack Taking the many possible

complex configurations of wave patterns forming by the sheet, the case under

investigation poses a very complex continuum mechanics problem. Therefore, it is

appropriate to start with a rather simplified version of the problem and gradually

introduce physical complications until the full complex and realistic system is considered.

The overall approach can be summarized in the form of a block diagram presented below.

Initial Conditions 

_________ _ Xr r~ ~Onset of Sheet
Physical Elastohydrodynamic Vibration or Fluttering,
Properties Computational Frequency and
of fluid al Amplitude of Vibration,
and solid Analysis Sheet Break

Geometry --'- Boundary Conditions | Design &
Process
Optimization.

Figure 1. Block diagram of the computational approach.

The mathematical formulation for the coordinate deformation and mapping of the

boundary to a local coordinate was presented in the last report. In this report, we outline

the computational method for the more challenging part of the project, that is the fluid

flow and interactions with the boundary.

The mathematical formulation and the solution procedure for the air flow with a rigid

boundary are outlined below. The computational procedure, as outlined here, is

formulated and implemented in general terms. Therefore, this method can be applied to

any section of the paper machine. Tensor notation is used in explaining the dependence

of the variables to the spatial coordinates. Accordingly, repeated indices imply

Report 14
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summation over the three spatial directions. An index following a comma indicates

partial derivative of the variable with respect to the corresponding spatial coordinate. The

variables are defined in the text following each equation.

The Navier-Stokes equations, which describe the flow of a steady, viscous,

incompressible Newtonian fluid with constant properties, written in terms of primitive

variables are

PUpU.,p =ap.,P (1)

and (P,2 =0 (2)

where ,P = -pS + p(ua.p +up,) (3)

Xa is the position in Cartesian coordinates; Ua is the velocity component in a -direction,

p is the pressure derivation from hydrostatic; p is the fluid density; tp is the fluid

viscosity; and 6P is the Kronecker delta.

On each segment of the boundary, a0, of the computational domain, 2, it is necessary to

prescribe appropriate boundary conditions. A precise statement of mathematically

legitimate boundary conditions (in the sense of well posedness) for the Navier-Stokes

equations often does not exist. A couple examples are open, or outflow, boundary

conditions and free/moving boundary conditions (Gresho 1992; Christoudoulou and

Scriven 1989; Sackinger et al. 1989; Kistler and Scriven 1984). Hence, there is

understandable ambiguity, and even confusion, when boundary conditions are selected

for numerical simulations. The boundary conditions relating to the momentum equations

commonly employed are either the specification of the velocity components

u = Ua(s) (4)

or specification of the surface stresses

n"a, = X a (5)

where s is a parameter measuring position along the relevant boundary segment, and U(s)

is the outward normal to the boundary.

5 Report 1
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Finite-Element Formulation

Only for limited cases do analytic solutions of the Navier-Stokes equations exist. For most

problems of engineering interest, the Navier-Stokes equations are solved numerically.

Difficulties in obtaining the numerical solution are related to the following: (1) the irregular

geometries of the considered domain; (2) the equations are strongly coupled; (3) the

equations are inherently nonlinear in the convection terms; (4) for convection-dominated

flows, i.e. Re >> 0(1), if the employed grid resolution is not fine enough, non-physical

oscillations are prone to occur (Gresho and Lee 1981); (5) the continuity equation which

regulates the pressure solution does not explicitly include the pressure variable (Sani et al.

1981a, b; Patankar 1980).

There are other versions of the Navier-Stokes equations derived from the "primitive"

equations, such as the pressure Poisson equation and vorticity transport equation. Gresho

(1991) has shown that the use of a primitive-variable form has some distinct advantages.

In the following, the formal derivation of the Galerkin equations of the Navier-Stokes

equations based on the primitive variables is presented (Gunzburg 1989; Curvelier 1986;

Thomasset 1981).

Weak Form

The finite-element spatial discretization is performed using the Galerkin method. Within

each element, the velocity and pressure fields are approximated by piecewise polynomial

basis sets
U (Xp=) = &(XP)Ua (6)

ph(x0) = (pT(x)P (7)

where Ua, and P are column vectors of element nodal point, ¢(x3) and p(x,) are column

vectors of the interpolation functions, and the superscript T represents the transpose.

Herein the same basis functions are employed for all components of the velocity.

6 Report 1
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Substitution of these approximations into the governing equations and the boundary

conditions yields a set of equations:

Momentum: f, (0,, U;, P) = R, (8)

Continuity: ' f 2 (q,U,) = R2 (9)

where R, and R2 are the residuals (errors) resulting from the use of the approximations (6)

and (7).

The Galerkin form of the Method of Weighted Residuals seeks to reduce these errors to

zero, in a weighted sense, by making the residuals orthogonal to the test functions of each

element (i.e., ¢ and (p ). These orthogonality conditions are expressed by

Momentum: (fi,) = (Ri,,) =0 (10)

Continuity: (f2,p)= (R 2,p)=0 (11)

where (a,b) denotes the inner product, defined as

(a,b) = a bd (12)
n

A detailed derivation of the weak form of the Navier-Stokes equations, (1) - (3), and

associated boundary conditions, (4) and (5), is given in Appendix A. The final forms are

f)Jp , + ),- apjPj = J :,r; i = 1, 2, .. L (13)

f(j<Pja Ua =0; j = 1,2,... M (14)

where L and M are the number of velocity and pressure nodes, respectively, in the discrete

domain.

Matrix Form

The component equations (13) and (14) can be combined into a single matrix equation

Report 1·7
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Momentum : [N(U) + K] + CP = f (15)

and Continuity: - cU = (16)

or in a more general format as

A(w)w = b(w) (17)

where wr = {UT,PT} (18)

The definitions of the matrices N(U), K, , and f are given in Appendix A.

Pressure Modes and Requirement for Mixed Interpolation

The process of "element selection" and "underlying finite-dimensional approximation

space" for both velocity and pressure is presented in this section. Early published finite-

element solutions of the Navier-Stokes equations employed a so called "equal

interpolation"; i.e. (p = p (Hood and Taylor 1973). The authors noticed that an accurate

solution for the velocity was usually accompanied by a very poor (or meaningless) pressure

solution. When "mixed interpolation" (or "unequal interpolation") was employed, in which

(p is one order lower (in polynomial degree) than 0, both velocity and pressure results

appeared to be more reasonable (Hood and Taylor 1974).

Sani et al. (1981a, b) and Olson and Tuann (1978) made significant progress toward

providing an explanation for the occurrence of the spurious pressure solutions. They

concluded that equal interpolation generally results in a singular matrix with associated zero

eigenvalues. These spurious pressure solutions (pressure modes) are simply an artifact of

the discretization method employed - "basis functions" in finite element method (FEM) and

"grid selection and variable locations" in finite difference method (FDM) of the Navier-

Stokes equations, which also display spurious pressure modes (Patankar 1980).

The significant difficulties associated with the singular limit can be easily appreciated and

the spurious pressure mode better understood by considering the following simple example

with only two equations:

[A~ ~O~]{A1}{}i~ {(19)

Report 18
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The matrix has eigenvalues i, = 1, X2= 0 and the linear system has the solution {1, c}r ,

where c is arbitrary. A small perturbation in the off-diagonal elements gives

[1 ]{ }={ 0 (20)

The matrix now has eigenvalues Ai = (1 + 1 4)/2 = 1 + e 2 and
A T

A2 = (1 - J+4)/2 _ -e 2 , and the algebraic system has the solution {0, e~} . The

first component is changed by 0(1) and the second by O(-' 1); furthermore, the

unperturbed solution cannot be recovered by letting e approach zero. Fortunately, the

useful pressure information can be recovered from the spurious pressure solution using

smoothing techniques (Hughes et al. 1979, Lee et al. 1979, Hinton and Campbell 1974).

Because of the choice of pressure discretization, the resulting discrete system of equations

may involve ill-conditioning and round-off error in practice. Pelletier et al. (1989) have

invented several inexpensive techniques to minimize the effect of round-off error based on

the measurement of incompressibility for the discrete divergence of the velocity field and

recommended the use of discontinuous, C -~, pressure approximations, particularly for
strongly coupled flow problems. The element employing discontinuous (C-1 ) can

f h
guarantee element level mass balances, V. u = 0, which must be judged as an additional

a'

advantage. Continuous (C') pressure approximation, on the other hand, can only be

shown to yield a global mass balance (Gresho et al. 1980). Bercovier and Engelman

(1979) have also demonstrated the superiority of the nine-node isoparametric quadrilateral

element over the eight-node (serendipity) element in many computational experiments.

Therefore we use 9-node Lagrange element for velocity interpolation and 4-node

discontinuous bilinear interpolation for the pressure in our study. The pressure degrees of

freedom are located at the four points of 2x2 Gaussian integration points.

Solution Procedure

The discrete system resulting from a finite-element discretization of the Navier-Stokes

equations consists of a nonlinear system of algebraic equations. In order to improve the

performance of the solution algorithms, all equations in the problem are solved in a fully

coupled manner. Both the solution method for a system of equations and the solution
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algorithm for the nonlinear system of equations are major factors influencing the efficiency

of the finite-element program.

The major computational effort in any finite element procedure is expended in the solution

of the assembled matrix equations that describe the discretized problem. The solver

adopted to determine this solution has a significant bearing on the computer storage

requirements and execution time. Of the many techniques available, the direct elimination

frontal equation solution technique originated by Iron (1970) has earned the reputation of

being easy and inexpensive to use. The main idea of the frontal solver is to assemble the

equations and eliminate the variables at the same time. As soon as the coefficients of an

equation are completely assembled from the contribution of all relevant elements, the

corresponding variable can be eliminated. Therefore, the complete global matrix is never

actually formed, since all reduced equations can be eliminated from core storage and stored

on disc. Following the completion of equation assembly and reduction element-by-

element, the stored information is used during the back substitution process to obtain the

solution.

For highly coupled, nonlinear equations such as the Navier-Stokes equations, questions

arise regarding the ability of the numerical algorithm to achieve a solution in addition to the

computational efficiency. The choice of a solution algorithm is therefore a critical element

in the overall utility, robustness and efficiency of a computer code. The most common

methods employed, (a) successive-substitution method and (b) Newton's method, are

summarized as follow:

(a) Successive-Substitution Method

A particularly simple iterative method with a large radius of convergence is the successive

substitution (Picard, functional iteration) method. Application of the method for (17) is

described by

A(wn)wn+l =b(wn) (21)

where the superscripts indicate the iteration levels. For strongly nonlinear problems the

rate of convergence of (21) is fairly slow since it is a first-order method. An improvement

in the convergence rate can sometimes be realized by use of a relaxation formula where

A(wn)w*= b(w") (22)

and w"+l = aw" + (1- a)w*, 0 < a (23)

10 Report 1
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where a is the relaxation factor.

(b) Newton Method

In order to improve significantly on the rate of convergence, a second-order method, such

as Newton's method, can be considered. Rewriting (17) as

R(w) = A(w)w - b(w) (24)

Then Newton's method can be expressed as

"(w) = -dRI (wI, - -wn) = ()( -(w ) (25)

which can be solved for w"'+ as

w"+l = w" - J'(w` )R(w" ) (26)

where J(x) is the Jacobian matrix. The Newton scheme has a superior rate of convergence

compared to the simple algorithm in (21). However, Newton's method also has a

somewhat smaller radius of convergence (i.e., is more sensitive to the initial guess of w° ).

The Newton method can at times be improved by the use of a relaxation procedure similar

to the one shown in (22) and (23). In some cases a sequential application of (21) and (26)

provides the best method of solution.

Application to a Closed Dryer Section

The numerical method outlined above is being developed for analysis of air/sheet

interactions in the paper machine. We have had good progress in the computational front.

We can now solve for the air stream in very complex geometries as shown in Fig. 2 where

the air stream in a closed dryer section of the paper machine has been simulated. The

figure shows the air particle trajectories in the dryer section. As shown here, recirculating

eddies form and trap the moisture near the rolls. At the left section, air is dragged with the

felt and the paper into the lower nip encountering a high pressure region, it returns in a

jetting action to impinge on the surface of the top roll. A similar pattern forms between the

paper and the roll in the other section.

11 Report I
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When these initial results were presented at the Project Advisory Committee meeting, our

PAC chairman suggested that we can use these results to better ventilate and remove

moisture from the dryer section. We now have an invention disclosure for a more efficient

moisture removal mechanism (see appendix B).

Figure 2. Air stream in a closed section of the dryer showing the formation of

recirculating eddies and jet impingement on the surface of the roll at the left

section and the felt on the right section. The two converging nips are

singular points of high pressure. The dots show the location where the

particles are released for visualization purposes.

7
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Appendix A

The weak form of momentum equation, (1), and associated boundary conditions, (4) and

(5), is obtained by first multiplying the equation by any of the velocity basis function (i.e.,
by a test function), Ai , i = 1, 2, ..., L where there are L velocity nodes in the discretized

domain, and integrating over the domain, Q,

JI ipuAu*, = Jf PiE:,a (A-1)

Then, since iro,p = (ir), - n. , and from the divergence theorem

I (&rL) p= J ing"r (A-2)
na 'ao

where dX is the boundary of Qf and n, is the a -component of the outward unit normal

vector on dQ. To incorporate the boundary condition, (5), nrT = Ta, (A-i) becomes

J ipu.,p = J pinpZ i -f = J Ai -| J fi, (A-3)
Q oan n anl 

Similarly, the appropriate weak form of continuity equation, (2), is obtained by
multiplying it by any one of the pressure basis functions (as a test function), say ( i , j = 1,

2, ... , M where there are M pressure "nodes" - they are located at the 2x2 Gaussian

integration points in each element - in the discretized domain. Thus (2) becomes, in the

weak form

JfaIpu,, =° ; j=1,2,.....,M (A-4)

Using the definition of the Galerkin procedure, (8) and (9), and the finite element

approximations, (6) and (7), (A-3) and (A-4) can be written as

p ,J P kp, Uq+ J ,,piJ -,, J = ja ;i = 1, 2,...L (A-5)

Report 113
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and (j Pi.)a =0 ; j = 1, 2,..., Ml! 1 (A-6)

The corresponding matrix equations (ODE's) can be written in the condensed form

[N(U) + K]u + CP = f
CT U = 

(A-7)

(A-8)

Where now U is a global vector of length d*L, where d is the number of dimensions, and

P is a global M-vector of pressures. The associated matrices for the two-dimensional

situation can be explicitly expressed as

N(v) = 
~-~- 0

0

0

UkJpqiLqikjX + V4JP kjm y
a n

0

J p(O Oj'. + Oi/Pjy
0 J

f {Ji' }

where U and V are the velocity components on the x- and y- coordinates, respectively.

The various matrices expressed in (A-9) - (A-11) are spatial integrals of the various

interpolation functions and their derivatives. The evaluation of these integrals can be

carried out by the use of numerical quadrature procedure.

(A-9)

(A-10)

(A-ll)

(A-12)

14 Report 1
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MORE EFFECTIVE METHOD OF MOISTURE REMOVAL IN THE DRYER

Our computational analyses have shown that eddies form above the dryer rolls in the dryer

section. A ventilation device is outlined below which replaces the eddies with a more

efficient air stream for moisture removal.

A schematic of the air stream in the dryer unit is presented below in Figure 1. The actual

results from the computational analysis are given below in color coded plots of streamlines

and velocity vector plots. The colors indicate the magnitude of the dependent variables.

The computational results show that recirculating eddies with closed streamlines develop

near the dryer roll. This is a potential area for accumulation of moisture which in turn

reduces the efficiency of the dryer. With this invention, the eddies are completely removed

from the system. This results in less accumulation of moisture and, therefore, a more

efficient drying process.

ISTREAMLINES

Figure 1. Schematic of the air stream at low speed in the dryer section of a paper machine.

15 Report 1
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The invention consists of ventilation tubes that are placed at the center of the eddies near the

rolls to modify the streamlines and prevent formation of the recirculating eddies, as shown

in Figure 2. The ventilation tubes have suction capability at the top portion and air delivery

feature at the designated section of the tubes, as shown in Figure 3.

MODIFIED
I STREAMLINES

VENTILATION TUBES

Figure 2. The schematic of the dryer section with ventilation tubes showing the modified

streamlines and the destruction of the eddies.

16 Report 1
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The ventilation tubes can be of different shapes with two primary sections. Depending on
the position of the tubes, the top (bottom) portion of the tubes extract (inject) air from (into)
the dryer section when the tubes are located above (below) the dryer roll. The drawings in
Fig. 3 show three different shapes that can be used effectively to reduce moisture
accumulation and to ventilate the system effectively for higher efficiency drying. The shape
of the designs depend on the machine speed and the need to streamline the surface of the

tube in order to prevent flow separation.

(a) (b)

(c)

Figure 3. Three different ventilation tubes for removing moisture from the steam rolls in
the dryer section. Versions (b) and (c) are aerodynamically designed to prevent further
flow separation near the roller for high speed machines. Version (a) is a simple circular

tube for low speed machines.

17 Report 1
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