Design of Support Systems for Airline Operations

Karen M. Feigh & Amy R. Pritchett Cognitive Engineering Center

AGIFORS Operations Conference May 2006

AO: the Human Factors Perspective

- Complex cognitive task
 - ♦ Many individuals coordinating
 - ♦ Simultaneous regulation of aircraft, cabin crew and flight crew schedules
- Dynamic work environment
 - ♦ Regulation of a dynamic system
 - ♦ Series of actions required to achieve and maintain goal
 - ♦ Interdependence between subsequent decisions
 - ♦ Task parameters are continuously changing
 - ♦ Tasks must be accomplished in real time

Questions in Support System (SS) Design

- Which aspects of human performance should the system aim to support?
- How should work be split between the human and the SS?
- *How should the human and the SS interact?

Answer: Whatever helps the joint human-machine system achieve the best performance in a wide range of operating conditions

Previous Attempts at Support Systems

- Centered and built around:
 - **♦**Optimization routines
 - **♦**Simulation
- Provided a single interface for the operator
- Assigned the operator tasks
 - ♦ Translation & data entry
 - **♦**Monitoring

Observations of Airline Operational Managers

Primary task

*Techniques

- ♦ Cancel/Delay flights or segments
- ♦ Adding additional flights or aircraft
- ♦ Swapping aircraft, pilots, crew

Contextual Inquiry

- ♦ Interviewing technique described by Beyer & Holtzblatt
 - Context, partnership, interpretation, focus
- ♦3 AOM's over 7 months at a major US carrier 20+ hours

Artifact Model: Desktop

Overall Insights

- *AOM's work patterns vary due to context
- *AOMs implement ATC flow control measures at the airline level
- Better SS are needed to improve AOM performance

Wide Variations in Work Patterns?

- Depending on context, work patterns change
 - ♦ Resolution time horizon
 - ♦Information availability and certainty
 - ♦ Number of other concurrent tasks
 - **♦**Importance of problem
 - ♦State of ATC system

Work Pattern 1

- Approaching weather front
- Context
 - ♦ Resolution time horizon > 6 hours
 - ♦ Information availability good, some uncertainty
 - ♦ Potential impact high

Pattern

- ♦AOM coordinates with meteorology & dispatchers to assess situation and formulate multiple solutions
- ♦ AOM consults customer service, pilot and cabin crew reps on the multiple solutions
- ♦AOM continually evaluates solutions as time elapses
- ♦AOM chooses a solution to implement and notifies others

Work Pattern 2

- Unscheduled maintenance
- Context
 - ♦ Resolution time horizon minimal
 - ♦ Information availability poor
- Pattern
 - ♦ AOM alerted to unscheduled maintenance
 - ♦ AOM quickly gathers information on situation
 - ♦AOM formulates solution based primarily on experience (without consultation) and executes plan
 - ♦ AOM will check back later and adjust plan accordingly

Understanding the Work Comes First

- Observations revealed wide variation in work practices
- Multiple behaviors beyond just decision making were observed
 - ♦ Judgment, coordination, communication, information seeking, action execution
- Designing a SS for this type of work
 - ♦ Requires a way to model the variation in work practices

Model of Control as a Framework

- Model of Control is a useful framework to view changes in patterns of activity
- Model of Control
 - **♦**Continuum
 - ♦ With identifiable modes
- Transitions between contextual control modes are an important aspect of the Model of Control
- Model of Control framework suggests that SS could be tailored for specific contextual control modes

Contextual Control Modes

Strategic

Tactical

Opportunistic

Scrambled

Hollnagel 1993

Strategic Control

♦ Global context can be considered

Tactical Control

- ♦ Behavior includes planning
- ♦ Decisions based on a known procedure or rule and may include consideration of future events

Opportunistic Control

- ♦ Next action is chosen from the current context alone
- ♦ Decisions based on salient features of the environment

Scrambled Control

- ♦ The choice of next action is completely unpredictable or random
- ♦ No reflection or cognition, only blind trial-anderror

Designing for Strategic Mode

- Highest level of control
- May be governed by classical decision making
 - ♦ Multiple feasible alternatives can be generated
 - ♦Extensive weighting of decision attributes
 - ♦ Thorough comparison of decision alternatives
- May need SS to facilitate compensatory decision alternative generation and evaluation
- ❖ May need to iterate with the SS repeatedly

Designing for Tactical Mode

- May be governed by procedures
- Solution may fall out of procedure and not be the focus of the work
- May need SS to facilitate following procedures
 - ♦ Pointing out procedure limitations and options
 - ♦ Check decision arrived at by procedure
- Time for iteration with the SS will be limited

Designing for Opportunistic Mode

- Lowest supportable level of control
- Time for problem resolution is limited
- May be governed by judgment & situation assessment
 Difficulties finding and assessing information
- May need SS to
 - ♦ Highlight the most relevant information
 - **♦** Facilitate decision execution

Take-aways

Design for effective interaction

Understand the work

Understand the variation in the work processes and support them

Questions?
Comments?
Suggestions?

