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1.  Executive Summary  

Service robots have the potential to help people in many different tasks and contexts.  

However, determining the aspects of a task a robot should perform is not an exact science.  An 

important question to ask is “what should a robot do, and to what extent.”  Consideration of 

robot autonomy, that is the extent to which it can carry out its own processes and operations 

without external control, is important because while the implementation of a robot may 

supplement a task it may also impose new demands on the user.  Therefore, the way in which a 

human and robot interact varies along a continuum of autonomy, where a robot may vary from 

teleoperated to fully autonomous.   

The purpose of this paper was to examine relevant research in primarily the fields of 

human-automation interaction and human-robot interaction (HRI), and create a framework of 

levels of robot autonomy in HRI.  The field of robotics is a separate but related to automation.  

Throughout this investigation, the two fields were compared and contrasted, demonstrating that 

literature from both fields can certainly inform the other.  In particular, two large literature 

reviews were conducted.   

First, an in-depth multidisciplinary systematic review of the literature investigated how 

autonomy has been conceptualized and categorized in automation, robotics, and HRI.  This 

review revealed many inconsistencies in the way the construct is considered specifically within 

the field of HRI.  However the models and frameworks from the automation literature (i.e., 

models of levels of automation, LOA) can serve as a guide in conceptualizing robot autonomy.   

Next, a review of the human-automation literature and HRI literature yielded a set of 

human-, robot-, interaction-, and task- related variables critical in understanding robot autonomy.   

These variables include acceptance, situation awareness, trust, robot intelligence, reliability, 
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transparency, methods of control and social interaction.  Additionally, task variables were 

identified that influence a robot’s capability of functioning within a complex environment.   

Finally, the knowledge gained from the two large literature reviews was used to develop 

a framework of levels of robot autonomy in HRI.  This framework may be used for several 

functions.  First, the framework provides guidelines for determining and categorizing robot 

autonomy along a 10-point taxonomy.  Second, the framework incorporates the human-, robot-, 

interaction-, and task- related variables identified to be important in HRI along the autonomy 

continuum.  These variables can be used as evaluative criteria to determine if the robot autonomy 

is appropriate for a given task.  The strength of this investigation and proposed framework is the 

emphasis on HRI, specifically on psychological variables and their interaction with autonomy.  

Development of  a psychological framework, as proposed in this paper, not only holds promise 

to conceptualize and better understand the construct of autonomy, but also to account for human 

cognitive and behavioral responses (e.g., situation awareness, workload, acceptance) within the 

context of human-robot interaction. 

As a result of this investigation, research avenues in need of further attention by the HRI 

community were identified.  HRI research is needed to identify appropriate trade-offs in 

allocating tasks to either a human or a robot.  Efforts to research and understand robot autonomy 

will support the development of service robots that can be successfully implemented and support 

effective human-robot interaction. 
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2. Introduction 

 

Autonomy: from Greek autos ("self,") and nomos ("law") 

“I am putting myself to the fullest possible use…” –HAL 9000 (2001: Space Odyssey) 

 

The primary focus of this paper is robot autonomy.  One might ask, why focus on levels 

of autonomy for human robot interaction (HRI)?  Developing fully autonomous robots has been 

a goal of roboticists and other visionaries since the emergence of the field, both in product 

development and science fiction.  However, a focus on robot autonomy has scientific 

importance, beyond the pop culture goal of creating a machine that demonstrates some level of 

artificial free will.   

The definition of autonomy will be thoroughly discussed later; however, it is interesting 

to note that the term autonomy has been used in many definitions of robots and agents (see a 

table of definitions and a word cloud in Appendix A).  Inspection of these definitions 

demonstrates the importance of autonomy from the perspective of language use.  However, 

autonomy is important beyond its inclusion in robot/agent definitions.   

There are several reasons why considering autonomy is important.  First, determining 

appropriate autonomy in a machine (robotic or otherwise) is not an exact science.  An important 

question is not “what can a robot do”, but rather “what should a robot do, and to what extent.”  

Second, robot autonomy influences human robot interaction.  Properly implementing robotics 

has promise of increasing human performance, whereas, inappropriate or unreliable function 

allocation to a machine often results in detrimental consequences in human situation awareness, 

trust, or acceptance.  A scientific base of empirical research can guide designers in identifying 

appropriate trade-offs to determine which functions and tasks to allocate to either a human or a 

robot.  For these reasons, autonomy is a central factor determining the effectiveness of the 
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human-machine system.  Therefore, we propose that to understand robot autonomy is essential 

to understand human-robot interaction.   

A number of Human-Robot Interaction (HRI) frameworks exist, and consider autonomy 

as an influential construct (e.g., Feil-Seifer, Skinner, & Mataric, 2007; Goodrich & Olsen, 2003; 

Goodrich & Schultz, 2007; Huang et al., 2004; Kahn et al., 2007; Murphy & Woods, 2009; 

Thrun, 2004; Yanco & Drury, 2004a).  However, these frameworks primarily discuss autonomy 

at a general level and fail to explore the construct as a central component that influences the very 

nature in which humans will interact with robots.  Although the definition of “framework” 

implies only a loose collection of concept and principles (Salthouse, 1991), there is a need to 

consider autonomy in a more in-depth manner.  To date, the construct of autonomy has not been 

reviewed or investigated in relation to other variables (e.g., trust, workload, reliance) known to 

also play a role in successful interaction between a human and a robot.   

With that said, the field of HRI largely lacks frameworks and conceptual models that 

organize empirical observations to theoretical concepts related to human-robot interaction.  Why 

propose specifically a psychological framework on levels of autonomy for human-robot 

interaction?  Psychology plays a critical role in HRI by focusing on the human-side of the 

interaction.  Development of a psychological framework, as proposed in this paper, not only 

holds promise to conceptualize and better understand the construct of autonomy, but also to 

account for human cognitive and behavioral responses (e.g., situation awareness, workload, 

acceptance) within the context of human-robot interaction.   

2.1.  Scope and Understanding Human-Robot Interaction for the Current Investigation  

The field of HRI is a junction between multiple disciplines, notably psychology, 

computer science, and engineering.  The field of HRI has been described as “dedicated to 
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understanding, designing, and evaluating robotic systems for use by or with humans” (Goodrich 

& Schultz, 2007, p. 204).  Because of the breadth of literature included in HRI, it is important to 

define the scope included in this investigation.   

I will first consider what is meant by the term “robot.”  There is no agreed upon 

definition of robot.  Joseph Engelberger, the father of robotics, once famously remarked “I can’t 

define a robot, but I know one when I see one.”  This well-known quote exemplifies the abstract 

notion of “robot”.  Even though most individuals of the general population have never interacted 

with a robot directly, most people have ideas or definitions of what a robot should be like (Ezer, 

2008).  The term “robot” derives from the Czech word “robota” which translates to forced labor.  

Within the research community, a robot has often been broadly described as a machine that can 

sense, think/plan, and act (e.g., Bekey, 2005).  This definition may be criticized as being too 

broad, as many types of technology could potentially be described as such.  A synthesis of 

varying definitions of the term “robot” (i.e., Bekey, 2005; Murphy, 2000; Russell & Norvig, 

2003; Sheridan, 1992) produces a more complex description: A robot is a physical computational 

agent.  Robots are equipped with sensors for perceiving the environment, and usually contain 

effectors (also called actuators) that manipulate and exert physical forces on the environment.  

Robots can either be stationary (anchored at fixed locations) or mobile. 

For this investigation, a certain type of robot will be of focus: professional and personal 

service robotics.  Service robots can be described as “systems that function as smart, 

programmable tools, that can sense, think, and act to benefit or enable humans or extend/enhance 

human productivity” (Engelhardt & Edwards, 1992, p. 315-316).  More specifically, service 

robots are designed to reside in the home or professional setting to assist people with personal or 

professional goals (Agah, 2001; Thrun, 2004).   
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Although this class of robots is still broad, it was chosen as the focus of this investigation 

for a number of reasons.  First, service robots of varying degrees of autonomy have been applied 

to a wide range of applications, such as domestic or personal assistance, healthcare nursing tasks, 

search and rescue, and education.  Second, due to the range of service applications human-robot 

interaction will often be necessary, and service robots may be expected to interact with humans 

with limited or no formal training (Thrun, 2004).  Feasibly, in the future multiple robots may be 

applied to service domains (e.g., teams of robots, with one human supervisor).  This 

investigation will primarily focus on human-robot interaction between one robot and one human.  

Human-multiagent interaction is a complex, albeit separate, problem space with a focus on team-

related constructs (for review, see Ezer 2007).  Furthermore, the large literature base of human-

automation interaction will be informative in this investigation, and those interactions generally 

involve one human and one automated system. 

A parallel focus on human-automation interaction brings forth the questions how is a 

robot similar/dissimilar to automation and why investigate both robotics and automation?  

Automation is most often defined as a “device or systems that accomplishes (partially or fully) a 

function that was previously, or conceivably could be, carried out (partially or fully) by a human 

operator” (Parasuraman, Sheridan, & Wickens, 2000).  In the Handbook of Automation (Nof, 

2009), a robot is considered a subcategory of automation.  However, we disagree.  Although 

many robots in use have been little more than automated machines (e.g., industrial robots), as 

service robots increase in interactive capabilities a simplistic view of robots would provide little 

value for motivating the advancement of such collaborative agents.  Capabilities such as 

mobility, environmental manipulation, and social interaction separate robots from automation in 

both function and physical form.  Indeed, the definitions of robot and automation may be 
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different, but the lines separating “automation” from “robotic” are also blurred.  The goal here is 

not to redefine robot or automation, rather simply to depict that robots are a technology class of 

their own, separate but related to automation.   

Automation researchers have a long history of studying and understanding human-related 

variables.  Service robots, similar to automation, will be required to interact with humans.  

Therefore, from a psychological perspective, the most important common denominator between 

these two technologies is the “human-machine interaction.”  Unfortunately, research and 

development of automation and robots have, in large part, occurred separately as different fields.  

As we will demonstrate in this current paper, the literature from both fields can certainly inform 

one another. 

2.2.   Goals and Importance of Current Investigation 

 

Autonomy has been defined, measured, and conceptualized in a variety of ways across 

several different disciplines (i.e., HRI, robotics, automation, and psychology).  In the current 

investigation, the overarching goal not only is to parse the literature to better understand what 

autonomy is, but also to critique autonomy from a psychological perspective and identify 

variables that influence – and are influenced by – autonomy.  To meet this overarching goal, the 

current investigation will integrate and synthesize the robotics and HRI literature, in addition to 

the human automation literature, an established literature base in the field of human factors.  

Specifically, the objectives of this paper are to: 

1. refine the definition of autonomy and analyze how the construct has been conceptualized in 

automation, robotics, and HRI; 

2. propose a process of determining level of robot autonomy, that may be used by developers in 

determining the appropriate level of robot autonomy for a given environment/task; 

3. suggest a psychological framework within the context of HRI that identifies potential human, 

robot, and task variables related to autonomy; and 

4. finally, identify areas of HRI that need further research.  
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3. Autonomy as a Construct that Influences Human-“Machine” Interaction 

The first step in this investigation is to consider autonomy as a construct that influences 

human-machine interaction.  Autonomy has been defined, measured, and considered in a variety 

of ways across several different disciplines (i.e., psychology, automation, robotics, and HRI).  In 

this section, the first objective is to review how this term is defined in the current literature, and 

to propose a refined definition of autonomy for this investigation.  The second objective is to 

assess how autonomy has been conceptualized in automation, robotics, and HRI.  This 

assessment will include a review, critique, and synthesis of the models, frameworks, and 

taxonomies related to autonomy for each of the literature bodies.  Such an assessment of 

autonomy is critical in identifying similarities and differences between these fields and to answer 

‘what exactly is autonomy?’ 

3.1.   The Construct of Autonomy: Terminology and Definitions 

To effectively investigate autonomy and its role in HRI, it is critical to understand the 

characteristics that define the term autonomy.  It is also critical to determine whether the term 

autonomy is synonymous across the fields of psychology, automation, and robotics, or if there 

are differing ways in which this term is used.    

3.1.1. What is autonomy?  Autonomy has been a construct of both philosophical and 

psychological interest for over 300 years.  In the 18
th

 century, autonomy was most famously 

considered by philosopher Immanual Kant as a moral action determined by a person’s free will 

(Kant, 1967).  Early psychology behaviorists (e.g., Skinner, 1978) claimed that humans do not 

act out of free will, rather their behavior is in response to stimuli in the environment.  However, 

in psychology, autonomy has been primarily discussed in relation to child development.  In this 

literature, the term autonomy is discussed as a subjective construct involving self-control, 
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governing, and free will.  For instance, Piaget (1932) proposed that autonomy is the ability to 

self govern, and a critical component in a child’s moral development.  Erikson (1997) similarly 

defined autonomy as a child’s development of a sense of self control (e.g., early childhood toilet 

training).  Children who successfully develop autonomy feel secure and confident.  Whereas, 

those children who do not develop autonomy may experience self-doubt and shame.   

Autonomy as a construct representing free will only encompasses one way in which the 

term is used.  The phenomenon of psychological autonomy (and the underlying variables) is 

different than the phenomenon of artificial autonomy that engineers would like to construct in 

machines and technology (Ziemke, 2008).  For instance when the term autonomy is applied to 

technology, particularly automation, it is discussed in terms of autonomous function (e.g., 

performing aspects of a task without human intervention).  Although the specific term 

“autonomy” is not commonly used in the automation literature, some models (Parasuraman, 

Sheridan, & Wickens, 2000; Sheridan & Verplank, 1978) describe higher levels of automation 

possessing “increased autonomy of computer over human action” (Parasuraman, Sheridan, & 

Wickens, 2000, p. 287).  In this sense, autonomy represents trading control of authority between 

the human and automation.  Parasuraman and colleagues provided the example of some types of 

automation exhibiting autonomy over decision making.  That is, in this example the task of 

decision making is allocated to the automated system, giving that system the authority (i.e., 

autonomy) to perform that aspect of the task without human intervention.   

How is autonomy addressed in the field of robotics?  Robot autonomy has been discussed 

in the literature as both as a psychological construct as well as an engineering construct.  In fact, 

the term is used to describe many different aspects of robotics, from the robot’s ability to self-
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govern much like a human, to the level of human intervention.  To help parse the use of this 

term, various definitions of robot autonomy are examined ( 

Table 1).  

Table 1 

Definitions of Autonomy Found in Robotics Literature 

Definitions of Agent and Robot Autonomy  

 

“The robot should be able to carry out its actions and to refine or 

modify the task and its own behavior according to the current goal and 

execution context of its task.” 

 

“Autonomy refers to systems capable of operating in the real-world 

environment without any form of external control for extended periods 

of time.” 

 

“An autonomous agent is a system situated within and a part of an 

environment that sense that environment and acts on it, over time, in 

pursuit of its own agenda and so as to effect what it senses in the future.” 

“Exercises control over its own actions.”  

 

 “An Unmanned System’s own ability of sensing, perceiving, analyzing, 

communicating, planning, decision making, and acting, to achieve goals 

as assigned by its human operator(s) through designed HRI”  

“The condition or quality of being self-governing.”  

 

“ “Function autonomously” indicates that the robot can operate, self-

contained, under all reasonable conditions without requiring recourse 

to a human operator.  Autonomy means that a robot can adapt to change 

in its environment (the lights get turned off) or itself (a part breaks) and 

continue to reach a goal.”  

 

“A rational agent should be autonomous – it should learn what it can to 

compensate for partial or incorrect prior knowledge.”  

 

“Autonomy refers to a robot’s ability to accommodate variations in its 

environment.  Different robots exhibit different degrees of autonomy; the 

degree of autonomy is often measured by relating the degree at which the 

environment can be varied to the mean time between failures, and other 

factors indicative of robot performance.”  

 

“Autonomy: agents operate without the direct intervention of humans 

or others, and have some kind of control over their actions and internal 

states.”  

 

Alami, Chatila, Fleury, 

Ghallab, & Ingrand, 1998, p. 

316 

 

Bekey, 2005, p.1 

 

 

 

Franklin & Graesser, 1997, 

p. 25. 

 

 

 

Huang, 2004, p. 9 

 

 

 

 

Murphy, 2000, p. 4 

 

 

 

 

 

Russell & Norvig, 2003, 

p.37 

 

Thrun, 2004, p.14 

 

 

 

 

 

Wooldridge & Jennings, 

1995, p.116  

Note:  Emphasis (bold) added. 
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The muddled use of this term reflects the multi-disciplinary nature of the field.  Some 

researchers in cognitive science, artificial intelligence, and computer science posited that 

autonomy is a characteristic of modeling a human-like or a socially interactive (Feil-Seifer, 

Skinner, & Mataric, 2007) machine.  As depicted in Table 1, others in engineering and computer 

science defined the term in relation to objective and/or functional characteristics.  There are 

several characteristics covered across the definitions listed above.   

First, an overarching characteristic was that a robot demonstrating autonomy should 

refine or modify its own operations.  Operation, throughout these definitions, referred to actions 

and behaviors (Alami et al., 1998), as well as internal states such as sensing, perceiving, and 

learning (e.g., Huang, 2004; Russell & Norvig, 2003; Wooldridge & Jennings, 1995). 

Second, in many of the definitions, autonomy was described as performing those actions 

within the context of the environment.  The environment poses a large set of unknown or 

unpredictable factors that may influence the robot’s performance.  The robot’s ability to refine 

and modify its actions in response to unpredictable environmental stimuli (e.g., path planning, 

obstacle avoidance), has been suggested as a form of autonomy.  For instance, it has been 

suggested (e.g., Thrun, 2004) that service robots require a high level of autonomy due to the 

unpredictable and changing environment of a home or healthcare setting.   

Third, the concept of goals was included in a number of the definitions in Table 1.  The 

term goal has not generally been used in the automation literature.  However, the concept of 

creating goal maps roughly to the automation literature’s term information analysis 

(Parasuraman, Sheridan, & Wickens, 2000; also referred to as generating; Endsley & Kaber, 

1999).  How and who determines a robot’s goal (the robot or the human) has been inconsistently 

considered in the robotics literature.  For example, the Huang (2004) definition explicitly stated 
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that the human operator determines the goal of the system.  Whereas, Franklin and Graesser 

(1997) explicitly stated that the robot should pursue its own agenda.   

Finally, the concept of control was also a theme, albeit inconsistently used.  For instance, 

a number of the definitions clearly stated that the robot should perform with no human 

intervention or external control (e.g., Bekey, 2005; Murphy, 2000; Wooldridge & Jennings, 

1995).  However if the human sets the robot goal, as suggested by Huang, then some level of 

human involvement must be needed.  It is noted that no single definition of autonomy 

incorporates all of the important characteristics identified above.  Therefore, it is crucial to 

clarify and redefine the term.  Proposing a new definition ensures scientific process by 

highlighting the important characteristics of the term, as well as maintaining an inclusive 

meaning of the construct while assessing it from multiple disciplines. 

3.1.2. Defining autonomy for this paper.  In an attempt to clarify the term autonomy 

we will propose new definitions.  First, a weak, or global, definition of autonomy is proposed as 

the following: the extent to which a system can carry out its own processes and operations 

without external control.  This weak definition of autonomy can be used to denote autonomous 

capabilities of humans, automation, or robotics.   

However, a stronger more specific definition can be given to agents (e.g., robots), based 

upon an attempt to integrate definitions and most prevalent characteristics related to robot 

autonomy provided in Table 1.  Because autonomy will be discussed in this paper within the 

context of robotics as an assistive technology, the proposed definition of autonomy focuses on 

functional characteristics rather than the abstract notion of “free will”.  Autonomy, as related to 

robotic agents, is defined in this paper as: 
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The extent to which a robot can sense the environment, plan based on that 

environment, and act upon that environment, with the intent of reaching some 

goal (either given to or created by the robot) with little or no external control.    

 

Note that both the weak and strong definition begin with the phrase “to the extent to 

which…”  My choice in wording exemplifies that autonomy is not all or nothing.  Autonomy 

exists on a continuum (from no autonomy to full autonomy).  The proposed strong definition of 

autonomy attempts to integrate the current definitions of autonomy, and highlight the prevalent 

characteristics of autonomy (i.e., sense, plan/decide, act, goal, and control).   

Now that a working definition of autonomy has been established, we will next explore 

the construct of autonomy and how it affects human-machine interaction by taking a multi-

disciplinary approach.  A review of how autonomy has been conceptualized within the fields of 

automation, robotics, and HRI will be discussed.   

3.2.   Autonomy and its Relevance to Automation 

In this next section, autonomy is considered within the context of human-automation 

interaction.  In particular, autonomy, as encompassed in levels of automation, is reviewed with 

regard to function allocation between the automated machine and the human.     

3.2.1.  Terminology.  The term autonomy, as used in automation, generally refers to the 

amount of human intervention, the automation’s functionality, as well as function allocation 

(authority) between the human and machine.  Terminology associated with automation autonomy 

is often unique to individual frameworks and taxonomies related to levels of automation.  There 

are several terms commonly used in the literature: 

Degree:  Refers to the extent to which or how much of a task is being performed by the 

automation.  For example, the degree of automation may range from the human performing the 
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task (manual control) to the automation performs the entire task (full automation) and anything 

in between (combination of human and automated control). 

Scale: Describes the stage of processing that system functions automate.  For example, 

according to Parasuraman and colleagues (2000), automation can be applied to four classes of 

functions: information acquisition, information analysis, decision and action selection, and action 

implementation.   

Type:  Generally describes the system as a whole based on its purpose.  For example, 

warning systems are considered a type of automation.  Sometimes, the term type is synonymous 

with the scale or stage of processing (Parasuraman, Sheridan, & Wickens, 2000).  

Levels: Commonly refers to the combination of degree and scale of automation.  The 

individual levels are often used to categorize the assignment of functions to the human or 

automation or a combination of the two.   

3.2.2.  How autonomy has been conceptualized in automation.  Various taxonomies, 

classification systems, and models related to levels of automation (LOA) have been proposed.  

Automation has been defined as full or partial replacement of a function previously carried out 

by a human (Parasuraman, Sheridan, & Wickens, 2000).  This implies that automating tasks is 

not all or nothing.  Rather, automation exists on a continuum, ranging from manual control to 

full automation.  The earliest categorization scheme, which organizes automation along both 

degree and scale, was proposed by Sheridan and Verplank (1978).  This 10-point scale 

categorized higher levels of automation as representing increased autonomy, and lower levels as 

decreased autonomy.  The 10-point scale is listed in Table 2. 

This taxonomy specified what information is communicated to the human (feedback) as 

well as allocation of function split between the human and automation.  However, the scale used 



                                     

 

19 

 

in this early taxonomy was limited.  That is, the taxonomy specified a set of discernible points 

along the continuum of automation applied primarily to the output functions of decision and 

action selection.  It failed to specifically address input functions related to information 

acquisition (i.e., sensing) or the processing of that information (i.e., formulating options or 

strategies). 

Table 2 

Sheridan and Verplank (1978) Levels of Decision Making Automation 

Level of 

Automation 
Allocation of Function 

1 The computer offers no assistance; the human must take all decisions and actions. 

2 The computer offers no assistance; the human must take all decisions and actions. 

3 The computer offers a complete set of decision/action alternatives, or 

4 Narrows the selection down to a few, or 

5 Suggests one alternative 

6 Executes that suggestion if the human operator approves, or 

7 Allows the human a restricted time to veto before automatic execution, or 

8 Executes automatically, then necessarily informs the human, and 

9 Informs the human only if asked, or 

10 Informs the human only if it, the computer, decides to 

 

Endsley and Kaber (1999) later proposed a revised taxonomy.  This taxonomy built on 

the work of Sheridan and Verplank, but with greater specificity on input functions such as how 

the automation acquires information and formulates options. 

The strength of the Ensley and Kaber model is the detail used to describe each of the 

automation levels.  The taxonomy is organized according to four generic functions which 

include: (1) monitoring – scanning displays; (2) generating – formulating options or strategies to 

meet goals; (3) selecting – deciding upon an option or strategy; and (4) implementing – acting 

out chosen option.  The taxonomy specifying 10 levels of automation and each levels description 

is shown in Table 3. 
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Table 3 

Endsley and Kaber (1999) Levels of Automation 

Level of Automation Description 

1. Manual Control: the human monitors, generates options, selects options (makes decisions) and 

physically carries out options. 

2. Action Support: the automation assists human with execution of selected action.  The human 

does perform some control actions. 

3. Batch Processing: the human generates and selects options then they are turned over to 

automation to be carried out (e.g., cruise control in automobiles). 

4. Shared Control: both the human and the automation generate possible decision options.  The 

human has control of selecting which options to implement; however, carrying 

out the options is a shared task. 

5. Decision Support: the automation generates decision options that the human can select.  Once an 

option is selected the automation implements it. 

6. Blended Decision 

Making: 

the automation generates an option, selects it and executes it if they human 

consents.  The human may approve of the option selected by the automation, 

select another or generate another option. 

7. Rigid System: the automation provides a set of options and the human has to select one of 

them.  Once selected the automation carries out the function. 

8. Automated 

Decision Making: 

the automation selects and carries out an option.  The human can have input in 

the alternatives generated by the automation. 

9. Supervisory 

Control: 

the automation generates options, selects and carries out a desired option.  The 

human monitors the system and intervenes if needed (in which case the level of 

automation becomes Decision Support).  

10. Full Automation: the system carries out all actions.    

 

 Parasuraman, Sheridan, and Wickens (2000) proposed the most recent model for types 

and levels of automation (Figure 1).  Similar to previous taxonomies, the authors stated that 

functions can be automated to differing degrees along a continuum of low to high (i.e., fully 

manual to fully automated).  However, they argued that the previous taxonomies focused on 

output (e.g., decision and action), rather than input (e.g., sensing, gathering information).  

Therefore, this model proposed classes of functions, referred to as stages or types of automation, 
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which cover both input and output functions.  These types included: (1) information acquisition; 

(2) information analysis; (3) decision and action selection; and (4) action implementation.   

 

 
Figure 1.   Flow chart showing application of the model of types and levels of automation 

(Parasurman, Sheridan, & Wickens, 2000). 

 

 Automation categorized under the information acquisition stage support processes related 

to sensing and registering input data.  This stage of automation supports human sensory and 

perceptual processes, such as assisting humans with monitoring environmental factors.  

Automation in this stage may include systems that scan and observe the environment (e.g., 

radars, infrared goggles).  At higher levels of information acquisition automation may organize 
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sensory information (e.g., in air traffic control an automated system which prioritizes aircraft for 

handling).  The information analysis stage refers to automation that performs tasks similar to 

human cognitive function, such as working memory.  Automation in this stage may provide 

predictions, integration of multiple input values, or summarization of data to the user.  

Automation in the information analysis stage is different from automation in the information 

acquisition phase, in that the information is manipulated and assessed in some way.   

Automation included in the decision selection stage selects from decision alternatives.  

For example, automation in this stage may provide navigational routes for aircraft to avoid 

inclement weather, or recommend diagnoses for medical doctors.  Finally, action implementation 

automation refers to automation that actually executes the chosen action.  In this stage, 

automation may complete all, or subparts, of a task.  For example, action automation may 

include the automatic stapler in a photocopy machine, or autopilot in an aircraft.   

 The bottom of the flow chart (Figure 1) depicts primary and secondary evaluative criteria.  

These evaluative criteria were meant to provide a guide for determining a system’s level of 

automation.  In other words, the purpose of the Parasuraman and colleagues’ model was to 

provide an objective basis for making the choice on to what extent a task should be automated.  

To do this, the authors proposed that an evaluation of the consequences of both the human 

operator and the automation.  Therefore, first primary evaluative criteria are to be evaluated (e.g., 

workload, situation awareness), and then the level of automation is adjusted.  Next the secondary 

criteria are evaluated (e.g., automation reliability, cost of action outcomes), and again the level of 

automation is adjusted.  The authors proposed that this iterative process may be a starting point 

for determining the appropriate types of levels of automation should be implemented in a 

particular system.   
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3.2.3. Critique of autonomy and automation.  Inspection of the various models and 

taxonomies for levels of automation reveal number of insights can be made.  First, comparing 

and contrasting Sheridan and Verplank’s (1978) and Endsley and Kaber’s (1999) 10 levels of 

autonomy, the taxonomies seem to emphasize different stages and aspects of automation.  As 

pointed out by other reviews (Durso et al., 2011), the Sheridan and Verplank taxonomy primarily 

makes distinctions on the higher levels of automation and focus on details related to output 

functions and stages (i.e., decision selection).  Endsley and Kaber, however, make fine grained 

distinctions on the input functions with details on the human or automation generating of options 

and strategies.   

Comparisons between the Endsley and Kaber (1999) model and the Parasuraman, 

Sheridan, and Wickens (2000) model suggests that the types/stages of automation roughly 

correspond, with information acquisition similar to monitoring; information analysis similar to 

generating; decision and action selection similar to selecting; and finally action implementation 

similar to implementing (Figure 2).  Yet, the equivalence between these stages and the functions 

each comprise is not one to one.  For example, Endsley and Kaber described monitoring as 

“scanning system displays to perceive system status” (p. 464).  It was not explicitly stated how 

the information provided on those displays is actually acquired.  Whereas, Parasuraman more 

clearly described their information acquisition stage as using sensors to collect and register input 

data.  Furthermore, in Endsley and Kaber’s taxonomy, monitoring is not explicitly stated in most 

of the level descriptions, creating further ambiguity as to how the stage is implemented. 
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Figure 2.  Comparison of Parasuraman, Sheridan, and Wickens (2000) and Endsley and Kaber 

(1999) four stage models. 

 

Additionally, Endsley and Kabers’ generation stage appears to comprise a mix of 

Parasurman, Sheridan, and Wickens’ information analysis and decision selection stages.  For 

example, both generating and information analysis involve algorithms applied to incoming data 

to predict and integrate input variables to augment human cognitive functions.  However, 

Endlsey and Kaber stated that generation also involves generating possible actions, which more 

closely resembles Parasurman and colleagues’ decision and action selection (also see Durso et 

al., 2011 for discussion).   

 Finally, in my critique the most recent model, Parasurman, Sheridan, and Wickens 

(2000), a number of strengths and weaknesses are evident.  The model (Figure 1) highlights 

primary and secondary criterion for assessing the consequences of applying any given level of 

automation.  The primary criterion in particular, looks at human-related variables affected by the 

automation.  This is critical, because the model takes a human-automation interaction approach, 

an approach not nearly as explicitly highlighted in the previous models.  On the other hand, the 

model can be criticized for its lack of specificity for intermediate levels of automation.  What 

constitutes a medium level of automation?  That is, the authors note that automation may fall on 

a range from low to high (i.e., fully manual to fully automated) with little detail as to what lays in 

between for each of the four stages.  The model, while useful, is relatively open, making it 

difficult to make distinctions between detailed system characteristics along this continuum. 
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Whatever the similarities or differences, these models are useful.  Each provides an 

organizational framework in which to categorize not only the purpose or function of the 

automation (e.g., stages), but also considers automation along a continuum of autonomy.  These 

models are important to consider within the context of both robotics and HRI, because they can 

serve as a springboard for development of similar taxonomies and models specific to robot 

autonomy.  In fact, these models, in particular the Sheridan and Verplank’s taxonomy, have been 

suggested as appropriate to describe how autonomous a robot is (Goodrich & Schultz, 2007).  

However, it is important to consider the differences between automation and robotics, as 

previously outlined in this paper.  Robots may serve different functions as automation; for 

example, some robots may play a social role; social ability is not a construct considered in the 

LOA models and taxonomies.  From a human robot interaction emphasis, a complimentary way 

to think about how these taxonomies could relate to HRI is to consider the degree to which the 

human and robot interact, and to what extent each can act autonomously.  The next sections 

address how autonomy has been applied to robotics, and how autonomy’s conceptualization in 

robotics is similar or different from automation.   

3.3.  Autonomy and its Relevance to Robotics (Engineering / Computer Science) 

In this next section, a literature review was conducted assessing how autonomy has been 

applied to robotics, and how autonomy’s conceptualization in robotics is similar or different 

from automation.   

3.3.1. Terminology.  Similar to automation, autonomy and levels of robot autonomous 

capability is a widely considered construct.  Autonomy, in the robotics literature, is also depicted 

as a continuum.  The continuum is most often described as ranging from teleoperated to 

autonomous robots.  However the terminology used within the robotics field differs from 
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automation, and specific terminology relates to the paradigms and architectures which 

characterize an approach to programming autonomy into a robot.  There are several common 

terms found in the literature: 

Paradigm:  Refers to a philosophy or set of assumptions that describe an approach to 

solve a class of problems.  There may be a number of paradigms suited for solving a problem, 

and no one paradigm may be consider right.  This can be thought of as analogous to solving for 

the roots of a quadratic function; one could solve the problem geometrically by graphing the 

function, or algebraically by factoring the function.  Therefore, if the goal is to develop robot 

intelligence, programming autonomy would be one potential paradigm for reaching that goal. 

Software architecture:  Sometimes simply referred to as ‘architecture’ or ‘robot 

architecture’ describes the building blocks for programming a robot.  Software architectures 

usually include the tools and languages for writing programs, and provide a principled way of 

organizing components of a system.  Consider the following example: when designing a house, 

most houses share the same architectural components (e.g., bedrooms, bathrooms, kitchen, 

general living space).  These components can be organized in different ways (i.e., architecture), 

even though all the designs follow the same ‘designing a house’ paradigm (Murphy, 2000).   

SENSE:  Describes a set or type of robot function that relates to taking in information 

from the environment (e.g., from sensors). 

PLAN: Describes a set or type of robot function that relates to use sensory information 

obtained from the sense function and developing one or more tasks or goals for the robot to 

perform.  Plan often is referenced in relation to programming robot behavior algorithms, and 

may be considered as a subset of the overall robot’s artificial intelligence.  Sometimes, plan is 

referred to as think.   
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ACT:  Refers to output motor actuator commands.  In other words, act specifies motor 

behavior performed by the robot. 

3.3.2. How autonomy has been conceptualized in robotics.  Autonomy has been 

conceptualized in robotics with a variety of approaches housed in domains such as artificial 

intelligence (also referred to as AI robotics), control theory, and cognitive science.  One common 

way in which robot autonomy has been approached is through the application of SENSE, PLAN, 

ACT primitives.  The sense-plan-act model of decision making (Murphy, 2000), follows a 

sequential set of processes.  First the robot uses sensors to collect data of its environment.  Next, 

the robot uses that data to plan the directives needed to reach some goal.  Finally, the robot acts 

to carry out a directive.  After this sequence is complete, the robot repeats the process: SENSE 

 PLAN  ACT.    

The sense-plan-act model may be criticized as a gross simplification of the processes 

required for a robot to perform at any level of autonomy.  Similarly, Parasuraman and colleagues 

(2000) simplify of the components human information processing as applied to automation 

stages.  However, the goal is not to mimic the complex theoretical structure of the human 

cognitive system.  Rather, both approaches (i.e., automation stages and the SENSE, PLAN, ACT 

primitives) propose an autonomy structure that is useful in practice.   

In fact, the stages of automation and the sense-plan-act model can be compared.  As 

shown in Figure 3, my comparison depicts how the sense, plan, and act primitives map onto the 

Parasuraman and colleagues (2000) stages of automation.  That is, the sense primitive 

corresponds to the information acquisition stage, with both terms relating to the sensing and 

registering of sensory data.  The plan primitive corresponds with both the information analysis 

and decision and action selection stages.  In this primitive, the sensory information collected in 
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the sense phase, is used to develop directives/goals/decisions for the robot to carry out.  Finally, 

the act primitive maps onto the action implementation phase of automation, with both terms 

referring to the actual execution of the action choice. 

 
Figure 3.  Comparison of SENSE, PLAN, ACT robot primitives and Parasuraman, Sheridan, and 

Wickens (2000) stages of automation. 

The sense-plan-act model was popular in the 1960s, 1970s, and 1980s.  However, in the 

late 1980’s another approach to robot autonomy was introduced (Murphy, 2000). This approach, 

sometimes called behavior-based robotics (Arkin, 1998), is characterized by low level sensor-

action loop.  That is, the plan primitive is completely discarded.  This approach reflects the 

behaviorist approach (e.g., Skinner, 1978) where sensory input directly results in behavioral 

output.  This decision cycle occurs in the order of milliseconds (Russell & Norvig, 2003), and a 

robot could run multiple instances of SENSE-ACT couplings.  Behavior-based robotics, while it 

revolutionized the field of robotics, was limited in programming robots to process information in 

a similar manner as human cognition.   

Today, the most recent robot architectures use reactive techniques at low levels of robot 

functioning (SENSEACT) with deliberate techniques (PLAN) at the higher levels.  

Architectures that combine these techniques are usually called hybrid architectures (Russell & 

Norvig, 2003).  Hybrid architectures, claimed to be a major breakthrough in robot autonomy 

(Goodrich & Schultz, 2007), simultaneously allow for a robot to perform reactive behaviors 

along with high-level cognitive reasoning about goals and plans. Under this architecture, a 

mixture of the sense-plan-act model and behavior-based robotics is applied, with PLAN being 
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implemented at one step, while simultaneously SENSEACT is done at another.  The three 

approaches to robot autonomy, and their relative sequencing of SENSE, PLAN, and ACT 

primitives is depicted in Figure 4. 

 
Figure 4.  The three approaches to robot autonomy a.) sense-plan-act model; b.) behavior-based 

robotics; c.) hybrid architecture.  (Figure adopted from Murphy, 2000).   

 

3.3.3. Critique of autonomy and robotics.   The primitives SENSE, PLAN, and ACT 

have been used in software architectures as a way to implement autonomy in robotics.  These 

primitives map onto automation’s four stage models.  For example, comparing these primitives 

to the Parasuraman, Sheridan, and Wicken’s (2000) levels of automation model, sense = 

information acquisition, plan = information analysis and decision selection, act = action 

implementation (a similar comparison can be made with Endsley & Kaber, 1999 terminology).  

Although this mapping is not one to one (e.g., plan encompasses two automation stages), it is 

useful to observe this relationship.  The way in which autonomy is conceptualized for robots and 

automation can be considered as relatively equivalent. 

However, unlike the automation models, the human’s role is not considered in each of 

these robot software architectures.  The software architecture models focus on programming 

robot autonomy.  That is, this section provides a high level description of the ‘behind the scenes’ 

processes required for a robot to perform autonomously.  These architectures are not meant to be 

models that specify how the robot’s autonomous behavior will affect the world it interacts with 

(which may include humans).  To further investigate the relationship between robot autonomy 

Sense Act

b.) c.)

Sense Act
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a.)

Sense Plan Act
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(as implemented by software architectures) and the humans a robot may interact with, the next 

section will investigate autonomy and its relevance to human-robot interaction. 

3.4.  Autonomy and its Relevance to Human-Robot Interaction 

In this next section, autonomy is considered within the context of human-robot 

interaction.  In particular, HRI was reviewed with emphasis on frameworks and models 

describing the role between the human and robot, and how autonomy influences that interaction.   

3.4.1. Terminology.  Autonomy, within the context of human robot interaction, is 

discussed with a large variety of terminology.  Because of the multi-disciplinary nature of the 

field, some language is similar to the automation and robotics fields, and other language is 

unique to HRI alone.  Two terms unique to HRI are intervention and interaction.  The 

differences between these two terms are blurred, but a description of how they are generally used 

is described below.   Note that these terms, in relation to autonomy, are often synonymous. 

Intervention:  sometimes refers to the amount of time the human is controlling the robot 

(e.g., Yanco & Drury, 2004a).  This term sometimes also refers to the frequency of unplanned 

action or input by the human to help the robot complete task (e.g., Huang, Messina, Wade, 

English, Novak, & Albus, 2004). 

Interaction:  this term, specifically related to autonomy, has sometimes been used to 

describe general engagement between the human and robot.  Another use of this term is a switch 

in human attention from a secondary task to the robot (usually to intervene in robot’s 

performance in some way; e.g., Goodrich & Olsen, 2003).  The difference between interaction 

and intervention is not always made clear, and the terms are sometimes used interchangeably. 

The continuum of autonomy is often discussed as “levels” of autonomy, opposed to the 

automation literature, which often deconstructs the levels into degree and type.  Some HRI 
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researchers discuss this continuum with similar terms as automation (e.g., manual 

control/teleoperation to full autonomy; Anderson, 1996; Yanco & Drury, 2004a).  Conversely, 

other HRI researchers describe the autonomy continuum from the perspective of the interaction 

between the human and robot (e.g., Goodrich & Schultz, 2007; Milgram, Rastogi, & Grodski, 

1995).  For example, higher autonomy levels sometimes referred to the robot as “teammate” or 

“peer,” illustrating the role of the robot in relation to the human rather than its autonomous 

capability.  Intermediate levels of robot autonomy are referenced as interaction strategies 

between the robot and human (e.g., “supervisory control” or “collaborative control” or “peer to 

peer collaboration”; Figure 5). 

 
Figure 5.  Continuum of levels of robot autonomy with an emphasis on human interaction 

(Goodrich & Schultz, 2007) 

 

3.4.2. How autonomy has been conceptualized in human-robot interaction.  As this 

section will review, autonomy has been included in a number of frameworks and HRI reviews.  

Interestingly, autonomy within an HRI context is a widely considered construct; however, the 

ideas surrounding how autonomy influences human-robot interaction are varied.  Through 

analysis of the literature, it becomes clear that there are two schools of thought regarding how 

autonomy relates to human-robot interaction.  The dichotomous viewpoints are: (1) higher robot 

autonomy involves lower levels or less frequent HRI; and (2) higher robot autonomy requires 

higher levels or more sophisticated forms of HRI.   

The first viewpoint, that higher autonomy requires less HRI, has namely been proposed 

by Huang and colleagues (Huang, Messina, Wade, English, Novak, & Albus, 2004; Huang, 
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Pavek, Albus, & Messina, 2005; Huang, Pavek, Novak, Albus & Messina, 2005; Huang, Pavek, 

Ragon, Jones, Messina, & Albus, 2007).  The ongoing goal of this research group is to develop a 

framework for autonomy, and metrics used to measure robot autonomy.  Although this 

framework is used primarily for robots used in military applications, the general framework has 

been cited as a basis for HRI autonomy classes (Yanco & Drury, 2004a).  In this framework, 

metrics for autonomy are based on (1) task/mission complexity; (2) environmental difficulty; (3) 

human interaction/interface.  The robot’s autonomy is determined along certain levels along the 

three axes depicted in Figure 6.  This conceptual model depicts the multi-dimensional nature of 

autonomy, but the authors have yet to determine exactly how to compute the overall autonomy 

level (i.e., average of scores along three axis).   

 
Figure 6.  Autonomy Levels For Unmanned Systems (ALFUS) model of autonomy.  The three 

axes represent three metrics for autonomy (Huang, Pavek, Albus, & Messina, 2005). 

 

In relation to HRI, the Huang framework states that the relationship between the level of 

human robot interaction and the autonomy level of the robot “…is fairly linear for simple 

systems” (Huang et al., 2004, p. 5).  The authors proposed a negative linear correlation between 

autonomy and HRI so that as the level of robot autonomy increases the HRI decreases.  

Interestingly, although this model states that HRI decreases with increased robot autonomy, the 

relationship between the human and robot approaches a team setting.  HRI, according to this 

model, includes constructs such as human intervention (number of unplanned interactions), 
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operators workload (as measured by NASA TLX), operator skill level, and the operator-robot 

ratio.  This proposed linear relationship can be seen in Figure 7. 

 
Figure 7.  Autonomy Levels For Unmanned Systems (ALFUS) model of autonomy, depicting 

level of HRI along autonomy continuum (Huang, Pavek, Albus, & Messina, 2005). 

 

Similar to Huang and colleagues’ model, other researchers have proposed that higher 

robot autonomy requires less interaction or intervention (see quote below, Yanco & Drury, 

2004a).  Inversely, autonomy has been described as the amount that a person can neglect the 

robot.  Neglect time (Goodrich & Olsen, 2003) refers to the measure of how the robot’s task 

effectiveness (performance) declines over time when the robot is neglected by the user.  Robots 

with higher autonomy can be neglected for a longer time period.   

“There is a continuum of robot control ranging from teleoperation to full 

autonomy: the level of human-robot interaction measured by the amount of 

intervention required varies along this continuum.  Constant interaction is 

required at the teleoperation level, where a person is remotely controlling the 
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robot.  Less interaction is required as the robot has greater autonomy” 

[emphasis added] (Yanco & Drury, 2004a, p. 2845). 

 

The idea that higher autonomy reduces the frequency of human-robot interaction (e.g., 

Goodrich & Olsen, 2003; Huang et al., 2004; Yanco & Drury, 2004a) is a stark contrast to the 

way in which some other HRI researchers consider autonomy.  A number of HRI frameworks 

and reviews propose that more robot autonomy requires more human-robot interaction (e.g., 

Feil-Seifer, Skinner, & Mataric, 2007; Goodrich & Schultz, 2007; Murphy & Woods, 2009; 

Thrun, 2004).  The first of these reviews considers autonomy and HRI within the context of the 

science fiction guidelines for robotic behavior, Asimov’s three laws of robotics.  The three laws 

are (1) robot must not harm human; (2) robot must obey orders, except if conflicts with first law; 

(3) robot protects its own existence, as long as that does not conflict with law 1 or 2.  Murphy 

and Woods revised and proposed an alternative set of laws based on what humans and robots can 

realistically accomplish in near future of HRI.  Autonomy was a construct considered in two of 

the three laws. 

The second law, “robot must obey orders”, Murphy and Woods (2009) revised as “a 

robot must respond to humans as appropriate for their roles.”  Notice the word respond.  The 

authors note that the notion of responsiveness (i.e., the capability to respond appropriately), may 

be considered different from the way in which autonomy is currently addressed in the literature.  

For a robot to be responsive, it may require a form of autonomy for engaging appropriately with 

others, where it will need to perceive and identify "different members, roles, and cues of a social 

environment".  According to the authors, autonomy in the context of HRI requires the robot to 

perceive its social environment, and interact (respond) to that environment appropriately. 
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Additionally, Asimov’s third law, “robot protects its own existence” was revised as “a 

robot must be endowed with sufficient situated autonomy to protect its own existence as long as 

such protection provides smooth transfer of control to other agents consistent with the first and 

second laws.”   Here, the authors discussed the importance of transfer of control between the 

robot and other agents, such as a human.  Importantly, the revised third law suggested that a 

robot will need situated intelligence, and that more autonomy requires more sophisticated forms 

of coordinated activity between the human and robot.  Coordination suggests the need for the 

human and robot to work together effectively.   

The HRI perspective on the relationship between autonomy and human-robot coordinated 

activity is evident in other HRI frameworks.  Thrun’s (2004) framework of HRI defines three 

categories of robots, and each category requires a different level of autonomy as dictated by the 

environment the robot operates in.  Industrial robots (e.g., manufacturing robots that assemble 

cars) have low autonomy because environment in which they operate is highly structured.  

Professional service robots (e.g., museum tour guides, search and rescue robots) and personal 

service robots (e.g., robotic walkers) mandate higher degrees of autonomy because they operate 

in a variable environment and interact in close proximity to people.  For example, a personal 

service robot nursebot (http://www.cs.cmu.edu/~nursebot/) may require higher levels of 

autonomy to coordinate its behavior with patients and healthcare professionals.  Thrun declares 

that autonomy is important in HRI, stating "human-robot interaction cannot be studied without 

consideration of a robot's degree of autonomy, because it is a determining factors with regards to 

the tasks a robot can perform, and the level at which the interaction takes place" (2004, p. 14). 

Furthermore, autonomy has been proposed as a benchmark for developing social 

interaction in socially assistive robotics (Feil-Seifer, Skinner, & Mataric, 2007).  The authors 
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propose that autonomy serves two functions: to perform well in a desired task, and to be 

proactively social.  However, the authors warn that the robot’s autonomy should allow for social 

interaction only when appropriate (i.e., only when social interaction enhances performance).  

However, developing autonomous robots that engage in peer-to-peer collaboration with humans 

may be harder to achieve, than full autonomy with no social interaction (e.g., iRobot Roomba) 

(Goodrich & Schultz, 2007). 

3.4.3. Critique of autonomy and human robot interaction.  The frameworks and 

reviews outlined in this paper (Feil-Seifer, Skinner, & Mataric, 2007; Goodrich & Olsen, 2003; 

Goodrich & Schultz, 2007; Huang et al., 2004; Kahn et al., 2007; Murphy & Woods, 2009; 

Thrun, 2004; Yanco & Drury, 2004a) all mention autonomy as an important construct to 

consider within the context of HRI.  These frameworks are useful in that they provide an 

overview of factors thought to be important in HRI.  With consideration of these frameworks as 

a whole, there are a number of points to highlight. 

First, a major problem with definitions exists.  Although autonomy was a recognized HRI 

construct, the term lacks an explicit definition in some of these frameworks (Feil-Seifer, Skinner, 

& Mataric, 2007; Kahn et al., 2007; Murphy & Woods, 2009).   Additionally, authors have been 

ambiguous concerning the precise meaning of the “I” in HRI.  It seems intervention and 

interaction have been used synonymously, and the ambiguous use of these terms makes it 

unclear as to how autonomy should be measured.  Conceivably interaction could be interpreted 

as a specific type of interaction (as suggested in Huang et al., 2004, but not clearly defined in the 

rest of Huang and colleagues’ publications).  However, do all forms of intervention/interaction 

constitute a reduction in robot autonomy?  We do not think so.  For example, a human may 

socially interact with a robot autonomously delivering refreshments at a social event.  In this 
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example, the robot may demonstrate high levels of autonomy, despite the human’s interaction.  

The goal of some researchers (Goodrich & Olsen, 2003; Huang et al., 2004; Yanco & Drury, 

2004a) for a robot to act autonomously with no HRI mirrors the human out of the loop 

phenomenon in the automation literature, which is known to cause performance problems 

(Endsley, 2006; Endsley & Kiris, 1995). 

Second, Thrun (2004) clearly states that autonomy determines factors with regard to the 

tasks the robot can perform.  This statement may be a bit misleading.  We propose that autonomy 

can be thought of as influencing the way a task is carried out, not whether or not the task can be 

completed at all.  For instance, a robot designed to mop floors could do so with no autonomy 

(i.e., teleoperated by a human), intermediate autonomy (i.e., the human and robot share aspects 

of the task), or fully autonomous (i.e., completes the mopping task by itself).  Either way, the 

task is performed.  However, the way the task is performed and the level to which the robot 

might interact with a human would be drastically different in these two examples.  In fact, in 

these examples human interaction is present along the continuum of robot autonomy; however, 

the nature (not presence) of the interaction may change as a function of robot autonomy level. 

Third, some of the frameworks made mention to the importance of the human and robot 

switching roles (Feil-Seifer, Skinner, & Mataric, 2007; Murphy & Woods, 2009; Thrun, 2004).  

Recall that in HRI, the autonomy continuum is often discussed in terms of “roles” that the human 

and robot fulfill (i.e., teleoperated to peer).  However, intermediate levels of autonomy and 

subsequent roles that humans and robots then subsume are ill-defined.  Furthermore, within the 

context of HRI, if a robot is expected to collaborate in a human-robot team, determining clear-

cut allocation of functions may be particularly difficult.  Teamwork is dynamic and complicated, 

and there are many factors that influence human-machine teams (Ezer, 2007). 
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3.5.   Summary: Synthesis of Literatures and Critique of Autonomy as a Construct 

Autonomy has been defined, measured, and considered in a variety of ways across 

several different disciplines: automation, robotics, and HRI.  In an attempt to integrate the 

common characteristics included in the current definitions of autonomy found in the literature, 

the following strong definition has been proposed:  The extent to which a robot can sense the 

environment, plan based on that environment, and act upon that environment, with the intent of 

reaching some goal (either given to or created by the robot) with little or no external control.    

In addition to better understanding how autonomy is defined, the conceptualization of 

autonomy within the fields of automation, robotics and HRI has been investigated.  This review 

yielded a number of overall insights.  The fields of automation, robotics, and HRI considered 

autonomy as existing along a continuum.  Although the terminology along this continuum varied 

slightly, the general principle was clear that autonomy may range from no autonomy (manual 

control) to a fully autonomous system.  The implementation of autonomy within the fields of 

automation and robotics was somewhat consistent.  Again, the terminology differed (see Figure 

3), but both fields recognized that a system may exhibit autonomous capability in sensing (i.e., 

information acquisition), planning (i.e., information analysis and decision action selection) and 

behavior (i.e., action implementation).   

Inconsistency in the conceptualization of autonomy was found in the HRI literature.  

Specifically, the notion surrounding how autonomy might affect the way in which a human and 

robot interact was varied, with some researchers believing higher levels of autonomy may reduce 

HRI, while others claiming that it will increase HRI.  The empirical research surrounding HRI 

and autonomy (discussed in the next section) shed some light onto these dichotomous 

viewpoints.  In short, the amount and nature of the human-robot intervention/interaction depends 
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on the task at hand.  Consider the following.  Some HRI researchers have proposed that neglect 

time or the amount of human intervention determines autonomy level.  However, this measure 

does not apply to all types of robots.  What about a robot designed to be socially interactive and 

provide entertainment?  Or a robot designed to generate speech and be conversational?  There 

are many different types of robots that might require different measures and conceptualizations 

of autonomy.  Autonomy, in relation to HRI, is useful only if it can support beneficial or 

successful interaction between the human and the robot.   

Most importantly, the frameworks and reviews did not specify exactly how the 

interaction will change as a robot’s autonomy may change.  These are frameworks, not models, 

so the relationship between autonomy and other important constructs in HRI (e.g., safety, 

interfacing, teamwork, trust) is unclear.  For instance, Feil-Seifer and colleagues (2007) relate 

autonomy to trust and allocation of functions.  These are separate, albeit important, constructs 

that may interact with autonomy and influence HRI.   

A model of autonomy and HRI is needed.  As this section revealed, autonomy is an 

important construct related to HRI, and a multi-disciplinary approach to developing such a model 

is essential.  Now that a definition of autonomy has been established, and inconsistencies in the 

literature identified, the rest of the current investigation will develop a framework based on 

human-, robot-, interaction-, and task-related variables related to autonomy, and finally the 

building blocks for a framework of autonomy and HRI will be proposed.   

4. A Review of Variables Associated with Autonomy and HRI 

Before developing a framework of autonomy in HRI, it is crucial to understand variables 

that influence – and are influenced by – robot autonomy.  The human-, robot-, social interaction-, 

and task-related variables reviewed in this section will provide a foundation for a new framework 
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to be introduced in Section 5.  Finally, many of the variables included in this section have been 

researched with automated and robotics systems with fixed autonomy levels.  For inclusiveness, 

a brief discussion of adjustable autonomy is included at the end of this section to highlight the 

idea of variable shifts in autonomy levels, and how that may impact HRI. 

4.1. The Role of Human-Related Variables and Autonomy  

In this section human-related variables of acceptance, situation awareness, trust, and 

mental workload are reviewed.  These variables certainly influence one another (e.g., the 

relationship between workload and situational awareness; Tsang & Vidulich, 2006).  Although 

some of these inter-variable relationships are discussed, the primary focus of this section is to 

consider each variable in relation to the continuum of autonomy levels.   

Acceptance, situation awareness, trust, and mental workload are reviewed for a number 

of reasons.  First, the four variables all have a strong basis in literature, with empirical research 

that deepens our scientific understanding of human performance; second, these variables have 

been investigated in HRI and have been established as important variables to consider when 

designing service robots; and third, these variables (in particular, situation awareness, trust, and 

workload) have been shown to be relevant to determine function allocation between humans and 

automation.   

4.1.1. Acceptance.  Given that the use of service robots may be expected to become a 

part of people’s everyday lives, a critical issue that emerges is robot acceptance.  Generally, 

acceptance has been described as a combination of attitudinal (i.e., users’ positive evaluation or 

beliefs about the technology), intentional (i.e., users’ plan to act a certain way with the 

technology), and behavioral (i.e., users’ actions in using the product or technology) acceptance 

(Davis, 1989).   
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The widely recognized Technology Acceptance Model (TAM; Davis, 1989) proposed 

two main variables that affect acceptance: perceived usefulness and perceived ease of use.  There 

is strong empirical support for TAM (Venkatesh & Davis, 2000; Venkatesh, Morris, Davis, & 

Davis, 2003), in part due to its ease of application to a variety of domains.  The model’s 

simplicity has evoked some criticism (Bagozzi, Davis, & Warshaw, 1992), and as a result more 

complex models have been developed (e.g., TPC, Goodhue & Thompson, 1995; UTAUT, 

Venkatesh, Morris, Davis & Davis, 2003).  Various acceptance models differ in complexity and 

content; however, their overarching goal is to understand, explain, and model predictive 

variables that contribute to user acceptance.  Technology acceptance models may provide 

general guidance for understanding acceptance, therefore there is a need to understand how and 

if these models will map onto robotics (see Ezer, Fisk, & Rogers, 2009).   

Research investigating robot acceptance has focused in large part on user attitudes toward 

robots.  Two widely recognized robot attitude scales, the Negative Attitude Towards Robots 

Scale (NARS; Nomura, Kanda, Suzuki, & Kato, 2004; Nomura, Suzuki, Kanda, & Kato, 2006a) 

and the Robot Anxiety Scale (RAS; Nomura, Suzuki, Kanda, & Kato, 2006b) have been used to 

gauge psychological reactions evoked in humans by robots.  Use of these scales may delineate to 

what extent people feel unwilling to interact with a robot due to arousal of negative emotions or 

anxiety.  The use of these scales have suggested that gender (Nomura, Kanda, & Suzuki, 2006), 

culture (Bartneck, Nomura, Kanda, Suzuki, & Kato, 2005; Bartneck, Suzuki, Kanda, & Nomura, 

2007) and robot experience (Bartneck, Suzuki, Kanda, & Nomura, 2007) influence attitudes 

toward robots.  However, anxiety and negative attitudes, as measured in NARS and RAS, may 

only capture a portion of influential factors on robot acceptance.   
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With regard to service robots, a number of reviews have been conducted with the goal of 

developing a comprehensive categorization of factors that influence user acceptance of service 

robots.  Broadbent and colleagues (2009) conducted a review of factors found to influence 

human responses to healthcare robots. They categorized those factors into two categories: robot 

factors and person factors. Robot factors include the robot’s appearance; humanness; facial 

dimensions and expressions; size; gender; personality; and ability to adapt to users’ preferences 

and needs. Person factors include the user’s age; needs; gender; technology/robot experience; 

cognitive ability; education; culture; role within society (e.g., job); and finally anxiety and 

attitudes towards robots.  

In another recent literature review, Young and colleagues (2009) posited design 

guidelines for the development of home-based robots. In contrast to the aforementioned review, 

Young and colleagues used a social psychology approach to focus on robot acceptance within the 

context of socialization between home-based robots and humans. With basis in the social 

psychology literature, seven factors were identified as influential in people’s acceptance of home 

robots: safety; accessibility and usability; practical benefits; fun; social pressures; status gains; 

and social intelligence. The authors also noted users’ previous experiences and perceptions of 

media, personal social network, and robot design also critical. 

To date, an empirical investigation of user acceptance as a function of the level of robot 

autonomy has not been conducted.  Based on a review of technology acceptance models as well 

as the robot acceptance scales and reviews, we suggest that the key factors that influence and 

predict acceptance may vary along the autonomy continuum.  For example, let us consider the 

variables perceived ease of use (Davis, 1989) and usability (Young et al., 2009).  The nature of 

ease of use and usability in robots with low autonomy (e.g., teleoperation) may be dependent on 
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the usability of input devices such as a joystick or remote to command a robot.  Whereas, ease of 

use or usability for semi-autonomous robots may be dependent on more sophisticated control 

methods, such as physical manipulation.  The use of control methods along the autonomy 

continuum will be discussed further in Section 4.2.4.    

Appearance may be another factor that varies along the autonomy continuum (Broadbent 

et al., 2009; see also Section 4.3).  For instance, users have expressed a preference for home-

based mobile teleoperated robots to appear “soft” with “rounded edges” to match home decor 

(Beer & Takayama, 2011).  Robots designed to perform jobs requiring social interaction (social 

intelligence also considered an acceptance factor; Young et al., 2009) such as semi-autonomous 

robotic museum tour guides (e.g., Faber et al., 2009), were preferred to have human-like 

appearances (Goetz, Kiesler, & Powers, 2003).  Currently, it is unknown whether users will 

place equal/less/more consideration on the social intelligence of the robot compared to its robot 

capability/function.  Most technology acceptance models do not include a social variable or 

construct (e.g., Davis, 1989; Goodhue & Thompson, 1995), with the exception of the UTAUT 

model (Venkatesh, Morris, Davis, & Davis, 2003) which only considers social norms focused on 

person-person social interaction, not person-technology social interaction.   

In conclusion, acceptance is an important variable to consider with regard to predicting 

technology use (Davis, 1989), as well as HRI (Broadbent, Stafford, & MacDonald, 2009; Young, 

Hawkins, Sharlin, & Igarashi, 2009).  Furthermore, designers should be mindful of users’ 

acceptance, because radical technologies, such as personal robots, are not as readily accepted as 

incremental innovations (Dewar & Dutton, 1996; Green, Gavin, & Aiman-Smith, 1995).  Despite 

the research community’s acknowledgement that acceptance is an important construct to 

consider, further research is needed to understand and model the key variables that influence 
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robot acceptance, how such variables interact, and finally how those variables related to 

acceptance may vary in predictive value over the autonomy continuum. 

4.1.2.  Situation Awareness and Mental Workload.  Situation awareness and mental 

workload are two concepts that are intricately intertwined (see, Tsang & Vidulich, 2006).  

Additionally, much empirical evidence suggests that both constructs influence human 

performance changes as a function of LOA.  The purpose of this section is to review the 

interactions between the variables situation awareness and mental workload, their relation to 

autonomy, and finally their potential role in HRI.  

Situation awareness (SA) is a construct with a substantial body of research pointing to its 

utility and efficacy (for reviews, see Durso & Gronlund, 1999; Durso & Sethumadhavan, 2008; 

Endsley, 2006; Parasuraman, Sheridan, & Wickens, 2008).  Situation awareness (SA) is defined 

as “the perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning, and the projection of their status in the near future” (Endsley, 

1995, p. 36).  SA can be categorized into three levels (Endsley, 2006): level 1 relates to 

perceiving the status, attributes, and dynamics of relevant elements in the environment (e.g., a 

pilot perceives the terrain, system status, warning lights); level 2 is described as the 

comprehension and understanding of the significance of those elements perceived in level 1 (e.g., 

a pilot determines the meaning of a warning light and whether or not to abort); and finally level 3 

SA is the operator’s ability to project the future actions of the elements in the environment (e.g., 

a pilot perceives another aircraft and must determine whether the aircraft will violate safe 

separation in the near future). 

As described by the three SA levels, SA is the diagnosis of the state of a dynamic world 

(Durso & Sethumadhavan, 2008).  It is important to note that SA is a psychological construct, 



                                     

 

45 

 

separate from human performance and behavior.  That is, SA is not the decision of what 

action/behavior to take as a consequence of the diagnosis.  Rather, SA moderates the accuracy of 

that choice.  In other words, an individual could demonstrate low levels of SA, but still maintain 

high performance as long as the automation is working properly. 

Therefore, in tasks where SA is critical, it can be maintained by teaching operators where 

and how to seek information, integrate that information, and predict its implications 

(Parasuraman, Sheridan, & Wickens, 2008).  However, when automation is introduced, a balance 

between the automated assistance and the operators’ task involvement needs to be met to 

promote optimal performance.  Research suggests that the level of automation is more indicative 

of SA quality than subjecting operators to periods of passive manual control (as in empirical 

manipulations of adaptive automation, Kaber & Endsley, 2004).  

The introduction of automation has the risk of lowering SA by putting operators out of 

the loop.  Issues related to out of the loop performance and maintaining SA are especially 

prominent during automation failures.   Poor SA and the operator being out of the loop may not 

be a problem when the automation is performing well.  However, in the case of a failure or a 

situation the automation is not equipped to handle, the out of the loop operator may be unable to 

diagnose the problem and intervene in a timely manner (Endsley, 2006).  In particular, poor SA 

during a failure in high LOA can be detrimental to performance (Endsley & Kaber, 1999; 

Endsley & Kiris, 1995). 

Performance in using automated systems, particularly when recovering from system 

failure, has been shown to also rely on mental workload.  Mental workload has been defined as 

“the relation between the function relating the mental resources demanded by a task and those 

resources available to be supplied by the human operator” (Parasuraman, Sheridan, & Wickens, 



                                     

 

46 

 

2008, pp. 145-146).  One of the fundamental benefits of introducing automation to complex 

systems is to lessen the chance of human error by reducing operator mental workload.  However, 

the relationship between workload and operator performance is complex.  If automation is poorly 

designed, and engagement of the automation actually increases “cognitive overhead” (i.e., 

compared to completing the task manually), then automation may actually increase workload 

(Parasuraman & Riley, 1997).  Kaber and Riley (1999) studied the effects of dual tasks while 

using automation.  Their results suggested that when the operator was performing in a dual task 

(i.e., a dynamic control task with automation, and a monitoring task), a decrease in performance 

was found as workload increases.   

The dependency of SA quality on level of automation is related, in part, to workload.  

There is much empirical support suggesting the criticality of balancing SA and workload, and an 

imbalance can lead to detrimental performance errors.  In general, if the automation is designed 

properly, as LOA increases workload decreases.  Conversely, as LOA decreases workload 

increases.  However, low workload during high LOA has the potential to lead to boredom 

(Endsley & Kiris, 1995), particularly in monitoring tasks (e.g., air traffic control).  On the other 

end of the spectrum, high workload during low LOA generally leads to low operator SA and 

decreased performance (Endsley & Kaber, 1999; Endsley & Kiris, 1995).  Generally, it has been 

suggested that intermediate levels of automation may mitigate these problems.  In fact, in some 

studies if the system operates with intermediate levels of automation, SA has been shown to 

increase in comparison to full automation (Endsley & Kaber, 1999; Kaber & Endsley, 2004; 

Kaber, Perry, Segall, McClernon, & Prinzel, 2006).   

The rich empirical background of situation awareness in the automation literature can be 

informative to robotics.  Although the automated systems discussed above have been primarily 
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studied in the context of air traffic control and aviation, similar human-machine interactions may 

be expected in HRI.  In fact, much of the work involving SA and robotics has been conducted in 

similarly dynamic service environments and tasks, such as search and rescue (e.g., Riley & 

Endsley, 2004), military operations (e.g., Kaber, Wright, & Sheik-Nainar, 2006), teleoperation of 

uninhabited vehicles (Scholtz, Antonishek, & Young, 2004), materials handling (e.g., Kaber, 

Onal, & Endsley, 2000), or assembly (e.g., Sellner, Heger, Hiatt, Simmons, & Singh, 2006).   

The primary focus of most HRI research that investigated operator SA has been 

conducted with robots of low level autonomy, specifically teleoperation.  For instance, Riley and 

Endsley (2004) investigated the use of a teleoperated robot in search and rescue training 

exercise.  The case study demonstrated the difficulty in teleoperation in complex environments.  

In particular, operator SA was difficult to maintain, with limitations in the amount of information 

provided on a display, uncertainty about environmental obstacles perceived by robot camera, and 

issues with robot control.  Similarly, Yanco and Drury (2004b) tested teleoperation of a robot for 

search and rescue, using four expert first responders as operators.  They identified problems in 

maintaining SA related to a lack of feedback regarding camera angle (i.e., camera was often left 

off-center).  The authors recommended feedback regarding the direction of the camera, 

availability of maps or GPS for identification of robot location, and the option for the robot to 

autonomously drive to reduce operator workload (similar findings found in Scholtz, Young, 

Drury, & Yanco, 2004).   

 In a study investigating multiple autonomy levels of a simulated robot teleoperation task, 

participants were instructed to use a simulated robot arm to handle and store containment vessels 

(Kaber, Onal, & Endsley, 2000).  The simulation included five autonomy levels (mapping onto 

Endsley & Kaber, 1999 LOAs: action support, batch processing, decision support, and 
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supervisory control, full automation).  Mirroring findings in the automation literature, operator 

SA was lower for higher autonomy levels, compared to manual operation (action support).  

Additionally, higher autonomy levels yielded lower operator workload.  Finally, during 

simulated robot failure the operator was forced to manually control the robot.  Participants 

recovered from robot failure better when the system was functioning at lower or intermediate 

levels of autonomy compared to full autonomy.  These findings are in line with other work 

suggesting that the robot operator needs time and proper feedback to regain SA when the robot 

interrupts the participants to “ask for help” (Sellner et al., 2006). 

Although the HRI literature on SA is limited to the aforementioned operations, they 

highlight the importance of maintaining SA in a dynamic environment.  Many other service 

applications (e.g., home and healthcare settings) are also dynamic, and challenges in maintaining 

the human’s SA, using controls and displays, and responding to unpredictable variables (e.g., 

people, animals, other moving obstacles) should be expected to be present.  However, more 

research is needed to investigate SA in home and healthcare settings.  Furthermore, many of the 

studies discussed in this section tested applications with trained users, such as experts in search 

and rescue (Riley & Endsley, 2004; Yanco & Drury, 2004b) or involving participants with some 

experience with robots (Scholtz, Antonishek, & Young, 2004; Sellner, Heger, Hiatt, Simmons, & 

Singh, 2006).  Future research investigating SA in home, office, or possibly healthcare settings 

will need to consider interaction involving uses with little to no formal training. 

 Most of the studies conducted to date involve a fixed robot autonomy level; if the 

autonomy level did change, the autonomy was only turned on or turned off (e.g., to simulate 

robot failures, Kaber, Onal, & Endsley, 2000; Kaber, Wright, & Sheik-Nainar, 2006).  There are 
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gaps in our understanding on how SA may be supported with adjustable autonomy involving 

fluctuation between autonomy levels along the entire autonomy continuum. 

 In large part, the HRI literature lacks studies investigating workload as either an 

independent or dependent variable.  It may be speculated that the intrinsic relationship between 

workload and SA is likely to exist along the robot autonomy continuum.  That is, high workload 

would likely decrease the human’s SA about the state of the robot and its operational 

environment.  Additionally, robot failures at high autonomy levels would likely negatively 

impact task performance.  However, these relationships between workload, SA, and HRI need 

further empirical research. 

Finally, we would like to suggest that the nature of the human’s SA may change as a 

function of robot autonomy.    Therefore, situation awareness at low levels of autonomy may 

primarily focus on where the robot is located, what obstacles lay ahead, or deciphering the sensor 

data the robot produces.  As a robot approaches higher autonomy levels it may be perceived as a 

teammate or peer (Goodrich & Schultz, 2007; Milgram, Rastogi, & Grodski, 1995).  SA 

associated with a robot peer may more closely resemble that of shared SA, where the human 

must know the robot’s status and likewise the robot must know the human’s status to the degree 

that they impact their own tasks and goals.  Design principles for supporting SA in team 

operations (Endsley, Bolte, & Jones, 2003; Gorman, Cook, & Winner, 2006) may be applied to 

human-robot teams, and need to be empirically tested. 

4.1.3. Trust.  Trust in HRI can be informed by trust in automation (Hancock, Billings, 

Schaefer, Chen, Visser, & Parasuraman, 2011), which has been studied extensively (for reviews, 

Lee & Moray, 1992, 1994; Lee & See, 2004; Parasuraman, Sheridan, & Wickens, 2008).  

However, studies that directly investigate the effect of LOA on trust have not been conducted.  
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Rather, the studies included in the following review of the literature have exclusively focused on 

supervisory control and decision support automation.  Nonetheless, a number of models and 

theories related to trust in automation (Cohen, Parasuraman, & Freeman, 1998; Dzindolet et al., 

2003; Lee & See, 2004; Madhavan & Wiegmann, 2007), and preliminary models of trust in HRI 

have been proposed (Desai, Stubbs, Steinfeld, & Yanco, 2009; Hancock, Billings, & Schaefer, 

2011).  These models suggest that trust, in conjunction with many other factors, can predict 

automation/robot use.   

Similar to situation awareness and mental workload, it is important to stress that trust is a 

psychological construct.  In particular, trust has been described as a cognitive state or attitude, 

based on factors such as predictability or operator expectations, that usually influences behavior 

dependence on the automated system (Lee & See, 2004; Parasuraman & Riley, 1997; 

Parasuraman & Wickens, 2008). Trust is not a performance measure; it is measured subjectively.   

In contrast, a behavioral outcome variable of trust is dependence.  Dependence can be 

categorized as either reliance or compliance with an automated machine.  Reliance occurs when 

the automated system does not require human action, and the human therefore does not intervene 

with the automated system; whereas compliance occurs when the automated machine requests 

human action, and the human therefore takes that action (Dixon & Wickens, 2006).  

Although trust influences operator’s reliant and compliant use of the system, these factors 

are not the same.  Automation may not always be used in the way a designer intended if the 

operator inappropriately trusts the system.  Specifically, inappropriate amounts of trust can lead 

to misuse of the system (in cases of high levels of trust and the operator over relies on the 

automation) or disuse of the system (in cases of very low levels of trust, and the operator rejects 

the automation’s capabilities; Lee & See, 2004; Parasuraman & Riley, 1997).  
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A similar classification of errors can be applied to HRI.  For example, although trust was 

not directly measured, researchers observed potential disuse and misuse during a Robot Rescue 

Competition (Scholtz, Young, Drury, & Yanco, 2004).  Disuse may have occurred when a robot 

failed to autonomously navigate through an opening, suggesting an obstacle was in the way.  The 

operator switched the autonomy mode to manual control and forcibly drove the robot through the 

opening, when in fact unbeknownst to the operator the opening was covered in Plexiglas (the 

environment was damaged and the Plexiglas broken).  In the same competition, misuse may have 

occurred when an operator allowed a robot to autonomously navigate with the assumption that 

the robot’s sensors would detect obstacles.  In fact, unknown to the user, the robot collided with 

a number of obstacles, potentially damaging the robot and environment. 

In the misuse example above, the robot demonstrated low levels of reliability (see Section 

4.2.2 for review of reliability and autonomy).  Both robots and automation are bound to make 

mistakes, particularly if performing in unknown, unstructured, and dynamic environments (see 

task/environment, Section 4.4).  The automation literature largely supports that the reliability of a 

system is a predictor of human trust (e.g., Lee & See, 2004; Parasuraman & Riley, 1997; 

Parasuraman, Sheridan, & Wickens, 2008; Sanchez, 2006).  In a multi-task simulation of an 

automated agricultural vehicle (Sanchez, 2006), the recency of errors was negatively related to 

both perceived reliability of and trust in the system.  Similarly, participants’ trust of a robot has 

been shown to be negatively impacted after initially experiencing low robot reliability (de Visser, 

Parasuraman, Freedy, Freedy, & Weltman, 2006).  Other factors shown to influence trust in 

automation included the user’s prior knowledge and understanding of system capabilities, the 

user’s age, as well as the user’s expectations of system performance (Sanchez, 2006).   
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Regarding trust in HRI, in a meta-analysis of factors affecting trust in robots 69 

correlational and 47 experimental effect sizes were evaluated (Hancock, Billings, Schaefer, 

Chen, Visser, & Parasuraman, 2011).  Their findings suggested that trust in robots was 

influenced by human-related variables (e.g., expertise, situation awareness, prior experiences), 

robot-related variables (e.g., reliability, adaptability, proximity, personality) and environmental 

variables (e.g., team collaboration, task characteristics).  In particular, robot characteristics, 

particularly robot performance-based factors, were the largest current influence on perceived 

trust in HRI.  Although this study is critical step toward identifying quantitative estimates of 

factors influencing trust in HRI, a caveat to consider is the substantially fewer empirical studies 

of trust in HRI compared to trust in automation.  Additionally, the authors’ definition of a robot 

was broad; some of the studies included in the meta-analysis appear to investigate automation 

rather than robots.  More research, particularly investigating the influence of human- and 

environment- related factors on HRI trust, is needed (Hancock et al., 2011).   

Although trust in automation may inform trust in robots, there are some important 

differences to consider.  First, automation generally lacks physical embodiment (i.e., many 

automated systems are primarily software based).  Many robots are physically mobile, look or 

behave like humans or animals, and physically interact with the world.  Physical robot 

characteristics (e.g., size, weight, speed of motion) and their effects on trust need to be 

empirically evaluated.   

Second, unlike most automated systems, some service robots are designed to be 

perceived as teammates or peers with social capabilities, rather than tools (e.g., Breazeal, 2005; 

Groom & Nass, 2007).  Understanding how to develop trust in robots is an avenue of research 

critical for designing robots meant to be perceived as social partners.   
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 In conclusion, there is a lack of empirical research investigating the relationship between 

level of autonomy and trust (Desai, Stubbs, Steinfeld, & Yanco, 2009).  Furthermore, it is 

anticipated that as robots become increasingly advanced and perform complex tasks, the robot’s 

autonomy will be required to adjust or adapt between levels (see “adjustable autonomy”; Section 

4.5).  In general, robotic and automated systems that operate under changing levels of autonomy 

(e.g., switching between intermediate levels) are not addressed in the trust literature.  Many 

avenues of research need to be pursued to better understand the role of trust in HRI, how trust in 

robots is developed, and how misuse and disuse of robots can be mitigated. 

4.2.   The Role of Robot-Related Variables and Autonomy 

In this section, robot-related variables associated with autonomy were reviewed and 

discussed within the context of automation and HRI.  The variables of interest were 

intelligence/learning, reliability, and transparency/feedback.  Similar to the sections above, the 

primary focus of reviewing robot-related variables was to consider each variable in relation to 

the continuum of autonomy levels.  Intelligence/learning, reliability, and transparency/feedback 

were chosen due to each variable’s relation to autonomy and large literature base in robotics and 

automation.  

4.2.1. Intelligence and Learning.  What is an intelligent robot?  This may seem like a 

silly question.  Aren’t all robots intelligent?  In short, the answer is ‘no’.  Aren’t all autonomous 

robots intelligent?  In short, the answer is ‘to some degree’.  There is no standard definition of 

human intelligence.  Likewise, there is no standard definition of artificial intelligence.  

Historically, artificial intelligence has been researched and thought about in four different 

categories: reasoning, behavior, modeling humans, or rationality (Russell & Norvig, 2003).  



                                     

 

54 

 

However, in addition to these categories, learning is also considered a major component of 

intelligence (Bekey, 2005; Murphy, 2000; Russell & Norvig, 2003).   

Robot learning is not synonymous with machine learning.  Machine learning takes place 

in a computer.  Whereas, ‘robot learning’ requires the computer to interact with the environment 

(Bekey, 2005).  That is, the robot must use sensor data of the world around it and apply learning 

algorithms to that data.  Not all robots have learning algorithms, but some common forms of 

learning include reinforcement learning, neural network learning, social learning, imitation, 

among many other methods. 

Not all robots are intelligent, but robots that demonstrate higher levels of autonomy may 

be required to be more intelligent.  According to Bekey (2005), robot intelligence may manifest 

as sensor processing (e.g., vision, hearing), reflex behavior (rapid SENSE-ACT primitive 

couplings), special purpose programs (e.g., navigation, localization), or cognitive functions 

(reasoning, learning, planning).  Generally speaking, the more autonomous a robot is, the more 

sophisticated these components may be.  

In the future, it is expected that most autonomous robots will be equipped with some 

ability to learn.  This will be especially true as robots are moved from the laboratory to an 

operational environment, where the robot will have to react and adjust to unpredictable and 

dynamic environmental factors (Bekey, 2005; Russel & Norvig, 2003; Thrun, 2003).   

4.2.2. Reliability.  The effect of system reliability has a strong empirical basis in the 

automation literature, and those findings may provide insight into the relevance of robot 

reliability in HRI.  Reliability refers to how well the system performs (note: reliability is 

different from reliance which is a human-related behavioral variable associated with trust, 

Section 4.1.3; it is also different from capability which is defined as the extent the task 
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operations can be controlled by automation).  No automated system or robot will be completely 

reliable.  Reliability of automation and robots is generally expected to be less than perfect 

because of constraints in designing algorithms to account for every possible scenario found in the 

operational environment (Parasuraman & Riley, 1997).  This would be true especially for service 

robots that operate in unpredictable and complex environments such as the home, hospital 

settings, or workplaces.  Therefore, it is important to consider the consequences on human 

behavior when the system commits failures. 

A number of automation studies indicate that higher LOA (e.g., action implementation) is 

beneficial in an automated task in comparison to lower LOAs, but only if reliability is 100% 

(Horrey & Wickens, 2001; Moray Inagaki, & Itoh, 2000; Rovira, Zinni, & Parasuraman, 2002).  

Degraded reliability (i.e., failures) at high LOA can be detrimental, where performance measures 

plummet after failure and the operator’s “time to recovery” extend (Endsley & Kiris, 1995; 

Endsley & Kaber, 1999).  The first failure an automated system commits is of particular 

importance, having the largest negative impact on trust and continued automation use (Lee & 

Moray, 1992).  

How may reliability be measured, for both automation and robotics?  Reliability should 

be measured against a standard, which is referred to as task criterion.  For example, if a robot’s 

task is to fetch items from the floor, the task criterion should be fetching items.  The task 

criterion can be set to any degree of specificity, referred to as the threshold (e.g., fetching items 

of a pre-specified size range).  The task criterion and associated threshold provide a standard for 

which reliability can be assessed.   

The task criterion and threshold may differ along the autonomy continuum.  For example, 

let us consider the four stages of automation: stage 1 information acquisition; stage 2 information 
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analysis; stage 3 decision and action selection; and stage 4 action implementation (Parasuraman, 

Sheridan, & Wikens, 2000).  At early stages of automation, diagnostic automation stages 1 and 2, 

reliability can be modeled by signal detection theory, where the automation threshold 

corresponds to signal detection theory response bias (β).  Consider a stage 2 automated system, a 

warning alert system, the only errors the system could make is either a miss (alert is silent when 

it should not be) or a false alarm (alert goes off when it should not) (Parasuraman & Wickens, 

2008).  Determining the threshold in later stage automation (i.e., decision making or action 

implementation automation), and anticipating the various types of errors the automated system 

may commit, is far more complex.   

Given that every system, automation and robotics, will make errors, a logical question to 

ask is how do you determine the appropriate threshold?  Addressing this question proves to be a 

balancing act between designing with the assumption the machine will sometimes fail and 

consideration for automation errors on human performance.  For early stage automation, 

oftentimes designers often set the threshold low, assuming that a miss is generally more costly 

than a false alarm (this is often the case in high fidelity simulations and in real systems; 

Parasuraman & Wickens, 2008).  However if the false alarm rate is high, this can lead to a “cry-

wolf” effect, and may lead to the human ignoring the alarm (i.e., lack of compliance).  This is not 

to say that robots or automated systems should not perform in risky tasks, rather if a system is to 

assist in a critical task, the “burden of proof should be on the designer” to ensure that their design 

will not hinder the human’s performance (Parasuraman, Sheridan, & Wickens, 2000, p. 292).  

 In summary, reliability is a variable to consider when determining the appropriate level 

of robot autonomy for a task.  If the automated system or robot is unreliable, then it is 
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recommended that the level of autonomy is reassessed and adjusted to support optimal 

performance (Parasuraman, Sheridan, & Wickens, 2000). 

4.2.3. Transparency and Feedback.  Developers should design the robot in a way that 

allows the user to observe the system and understand what the system is doing.  Automated tasks 

where an operator can form a mental model, is often referred to as being transparent; whereas, a 

task where the operator lacks information about the automated reasoning or logic would be 

opaque or unpredictable.  Unpredictability may increase with higher levels of autonomy as a 

result of the human not being in control directly and immediately (Miller & Parasuraman, 2007).   

In the automation literature, transparency has been suggested to be of particular 

importance in two ways: first, transparency is critical in user recovery from automation failure, 

and second, transparency has been suggested to contribute to user recognition of the automation 

LOA mode (e.g., recognizing whether a plane is in autopilot or manual control).  If proper 

feedback during failure is not provided in any LOA then performance can be negatively affected.  

For instance, Lorenz and colleagues (2001) demonstrated that failure intermediate levels of 

automation resulted in the worse performance.  This was attributed to the fact that important 

diagnostic information that was available in low LOA and high LOA was not available in the 

intermediate level.   

Using feedback to promote transparency is important even when the automation is 

functioning properly, particularly to depict the LOA and aspects of the task that are automated.  

In fact, in an observational and interview study, a major problem in using automated healthcare 

devices was the participants’ failure to demonstrate an understanding of what aspects of the task 

were manual, and what aspects of the task were automated (Dinka, Nyce, & Timpka, 2006).  

Interfaces should be designed to support the human’s understanding of the automation’s 
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capabilities and limitations during manual performance, automated performance, and importantly 

during the transition between these states (Kaber, Riley, Tan, & Endsley, 2001).  Information 

which promotes transparency should ideally be available before the transition in LOA occurs.     

Transparency research in the HRI literature has demonstrated the complexity of 

designing for appropriate feedback.  For example, in a study using a simulated robot in a mine-

disposal task, changes in robot autonomy (e.g., from semi-autonomous to manual control) were 

communicated to the human via visual and auditory cueing, such as icons or tones (Kaber, 

Wright, & Sheik-Nainar, 2005).  In terms of transparency, the cuing feedback improved 

performance but it did not eliminate all SA problems.   

 In a case study  with a remote robot collecting data for signs of life in a desert, the robot 

autonomy level was experimentally manipulated, and its effects of operator common ground 

(i.e., communication between science team), and mental model quality was qualitatively assessed 

(Stubbs, Wettergreen, & Hinds, 2007).  The robot’s autonomy levels were: low (record data, 

detect some failure conditions, and detect obstacles); medium (sense nearby obstacles, develop 

basic navigation plans, and act on plans with minimal human intervention); high (sense, plan, 

and deploy instruments with little to no human intervention).  The results suggested that poor 

mental model development for all three autonomy levels could be attributed to different 

transparency problems.  In the low autonomy condition, the operators did not understand the 

robot’s perceptive capabilities, and feedback about errors or instrument failures from robot was 

missing. In the medium autonomy condition, major issues involved inadequate feedback from 

the robot, where operators had difficulty in understanding what the robot was doing.  In the high 

autonomy condition, the operators’ confusions was not based on what the robot was doing, rather 

there was a lack of feedback related to why the robot made particular decisions.  Therefore for all 
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levels of autonomy, poor transparency as a result of inadequate feedback was primary constraint.  

Higher autonomy did not lead to error-free interaction, and the authors suggest that a shared 

mental model is more complex for interaction with systems of increasing autonomy. 

Designing feedback displays to support the relationship between transparency and mental 

models has been proposed as a major design component of HRI (Goodrich & Olsen, 2003).  

However, the relationship between transparency and mental models has not been thoroughly 

evaluated and is inconsistently considered.  For instance, Goodrich and Olsen stated, “Interacting 

with the world requires a mental model, and interacting with the robot requires a separate mental 

model. If the robot is transparent to the user, then only one mental model is required” (p. 3946).  

The exact meaning of this phrase is unclear.  Are the authors proposing that transparency entails 

a lesser need for the operator to develop a mental model of the robot?  Whatever the authors’ 

message, we stress that a mental model of the robot’s capabilities and limitations is always 

important, and transparency increase the accuracy of humans’ mental model of the robot.   

Goodrich and Olsen advise that to promote transparency, information supporting the 

humans’ understanding of both the robot and the environment in which the robot operates should 

be presented in a display.  Additionally, Goodrich and Olsen’s simplistic recommendation of 

presenting the operator with information about the robot and environment should be taken with 

some caution.  Indeed, appropriate display design will help users understand the systems’ 

functional capabilities and limitations (for reviews, Bennett, Nagy, & Flach, 2006; Lee, 2006).  

However, much consideration is needed in determining how much, when, and what type of 

feedback is most beneficial for any given task and any given robot autonomy level.  

An additional consideration is the medium in which a robot could present feedback to a 

human.  Traditionally for many automated systems, transparency is achieved by using visual 
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feedback (i.e., on a graphical interface) or auditory feedback (i.e., warning alarms).  However, 

we would like to highlight that robots can be transparent in many modalities.  For instance, 

feedback concerning the function and autonomy level of the robot could be communicated using 

verbal feedback, emotive/social feedback, or clarity/ intent of robot movement and gestures (e.g., 

Bruce, Nourbakhsh, & Simmons, 2002; see also Section 4.3 for the role of social interaction in 

autonomy).  At this time, it is unclear what form or method of feedback promotes optimal 

human-robot interaction as a function of robot autonomy.   

4.2.4. Interfacing / Methods of Control.  Given the review and conceptualization of 

autonomy thus far, there may seem to be a contradiction between autonomy, the extent to which 

a robot can carry out its own processes, and control, which implies some method of human 

intervention.  Certainly, the nature of control and autonomy are interlinked.   

Coinciding with levels of robot autonomy, levels of control can also be considered 

(Bekey, 2005).  On the robot side of the interaction, control is often discussed in terms of control 

architectures.  An example of “low level” control would be algorithms that ensure the robot 

motors are working properly, its legs are moving in a stable manner, or the motors controlling 

the robot’s wheels do not begin to oscillate (Bekey, 2005).  Low level control processes that 

function in parallel are known as behavior-based control architectures, discussed in Section 3.3.2 

as SENSE-ACT primitive couplings (Arkin, 1998).   The next “level” up may include 

capabilities such as obstacle avoidance during navigation, or following (i.e., a form robot 

navigation where the robot follows a moving target, such as a human).   “High level” control 

may include functions related to goal planning (Bekey, 2005). 

On the human side of the interaction, control or “method of control” refers to the way in 

which the human may intervene and provide input.  The appropriate application of a control 
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method is dependent on two factors:  (1) the robot autonomy, and (2) the task.  Although users 

have indicated a preference to command robots using voice control (Ezer, 2008; Kahn, 1998), a 

variety of control methods may be appropriate for varying levels of robot autonomy.   

Service robots that are low on the autonomy continuum (i.e., teleoperated) most often 

receive human input from interfaces such as two-handed and one-handed controllers, computer 

mouse, or keyboard (e.g., Duran et al., 2009; Michaud et al., 2010; Takayama, Marder-Eppstein, 

Harris, & Beer, 2011).  Whereas, semi-autonomous service robots may receive human input 

from a variety of shared control methods, such as demonstration (Billard, Calinon, Ruediger, & 

Schaal, 2008; Nicolescu, & Mataric, 2003), direct physical interfaces (Chen & Kemp, 2011), 

gesture recognition (Bremner et al.,2009; Charles et al., 2009; Gielniak, & Thomaz, 2011), laser 

pointers (Nguyen, Jain, Anderson, & Kemp, 2008; Kemp et al., 2008), or voice command (Asyal 

et al., 2011; Ceballos, Gomez, Prieto, & Redarce, 2009; Hyun, Gyeongho, & Youngjin, 2007).   

The proper match between the level of robot autonomy and the method of control is 

essential.  Performance measures, particularly for levels of robot autonomy where the human is 

implementing action using teleoperation, are highly dependent on the method of control.  For 

example, performance decrements in a simulated teleoperated robot performing a materials 

handling task were attributed to operator difficulty in using a SpaceBall© motion input control 

device (Kaber, Onal, & Endsley, 2000).  Similarly, in a Kaber et al. (2006) study, high operator 

mental workload in information analysis and decision making automation was attributed to 

visual and attentional demands of the user interface.   

4.3. The Role of Interaction Variables and Autonomy 

Although empirical research that directly manipulates and compares various levels of 

robot autonomy and social interaction have not been conducted, the role of social interaction was 



                                     

 

62 

 

worth reviewing at a more general level.  A rich literature base in social robotics exists (for 

review see Fong, Nourbakhsh, & Dautenhahn, 2003).  However for this section, a specific 

review of how social interaction may potentially intersect with autonomy was conducted. 

4.3.1. Social characteristics, social effectiveness, and appearance.  Understanding 

social interaction in HRI, and its relation to autonomy, is a challenging task.  For one, robots 

have been a topic of science fiction, media, and film for decades.  In fact, robots are one of the 

few technologies in which design has been modeled in part by science fiction portrayals of 

autonomous systems (Brooks, 2003).  Even though most individuals of the general population 

have never interacted with a robot directly, most people have ideas or definitions of what a robot 

should be like (Ezer, 2008; Khan, 1998).  If users have preconceived notions of how robots 

should behave, then it becomes all the more important to better understand how to create a match 

between user expectations and the robot’s actual autonomy.  According to Breazeal (2003), when 

designing robots, the emphasis should not be whether people will develop a social model to 

understand robots.  Rather, it is more important that the robot adhere to the social models the 

humans expect.  What social models do people hold for robots?  And do those social models 

change as a function of robot autonomy? 

 It is accepted in the research community that people treat technologies as social actors 

(Nass, Fogg, & Moon, 1996; Nass & Moon, 2000; Nass, Moon, Fogg, Reeves, 1995; Nass, 

Steuer, Henriksen, & Dryer, 1994), particularly robots (Breazeal, 2005).  Social capability has 

been categorized into classes of social robots (Breazeal, 2003; Fong, Nourbakhsh, & 

Dautenhahn, 2003): socially evocative, social interface, socially receptive, sociable, socially 

situated, socially embedded, and socially intelligent.  The differentiations between these classes 

is beyond the scope of this paper, but it is interesting to note that these classes can be thought of 
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as a continuum (ranging from socially evocative where the robot relies on human tendency to 

anthropomorphize, to socially intelligent where the robot shows aspects of human style social 

intelligence, based on models of human cognition and social competence).  Social classes higher 

on this continuum require greater amounts of autonomy to support the complexity and 

effectiveness of the human-robot interaction.   

How do you measure “social effectiveness”?  Of course it is difficult to determine the 

most appropriate metric for measuring social effectiveness.  A variety of metrics have been 

proposed (Steinfeld et al., 2006) and applied to measure social effectiveness via interaction 

characteristics (e.g., interaction style, or social context), persuasiveness (i.e., robot is used to 

change the behavior, feelings, or attitudes of humans), trust, engagement (sometimes measured 

as duration), and compliance. Appropriate measures of social effectiveness may vary along the 

autonomy continuum.  For instance, when a robot is teleoperated, social interaction may not exist 

between the robot and human, per se.  Rather, the robot may be designed to facilitate social 

communication between people (i.e., the operator and a remotely located individual).  In this 

case, “successful social interaction” may be assessed by the quality of remote presence (the 

feeling of the operator actually being present in the robot’s remote location).  Proper measures of 

“social effectiveness” may be dictated by the quality of the system’s video and audio 

input/output, as well as communication capabilities, such as lag time/delay, jitter, or bandwidth 

(Steinfeld et al., 2006).  Whereas, social interaction with intermediate or fully autonomous robots 

is appropriately assessed by the social characteristics of the robot itself (e.g., appearance, 

emotion, personality; Breazeal, 2003; Steinfeld et al., 2006).   

The last aspect of social robots we want to discuss is appearance.  Not all appearances 

elicit a social response.  For example, if a robot is “functionally” designed, the appearance is 
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intended to reflect the task the robot is to perform (e.g., the iRobot gutter cleaner).  However, 

robots may also have a “biologically inspired” design, and have a physical embodiment that 

more closely resembles humans or animals.  According to Fong and colleagues (2003), a robot 

that is high on the autonomy continuum and expected to be perceived as a peer, may require an 

appearance that projects “human-ness”.  Although, if a robot becomes too human-like it may be 

perceived as strange in appearance (uncanny valley; Mori, 1970).  Other research suggests that 

the robots’ appearance should project appropriate “robot-ness” so the user does not develop 

detrimentally false expectations of the robot capability (Duffy, 2003).  In other words, the 

appearance should match the autonomy level of the robot.  However, what aspects of a robot 

appearance affect the human’s perception of autonomy, and what physical features constitute 

“human-ness” or “robot-ness” is not well understood. 

In summary, there are many open research questions regarding social interaction and 

robot autonomy.  Automation, unlike robots, is not necessarily designed to elicit social responses 

from humans.  As the lines between automation and robots blur (with the development of 

machine intelligence and learning), some forms of automation may illicit a social response from 

operators.  In these instances, the literature on social robotics can inform automation design.   

4.4. The Role of Task Variables and Autonomy 

In this section, task-related variables expected to relate to robot autonomy were reviewed 

and discussed.  The variables of interest included task criticality, task accountability, and the 

environment.  These variables were considered to the role task criticality and accountability play 

in function allocation between the robot and human.  Finally, the environment was considered 

due to its critical influence on robot capability.   
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4.4.1. Task Criticality and Accountability.  Service robot applied to home, healthcare, 

the workplace, and many other applications may be partaking in tasks of high criticality.  Error, 

on the part of the robot, could result in consequences both minor and severe.  In the event of a 

robot error, the human interacting with the robot will manage the consequences of that error.   

In general, the automation literature suggests that as the consequences of failure 

increases, operators adjust their behavior to manage automation errors more effectively.  For 

example, in a flight simulation study with trained aircrew (Mosier, Skitka, Dunbar, & 

McDonnell, 2001), automation errors were more often detected and corrected for critical aspects 

of flight (e.g., altitude capture), compared to errors that occurred in less critical functions (e.g., 

communications).  Similarly, in an automated counting task (i.e., circles flashed on a screen, then 

the circles disappeared and the automation provided an estimate of the number of circles; Ezer, 

Fisk, & Rogers, 2008), participants could either accept the automation’s estimate or recount the 

circles and type their own estimate.  Cost of errors was manipulated with a scoring system.  

Participants (both younger and older adults) decreased their reliance on the automation as the 

cost of error (criticality) increased.   

Task characteristics and consequences of error can be influenced by automation or robot 

autonomy level.  As mentioned in Section 4.2.2, in many cases failures or errors at early stages 

of automation may not be as critical as errors at later stages of automation.  One rational is that it 

may be risky to program a machine to have high autonomy in a task that requires decision 

support, particularly if the decision outcome involves lethality or human safety (Parasuraman, 

Sheridan, & Wickens, 2000; Parasuraman & Wickens, 2008).  For example, unreliability in a 

robot that autonomously navigates may results in either false alarms or misses of obstacles.  In 

this example, the criticality of errors is substantially less than errors conducted by a robot that 
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autonomously determines what medication a patient should take.  In this example, robot failure 

may result in critical, if not lethal, consequences.  Criticality of errors related to medication 

management may explain the findings in a recent questionnaire, where older adults expressed a 

preference for humans, rather than robots, to decide which medication they should take (opposed 

to other less-critical related tasks such as medication delivery; Mitzner et al., 2011).   

Criticality of robot error was investigated in an assessment of failure logs from 15 mobile 

robots (Carlson, Murphy, & Nelson, 2004).  Data were compiled for over three years, and a total 

of 171 reported errors were logged.  In this report, criticality was measured by “impact” or the 

amount of robot downtime after an error.  The amount of downtime varied widely between 

robots and error types, but interestingly the data indicated that over the course of 3 years, the 

overall impact decreased, probably due to operator and technician behavior changes.  That is, the 

humans interacting with the robot learned to identify common problems, troubleshoot, or order 

problematic parts in advance.  Although “robot downtime” may not be a proper criticality 

measurement for all types of errors, these findings point to the importance of variables such as 

operator training or robot experience may have on management of critical errors.   

The likelihood of the human detecting robot failure is not only dependent on the 

criticality of the task.  Responsibility for the success of task completion also influences how well 

a human detects errors.   In human teams, accountability is split among team members.  As 

robots become more autonomous and are perceived as peers or teammates, it is possible that the 

distribution of accountability may be perceived to be split between the robot and human.  

However, a robot cannot be held accountable for detecting its own errors; this responsibility 

must fall onto a human.   
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Responsibility of identifying automation errors was investigated in a study by Skitka and 

colleagues (2000).  Participants were either given non-accountable instructions (i.e., they told 

that they were not evaluated by performance), or one of four accountable groups (i.e., 

participants were told they were evaluated by performance and had to justify their actions in 

meeting overall performance goals).  The results suggested those operators who were held 

accountable for system performance conducted fewer omission (failure to detect automation 

misses) and commission (failure to detect automation false alarms) errors. 

Robot autonomy has been shown to play a role in participants’ accountability of tasks 

errors.  In a study investigating perceived robot autonomy and accountability (Kim & Hinds, 

2006), a robot assisted participants in a Lego assembly task.  When the robot was perceived as 

more autonomous, participants reported less self-blame (accountability) for task errors.  These 

findings suggest, if a robot is perceived as autonomous, responsibility of consequences may be 

misplaced and the human operator may feel less accountable for errors. 

In highly critical applications, such as healthcare, accountability of a healthcare robots’ 

reliability will fall on human professionals and staff.  Due to the possible potential of server 

consequences of failure, healthcare professionals and staff have expressed concern about (1) the 

potential for robot errors (Broadbent et al., 2011; Tiwari, Warren, Day, & MacDonald, 2009), 

and (2) who may be accountable for those errors (Tiwari, Warren, Day, & MacDonald, 2009).  

Therefore, care should be taken in determining which tasks a robot shall perform autonomously, 

as well as in designing the system so human supervisors held accountable for the robot can easily 

diagnose and alleviate consequences of error.   

4.4.2. Environment.  Service robot designed for assistive functions (e.g., home or 

healthcare applications), surveillance, or first responders (e.g., search and rescue) will be 



                                     

 

68 

 

required to operate in unknown, unstructured, and dynamic environments.  Functioning in such 

difficult environments will certainly influence the functional requirements of the robot.  In fact, 

in an in depth assessment of common mobile robot errors, robots employed in the field (opposed 

to research robots) failed more often by a factor of 10, probably due to the demands of the field 

environments (Carlson, Murphy, & Nelson, 2004).  As Desai and colleagues stated, “this lack of 

environmental constraints makes designing automation to cover all possible circumstances the 

robot might encounter very difficult.  As a result, these types of robotics systems are likely to 

have lower reliability than other automated systems” (2009, p. 4).   

 Therefore, the robot’s capability to function in a dynamic environment is highly 

dependent on environmental factors (e.g., lighting, reflectivity of surfaces, glare) that influence 

the robot sensors to perceive the world around it.  Higher levels of robot autonomy may be 

required for a service robot to function in unstructured ever-changing environments (Thrun, 

2004).   That is, the robot must have the autonomy to make changes in goals and actions based 

on the sensor data of the dynamic environment.  However, not all aspects of the environment can 

be anticipated, so for many complex tasks the presence of a human supervisor may be required 

(Desai, Stubbs, Steinfeld, & Yanco, 2009).    

4.5. Adjustable Autonomy 

It is feasible to assume that for any given task, the autonomy requirements for the system 

to function may vary depending on the context of the task.  For example, imagine a service robot 

that is teleoperated by the user to navigate a home environment in a find and fetch task.   If the 

home is cluttered, and the user mental workload increases the robot could assist with obstacle 

avoidance.  Whereas, if the user’s workload is low, then the robot might reduce its autonomy to 

allow for manual control.  The idea that machine autonomy can dynamically change during 
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operation has been suggested as a potential solution to alleviate operator out-of-the-loop 

performance problems, loss of situational awareness, and high mental workload (Kaber, Riley, 

Tan, & Endsley, 2001; Miller & Parasurman 2007).   

In the automation literature, Scerbo (2001) outlined two forms of dynamic function 

allocation, with the difference between the two was a matter of authority.  The first, adaptable 

automation, described a system where the user initiates changes among presentation modes or 

functionality (e.g., Miller & Parasuraman, 2007).  The second, adaptive automation, included 

systems where both the user and the system can initiate changes in system states or modes (e.g., 

Inagaki, 2003; Kaber, Riley, Tan, & Endsley, 2001; Kaber, Wright, & Sheik-Nainar, 2005; 

Scerbo, Freeman & Mikulka, 2003).  In either of these forms, triggering mechanisms for shifting 

among levels of automation may include environmental events, operator performance, or 

physiological assessment (for review, Miller & Parasurman 2007).   

In HRI, the concept of robot autonomy shifting between levels has been dubbed 

adjustable autonomy (Bradshaw, Feltovich, Jung, Kulkarni, Taysom, & Uszok, 2004; Flacone & 

Castelfranchi, 2001; Maheswaran, Tambe, Varakantham, & Myers, 2004; Scerri, Pynadath, & 

Tambe, 2002) or sliding scale autonomy (Desai, 2007; Desai & Yanco, 2005; Sellner, Heger, 

Hiatt, Simmons, & Singh, 2006).  Maheswaran and colleagues (2004) proposed two types of 

adjustable autonomy.  The first was referred to as user-based adjustable autonomy, where high 

criticality of problem solving should result in human control.  The second was referred to as 

agent-based adjustable autonomy, where the agent chooses to switch control to user, based on the 

system’s own limitations in utility (i.e., agent unable to perform certain task) or uncertainty (i.e., 

shortfalls in agent reasoning or strategy/decision selection). 
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 Although the idea of adjustable autonomy levels for robots is not new, the challenge is 

designing (1) optimal triggers for switching robot autonomy levels for a given task, and (2) 

appropriate feedback to indicate when a switch has been made so the user can attend to newly 

allocated functions while maintaining situation awareness.   

4.6. Summary of Variables Associated with Autonomy and HRI 

The purpose of this review was to develop a collection of concepts and principles thought 

to be important in understanding robot autonomy in HRI.   Literature in automation and HRI 

provides a vast amount of research pertinent in identifying human-, robot-, interaction-, and task- 

related variables influenced by robot autonomy.  These variables include acceptance, situation 

awareness, trust, robot intelligence, reliability, transparency, methods of control and social 

interaction.  Additionally, task variables were identified that influence a robots capability of 

functioning within a complex environment, and therefore impact allocation of functions between 

a robot and human. 

A theme present in much of this review is that the role of autonomy in HRI is complex.  

Assigning a robot with an appropriate level of autonomy is important because a service robot 

changes human behavior.  Appropriate autonomy levels may increase task performance and 

decrease human workload.  However inappropriate autonomy levels, with limitation in robot 

reliability, can decrease SA, negatively impact trust, or increase workload.   

HRI is a relatively young field with substantial, albeit exciting, gaps in our understanding 

of causal relationships between variables and concepts.  In large part, many of the variables 

reviewed in this section lack research where levels of robot autonomy are used as an independent 

variable.  This is probably due to the lack of consensus in identification of intermediate levels of 

robot autonomy.  However, the knowledge gleaned from the identified variables in both Section 



                                     

 

71 

 

3 and Section 4 can be applied toward the development of a framework.   The goal of a 

framework is to organize variables related to autonomy in a potentially explanatory manner, and 

give structure to future investigations. 

5. Toward a Framework of Levels of Robot Autonomy and HRI 

In this section, we provide a framework for examining levels of robot autonomy and its 

effect on human robot interaction.  The framework can be used as an organizing flow chart, 

consisting of several stages (Figure 8).  Stages 1-3 serve as a guideline to determine robot 

autonomy and will be discussed in Section 5.1.  Section 5.2 will describe Stage 4 of the 

framework.  This stage categorizes robot autonomy using a proposed 10-point taxonomy,  

Finally, stage 5 (Section 5.3) broadly suggests the implications of the robot autonomy on HRI 

(i.e., human variables, robot variables, and interaction variables that were identified in Section 

4), and a conceptual model of the framework is presented.   

 
Figure 8.  Organizing flow chart to determining robot autonomy and autonomy’s effects on HRI.  

Steps to be included in more detail in the framework. 

 

5.1.  Determining Robot Autonomy 

In this section, a review of guidelines for determining and measuring robot autonomy is 

presented.    Specifically, the proposed guidelines in this section focus on human-robot 

interaction, with an emphasis on function allocation between a robot and a human.  

Stage1
• Determining Autonomy - what task is the robot to perform?

Stage2
• Determining Autonomy - what aspects of the task should the robot perform?

Stage3
• Determining Autonomy - to what extent can the robot perform those aspects of the task?

Stage4
• Categorizing Autonomy - an updated taxonomy.

Stage5
• Influence of Autonomy on HRI - human, robot, and interaction related variables. 
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5.1.1. Determining autonomy as a function of the task and environment.  The role 

of task/environment is largely missing or lacks emphasis in previous models of LOA (Endsley & 

Kaber, 1999; Parasuraman, Sheridan, & Wickens, 2000).  However, in the review of how 

autonomy has been conceptualized in both robotics and HRI, the role of the environment is 

evident (Sections 3.3 and 3.4).  Furthermore, in my proposed definition of autonomy (Section 

3.1.2), the environment is a critical characteristic.  Consideration of the task/environment is 

particularly important for robotics, compared to automation, for a reason.  A robot more so than 

automation is embodied, that is it is situated within an environment and usually expected to 

perform tasks by physically manipulating that environment.  A robot’s capability to sense, plan, 

and act within its environment is what determines autonomy.  Therefore, in this framework, the 

first determining question to ask is:  

“What task is the robot to perform?” 

A researcher should not ask “is this robot autonomous”; rather the important 

consideration is “can this robot complete the given task at some level of autonomy”.  For 

instance, the iRobot Roomba is often considered an autonomous robot.  The robot is capable of 

navigating and vacuuming floors autonomously.  However, if the task vacuuming is broadened to 

consider other subtasks (i.e., picking up objects from floor, cleaning filters, emptying dirt 

bin/bag) then the Roomba may be considered semi-autonomous because it only completes a 

portion of those subtasks.  Likewise, if the environment is changed (e.g., vacuuming stairs 

opposed to flat surfaces), the Roomba’s autonomy could be categorized differently, as it is 

currently incapable of vacuuming stairs.   

Therefore, specifying the context of the task/environment is critical in determining the 

task-specific level of robot autonomy.  Specific task-related variables that influence autonomy 
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are the task criticality, task accountability, and the environment.  These variables are discussed in 

detail in Section 4.4, and will be incorporated in the conceptual model of the framework. 

5.1.2. An objective basis for measuring autonomy.  Once the task and environmental 

demands are determined, the next determining question is: 

 “What aspects of the task should the robot perform?” 

Each task, no matter how simple or complex, can be abstractly broken down into 

primitives: SENSE, PLAN, and ACT.  Let us consider robots equipped with assisted 

teleoperation features (e.g., Takayama et al., 2011).  In this example, a teleoperated robot 

demonstrates low levels of autonomy by assisting the human operator in obstacle avoidance.  

Usually, this feature is programmed into the robot architecture using behavior-based SENSE-

ACT couplings, where the robot is assisting with the aspects of the task by detecting obstacles 

(SENSE), then adjusting its behavior to avoid collision (ACT).  The human remains, in large 

part, in charge of path planning and navigational goals (PLAN).  However, a robot that navigates 

semi-autonomously (e.g., Few et al., 2008) may require a human may specify the high level goal 

of navigating to a specified location.  Once the high level goal is given, the robot then 

autonomously navigates to that location.  Here, the robot demonstrates a high level of autonomy 

in sensing the environment (SENSE), relatively high level autonomy in PLAN (except the 

human provided the high level goal), and a high level of autonomy in physically implementing 

the plan (ACT). 

As the two examples suggest, autonomy can vary along any of the SENSE, PLAN, and 

ACT primitives, which relates to the next determining question: 

“To what extent can the robot perform those aspects of the task?” 
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Each of the sense, plan, and act primitives could be allocated to either the human or the 

robot (or both).   Similar to Parasuraman, Sheridan, and Wickens (2000) stages of automation, a 

robot can vary in autonomy level (from low to high) along the three primitives (see Figure 9). 

 
Figure 9.  Levels of autonomy across the robot primitives sense, plan, and act.  Two examples 

are given: assisted teleoperation (dotted line) and semi-autonomous navigation (solid line).  

Model modified from Parasuraman, Sheridan, and Wickens, 2000.   

 As depicted in Figure 9 the level of autonomy may vary from low to high for each of the 

robot primitives.  Determining the robot autonomy prompts a clarification of how to measure the 

extent or degree to which a robot can perform each of those aspects (SENSE, PLAN, ACT) of 

the task.  In the automation literature, level of autonomy is most often indentified by function 

allocation.  Consider the Endsley and Kaber’s (1999) model, the level of automation is specified 

in their taxonomy based on the allocation of function to either the human or automation.  For 

instance, in their automation level Automated Decision Making: the automation selects and 

carries out an option; the human can have input in the alternatives generated by the automation.  

In HRI the allocation of function has been commonly measured by amount of human 

intervention (Yanco & Drury, 2004a).  Specifically, human intervention is measured by the 

percentage of time a task is completed on its own, and intervention is measured by the 

percentage of time the human must control the robot (Yanco & Drury, 2004a).  The two 

measures, autonomy and intervention, must sum to 100%.  For example, a teleoperated robot has 
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autonomy=0%, and intervention=100%.  A fully autonomous robot has autonomy=100%, and 

intervention=0%.  In between these two anchor points, lies a continuum of shared control.  For 

example, a medication management robot may select a medication, and handoff the medication 

to a human, but the human might be responsible for high level directional (navigation) 

commands.  Here, autonomy=75% and intervention=25%.  Similarly, autonomy has been 

measured as human neglect time (Olsen & Goodrich, 2003).  In this metric, autonomy is 

measured by the amount of time that the robot makes progress toward a goal before dropping 

below effective threshold (see reliability threshold, Section 4.2.2) or requiring user instruction.   

Although this idea of measuring the time of intervention and neglect is useful, it has 

limitations.  Amount of time between human interventions may vary as a result of other factors, 

such as the inappropriate levels of trust (i.e., misuse and disuse), social interaction, task 

complexity, robot capability (e.g., robot speed of movement), usability of the interface/control 

method, and response time of the user.  Therefore, if interaction time is used as a quantitative 

measure, care should be taken when generalizing those findings to other robot systems or tasks.  

We propose that a supplemental metric may be a qualitative measure of intervention level (i.e., 

subjective rating of the amount human intervention), or a general quantitative measure focused 

on subtask completion, rather than time (i.e., number of subtasks completed by robot divided by 

the number of total subtasks required to meet a goal).  Each metric is not without tradeoffs, but 

still may provide some general indication as to what the robots degree of autonomy may be. 

Intervention is defined as the human performing some aspect of the task.  As we have 

discussed earlier, intervention and interaction are not necessarily interchangeable terms.  

Intervention is a type of interaction specific to task sharing.  Interaction may include other 

factors not necessarily specific to the intervention of task completion, such as verbal 
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communication, gestures, or emotion expression. Some autonomous service robots could work in 

isolation, requiring little interaction of any kind (e.g., an autonomous pool cleaning robot); 

whereas, other robots working autonomously in a social setting may require a high level of 

interaction (e.g., an autonomous robot serving drinks at a social event).  Finally, the measure of 

autonomy, as discussed in this section, is specifically applicable to service robots, which perform 

tasks.  Neglect time may not be an appropriate measure of autonomy for robots designed 

specifically for entertainment, for example.  Other types or classes of robots may require 

different evaluative criteria for determining autonomy, beyond the scope of this paper 

5.2. Categorizing Levels of Robot Autonomy (LORA) for HRI: A Taxonomy   

Now that guidelines for determining robot autonomy have been outlined, the next stage is 

categorizing the robot’s autonomy along a continuum.  A lack of specification of intermediate 

autonomy levels is a limitation in previous HRI frameworks (e.g., Huang, Pavek, Albus, & 

Messina, 2005; Yanco & Drury, 2004a).  Therefore, in Table 4, we propose a taxonomy in which 

the robot autonomy can be categorized into “levels of robot autonomy” (LORA).   

The taxonomy has a basis in HRI by specifying each LORA from the perspective of the 

interaction between the human and robot, and the roles each play.  That is, for each proposed 

LORA, we suggest the (1) function allocation between robot/human for each of the SENSE, 

PLAN, ACT primitives, (2) provide a proposed description of each LORA, and (3) provide 

support with examples of service robots from the HRI literature.  The literature in Table 4 

includes a mix of empirical studies involving robots and simulations, as well as published robot 

autonomy architectures. Autonomy is a continuum with blurred borders between the proposed 

levels.  The levels should not be treated as exact descriptors of a robot’s autonomy.  Rather, the 

levels should be treated as an approximation of a robot’s autonomy level along the continuum.
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Table 4 

Proposed Taxonomy of Levels of Robot Autonomy for HRI 
Level of Robot 

Autonomy (LORA) 

Function Allocation Description Examples from HRI Literature 

Sense Plan Act 

1. Manual 

Teleoperation 

H H H The human performs all aspects of task including sensing the 

environment and monitoring the system, generating plans/options/goals, 

and implementation. 

“Manual Teleoperation” Milgram, 1995 

“Tele Mode” Baker & Yanco, 2004; Bruemmer et 

al., 2005; Desai & Yanco, 2005 

2. Action Support H/R H H/R The robot assists the human with action implementation.  However, 

sensing and planning is allocated to the human.  For example, a human 

may teleoperate a robot, but the human may choose to prompt the robot 

to assist with some aspects of a task (e.g., gripping objects). 

“Action Support” Kaber et al., 2000 

3. Assisted 

Teleoperation 

H/R H H/R The human assist with all aspects of the task.  However, the robot senses 

the environment and chooses to intervene with task.  For example, if the 

user navigates the robot too close to an obstacle, the robot will 

automatically steer to avoid collision. 

“Assisted Teleoperation” Takayama et al., 2011 

“Safe Mode” Baker & Yanco, 2004; Bruemmer et 

al., 2005; Desai & Yanco, 2005 

4. Batch Processing H/R H R Both the human and robot monitor/sense the environment.  The human, 

however, determines the goals and plans of the task.  The robot then 

implements task. 

“Batch Processing” Kaber et al., 2000 

5. Decision Support H/R H/R R Both the human and robot sense the environment and generate a task 

plan.  However, the human chooses the task plan and commands robot to 

implement action. 

“Decision Support” Kaber et al., 2000 

6. Shared Control 

with Human 

Initiative 

H/R H/R R The robot autonomously senses the environment, develops plans/goals, 

and implements actions.  However, the human monitors the robot’s 

progress, and may intervene and influence the robot with new goals/plans 

if the robot is having difficulty.   

“Shared Mode” Baker & Yanco, 2004; Bruemmer 

et al., 2005; Desai & Yanco, 2005 

“Mixed Initiative” Sellner et al., 2006 

“Control Sharing” Tarn et al., 1995 

7. Shared Control 

with Robot 

Initiative 

H/R H/R R Robot performs all aspects of the task (sense, plan, act).  If the robot 

encounters difficulty, it can prompt the human for assistance in setting 

new goals/plans. 

“System-Initiative” Sellner et al., 2006 

“Fixed-Subtask Mixed-Initiative” Hearst 1999 

8. Supervisory 

Control 

H/R R R Robot performs all aspects of task, but the human continuously monitors 

the robot.  The human has over-ride capability and may set a new 

goal/plan.  In this case the autonomy would shift to shared control or 

decision support. 

“Supervisory Control” Kaber et al., 2000 

9. Executive 

Control 

R (H)/R R The human may give an abstract high level goal (e.g., navigate to 

environment to specified location).  The robot autonomously senses 

environment, sets plan, and implements action. 

“Seamless Autonomy” Few et al., 2008 

“Autonomous mode” Baker & Yanco, 2004; 

Bruemmer et al., 2005; Desai & Yanco, 2005 

10. Full Autonomy R R R Robot performs all aspects of a task autonomously without human 

intervening with sensing, planning, or implementing action. 

 

*Note:  H = Human, R = Robot
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5.3.   A Framework of Robot Autonomy: The Influence of Autonomy on HRI 

Finally, the last stage of the framework is to evaluate the influence of the robot’s 

autonomy on the interaction between the robot and human.  This portion of the framework is 

informed by the literature review outlined in Section 4.  As that review suggests, the influence of 

autonomy on human-, robot-, and interaction- related variables is complex.   

Evaluation of the robot’s autonomy level on these variables can be used as evaluative 

criteria to determine if the autonomy level of the robot is appropriate for optimal human-robot 

interaction.   In this way, the framework can be used as a tool for guiding appropriate autonomy 

levels that support optimal human-robot interaction.  For example, there is much empirical 

research suggesting that SA decreases if an operator is out of the loop.  In the case of a system 

failure the out of the loop operator may be unable to diagnose the problem and intervene in a 

timely manner (Endsley, 2006).  If evaluation of the operator indicates that their SA is 

suboptimal, then the framework could provide guidelines to reevaluate what aspects of the task 

should be allocated to the robot/human to keep the operator in the loop, and the robot’s 

autonomy could then be reconsidered and adjusted along the continuum to support optimal 

operator involvement and SA. 

The entire framework (stages 1-5) is depicted as a conceptual model in  

Figure 10.  If read from top to bottom, the model depicts the guideline stages.  By no 

means should this model be treated as a method.  Rather the framework and taxonomy should be 

treated as guidelines to determine autonomy, categorize the LORA along a qualitative scale, and 

consider which HRI variables may be influenced by the LORA.   
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Figure 10.  A framework of levels of robot autonomy for HRI. This framework can serve as a 

flow chart suggesting task and environmental influences on robot autonomy, guidelines for 

determining/measuring autonomy, a taxonomy for categorizing autonomy, and finally HRI 

variables that may be influenced by robot autonomy. 
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6. Conclusion 

Levels of autonomy, ranging from teleoperation to fully autonomous systems, influence 

the nature of human-robot interaction.  The purpose of this investigation was to investigate robot 

autonomy within the context of HRI.  To do this, a number of evaluative steps were taken. It was 

first important to redefine the term autonomy and consider how the construct has been 

conceptualized within the fields of automation, robotics, and HRI.  Next, a systematic review of 

the literature was conducted.  This review revealed numerous human, robot, task, and interaction 

variables that are expected to influence and are influenced by autonomy.  The knowledge gained 

from these literature reviews contributed to the development of a framework that should serve as 

a roadmap for categorizing LORA and evaluating the effects of robot autonomy on HRI. 

Robot design can be guided by the framework proposed in this investigation.  The 

framework provides a guide for appropriate selection of robot autonomy.  This is important 

because the implementation of a service robot does not only supplement a task, but changes 

human activity by imposing new demands on the human.  For this reason, the framework also 

has scientific importance, beyond the use as a tool for guiding function allocation.  As such, the 

framework conceptualizes the autonomy along a continuum, and also identifies HRI variables 

that need to be evaluated as a function of robot autonomy.  These variables include acceptance, 

SA, trust, robot intelligence, reliability, transparency, methods of control, and social interaction.   

In large part, many of the variables included in the framework require further research to 

better understand autonomy’s complex role in HRI.  HRI is a young field with substantial, albeit 

exciting, gaps in our understanding.  Therefore, the proposed framework does not provide 

indication of causal relationships between variables and concepts.  As the field of HRI develops, 

empirical research can be causally mapped to theoretical concepts and theories.  Gaps in research 
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avenues related to the variables included in the framework have already been discussed 

throughout the paper (in particular, see Section 4).  We will summarize a few of those gaps in 

brief, as well as propose additional research avenues that we suggest are in need of further 

attention in the HRI community:   

 SA and Workload – although SA is becoming an increasingly common HRI metric, 

workload is not as often measured; both variables need further research as a function of 

robot autonomy. 

 Trust – how trust changes over the autonomy continuum is largely not well understood in 

both automation and robots; most research has investigated only a few automation stages. 

 Learning – a robot may increase autonomous capability via learning algorithms; but little is 

known about the development of human trust as the robot learns new tasks over time.   

 Modes of Feedback and Transparency – robots can provide feedback of its state and 

autonomy mode with voice communication, gestures, and emotion; these constructs and 

their application to robots along the autonomy continuum need further investigation. 

 Safety – service robots will function in close approximation with people; safety measures 

such as specifying robot workspace, collision avoidance techniques, or emergency override 

would likely vary along the autonomy continuum and need further research. 

 Perceived Robot Autonomy –Little is known how a mismatch between perceived autonomy 

and actual autonomy can impact human performance. 

In summary, further HRI research is needed to continue to identify appropriate trade-offs 

in allocating tasks to either a human or a robot.  Implementing service robots has the potential to 

improve the quality of life for many people.  But robot design will only be successful with 

consideration as to how the robots’ autonomy will impact the human-robot interaction.  
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8. Appendix A 

 

Definition of Robot/Agent Source 

Robot, any automatically operated machine that replaces 

human effort, though it may not resemble human beings in 

appearance or perform functions in a humanlike manner. 

(Encyclopedia Brittanica, 
http://www.britannica.com/EBchecked

/topic/505818/robot) 

“As in automation, robotics also relies on four major 

components, including a platform, autonomy, process, and 

power source, but in robotics, a robot is often considered a 

machine, thus the platform is mostly a machine, a tool or 

device, or a system of tools and devices.” 

(Nof, 2009, p.19) 

 

“An agent is something that acts.  But computer agents are 

expected to have other attributes that distinguish them from 

mere “programs,” such as operating under autonomous 

control, perceiving their environment, persisting over a 

prolonged time period, adapting to change, and being capable 

to taking on another’s goals.” 

(Russell & Norvig, 2003, p. 4) 

“A robot is a machine that looks like a human being and 

performs various complex acts (as walking or talking) of a 

human being; a device that automatically performs 

complicated often repetitive tasks; a mechanism guided by 

automatic controls.” 

(Merrium-Webster Dictionary, 
http://www.merriam-

webster.com/dictionary/robot)  

 

“An intelligent robot is a mechanical creature which can 

function autonomously” 

(Murphy, 2000, p. 3) 

“Perhaps the most general way in which the term agent is 

used is to denote a hardware or software-based computer 

system that enjoys the following properties:” autonomy, 

social ability, reactivity, and pro-activeness.   

(Wooldridge & Jennings, 1995) 

 

  
Word cloud of robot/agent definitions; autonomy depicted as a major component of language 

used in definitions. 


