
1

Intent, Perception, and Out-of-Core Visualization
Applied to Terrain

Douglass Davis, T.Y Jiang, William Ribarsky, and Nickolas Faust
Graphics, Visualization, and Usability Center

Georgia Institute of Technology
{dougd, jiangf, ribarsky}@cc.gatech.edu, nick.faust@gtri.gatech.edu

Abstract

This paper considers how out-of-core visualization applies to terrain datasets, which are among the largest now
presented for interactive visualization and can range to sizes of 20 GB and more. It is found that a combination of
out-of-core visualization, which tends to focus on 3D data, and visual simulation, which places an emphasis on
visual perception and real-time display of multiresolution data, results in interactive terrain visualization with
significantly improved data access and quality of presentation. Further, the visual simulation approach provides
qualities that are useful for general data, not just terrain.

I. Introduction

Interactive visualization of big data presents a
significant challenge, but also offers the possibility
of major rewards. Visualization is often the first step
towards analysis and understanding. We must first
"look at" the data before we can even know what to
do next. Conversely, if we cannot even visualize the
data, we cannot effectively explore and discover. We
can only perform peripheral analysis; much of the
data remains untouched.

To meet this challenge, out-of-core visualization
approaches have lately been developed [1-3] that allow
one to display data even when the dataset is much
larger than memory. These approaches attempt to
organize the data in such a way that they can be
transmitted from disk, either local or networked, to
memory in time to support interactive visualization.
To the extent that these methods are successful, they
increase visualizable data by 1, 2, or more orders of
magnitude and make possible the interactive
exploratory analysis of many simulational and
observational datasets.

In this paper we consider how out-of-core
visualization might be applied to terrain datasets,
which are among the largest now presented for
interactive visualization. For example, we provide
interactive flythroughs of datasets ranging to 20 GB
in size; even larger datasets are possible. We find that
this combination of out-of-core visualization, which
tends to focus on 3D data [1-3], and visual
simulation, which places an emphasis on visual
perception and real-time display of multiresolution
data [4,5], results in interactive terrain visualization
with significantly improved data access and quality of
presentation. This set of very large dataset
visualization methods will also be of prime
importance for visual simulation systems that handle
not only terrains but large scale collections of
moving and static 3D objects and 4D fields of data.

II. Related Work

The out-of-core problem is not new. Methods have
long been developed and used to cope with large
amount of data [6]. In early research, George and
Rashwan used auxiliary storage methods to solve
finite element problems [7]. Liu [8] applied an out-of-
core multifrontal method for sparse factorization. In
recent years, researchers have looked at disk storage
I/O optimization. In this approach, disk storage is
treated as another level in the memory hierarchy,
below cache, local memory, and remote memories.
Parallel programming models and software programs
are used essentially to manage the movement of data
between any two adjacent levels in a hierarchical
memory system.

Until recently, however, there has been little work
that directly addresses the problems of out-of-core
visualization. But from what has been done so far, it
is clear that application-control and domain-dependent
data organization are essential to achieving good
performance. Relying on system virtual memory, for
example, frequently results in thrashing and abysmal
performance. Ueng et. al. [2] apply an application-
controlled segmentation approach to out-of-core
visualization. They spatially and hierarchically
partition the dataset into an octree and load only
needed segments. One problem with their approach is
how to determine segment boundaries. Cox and
Ellsworth present application-controlled demand-
paging [1], in which the system knows something
about what data are needed and when. By considering
operating system memory management, they
minimize thrashing. Zyda and co-workers [4] came
up with a hierarchical quadtree data structure by
evenly subdividing data into square quadnodes and
rendering with regular grid polygonalizations. Based
on this regular grid they developed a paging method
that takes into account the viewpoint and speed of the
user. Our approach applies to much deeper and
multiple linked quadtree structures so that one can

2

consider global terrains, rather than patches as in the
Zyda approach. Further we apply a continuous level
of detail method, instead of fixed levels, so that visual
artifacts during paging are minimized. In all these
cases, dataset paging and rendering are considered
separately; there is little in the literature on adapting
application-controlled segmentation for optimal
rendering. This is one of the issues we address in this
paper.

III. Applying Intent and Perception
to Optimize Paging

For accuracy and speed, our terrain visualization
system subdivides the globe into 32 quadrants, each
45o x 45o [5]. Each quadrant has its own quadtree;
all are linked so that terrain crossing quadrant
boundaries can be rendered correctly. To improve
performance, the system is divided into multiple
threads that can run in parallel. In particular, there is
an independent rendering thread, which has a "triple
buffer" of display lists for each window (there can be
multiple windows). One of the display lists contains
what the renderer is currently drawing, one is used by
the scene manager to buffer graphics commands, and
the last contains data that are ready to be displayed.
This scheme allows both the renderer and scene
manager to run simultaneously without having to be
synchronized.

The terrain paging thread has a terrain server and
terrain manager. The terrain server loads pages from
disk while the manager decides which terrain level of
detail should be loaded (taking into account user
viewpoint and navigational speed) and passes it along
to the scene manager. The terrain server and manager
communicate with the scene manager and the rest of
the system via shared caches, so that communication
is limited to small request messages and
acknowledgments. This communication path
supports a demand-paging approach such as that of
Cox and Ellsworth [1]. When data are needed for a
node in the quadtree, the scene manager allocates
space in the shared cache and sends a message via a
shared memory priority queue to the terrain manager.
Message priorities in this queue are changed
dynamically according to the importance of the
associated request as determined by the terrain
manager. Thus, requests that gradually become less
important sift towards the end of the queue and get
serviced only when no higher priority requests remain
in the queue. This is important, as the paging rate
during short bursts of requests is typically much
lower than the request rate.

This paging model is quite flexible, as priorities can
be assigned or changed quickly, based on a variety of
criteria. These include, for example, giving lower
priority to highest resolution pages when the user is
navigating over the terrain above a certain speed or

giving priority to pages in the center of the view
frustum. The underlying disk management system
has a file structure with files aligned with the
quadnodes in the set of linked quadtrees. Put together,
all this makes the terrain visualization system quite
scalable. Tens to hundreds of gigabytes of data are
available for visualization, either locally or remotely.

Optimizing Paging
We have found that the above page priority

procedure sometimes falls short when handling global
data. Users of such data frequently fly from a global
view where the terrain elevation and imagery data are
at 8 Km resolution to views close to the ground
where the data are at 1 M resolution or higher. This
is a change in page area scales of 8000 x 8000 or
more! If the user flies in too fast, the traversal of
linked quadtrees by the terrain manager falls well
behind the user's navigation. In this case the paging
can stall, taking 20 seconds or more to bring in high
resolution pages. This happens even though the
pages themselves are of modest size (each page is 70-
75 KB), and the time to page in an entire scene is
usually nearly a factor of 10 faster.

We did a detailed investigation and found that this
problem occurred when the queues became so backed
up that pages were being read in after they were
passed in the navigation. Our straightforward
scheduling scheme broke down in this instance. This
was exacerbated by the problem that pages had to be
read in to get important properties information they
contained, such as geospatial bounding boxes and
elevation delta values, that were necessary to
determine if the pages should be culled and at what
resolution they should be displayed [9]. To address
this problem we set up a separate set of indexing trees
that were connected to the properties information but
were lightweight so they could be traversed quickly.
(See Fig. 1). Large segments of the indexing trees
reside in main memory for fast access. We use these
trees and the properties information they contain to
determine when pages should be paged in from disk.
With the flexibility of this scheme we can skip one
or more levels before paging in terrain elevation and
image data. We have instituted a predictive
mechanism based on user navigational speed and
viewing direction to help predict where the terrain
manager should skip. However, the skips cannot
involve too many quadtree levels, because there will
be too few vertices to complete high resolution
triangles (since some vertices come from the skipped
levels). This would cause gapping in the terrain
fabric that could appear and disappear during
navigation. We have determined that the maximum
jump is 5 or 6 levels, and thus impose that constraint
on the terrain manager. The result of these steps is
significant improvement in time-to-display for pages,
as discussed in the next section.

3

Since the scene manager is receiving continuous
updates from the user via the user interface, it can
pass these along to the terrain manager. This allows
the paging process to respond to user intent and
action, as we have seen, and also to make use of user
perception. Our first perceptually-based
implementation is to bring in pages first at the center
of the view frustum, since this is where the user
interest is likely to be. Previously, pages came in
randomly in the viewing area, but with the new
implementation, contiguous pages at the center of
interest come in first. Thus the user need not wait for
the whole scene to page in at high resolution, so this
new paging scheme decreases effective time-to-
display. Results are discussed in the next section.
We have extended this concept to head-tracked
implementations of the terrain visualization system
on the virtual workbench. Here the direction of the
user's head is also taken into account in determining
which pages to display first. It would be
straightforward to extend to eye tracking systems,
providing an even tighter coupling to user actions.

We are considering other couplings between user
actions and perception. For example, when a user is
flying fast and low over terrain, the pages may be
displayed at lower resolution than when she pauses.
We are considering an implementation that constrains
the manager to be at or above a certain level of the
tree, based on user speed and height.

IV. Terrain Visualization Results

We present results for a global terrain database. It
has worldwide terrain at 8 Km, U.S. data at 1 Km,
Georgia at 100 M, and several insets ranging from 10
M to 0.5 M. The total size of the dataset is 1 GB.
The results presented here do not differ significantly
using an appropriately configured system with local
disks and up to ten or more GB of data. If we did not
use paging at all and could insure that data would be
brought in without thrashing, we would have to bring
in a whole new scene whenever the memory limit of
the machine was reached. This time would be of the
order of the start-up time for the visualization system,
about 3-5 minutes on an SGI Infinite Reality. For
high resolution areas, this might occur after the user
navigates only a few tens of miles. From Table 1
below, we see that our initial out-of-core
visualization algorithm cuts this time by a factor of
up to 100. In these timings, the machine used is
either an SGI IR or a dual processor PC running

 Windows NT. The Infinite Reality has 4 R10000
processors, 1 GB of memory, and 9 GB of disk. The
PC has two Pentium Pro 200 processors, 160 MB of
memory, 4 GB of disk, and an Evans & Sutherland
RealImage 3D graphics card. Thus we have tested
machines at widely different levels of performance and
memory capacity.

Our optimized paging, using the indexing quadtree
that permits level skipping with prediction based on
user speed and direction, produces a smoothing of the
time-to-display as one navigates high resolution
terrain, as seen in the rms deviations in Table 1. It
also produces a 3-4 times improvement on the IR in
average time-do-display. The optimized PC timings
for Atlanta are higher than for NTC (National
Training Center) because in the latter case more
elevation nodes are skipped than in the former. Note
that the PC shows 4-7 times improvement over the
non-optimized case, presumably because of less
contention over the data bus when fewer pages are
sent. It also shows a much lower rms deviation for
the same reason.

We also present in Table 1 results for networked
paging on the IR. These are for a remote disk
accessed via a connection that travels over a high
speed link between two ethernets. Thus the data pass
through routers. Even so, the paging is comparable
to local paging, though the fluctuation is larger.
This result indicates that interactive visualization can
be retained even when using networked data.

Figs. 2 and 3 compare the non-optimized and
optimized algorithms, at the same point after the
same navigation process, for high resolution (1 M)
mountain terrain from the NTC. This is at about the
same point in the navigation process for which the
timings were taken in Table 1. In the non-optimized
case the user would have to pause here since the scene
at this distance is too fuzzy to make out details. The
pause might be up to 10 seconds on the IR and much
longer on the PC.

In Figs. 4 and 5 we present views, after the same
navigation process, with and without priority paging
of the view center. The view is for 0.5 M urban
Atlanta data a few hundred meters above the ground.
We see that the view-centered image displays a
coherent picture so that the user can interact and even
continue to navigate. If we define the effective time-
to-display as the time to get such a picture, it takes
about 50% less time compared to non-priority paging
of the whole image. Thus there is an effective
doubling in the rate at which the user can navigate
and interact.

Table 1 Non-optimized With skipping and prediction
To Atlanta (IR, remote) 11.75 ± 2.58 sec 4.25 ± 1.43
To NTC (IR, local) 13.81 ± 0.95 3.36 ± 0.16
To Atlanta (PC, local) 72.12 ± 3.63 17.28 ± 1.19
To NTC (PC, local) 70.35 ± 14.53 10.08 ± 0.51

4

V. Conclusions and Future Work

We have presented results for new out-of-core
visualization techniques applied to very large scale
terrain data. By combining techniques such as
hierarchical data structures, appropriate page sizes, and
demand-paging with visual simulation approaches, we
have come up with improved techniques. These use
prediction based on user actions and perceptually-
based display based on user intent. Our results show
that out-of-core visualization in a visual simulation
framework produces results that permit interactive
visualization and navigation even as datasets exceed
tens of gigabytes. In addition, our approach provides
interactive visualization even for remotely accessed
data. Finally, we find that the methods are especially
effective on systems with lower data I/O rates, such
as PCs.

We believe the general techniques presented here are
more widely applicable. It is already known how
demand-paging and hierarchical structure can be used
for out-of-core visualization of other types of data
[1,2]. The use of a flexible, lightweight hierarchical
framework for quick, prediction-based traversal can
also be of significant help for other data. Further, a
tight coupling of the user interface to the paging
process will permit priority page selection based on
user actions and intent such as described here. In fact,
we are in the process of generalizing our terrain
visualization system to handle large numbers of
moving objects, buildings, and 3D data fields such as
weather. All these data will be paged, and we expect
to use the out-of-core visualization framework
described here.

In addition, we expect to do further work on
perceptually-based paging. This includes loading
lower resolution pages when doing high speed flying
close to the ground. We will also explore extending
our database structure to include page priority
information. With this information we can load
pages based not only on perceptual factors but also on
relative importance. We expect this to be especially
useful for the paging of buildings and moving
objects.

Acknowledgments

This work was performed in part under contract
DAKF11-91-D-004-0034 from the U.S. Army
Research Laboratory. We would like to thank Larry
Tokarcik and his team at the Army Research
Laboratory for supplying databases used in this work.

References

1. M. Cox and D. Ellsworth. Application-
Controlled Demand Paging for Out-of-Core
Visualization. Proceedings, IEEE Visualization
'97, pp. 235-244 (1997).

2. S.K. Ueng, C. Sikorski, and K.L. Ma. Out-of-
Core Streamline Visualization on Large
Unstructured Meshes. Transactions on
Visualization and Computer Graphics 3(4), pp.
370-379 (1997).

3. D. Lane. UFAT: A Particle Tracer for Time-
Dependent Flow Fields. Proceedings, IEEE
Visualization '94, pp. 257-264 (1994).

4. J.S Falby, M.J. Zyda, D.R. Pratt, and R.L.
Mackey. NPSNET: Hierarchical Data Structures
for Real-Time Three-Dimensional Visual
Simulation. Computers & Graphics 17(1), pp.
65-69 (1993).

5. Peter Lindstrom, David Koller, William Ribarsky,
Larry Hodges, and Nick Faust (1997). An
Integrated Global GIS and Visual Simulation
System. Report GIT-GVU-97-07, submitted to
Transactions on Visualization and Computer
Graphics.

6. N.M. Brenner. Fast Fourier Transform of
Externally Stored Data. IEEE TRans Audio and
Electroacoustics 17(2) pp. 128-132 (1969).

7. A. George and H. Rashwan. Auxiliary Storage
Methods for Solving Finite Element Systems.
SIAM J Scientific and Statistical Computing 6(4),
pp. 882-910 (1985).

8. J.W.H. Liu. On the Storage Requirement in the
Out-of-Core Multifrontal Method for Sparse
Factorization. ACM Trans. Math. Software
12(3), pp. 249-264 (1986).

9. Peter Lindstrom, David Koller, William Ribarsky,
Larry Hodges, Nick Faust, and Gregory Turner.
Real-Time, Continuous Level of Detail Rendering
of Height Fields. Report GIT-GVU-96-02,
Computer Graphics (SIGGRAPH 96), pp. 109-
118 (1996).

