DEVELOPMENT OF AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS PREDICTORS FOR ADVANCED OXIDATION PROCESSES

A Dissertation
Presented to
The Academic Faculty

by

Daisuke Minakata

In Partial Fulfillment
of the Requirements for the Degree
of Engineering in the
School of Civil and Environmental Engineering

Georgia Institute of Technology
December, 2010

DEVELOPMENT OF AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS PREDICTORS FOR ADVANCED OXIDATION PROCESSES

Approved by:

Dr. John C. Crittenden, Advisor
School of Civil and Environmental Engineering
Georgia Institute of Technology
Dr. Jae-Hong Kim
School of Civil and Environmental Engineering Georgia Institute of Technology

Dr. Ching-Hua Huang
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Dr. James Mulholland
School of Civil and Environmental
Engineering
Georgia Institute of Technology
Dr. David Sherrill
School of Chemistry and Biochemistry
Georgia Institute of Technology

Date Approved: July $16^{\text {th }}, 2010$

To my mother and deceased father

ACKNOWLEDGEMENTS

First of all, I would like to thank my adviser, Dr. John Crittenden, very much for his tremendous supports and advices to me. He has been my coach over the course of my doctorate study years who told me to be a super-athlete. Though I may not be a superathlete just yet, I could not have made any progresses without his support. I would also like to thank other committee members at Georgia Tech: Dr. Jae-Hong Kim for his continuous encouragement, Dr. David Sherrill for his technical advices in quantum mechanical calculations, Dr. Ching Hua-Huang and Dr. James Mulhold for their constructive advices.

My appreciation extends to my former committee members at Arizona State University: Dr. Ke Li who is now at the University of Georgia for his mentor and advisement in research as well as in carrier, and Dr. Paul Westerhoff from ASU for his technical advices and collaborations in research.

I would like to include following names in appreciation for providing high performance computing resources: Drs. Karsten Schwan, Mattew Wolf and Chad Huneycutt from College of Computing at Georgia Tech; Drs. Ron Huchinsons and Neil Bright from Georgia Tech Office of Information Technology; Drs. Dan Stantione and Doug Fuller from ASU HPC. I also appreciate the IT support from CEE IT services from Georgia Tech: James Martino and Mike Anderson.

Following individuals helped me with experiments: Ryan Ravenelle from Georgia Tech for his technical advices and support, and his friendship; Dr. Weihua Song from University of California, Irvine for his tremendous assistance for arranging experiments and overcoming experimental difficulties; Ryan Lisk from Environmental Health Service
at Georgia Tech for shipment of hazardous chemical materials. Thank you so much, folks.

I also appreciate others in research group at Georgia Tech as well as at ASU.
Faculty and Staff at Brook Bayer Institute for Sustainable Systems encouraged me and helped me with business prospect: Dr. Michael Chang, Dr. Ming Xu, Martha Lindsay, Christy Shannon, and Brent Verrill. Thank you.

I would like to acknowledge the following foundations, institutes and assistantships for their funding supports: National Science Foundation; Brook Bayer Institute for Sustainable Systems; High Tower Chair and Georgia Research Alliance at Georgia Tech; University of Notre Dame Radiation Center and Department of Energy; Richard Snell Chair at ASU.

My deepest gratitude goes to my family; my mother, sister, brother, uncle, aunt, and grandparents. My mother, Chiaki, always supports my decision and encourages me to move forward. Reminiscence of my deceased father still influences me in many ways to live everyday strong as well. Finally, I appreciate the continuous support with tremendous love from my favorite person, Ayako.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
LIST OF TABLES ix
LIST OF FIGURES xi
SUMMARY xiv
CHAPTER 1 1
INTRODUCTION
1.1 Significance and Objectives 1
1.2 Structure of This Dissertation 10
1.3 Literature Cited 11
CHAPTER 2 16
DEVELOPMENT OF A GROUP CONTRIBUTION METHOD TO PREDICT AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS
2.1 Abstract 17
2.2 Introduction 18
2.3 Development of the Group Contribution Method 22
2.3.1 Hydrogen-atom Abstraction. 23
2.3.2 HO• Addition to Alkenes 26
2.3.3 HO• Addition to Aromatic Compounds 29
2.3.4 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-atom-containing Compounds 31
2.4 Results and Discussion 32
2.4.1 Calibration and Prediction 32
2.4.2 Overall Results 40
2.4.3 Hydrogen-Atom Abstraction from Saturated Aliphatic Compounds 43
2.4.3.1 Group Rate Constants for H -atom Abstraction 44
2.4.3.2 Group Contribution Factors for H -atom Abstraction 46
2.4.4 HO• Addition to Alkenes 50
2.4.4.1 Group Rate Constants and Group Contribution Factors for HO• Addition to Alkenes. 50
2.4.5 HO• Addition to Aromatic Compounds 52
2.4.5.1 Group Rate Constants for $\mathrm{HO} \bullet$ Addition to Aromatic Compounds 55
2.4.5.2 Group Contribution Factors for $\mathrm{HO} \cdot$ Addition to Aromatic Compounds. 58
2.4.6 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-containing- compounds 59
2.4.6.1 Group Rate Constants for HO• Interaction 60
2.4.6.2 S-, $\mathrm{N}-$, or P-atom-Containing Group Contribution Factors 62
2.4.7 Predictabilities of GCM and Future Studies 64
2.5 Acknowledgement 68
2.6 APPENDICES 68
2.7 Literature Cited 68
CHAPETER 3 74
LINEAR FREE ENERGY RELATIONSHIPS BETWEEN AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS AND FREE ENERGY OF ACTIVATION
3.1 Abstract 75
3.2 Introduction 75
3.3 Linear Free Energy Relationships 87
3.4 Computational Methods 89
3.5 Results and Discussion. 92
3.5.1 A Comparison of $A b$ initio Quantum Mechanical Methods for $\mathrm{HO} \bullet+\mathrm{CH} 4$ in the Gaseous Phase 92
3.5.2 Verifications of $A b$ initio Quantum Mechanical Methods for the Gaseous Phase HO• Reactions 96
3.5.3 A Comparison of Implicit Solvation Models 98
3.5.4 Linear Free Energy Relationships between Aqueous Phase Free Energy of Activation and Logarithm of $\mathrm{HO} \cdot$ Reaction Rate Constant 101
3.6 Acknowledgement 113
3.7 Appendices. 113
3.8 Literature Cited 113
CHAPTER 4 126
QUANTITATIVE UNDERSTANDING OF AQUEOUS PHASE HYDROXYL RADICAL REACTIONS WITH HALOACETATE IONS:
EXPERIMENTAL AND THEORETICAL STUDIES
4.1 Abstract 127
4.2 Introduction 128
4.3 Methods 133
4.3.1 Experimental 133
4.3.1.1 Linear Accelerator (LINAC). 133
4.3.1.2 Flow Cell 135
4.3.1.3 Radiolysis of Water 136
4.3.1.4 Competition Kinetics 138
4.3.1.5 Procedures 139
4.3.1.6 Thermochemical Properties 140
4.3.2 Group Contribution Method 142
4.3.3 Theoretical Basis 143
4.3.4 Linear Free Energy Relationships 145
4.4 Results and Discussion. 147
4.4.1 Experimental Section 147
4.4.1.1 Hydroxyl Radical Reaction Rate Constants 147
4.4.1.2 Arrhenius Parameters 150
4.4.1.3 Thermochemical Properties of Reactions 152
4.4.2 Update of Group Contribution Method 154
4.4.3 Theoretical 156
4.4.3.1 $A b$ initio Quantum Mechanical Approach 156
4.4.3.2 Optimized Structure of Stationary, Pre-reactive Complex and Transition States 161
4.4.3.3 Linear Free Energy Relationships 164
4.4.3.4 Entropy Contribution 165
4.4.3.5 Charge Distribution and Reaction Mechanisms 170
4.4.3.6 Addition of Explicit Water Molecules 175
4.5 Conclusions 179
4.6 Acknowledgement 180
4.7 Appendices 180
4.8 Literature Cited 180
CHAPTER 5 188
IMPLICATIONS AND FUTURE STUDIES
APPENDIX A. 196
APPENDIX B 203
APPENDIX C 242
APPENDIX D 254
APPENDIX E. 260
APPENDIX F 316
APPENDIX G 344
VITA 379

LIST OF TABLES

Table 2.1: Calculated $\mathrm{HO} \bullet$ reaction rate constants (Normal: calculated, Italic: predicted,
Bold: error is out of the EG) as compared to literature-reported experimental values.... 34

Table 2.2: Summary of experimental data and statistical results for calibration
 42

Table 2.3: Summary of experimental data and statistical results for prediction 43
Table 2.4: Group rate constants and group contribution factors for H -atom abstraction.. 48
Table 2.5: Summary of the structural configurations in equation (2.13) based on the experimental rate constants 50
Table 2.6: Group rate constants and group contribution factors for $\mathrm{HO} \cdot$ addition to alkenes 52
Table 2.7: Summary of structural configurations in equation (2.17) based on the experimental rate constants with aromatic compounds 54
Table 2.8: Group rate constants and group contribution factors for $\mathrm{HO} \cdot$ addition to aromatic compounds that include benzene rings 56
Table 2.9: Group rate constants and group contribution factors for $\mathrm{HO} \cdot$ addition to aromatic compounds that include pyridine 57
Table 2.10: Group rate constants and group contribution factors for $\mathrm{HO} \cdot$ addition to aromatic compounds that include furan 57
Table 2.11: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include imidazole 58
Table 2.12: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include triazine 59
Table 2.13: Group rate constants and group contribution factors for S, N, and P -atom containing compounds 61
Table 2.14: Predicted $\mathrm{HO} \bullet$ reaction rate constants for emerging contaminants 67
Table 3.1: Number of available experimental rate constants in the aqueous phase AOPs on the basis of the extensive literature review 77
Table 3.2: Summary of theoretical studies of gaseous phase $\mathrm{HO} \cdot$ reactions 81

Table 3.3: A comparison of $A b$ initio quantum mechanical methods for the gaseous phase reaction of $\mathrm{HO} \cdot$ with CH_{4}

Table 3.4: Calculated energy barrier for the gaseous phase reactions of $\mathrm{HO} \cdot$ with $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Br}$, and the literature-reported values

Table 3.5: Calculated $\Delta G^{\neq}{ }_{\text {rxn,aq }}$, tunneling factor and literature reported HO• reaction rate
constants for the H -atom 102
Table 3.6: Calculated $\Delta G^{\neq}{ }_{\mathrm{rxn}, \mathrm{aq}}$, tunneling factor and literature reported $\mathrm{HO} \cdot$ reaction rate constants for the $\mathrm{HO} \cdot$ addition to alkenes. 103
Table 3.7: Calculated diffusion coefficients, radius of molecule and diffusion rate constants 109
Table 4.1: Experimentally obtained temperature-dependent $\mathrm{HO} \bullet$ rate constants and thermochemical properties, and theoretically calculated free energies of activation. 148
Table 4.2: Calibrated group rate constants and group contribution factors 155
Table 4.3: Molecules and rate constants that were used for the calibration 156
Table 4.4: Calculated gaseous and aqueous phase barrier height and free energy of activation 160
Table 4.5: Geometry of $\mathrm{HO} \bullet$ and $\mathrm{H}_{2} \mathrm{O}$. 162
Table 4.6: Geometry of acetate and halogenated acetate 162
Table 4.7: Geometry of transition states for the reaction of $\mathrm{HO} \cdot$ with halogenated acetate 163
Table 4.8: Calculated cavitation entropy of activation, change in cavity volume, nonelectrostatic energy of activation and experimentally obtained entropy of activation 167

LIST OF FIGURES

Figure 1.1: Skeleton of the modules and placement of this study................................ 4
Figure 1.2: General reaction mechanisms that is induced by $\mathrm{HO} \cdot$.5

Figure 1.3: Comparison of Henry's constant, $\log \mathrm{K}_{\mathrm{ow}}$, and $\mathrm{HO} \cdot$ rate constants for 87 organic compounds: \square : the magnitude of k_{HO}. is $10^{7 \text { th }}$ order, $\circ: 10^{8 \text { th }}$ order $\Delta: 1.0 \sim 5.0 \times 10^{9}$, $\boldsymbol{\Delta}$: $\sim 5.0 \times 10^{9}$ and \times : unknown rate constants calculated by the group contribution method.

Figure 2.1: Comparison of the aqueous and gaseous phase $\mathrm{HO} \cdot$ reaction rate constants. The unit of the gaseous phase rate constant was converted from $1 / \mathrm{molecule} / \mathrm{cm}^{3} / \mathrm{s}$ to 1/M/s

Figure 2.2: The experimental $\mathrm{HO} \cdot$ reaction rate constants as a function of the number of CH_{2} - alkyl functional group for some functional groups. The chemical formula is expressed as $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{R}$, where R is $-\mathrm{CH}_{3},-\mathrm{OH},-\mathrm{COOH},-\mathrm{NH}_{2},-\mathrm{CN},-\mathrm{CHO},-\mathrm{Cl}$, and -Br , for alkane, alcohol, carboxylic, amine, cyano, aldehyde, chlorine, and bromine, respectively, and n is the number of $-\mathrm{CH}_{2}$ - alkyl functional groups. *There are only two rate constants available for -Cl .

Figure 2.3: Total of $434 \mathrm{HO} \cdot$ reaction rate constants from calibrations and predictions versus experimental rate constants for four reaction mechanisms. Error bars represent the range of experimentally reported values.... .43

Figure 2.4: Comparison of the group contribution factors for H -atom abstraction with the Taft constant, $\sigma^{*}[60]$. Group contribution factors include \bullet : alkyl, oxygenated, and halogenated functional groups, $\mathbf{\Delta}: \mathrm{S}-\mathrm{N}$-, or P -atom containing functional groups.49

Figure 2.5: Comparison of the group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds with electrophilic substituent parameter, σ^{+}, (Karelson, 2000) (right). Figure includes the group contribution factors for benzene ($\mathbf{\bullet}$), pyridine (\bullet), and furan compounds ($\boldsymbol{\Delta}$). The σ^{*} of $\left[-\mathrm{CHCl}_{2}\right],[-\mathrm{CO}],[-\mathrm{COO}, \mathrm{COOH}],[-\mathrm{S}-,-\mathrm{SS}-\mathrm{HS}-],\left[-\mathrm{NH}_{2},-\right.$ $\mathrm{NH}-,-\mathrm{N}<]$ is an average of $\left[\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{CHCl}_{2}, \mathrm{CHBr}_{2}\right],\left[\mathrm{COCH}_{3}, \mathrm{COC}_{2} \mathrm{H}_{5}\right.$, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{COF}, \mathrm{COCl}\right],\left[\mathrm{COOH}, \mathrm{COOC}_{2} \mathrm{H}_{5}\right],\left[\mathrm{SCH}_{3}, \mathrm{SC}_{2} \mathrm{H}_{5}, \mathrm{SCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, and $\left[\mathrm{NHCH}_{3}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}, \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]$, respectively. The σ^{*} of [-SO] and [-N-CO-] refer to $\left[\mathrm{S}(\mathrm{O}) \mathrm{CH}_{3}\right]$ and $\left[\mathrm{NHCOC}_{6} \mathrm{H}_{5}\right]$, respectively.

Figure 3.1: Relationship between the logarithm of aqueous phase k_{HO}. and calculated energy gap of HOMO-SOMO for 477 compounds.

Figure 3.2: A comparison of calculated barrier height for the $\mathrm{CH}_{4}+\mathrm{HO} \cdot$
Figure 3.3: A plot of calculated free energy of solvation against experimental free energy
of salvation..

> Figure 3.4: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}$ versus $\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}$ for the H -atom abstraction from the $\mathrm{C}-\mathrm{H}$ bond by HO• The error bar represents the range of the literature-reported experimental rate constants 105

Figure 3.5: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}$ versus $\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}} \mathrm{HO} \bullet$ addition to alkenes. The error bar
represents the range of the literature-reported experimental rate constants. 106
Figure 3.6: Plot of the ratio, $R\left(=k_{\text {exp }} / k_{\mathrm{D}}\right)$, versus calculated free energy of activation... 108
Figure 3.7: Plot of predicted $\mathrm{HO} \bullet$ rate constants against the literature-reported experimental rate constants. The error bar represents the range of the literature-reported experimental rate constants. 110
Figure 4.1: Schematic picture of waters distributed in the cavity, first solvation shell andbulk phase for transition state for the reaction of $\mathrm{HO} \bullet$ with acetate. Dotted linerepresents the hydrogen bond.131
Figure 4.2: Overall system of Linear Electron Accelerator (LINAC). 134
Figure 4.3: Kinetics of $(\mathrm{SCN})_{2}{ }^{-{ }^{-}}$formation at 472 nm for $\mathrm{N}_{2} \mathrm{O}$ saturated $3.00 \times 10^{-4} \mathrm{M}$ KSCN solution containing $0(\nabla), 1.56(\diamond), 2.41(\nabla), 3.48(\Delta)$, and $5.01(\circ) \mathrm{mM}$ $\mathrm{ClCH}_{2} \mathrm{COO}^{-}$ 149
Figure 4.4: Competition kinetics plots for hydroxyl radical reaction with chloroacetate, dichloroacetate and trichloroacetate, respectively, using SCN^{-}as a standard. The error bar represents 95% of confidential values 149
Figure 4.5: Plot of logarithm of k versus inverse of temperature 151
Figure 4.6: LFERs obtained from experiments, calculations at G4 and the SMD solvationmodel, and calculations that include two explicit water molecules. 1 : formate; 2 :propionate; 3: malonate; 4: succinate; 5: chloroacetate; 6: difluoroacetate; 7:dibromoacetate; 8: pyruvate; 9: dichloroacetate; 10: acetate; 11: glyoxylate; 12:trichloroacetate; 13: tribromoacetate; 14: iodoacetate; 15: lactate (note that the compound\# is consistent for other Figures though this chapter)... 153
Figure 4.7: Isokinetic relation between the experimentally obtained enthalpy and entropy of activation 154
Figure 4.8: Comparison of calculated and experimental free energy of solvation for ionized compounds 158
Figure 4.9: Schematic picture of acetate with R functional group 162

Figure 4.10: Schematic picture of pre-reactive complex between $\mathrm{HO} \bullet$ with acetate, R is
functional group 163
Figure 4.11: Schematic picture of transition state between $\mathrm{HO} \cdot$ with acetate, R is functional group 163

Figure 4.12: Experimentally obtained free energies of entropies versus theoretically calculated change in cavity, $\Delta V_{\text {cav }}, \AA^{3}$, and non-electrostatic energy of activation at G4 with the SMD model for series of acetate169

Figure 4.13: Charge distributions of reactants, transition states and products for the gaseous and aqueous phases $\mathrm{HO} \bullet$ reactions with acetate.

Figure 4.14: Charge distributions of reactants, transition states and products for the aqueous phases $\mathrm{HO} \cdot$ reactions with halogenated acetate173

Figure 4.15: Comparison of observed barrier height for the reactions of $\mathrm{HO} \bullet$ with a series of halogenated acetates in the absence of presence of explicit water molecule(s). Note that the transition state of the reaction of $\mathrm{HO} \bullet$ with $\mathrm{CHCl}_{2} \mathrm{COO}^{-}$could not be located.. 174

Figure 4.16: Optimized transition state for the reaction of $\mathrm{HO} \bullet$ with chloroacetate in the presence of explicit water molecule(s).

Figure 4.17: Charge distributions of reactants, transition states and products for the aqueous phases $\mathrm{HO} \bullet$ reactions with chloroacetate in the absence and presence of explicit water molecule(s). The transition state in the presence of one explicit water molecule shows three conformations

Figure 5.1: Aqueous phase free energy change profiles for the reactions that are initiated by $\mathrm{HO} \cdot$ 190

Figure 5.2: Aqueous phase free energy change profiles for $1,2-\mathrm{H}$ shift reaction of oxyl radical in the absence or presence of a water molecule191

Figure 5.3: Aqueous phase free energy change profiles for hydrolysis reaction of formaldehyde with one and two water molecules assisted.

SUMMARY

Emerging contaminants are defined as synthetic or naturally occurring chemicals or microorganisms that are not currently regulated but have the potential to enter the environment and cause adverse ecological and/or human health effects. With recent development in analytical techniques, emerging contaminants have been detected in wastewater, source water, and finished drinking water. These environmental occurrence data have raised public concern about the fate and ecological impacts of such compounds. Concerns regarding emerging contaminants and the many chemicals that are in use or production necessitate a task to assess their potential health effects and removal efficiency during water treatment.

Advanced oxidation processes (AOPs) are attractive and promising technologies for emerging contaminant control due to its capability of mineralizing organic compound via reactions with highly active hydroxyl radicals. However, the nonselective reactivity of hydroxyl radicals and the radical chain reactions make AOPs mechanistically complex processes. In addition, the diversity and complexity of the structure of a large number of emerging contaminants make it difficult and expensive to study the degradation pathways of each contaminant and the fate of the intermediates and byproducts. The intermediates and byproducts that are produced may pose potential effects to human and aquatic ecosystems. Consequently, there is a need to develop first-principle based mechanistic models that can enumerate reaction pathway, calculate concentrations of the byproducts, and estimate their human effects for both water treatment and reuse practices.

This dissertation develops methods to predict reaction rate constants for elementary reactions that are identified by a previously developed computer-based
reaction pathway generator. Many intermediates and byproducts that are experimentally identified for $\mathrm{HO} \bullet$ induced reactions with emerging contaminants include common lower molecular weight organic compounds on the basis of several carbons. These lower carbon intermediates and byproducts also react with $\mathrm{HO} \bullet$ at relatively smaller reaction rate constants (i.e., $k<10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) and may significantly affect overall performance of AOPs. In addition, the structures of emerging contaminants with various functional groups are too complicated to model. As a consequence, the rate constant predictors are established based on the conventional organic compounds as an initial approch.

A group contribution method (GCM) predicts the aqueous phase hydroxyl radical reaction rate constants for compounds with a wide range of functional groups. The GCM is a first comprehensive tool to predict aqueous phase hydroxyl radical reaction rate constants for reactions that include hydrogen-atom abstraction from a C-H bond and/or a O-H bond by hydroxyl radical, hydroxyl radical addition to a $\mathrm{C}=\mathrm{C}$ unsaturated bond in alkenes and aromatic compounds, and hydroxyl radical interaction with sulfur-, nitrogen-, or phosphorus-atom-containing compounds. The GCM shows predictability; factor of difference of 2 from literature-reported experimental values. The GCM successfully predicts the hydroxyl radical reaction rate constants for a limited number of emerging contaminants.

Linear free energy relationships (LFERs) bridge a kinetic property with a thermochemical property. The LFERs is a new proof-of-concept approach for $A b$ initio reaction rate constants predictors. The kinetic property represents literature-reported and our experimentally obtained hydroxyl radical reaction rate constants for neutral and ionized compounds. The thermochemical property represents quantum mechanically
calculated aqueous phase free energy of activation. Various $A b$ initio quantum mechanical methods and solvation models are explored to calculate the aqueous phase free energy of activation of reactantas and transition states. The quantum mechanically calculcated aqueous phase free energies of activation are within the acceptable range when compared to those that are obtained from the experiments. These approaches may be applied to other reaction mechanisms to establish a library of rate constant predictions for the mechanistic modeling of AOPs. The predicted kinetic information enables one to identify important pathways of AOP mechanisms that are initiated by hydroxyl radical, and can be used to calculate concentration profiles of parent compounds, intermediates and byproducts. The mechanistic model guides the design of experiments that are used to examine the reaction mechanisms of important intermediates and byproducts and the application of AOPs to real fields.

CHAPTER 1

INTRODUCTION

1.1 Significance and Objectives

Emerging contaminants are defined as synthetic or naturally occurring chemicals or microorganisms that are not currently regulated but have the potential to enter the environment and cause adverse ecological and/or human health effects. With recent improvements in analytical techniques (Richardson, 2009; 2004; 2003; 2001; Richardson and Ternes, 2005; Pertović et al., 2003; Koester et al., 2003; Vanderford et al., 2003), emerging contaminants have been detected in wastewater, source waters, and finished drinking water (Benotti et al., 2009; Pedersen et al., 2005; Kolpin et al., 2002). Several surveys on emerging contaminants found relatively high residual levels in the environment presumably due to runoff and discharge of municipal and industrial wastewater effluents (Phillips et al., 2010; USGS, 2009; Benotti et al., 2008; Conn, et al., 2006; Kolpin et al., 2002; Snyder et al., 2001; Halling-Sorensen et al., 1998). These environmental occurrence data have raised public concern about the fate and ecological impacts of such compounds (Bruce et al., 2010; Hayes et al., 2010; Snyder, 2008; Snyder et al., 2007; RNRF, 2006; Schwarzenbach et al., 2006; NRC, 1999). As a result of their ubiquity and persistence in the environment, it is an urgent task to assess their potential health effects and removal efficiency during water treatment.

Chemical oxidation and reduction processes have been used for many years to treat potable water, wastewater, contaminated groundwater, and various industrial wastewater streams. Several technologies that have shown promise to destroy many of the emerging organic contaminants in water are the so-called advanced oxidation
processes (AOPs) (e.g., hydrogen peroxide with ultraviolet photolysis $\left(\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}\right)$, ozone with hydrogen peroxide $\left(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\right)$, titanium dioxide with ultraviolet photolysis $\left(\mathrm{TiO}_{2} / \mathrm{UV}\right)$), which produce highly reactive hydroxyl radical $(\mathrm{HO} \bullet)$ at room temperature and atmospheric pressure (Hoigné, 1998; Glaze and Kang, 1989; Glaze et al., 1987). The $\mathrm{HO} \cdot$ is an electrophile that reacts rapidly and non-selectively with most electron-rich organic compounds, and is capable of mineralizing organic compound via radical chain reactions. The reported second-order $\mathrm{HO} \cdot$ reaction rate constants for most organic contaminants in water are on the order of $10^{7}-10^{9} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ (Buxton et al., 1988; Farhataziz and Ross, 1977), which are approximately three or four orders of magnitude higher than those of conventional oxidants employed in water treatment (Ikehata and Gamal El-Din, 2005a,b; von Gunten, 2003a; Deborde and von Gunten, 2008; Lee et al., 2008) .

AOPs are attractive technologies that may be used to control the emerging contaminants; however, the nonselective reactivity of $\mathrm{HO} \bullet$ and the radical chain reactions make AOPs mechanistically complex processes. In addition, the diversity and complexity of structure of a large number of emerging contaminants make AOPs difficult and expensive to study the degradation pathways of each contaminant and the fate of the intermediates and byproducts. For example, trichloroethylene (TCE) (Li et al., 2007; 2004), acetone (Stefan and Bolton, 1999), para-dioxane (p-dioxane) (Stefan and Bolton, 1998), and methyl tert-butyl ether (MtBE) (Stefan et al., 2000) destruction using $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{M} t \mathrm{BE}$ destruction using $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ (Kang et al., 1999; Liang, et al., 1998) have been examined in detail. These studies shed light on the detailed elementary reactions and the radical pathways in AOPs but are limited to only these contaminants.

The intermediates and byproducts that are produced may pose potential effects to human and aquatic ecosystems (Dodd et al., 2009). As a consequence, there is a need to develop a first-principle based mechanistic model that can enumerate reaction pathway, calculate concentrations of intermediates and byproducts, and estimate intermediates and byproducts and their human health effects for both water treatment and reuse practices. The increasing concerns about emerging contaminants make this requirement more urgent.

Figure 1.1 displays a basic flow diagram of the overall methodology for this work. The reaction pathway generator will enumerate all reaction possibilities that are based on the known reaction rules (see below for these). Either rate constant calculation or toxic screening modules will simplify the pathways by selecting reactions that have smaller reaction rates and intermediates that have high toxicity. Algorithms that can predict the reaction rate constants assign rate constants to the selected pathways. An algorithm will solve the ordinary differential equations (ODEs). The DGEAR algorithm (Hindmarsh and Gear, 1974) was successfully used to solve the ODEs for the $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). Solving these ODEs will simulate the concentration profiles of the parent compound, the selected intermediates, and final byproducts. Although detailed procedures vary for each module, Phaendtner and Broadbelt (2008a) demonstrated mechanistic modeling of the degradation of lubricating oils during the process of condensed-phase hydrocarbon autoxidation based on the automated mechanisms generation and structure-reactivity relationships (Phaendtner and Broadbelt, 2008b; 2007).

Figure 1.1: Skeleton of the modules and placement of this study

In previous research, a computerized pathway generator that predicts the degradation pathways by the $\mathrm{HO} \bullet$ initiated chain reactions in AOPs was developed (Li and Crittenden, 2009). The model was based on the general reaction rules that were discovered during past experimental research (Stefan et al., 2000; Stefan and Bolton, 1998; 2000; Bolton and Carter, 1994) as shown in Figure 1.2. Accordingly, the pathway generator enumerates possible intermediates and their associated reactions that are not able to be detected in the experiments. For example, the generated pathway for ethane contains 137 intermediates (molecules and radicals) and 3367 reactions. Some organic intermediate compounds (e.g. carboxylic acids) have lower reaction rate constants with HO• (i.e. $10^{6}-10^{7} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$) than the parent compounds. These intermediates require longer retention times and might impose potential risks to human health (e.g., haloacetic acids). In order to calculate the concentration profile, it is critical to utilize the reaction rate constants and the toxicity of intermediates that are predicted by the rate constant predictor and toxicity estimator, respectively, to include only important pathways.

Figure 1.2: General reaction mechanisms that is induced by $\mathrm{HO} \bullet$

The complexity of the pathway requires an algorithm that can calculate the rate constant to establish a library of reaction rate constant predictors for mechanistic modeling. Practically, although HO• reaction rate constants for many compounds have been measured experimentally and compiled in the critical review (Buxton et al., 1988), measuring the reaction rate constants for exited chemical compounds and many intermediates in different reaction mechanisms is far from complete. Greater than 50 million chemical compounds have been registered in chemical abstract services (CAS, 2010) and more than 40 million chemicals are commercially available (CAS, 2010), and concerns about emerging contaminants makes the task even more challenging if not impossible. In addition, no apparent consistent relations are observed between the rate constants and general physical chemical properties (e.g., Kow, Henry's constant). For example, Figure 1.3 plots Henry's constant and log Kow of 87 Contaminant Candidate List 3 organic compounds associated with literature-reported experimental $\mathrm{HO} \cdot$ reaction
rate constants. Adding to the difficulty of estimating the reaction rate constants, a compound generally reacts with $\mathrm{HO} \cdot$ via several elementary reactions. The measured reaction rate constants are overall rate constants instead of the rate constants for specific elementary reactions that are generated by the pathway generator. It should be noted that many intermediates and byproducts that are experimentally identified for reactions of $\mathrm{HO} \bullet$ with emerging contaminants include common lower molecular weight organic compounds on the basis of several carbons (Cooper et al., 2009; Stefan et al., 2000; Stefan and Bolton, 1998; 2000). Considering that these lower carbon intermediates and byproducts also react with $\mathrm{HO} \bullet$ at relatively smaller reaction rate constants (i.e., $k<10^{9}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$) and may significantly affect overall performance of AOP, the rate constant predictor should be established based on the conventional organic compounds as an initial approch.

Figure 1.3: Comparison of Henry's constant, $\log \mathrm{K}_{\mathrm{OW}}$, and $\mathrm{HO} \cdot$ rate constants for 87 organic compounds: \square : the magnitude of k_{HO}. is $10^{7 \text { th }}$ order, $\circ: 10^{8 \text { th }}$ order $\Delta: 1.0 \sim 5.0 \times 10^{9}, \Delta: \sim 5.0 \times 10^{9}$ and \times : unknown rate constants calculated by the group contribution method

Several robust tools have been developed to predict radical reaction rate constants for gaseous phase reactions, including: (1) a group contribution method (GCM) (Atkinson, 1986; 1987; Kwok and Atkinson, 1995), (2) quantitative structure-activity relationships (QSARs) (Wang et al., 2009; Gramatica et al., 2004), (3) bond dissociation energies (BDEs) (Heicklen, 1981), (4) computational molecular orbital OH radical (MOOH) methods (Klamt, 1996; Böhnhardt et al., 2008), (5) extrapolation of transition state theory (Cohen, 1982), and (6) neural networks (Bakken and Jurs, 1999). In addition, with use of quantum mechanical methods, it has become possible to calculate the reaction rate constants for various gas phase radical reactions. However, for aqueous phase, only a few studies have developed empirical models for $\mathrm{HO} \cdot$ reaction rate constants, including the GCM (Monod et al., 2005), correlations of bond dissociation energies (BDEs) with Arrhenius activation energy (Herrmann, 2003; Gligorovski and Herrmann, 2004) and neural networks (Dutot et al., 2003). There are only a few theoretical studies that have focused on predicting $\mathrm{HO} \cdot$ reaction rate constants and other radical reactions in AOPs (Dematteo et al., 2005; Nicolaescu et al., 2005; Pramod et al., 2006; McKee, 2003; Bhat et al., 2004). These studies shed light on detailed reactivity trends for relatively larger molecules but they may not be applicable to a comprehensive model to predict rate constants for the reactions that take place in AOPs.

This study will explore methods to predict the reaction rate constants for the predicted reaction pathways in the aqueous phase AOPs. First, we will develop a GCM for the aqueous phase $\mathrm{HO} \cdot$ reaction rate constants. Data base of literature-reported experimental $\mathrm{HO} \cdot$ reaction rate constants will be compiled for the GCM. Second, we
will develop linear free energy relationships (LFERs) to relate the logarithm of aqueous phase HO• reaction rate constants with free energies of activation for neutral compounds. The aqueous phase free energy of activation will be calculated using $A b$ initio quantum mechanical methods for the gaseous phase and a solvation method to consider the impact of water. Several solvation methods will be compared using implicit solvation models and statistical solvation model. The quantum mechanically calculated free energy of activation in the aqueous phase will be compared to those that are estimated from the experimentally obtained Arrhenius activation energy and frequency factor. Third, we will examine temperature dependent-reaction rate constants for ionized compounds (i.e., a series of haloacetate ions). The thermochemical properties that are obtained from experiments will be compared to the theoretical calculations. We will also develop the LFERs for the ionized compounds. Once the LFERs are validated with the experimentally obtained values, these LFERs will predict the reaction rate constants for compounds that have not been examined experimentally. The uses of the rate constants predictors are two fold: they enable kinetic modeling, and they indicate the relative importance of pathways.

This study will help engineers and researchers gain a quantitative insight of $\mathrm{HO} \cdot$ induced reactions. Predicting reaction rate constant is important for quantifying the efficacy of AOPs as alternative treatment processes and in developing criteria such as reaction time, dose or residual requirements for AOPs optimization. The predicted overall $\mathrm{HO} \cdot$ reaction rate constants can also be used as a screening tool associated with apparent removal efficiency for a newly identified contaminant during water treatment processes where $\mathrm{HO} \bullet$ is involved. For engineering design, it will free engineers from
complex chemistry details and identify the pitfalls of AOP's technology. Understanding and developing algorithms that can predict the reaction rate constants will help researchers explore chemical kinetics and the practical design of AOPs. Sophisticated quantum mechanical theories help engineers understanding the chemical disciplines and fundamental scientific knowledge. The theoretical studies will give a benchmark to the experimental investigation and engineering design, and improve in understanding AOPs.

1.2 Structure of This Dissertation

This dissertation consists of the introductory part, three main chapters, future studies, and appendices. After this introductory chapter, Chapter 2 discusses development of a group contribution method to predict the aqueous phase $\mathrm{HO} \bullet$ reaction rate constants. The work from this chapter has been published and presented in Minakata et al., (2009; 2008). In Chapter 3, linear free energy relationships are developed for neutral compounds. A part of the work from this chapter has been submitted and will be presented in Minakata and Crittenden (2010a,b). Chapter 4 addresses measurement of temperature-dependent $\mathrm{HO} \bullet$ reaction rate constants for ionic compounds and development of LFERs. This Chapter includes an update of the GCM. The work from this chapter will be presented and plans to be submitted in Minakata and Crittenden (2010c) and Minakata et al., (2010), respectively. Implications and future studies will be addressed lastly. Appendices cover the detailed computational codes, data, procedures of calculations, and optimized molecular structure of each compound that is determined in this study.

1.3 Literature Cited

Benotti, M. J.; Trenholm, R. A.; Vanderford, B. J.; Holady, J. C.; Stanford, B. D.; Snyder, S. A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2008, 43(3), 597-603.

Bolton, J. R.; Carter, S. R. Homogeneous photodegradation pf pollutants in contaminated water: An introduction, Chap. 33, in G. R. Helz, R. G. Zepp, and D. G. Crosby (eds), Aquatic and Surface Photochemistry, CRC Press, Boca Raton, FL.

Bruce, G.M.; Pleus, R.C.; Snydere, S.A. Toxicological relevance of pharmaceuticals in drinking water. Environ. Sci. Technol. 2010. ASAP.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $\left(\cdot \mathrm{OH} / \bullet \mathrm{O}^{-}\right)$in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17 (2) 513-795.

Chemical Abstract Services (CAS). A division of the American Chemical Society. http://www.cas.org/ (accessed September 30, 2009).

Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L. Occurrence and fate of organic contaminants during onsite wastewater treatment. Environ. Sci. Technol. 2006, 40, 73587366.

Cooper, W.J.; Cramer, C.J.; Martin, N.H.; Mezyk, S.P.; O’Shea, K.E.; von Sonntag, C. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reduction processes in aqueous solutions. Chem. Rev. 2009, 109(3), 1302-1345.

Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review. Wat.Res.2008, 42, 13-51.

Dodd, M.C.; Kohler, H-P.E.; von Gunten, U. Oxidation of antibacterial compounds by ozone and hydroxyl radical: Elimination of biological activity during aqueous ozonation processes. Environ. Sci. Technol. 2009, 43, 2498-2504.

Farhataziz; Ross, A.B. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions. NSRDS-NBS 59. 1977, 1-113.

Glaze, W. H.; Kang, J-W.; Chapin, H. D. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone. Sci. Eng. 1987, 9, 335-352.

Glaze. W. H.; Kang, J-W. Advaced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res. 1989, 28, 1580-1587.

Halling-Sorensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Holten Lützhoft, H.C.; Jøgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment - a review. Chemosphere. 1998, 36(2), 357-393.

Hayes, T.B.; Khoury, V.; Narayan, A.; Nazir, M.; Park, A.; Brown, T.; Adame, L.; Chan, E.; Buchholz, D.; Stueve, T.; Gallipeau, S. Atrazine induces complete feminization and chemical castration in male African cawed frogs. PNAS, 2010, 107(10), 4612-4617.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hoigné, J. Chemistry of aqueous ozone, and transformation of pollutants by ozonation and advanced oxidation processes. In: J. Hubrec, editor. The handbook of environmental chemistry quality and treatment of drinking water. Berlin: Springer, 1998.

Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozonebased advanced oxidation processes: A review (part I). Ozone Sci and Eng. 2005, 27, 83114.

Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozonebased advanced oxidation processes: A review (part II). Ozone Sci and Eng. 2005, 27, 173-202.

Kang, J-W.; Angelalin, H-M.; Hoffmann, M. Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of $\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$, frequency and power density. Environ. Sci. Technol. 1999, 33, 3199-3205.

Kang, J-W.; Angelalin, H-M.; Hoffmann, M. Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of $\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$, frequency and power density. Environ. Sci. Technol. 1999, 33, 3199-3205.

Koester, C.J.; Simonich, S.L.; Esser, B.K. Environmental analysis. Anal. Chem. 2003, 75, 2813-2829.

Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L. B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Envrion. Sci. Technol. 2002, 36, 1202-1211.

Lee, Y.; Escher, B.I.; von Gunten, U. Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ. Sci. \& Technol. 2008, 42(17), 6333-6339.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes. Environ. Sci. \& Technol. 2009, 43(8), 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. Wat. Res. 2008, 42(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ advanced oxidation process: product study and kinetic modeling. Environ. Sci. Technol. 2007, 41, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. Environ. Sci. Technol. 2004, 38, 6685-6693.

Liang, J.; Palencia, S. L.; Yates, S. R.; Davis, K. M.; Wolfe, L. R. Oxidation of methyl tertiary-butyl ether (MTBE) by ozone and peroxone processes. J. AWWA, 1998, 91 (6), 104-114.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical ($\mathrm{HO} \cdot{ }^{\bullet}$) reaction rate constants. Environ. Sci. \& Technol. 2009, 43, 6220-6227.

Minakata, D.; Li, K.; Crittenden, J.; Westerhoff, P. Development of Group Contribution Method (GCM) for Hydroxyl Radical (HO•) Reaction Rate Constant in the Aqueous Phase. The $14^{\text {th }}$ International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-14). Town \& Country Resort, San Diego, California, USA. September 22-25, 2008.

Minakata, D.; Crittenden, J. Quantitative Understanding of Advanced Oxidation Processes for the Treatment of Emerging Contaminants. IWA World Water Congress \& Exhibition. Montreal, Canada, September 19-24, 2010a.

Minakata, D.; Crittenden, J. Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants and the Free Energy of Activation. Environ. Sci. \& Technol. 2010b. Submitted.

Minakata, D.; Crittenden, J. Linear Free Energy Relationship (LFER) for the Aqueous Phase Hydroxyl Radical (HO•) Reactions with Ionized Species: Experimental and Theoretical Studies. $240^{\text {th }}$ American Chemical Society (ACS) National Meeting \& Exposition, Boston, Massachusetts. August 22-26, 2010c.

Minakata, D.; Song, W.; Crittenden, J. Temperature-dependent aqueous phase hydroxyl radical reaction rate constants with ionized compounds: Experimental and theoretical studies. Environ. Sci. \& Technol. 2010. In preparation.

NRC, 1999, Hormonally Active Agents in the Environment, NAP, Washington, D.C.
NRC, 1999, Identifying Future Drinking Water Contaminants, NAP, Washington, D.C.
Pedersen, J.A.; Soliman, M.; Suffet, I.H. Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J. Agric. Food Chem. 2005, 53, 1625-1632.

Pertović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 2003, 22(10), 685696.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. Ind. Eng. Chem. Res. 2008a, 47, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 2008b, 47, 2886-2896.

Pfaendtner, J.; Broadbelt, L.J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. Chem. Eng. Sci. 2007, 62, 5232-5239.

Phillips, P.J.; Smith, S.G.; Kolpin, D.W.; Zaugg, S.D.; Buxton, H.T.; Furlong, E.T.; Esposito, K.; Stinson, B. Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Technol. 2010, 44, 4910-4916.

Renewable Natural Resources Foundations. Environmental Impacts of Emerging Contaminants. Renewable Resource Journal. 2006, 24(1), 1-36.

Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645-4677.

Richardson, S.D. Environmental mass spectrometry: Emerging contaminants and current issues. Anal. Chem. 2004, 76, 3337-3364.

Richardson, S.D. Mass spectrometry in environmental sciences. Chem. Rev. 2001, 101, 211-254.

Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2003, 2831-2857.

Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2005, 77, 3807-3838.

Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science. 2006, 313, 1072-1077.

Snyder, S. A.; Wert, E. C.; Hongxia, L.; Westerhoff, P.; Yoon, Y. Removal of EDCs and Pharmaceuticals in Drinking and Reuse Treatment Processes. AWWARF Project, 2007.

Snyder, S.A.; Villeneuve, D.L.; Snyder, E.M.; Giesy, J.P. Identification and quantification of estrogen receptor agonists in wastewater effluents. Environ. Sci. \& Technol. 2001, 35, 3620-3625.

Snyder, S.A. Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone. Sci. Eng. 2008, 30, 65-69.

Stefan, M. I.; Bolton, J. R. Mechanism of the degradation of 1, 4-Dioxane in dilute aqueous solution using the UV/hydrogen peroxide process. Environ. Sci.\& Technol. 1998, 32, 1588-1595.

Stefan, M. I.; Bolton, J. R. Reinvestigation of the acetone degradation mechanisms in dilute aqueous solution by the UV/H2 O_{2} process. Environ. Sci. \& Technol. 1999, 33, 870873.

Stefan, M. I.; Mack, J.; Bolton, J. R. Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O O_{2} process. Environ. Sci. \& Technol. 2000, 34, 650658.

Hopple, J.A.; Delzer, G.C.; Kingsbury, J.A. Anthropogenic organic compounds in source water of selected community water systems that use groundwater, 2002-05. Scientific Investigations Report 2009-5200. U.S.Department of the Interior and U.S. Geological Survey 2009.

Vanderford, B.J.; Pearson, R.A.; Rexing, D.J.; Snyder, S.A. Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry. Anal Chem. 2003, 75(22):6265-74.
von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and products formation. Wat. Res. 2003a, 37, 1443-1467.

CHAPTER 2

Development of a Group Contribution Method to Predict

 Aqueous Phase Hydroxyl Radical Reaction Rate Constants\dagger work from this chapter has been published and presented in the following citation:
Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environ. Sci. \& Technol. 2009, 43, 6220-6227.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The $16^{\text {th }}$ International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). Novermber 1518, 2010. San Diego, California, USA.

Minakata, D.; Li, K.; Crittenden, J.; Westerhoff, P. Development of Group Contribution Method (GCM) for Hydroxyl Radical (HO•) Reaction Rate Constant in the Aqueous Phase. The $14^{\text {th }}$ International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-14). September 22-25, 2008. Town \& Country Resort, San Diego, California, USA.

2.1 Abstract

Hydroxyl radical $(\mathrm{HO} \bullet)$ is a strong oxidant that reacts with electron-rich sites of organic compounds and initiates complex chain mechanisms. In order to help understand the reaction mechanisms, a rule-based model was previously developed to predict the reaction pathways. For a kinetic model, there is a need to develop a rate constant estimator that predicts the rate constants for a variety of organic compounds. In this study, a group contribution method (GCM) is developed to predict the aqueous phase $\mathrm{HO} \cdot$ reaction rate constants for the following reaction mechanisms: (1) H -atom abstraction, (2) $\mathrm{HO} \cdot$ addition to alkenes, (3) $\mathrm{HO} \bullet$ addition to aromatic compounds, and (4) $\mathrm{HO} \bullet$ interaction with sulfur (S)-, nitrogen (N)- or phosphorus (P)-atom-containing compounds. The GCM hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO^{\bullet}, which can be estimated using the Arrhenius activation energy, E_{a}, and temperature. Each E_{a} for those elementary reactions can be comprised of two parts: (1) a base part that includes a reactive bond in each reaction mechanism and (2) contributions from its neighboring functional groups.

The GCM includes 66 group rate constants and 80 group contribution factors, which characterize each $\mathrm{HO} \cdot$ reaction mechanism with steric effects of the chemical structure groups and impacts of the neighboring functional groups, respectively.

Literature-reported experimental $\mathrm{HO} \cdot$ rate constants for 310 and 124 compounds were used for calibration and prediction, respectively. The genetic algorithms were used to determine the group rate constants and group contribution factors. The group contribution factors for H -atom abstraction and $\mathrm{HO} \bullet$ addition to the aromatic compounds were found to linearly correlate with the Taft constants, σ^{*}, and electrophilic substituent
parameters, σ^{+}, respectively. The best calibrations for 83% (257 rate constants) and predictions for 62% (77 rate constants) of the rate constants were within 0.5 to 2 times the experimental values. This accuracy may be acceptable for model predictions of the advanced oxidation processes (AOPs) performance depending on how sensitive the model is to the rate constants.

2.2 Introduction

The hydroxyl radical (HO^{\bullet}) is a reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites of organic contaminants. It is the active species that potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{TiO}_{2}$) and natural waters (Westerhoff, et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Because of the concerns of emerging contaminants and the large number of chemicals that are in use or being produced (CAS, 2009), there is a need for kinetic models that can quickly assess their removal by AOPs. The three critical components for building a kinetic model to predict AOPs performance are (1) numerical methods that solve ordinary differential equations (ODEs), (2) algorithms that can predict reaction pathways, and (3) algorithms that can predict reaction rate constants. Many kinetic models have been built for known reaction pathways (Li et al., 2008; 2007; Stefan et al., 1996; Crittenden et al., 1999). Recently, a model that can generate reaction pathways for the aqueous phase AOPs has been developed (Li and Crittenden, 2009). Yet the capability of generating rate constants for the aqueous phase radical reactions is still limited because of the complexity of radical chemistry.

A number of studies have been conducted to predict the $\mathrm{HO} \bullet$ reaction rate constants in the gaseous phase, including 1) a group contribution method (GCM) (King et al., 1999; Atkinson, 1987; Kwok and Atkinson, 1995), 2) quantitative structure-activity relationships (QSARs) (Wang et al., 2009; Öberg, 2005; Gramatica et al., 2004; Medven et al., 1996), 3) bond dissociation energies (BDEs) (Heicklen, 1981), 4) computational molecular orbital OH radical (MOOH) methods (Klamt, 1996; Böhnhardt et al., 2008), 5) extrapolation of transition state theory (Cohen, 1982), 6) correlation with ionization potential (IP) (Percival et al., 1995; Grosjean and Williams, 1992) and 7) neural networks (NNs) (Bakken and Jurs, 1999). When the experimental rate constants for compounds with different functional groups were available, the GCM was proven to be robust for the prediction of gas phase rate constants for compounds with a wide range of functional groups. Atkinson's GCM is one of the most widely accepted methods and is implemented in the U.S. Environmental Protection Agency software, AOPWIN (US EPA, 2000). In their method, the $\mathrm{HO} \cdot$ rate constant was determined by the reaction mechanism and effect of neighboring functional group of compound of interest. For each reaction mechanism such as H -atom abstraction, $\mathrm{HO} \cdot$ addition, and interactions of $\mathrm{HO} \cdot$ with S-, N-, or P-atom-containing compounds, there were "group rate constants" that represented the reaction mechanism and "substitutent factors" that represented the effects of neighboring and next-nearest neighboring functional groups. Using this GCM, the gaseous-phase rate constants at 298 K of $\sim 90 \%$ of approximately 485 organic compounds were predicted within a difference of a factor of 2 from the experimental values (Kwok and Atkinson, 1995).

Although the GCM is successful in the gaseous phase, applying it to the aqueous phase requires carefully discerning the mechanistic differences between aqueous and gaseous phase reactions. It is reported that for the H -atom abstraction involving $\mathrm{C}-\mathrm{H}$ bonds, relative solvent effects are usually much smaller as compared to other reaction mechanisms (e.g., β-scission) (Avila et al., 1993) (which is why the gaseous phase C-H bond strengths in BDE can be used to rationalize reactions in solution). For the aqueous phase, uncertainties still remain associated with long/short range interactions between solvent and solute in the first solvation shell and on its boundary. Figure 2.1 compares the $\mathrm{HO} \cdot$ reaction rate constants in the gaseous and aqueous phases for a total of 92 organic compounds. A rough linear correlation was found for the $\mathrm{HO} \cdot$ rate constants between two phases. The linearity for alkanes is better than that for oxygenated aliphatic compounds (e.g. alcohol, ether, ester). In general, these polar compounds form hydrogen bond in the aqueous phase, which makes the adjacent $\mathrm{C}-\mathrm{H}$ bonds vulnerable and the aqueous phase reactions distinctive from the gaseous phase ones. In addition, there are significant mechanistic differences of the formation of the transition state in two phases. Solvent cage (Persico and Granucci, 2007) during the solvation process affects the free energy of activation of reactions (Cramer, 2004) and, thus, changes the rate constant. The impact varies significantly for different radicals and functional groups.

Figure 2.1: Comparison of the aqueous and gaseous phase $\mathrm{HO} \bullet$ reaction rate constants. The unit of the gaseous phase rate constant was converted from $1 / \mathrm{molecule} / \mathrm{cm}^{3} / \mathrm{s}$ to 1/M/s

There are only a few studies concerned with the prediction of aqueous phase reaction rate constants in AOPs. Monod et al. (2005) applied the GCM to estimate the aqueous phase $\mathrm{HO} \cdot$ rate constants for the oxygenated aliphatic compounds. They reported that 84% of their 128 calculated data were within a difference of a factor of 5 from the experimental values. However, the parameters that represented the property of functional groups in their GCM did not follow trends that would be expected on the basis of the reaction mechanisms. For example, their "substituent factors at 298 K " of $-\mathrm{CH}_{3}$ and $-\mathrm{CH}_{2}-$ groups were different in magnitude of an order (i.e., 1.00 and 11.13, respectively), while -OH group has 6.76 of "substituent factor at 298 K ". Herrmann (2003) used the correlation between BDE (uncertainty of $\pm 8.4 \mathrm{~kJ} / \mathrm{mol}$) of the weakest C-

H bond broken and Arrhenius activation energy, E_{a}, and obtained the Evans and Polanyi relationship for 16 oxygenated compounds with a 0.75 correlation coefficient. Dutot et al. (2003) used an artificial neural network and multilayer perception (MLP) to estimate $\mathrm{HO} \cdot$ rate constants, and 87% of the MLP predictions were within a factor of 2 from the experimental data.

In this study, a GCM is developed to predict the aqueous phase $\mathrm{HO} \cdot$ rate constants that integrate the reaction mechanisms in the aqueous phase and the essential features of Atkinson's GCM. The potential errors and limitations of the GCM will be discussed herein.

2.3 Development of the Group Contribution Method

The GCM is based on Benson's thermochemical group additivity (Benson, 1976).
It hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving $\mathrm{HO} \bullet$, which can be estimated using E_{a}. For each reaction mechanism, there is a base activation energy, E_{a}^{0}, and a functional group contribution of activation energy, $E_{a}^{\mathrm{R}_{i}}$, due to the neighboring (i.e., α position) and/or the next nearest neighboring (i.e., β-position) functional group (i.e., R_{i}). These contributions to the rate constant can be parameterized and determined empirically when sufficient rate constant data are available.

The GCM considers four reaction mechanisms that $\mathrm{HO} \bullet$ initiates in the aqueous phase, which include (1) H -atom abstraction, (2) $\mathrm{HO} \cdot$ addition to alkenes, (3) $\mathrm{HO} \cdot$ addition to aromatic compounds, (4) $\mathrm{HO} \bullet$ interaction with sulfur (S)-, nitrogen $(\mathrm{N})-$, or phosphorus (P)-atom-containing compounds. Accordingly, an overall reaction rate constant, $k_{\text {overall, }}$, may be given in equation (2.1).

$$
\begin{equation*}
k_{\text {overall }}=k_{\text {abs }}+k_{\text {add-alkene }}+k_{\text {add-aromatic }}+k_{\text {int }} \tag{2.1}
\end{equation*}
$$

where, $k_{\text {abs }}, k_{\text {add-alkene }}, k_{\text {add-aromatic }}$, and $k_{\text {int }}$ are the rate constants for the aforementioned reaction mechanisms $1-4$, respectively. The manner in which these rate constants are determined is discussed in the following section.

2.3.1 Hydrogen-atom Abstraction

For H -atom abstraction, the active bond is a $\mathrm{C}-\mathrm{H}$ bond. According to the functional groups on the C atom, there are primary, secondary, and tertiary $\mathrm{C}-\mathrm{H}$ bond(s) except in the special case of methane. Therefore, the fragments of a molecule are $\mathrm{CH}_{3} \mathrm{R}_{1}$, $\mathrm{CH}_{2} \mathrm{R}_{1} \mathrm{R}_{2}$, and $\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$, where R_{i} is a functional group ($i=1-3$). Each of the fragments corresponds to a partial rate constant $k_{\mathrm{CH}_{3} \mathrm{R}_{1}}, k_{\mathrm{CH}_{2} \mathrm{R}_{1} \mathrm{R}_{2}}$, and $k_{\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}}$, respectively. The E_{a} for the reaction of $\mathrm{HO} \cdot$ is affected by the $\mathrm{C}-\mathrm{H}$ bond itself and adjacent functional group(s). The contribution that results from the C-H bond to the E_{a} is defined as base activation energy, E_{a}^{0}, while the contribution of the functional groups is defined as a group contribution parameter, $E_{a, \text { abs }}^{\mathrm{R}_{i}}$, due to the functional group R_{i} for H -atom abstraction. For example, the base activation energy for H -atom abstraction from one of the primary C-H bonds is $E_{a, \text { prim }}^{0}$. The $E_{a, \text { abs }}^{\mathrm{R}_{i}}$ indicates the electron-donating and withdrawing ability of the functional group. An electron-donating functional group decreases the E_{a}^{0} and, hence, increases the overall reaction rate constant and vice versa. Accordingly, the partial rate constant for the fragmented part, $\mathrm{CH}_{3} \mathrm{R}_{1}$, can be written as below

$$
\begin{equation*}
k_{\mathrm{CH}_{3} \mathrm{R}_{1}}=3 A_{\mathrm{prim}} e^{-\frac{E_{a, \text { piim }}^{0}+E_{a, \text { Rebs }}^{\mathrm{R}}}{R T}} \tag{2.2}
\end{equation*}
$$

where 3 is the amount of primary C-H bonds, $A_{\text {prim }}$ denotes the Arrhenius frequency factor for the reaction of $\mathrm{HO} \cdot$ with $\mathrm{CH}_{3} \mathrm{R}_{1}, R$ is the universal gas constant, and T denotes absolute temperature.

Similarly, the partial rate constants for other fragmented parts $\mathrm{CH}_{2} \mathrm{R}_{2}$ and $\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$ are expressed in equations (2.3) and (2.4) using the corresponding frequency factors, $A_{\text {sec }}$ and $A_{\text {tert, }}$, and group contribution parameters, $E_{a, \text { abs }}^{\mathrm{R}_{2}}$ and $E_{a, \text { abs }}^{\mathrm{R}_{3}}$, respectively.
$k_{\mathrm{CH}_{2} \mathrm{R}_{1} \mathrm{R}_{2}}=2 A_{\mathrm{sec}} e^{-\frac{E_{a, s e c}^{0}+E_{a, \text { ats }}^{\mathrm{R}_{1}}+E_{a, \text { ats }}^{\mathrm{R}}}{R T}}$
$k_{\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}}=A_{\text {tert }} e^{-\frac{E_{a, \text { ere }}^{0}+E_{a, a \text { ase }}^{\mathrm{R}}+E_{a, \text { abs }}^{\mathrm{R}}}{R T}+E_{a, a \text { abs }}^{\mathrm{R}_{3}}}$
However, for equations (2.2) - (2.4), the functional group contribution is ignored for cases where the neighboring functional groups have no effect on the H -atom abstraction (i.e., $E_{a, \mathrm{abs}}^{-\mathrm{H}}$ is zero, where a valence bond of the H -atom is expressed as a line before H).

The group rate constants that represent H -atom abstraction from the primary, secondary, and tertiary C-H bond are defined as $k_{\text {prim }}^{0}, k_{\text {sec }}^{0}$, and $k_{\text {tert }}^{0}$ and are expressed in equations (2.5)-(2.7).
$k_{\text {prim }}^{0}=A_{\text {prim }}^{0} e^{-\frac{E_{\text {a, prim }}^{0}}{R T}}$
$k_{\mathrm{sec}}^{0}=A_{\mathrm{sec}}^{0} e^{-\frac{E_{a, s \mathrm{sec}}^{0}}{R T}}$
$k_{\text {tert }}^{0}=A_{\text {tert }}^{0} e^{-\frac{E_{a, t e r t}^{0}}{R T}}$
In addition, the group rate constant $k_{\mathrm{R}_{4}}$ is defined for the $\mathrm{HO} \bullet$ interaction with the functional group R_{4} (e.g., - OH and -COOH). The detailed discussions for R_{4} will be
given in the following sections. The group contribution factor, $X_{\mathrm{R}_{i}}$, that represents the influence of functional group R_{i} is defined in equation (2.8).
$X_{\mathrm{R}_{i}}=e^{-\frac{E_{a, \text { abs }}^{R_{i}}}{R T}}$
Because each reaction is independent of one another, the rate constant for H -atom abstraction, $k_{\text {abs }}$, may be written as the sum of the partial rate constants
$k_{\mathrm{abs}}=3 \sum_{0}^{I} k_{\mathrm{prim}}^{0} X_{\mathrm{R}_{1}}+2 \sum_{0}^{J} k_{\mathrm{sec}^{0}}^{0} X_{\mathrm{R}_{1}} X_{\mathrm{R}_{2}}+\sum_{0}^{K} k_{\mathrm{tert}}^{0} X_{\mathrm{R}_{1}} X_{\mathrm{R}_{2}} X_{\mathrm{R}_{3}}+k_{\mathrm{R}_{4}}$
where, I, J, and K denote the number of the fragments $\mathrm{CH}_{3} \mathrm{R}_{1}, \mathrm{CH}_{2} \mathrm{R}_{2}$, and $\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$, respectively. Equation (2.10) shows an example of the rate constant calculation for 1,2-dichloro-3-bromopropane $\left(\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CHCl}-\mathrm{CH}_{2} \mathrm{Br}\right)$. The detailed definitions of the functional groups will be given in the Results and Discussions.

$$
\begin{equation*}
k_{\text {overall }}=2 k_{\mathrm{sec}}^{0} X_{-\mathrm{Cl}} X_{-\mathrm{CHCl}}+k_{\mathrm{tert}}^{0} X_{-\mathrm{Cl}} X_{-\mathrm{CH}_{2} \mathrm{Cl}} X_{-\mathrm{CH}_{2} \mathrm{Br}}+2 k_{\mathrm{sec}}^{0} X_{-\mathrm{Br}} X_{-\mathrm{CHCl}} \tag{2.10}
\end{equation*}
$$

Rate constant additivity can be an important concern. To investigate this, the experimental rate constants for the linear and longer chain compounds with some functional groups were compared with the number of $-\mathrm{CH}_{2}$ - alkyl functional group as shown in Figure 2.2. The linear relationship was observed, and it verified the rate constant additivity. For nonlinear compounds, nonadditive effects arise from different contributions to entropy of activation (Cohen and Benson, 1987) and hence affect A. Generally, A can be assumed to be constant for the same reaction mechanism because intrinsic entropy due to translation and rotation can be assumed to be constant. Strictly speaking, however, moments of inertia of primary, secondary, and tertiary C-H bond would be different and thus affect entropy (Cohen, 1991). Although this difference is insignificant when compared to other factors such as the impacts of neighboring
functional groups (Cohen and Benson, 1987), the GCM considers different $A_{\text {prim }}, A_{\text {sec }}$, and $A_{\text {tert. }}$ Therefore, this should be sufficient to treat nonlinear compounds.

Figure 2.2: The experimental $\mathrm{HO} \cdot$ reaction rate constants as a function of the number of CH_{2} - alkyl functional group for some functional groups. The chemical formula is expressed as $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n}-\mathrm{R}$, where R is $-\mathrm{CH}_{3},-\mathrm{OH},-\mathrm{COOH},-\mathrm{NH}_{2},-\mathrm{CN},-\mathrm{CHO},-\mathrm{Cl}$, and -Br , for alkane, alcohol, carboxylic, amine, cyano, aldehyde, chlorine, and bromine, respectively, and n is the number of $-\mathrm{CH}_{2}$ - alkyl functional groups. *There are only two rate constants available for -Cl .

2.3.2 HO• Addition to Alkenes

Detailed mechanisms of $\mathrm{HO} \cdot$ addition to alkene in the aqueous phase have not been elucidated yet. It is expected that molecular solvation affects the E_{a} and water molecules interact with the $\mathrm{HO} \bullet$ approaching the carbon double bonds. Nevertheless, it can be a reasonable assumption that there is little difference in the major reaction mechanisms between the aqueous and gaseous phases (Singleton and Cvetanović, 1976; Davey et al., 2004; Getoff, 1991). As postulated by Cvetanović (1976), the reactions
between $\mathrm{HO} \cdot$ and alkene proceeds via a π complex which is initiated to loose association of $\mathrm{HO} \cdot$ to the π-electron cloud spanning the double bond. Recent observation by infrared spectroscopy suggests a T-shaped reactant complex between $\mathrm{HO} \cdot$ and acetylene (the hydrogen of $\mathrm{HO} \bullet$ pointing toward the alkene) (Davey et al., 2004). Several quantum calculations on $\mathrm{HO} \cdot$ addition to alkene in the gaseous phase supports the general mechanisms of the $\mathrm{HO} \bullet$ addition on π bonds (Greenwald et al., 2005). The initial transition reaction of $\mathrm{HO} \cdot$ with alkene is via a barrier-less association reaction followed by an addition on the double bond through a transition state slightly above the π-complex energy (Peeters et al., 2007). Villà et al. (1997) found that there is a correlation between activation energy and energy at a saddle point of entrance channel relative to reactants. The negative energy on the saddle point indicates that there is a second transition state in some energy range near the reaction threshold. On the first saddle point (i.e. inner transition state), the bottleneck at the high energies is dominant, whereas on the second saddle point (i.e. outer transition state), the bottleneck at the low energies is dominant. At the first transition state, the rate of $\mathrm{HO} \cdot$ addition can be significantly affected by the polar effect of the functional group. If the functional group at the neighboring carbon atom is electron-donating group (e.g. $-\mathrm{CH}_{3}$), the addition reaction of $\mathrm{HO} \cdot$ is enhanced and the vise-versa in case of the electron-withdrawing group.

Although there are many explanations in terms of the differences in stabilities of the newly formed radical centered, it is not convincing because the stabilities of the radicals formed play only a minor role in determining the rate of $\mathrm{HO} \bullet$ addition to alkenes in case that the alkene functional groups are varied. Consequently, the functional groups
exert polar effects of similar magnitude reflecting to a first approximation only the difference in the steric effects of the functional groups. In addition, the functional groups at a carbon atom undergoing attack in the α-position have the different effects to the $\mathrm{HO} \bullet$ addition than those at the neighboring carbon atom in the β-position.

Considering a basic $\mathrm{C}=\mathrm{C}$ double bond structure (i.e., one σ-bond and one π-bond, $>\mathrm{C}=\mathrm{C}<), \mathrm{HO} \bullet$ has two places to add. The probability of $\mathrm{HO} \bullet$ addition to either of the carbons depends on the functional groups bonded to the unsaturated carbons. Except in the special case of ethylene, six basic structures associated with the number of H -atoms and their positions are considered, including cis and trans conformations (i.e., $>\mathrm{C}=\mathrm{C}<$, $\mathrm{H}>\mathrm{C}=\mathrm{C}<, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}<, \mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H}($ cis $), \mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H}($ trans $)$, and $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}<\mathrm{H}\right)$. If the base structure is symmetrically associated with the number and position of hydrogen atom(s), the probability of $\mathrm{HO} \cdot$ addition to two unsaturated carbons is assumed to be identical, whereas it is different for the asymmetrical base structure. This treatment reflects the differences in the A resulting from regioselectivity. Accordingly, the group rate constant, $k_{\text {(structure)-h }}^{0}$, and group contribution factor, $Y_{\mathrm{R}_{l}}$, for $\mathrm{HO} \cdot$ addition to one of the base structures may be written using Arrhenius frequency factor, $A_{\text {(structure)-h }}^{0}$, and group contribution parameter, $E_{a, \text { add-alkene }}^{\mathrm{R}_{l}}$, of functional group $\mathrm{R}_{l}(l$ denotes the number of functional groups, $l=1-4$), respectively.
$k_{\text {(structure) }-h}^{0}=A_{\text {(structure) }-2}^{0} e^{-\frac{E_{a}^{0}, \text { (sntcutre) }}{R T}}$
$Y_{\mathrm{R}_{l}}=e^{-\frac{E_{\text {a,addalakere }}^{\mathrm{R}_{l}}}{R T}}$
where (structure) represents six base structures that are addressed above, $E_{a, \text { (structure) }}^{0}$ denotes a base part of E_{a} for (structure), and h denotes a position for $\mathrm{HO} \bullet$ to add (i.e., 1 and 2 for the addition to the left and right carbon, respectively). The rate constant for $\mathrm{HO} \cdot$ addition to alkene, $k_{\text {add-alkene }}$, may be written in equation (2.14).

$$
\begin{equation*}
k_{\text {add-alkene }}=\sum g k_{\text {(structure) }-h}^{0} Y_{\mathrm{R}_{l}} \tag{2.14}
\end{equation*}
$$

where g indicates 1 or 2 that represents asymmetrical and symmetrical addition, respectively. Equation (2.15) shows an example for tetrachloroethylene $\left(\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CCl}_{2}\right)$.
$k=2 k_{>\mathrm{C}=\mathrm{C}<}^{0} Y_{-\mathrm{Cl}} Y_{-\mathrm{Cl}} Y_{-\mathrm{Cl}} Y_{-\mathrm{Cl}}$

2.3.3 HO• Addition to Aromatic Compounds

It has been proposed that HO• fixation at a given carbon may be via a short-lived π-complex for the aqueous phase reactions of $\mathrm{HO} \cdot$ with aromatic compounds (Ashton et al., 1995). The formation of the π-complex is a reversible reaction on one hand. On the other hand, HO -adduct radical by the fixation of $\mathrm{HO} \bullet$ to the π-bond is irreversibly produced to form σ bond. High regioselectivity of $\mathrm{HO} \cdot$ addition occurs at the transition state from the π - to the σ - complex.

$$
\begin{align*}
& \mathrm{Ar}+\mathrm{HO} \bullet \rightarrow[\mathrm{HO} \cdots \mathrm{Ar}]_{\pi}^{\bullet} \tag{2.16}\\
& {[\mathrm{HO} \cdots \mathrm{Ar}]_{\pi}^{\cdot} \rightarrow \mathrm{Ar}+\mathrm{HO} \bullet} \tag{2.17}\\
& {[\mathrm{HO} \cdots \mathrm{Ar}]_{\pi}^{\bullet} \rightarrow[\mathrm{HO} \cdots \mathrm{Ar}]_{\sigma}^{\bullet}} \tag{2.18}
\end{align*}
$$

Reaction (2.16) is diffusion-controlled and Reactions (2.17) and (2.18) are activation-controlled. According to Ashton et al. (1995), the rearrangement of the π - to the σ - complex requires little or no activation energy, whereas the dissociation of the σ complex requires approximately $20 \mathrm{~kJ} / \mathrm{mol}$.

Although the $\mathrm{HO} \cdot$ preferentially adds to the aromatic ring at the close to diffusion-controlled rates, the $\mathrm{HO} \bullet$ addition to the aromatic ring can be expected to be highly regioselective due to the electrophilic $\mathrm{HO} \cdot$. Therefore, the electron-donating and withdrawing functional groups on the aromatic ring can significantly affect the rate constants and the ratio of ortho-, meta-, para-, and ipso-positions.

For the $\mathrm{HO} \cdot$ addition to aromatic compounds, the following points are considered. (1) Probability for the symmetrical $\mathrm{HO} \cdot$ addition to the benzene ring is identical. (2) Addition to the ipso-position is negligible due to the significant steric effect (Mvula et al., 2001; Raghavan and Steenken, 1980; Merga et al., 1996). Although some studies report the possibility for the addition to the ipso-position (Razavi et al., 2009), it is quite negligible for the aromatic compounds with single functional groups, which are used for the calibration (e.g., $<8 \%$ for phenol (Mvula et al., 2001; Raghavab and Steenken, 1980) and $<1 \%$ for chloro benzene (Merga et al., 1996)). Therefore, only when all positions on the aromatic ring are filled with the functional groups, $\mathrm{HO} \bullet$ adds to the $i p s o$-position with the identical probability on all available positions. The reaction rate constant for the $\mathrm{HO} \cdot$ addition to aromatic compounds is formulated in the following manner. The E_{a} is a sum of two parts: (i) a base part, E_{a}^{0}, resulting from the $\mathrm{HO} \cdot$ addition to the aromatic ring depending on the number(s) and position(s) of the functional group and (ii) group contribution parameter(s), $E_{a, \text { add-romatic }}^{\mathrm{R}_{m}}$, due to the functional group, R_{m} (where m is the number of functional group(s), $m=1-6$), on the aromatic ring. We assume that A differs not by the types of the functional group to reduce the number of group contribution factors to calibrate but by the number and position of the functional groups. Accordingly,
the group rate constant, $k_{(i-\text { name })-j}^{0}$, and the group contribution factor, $Z_{\mathrm{R}_{m}}$, may be expressed as below

$$
\begin{equation*}
k_{(i-\mathrm{name})-j}^{0}=A_{(i-\mathrm{name})-j}^{0} e^{-\frac{E_{a}^{0},(i-\text { name })}{R T}} \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
Z_{\mathrm{R}_{m}}=e^{-\frac{E_{a, a d i d d r a m a x i c}^{\mathrm{R}_{m}}}{R T}} \tag{2.20}
\end{equation*}
$$

where, $A_{(i \text { name })-j}^{0}$ denotes the Arrhenius frequency factor; $E_{a,(i-\text { name })}^{0}$ denotes a base part of E_{a}; the name, benz, pyr, fur, imid, or triaz denotes a compound that has a base structure of benzene, pyridine, furan, imidazole, or triazine, respectively; i denotes position(s) of the functional group, and j denotes position(s) for $\mathrm{HO} \bullet$ to add. The rate constant for the $\mathrm{HO} \cdot$ addition to aromatic compounds may be expressed as shown in equation (2.21)

$$
\begin{equation*}
k_{\text {add-aromatic }}=\sum n k_{(i \text {-name }) j}^{0} Z_{\mathrm{R}_{m}} \tag{2.21}
\end{equation*}
$$

where n denotes the number of available position(s) to add. Equation (2.22) shows an example for 1,4-tert-butylphenol $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{OH}\right]$.

$$
\begin{equation*}
k=\left\{2 k_{(1,4-\text { benz })-2,6}^{0}+2 k_{(1,4-\text { benz })-3,5}^{0}\right\} Z_{-\mathrm{OH}} Z_{-\mathrm{Alkane}}+3 \times 3 \times k_{\text {prim }}^{0} X_{>\mathrm{C}<}+k_{-\mathrm{OH}} \tag{2.22}
\end{equation*}
$$

2.3.4 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-atom Containing Compounds

When a molecule has S -, N -, or P -atom-containing functional groups, $\mathrm{HO} \cdot$ interacts with the $\mathrm{S}-$, N -, or P -atom in the aqueous phase forming a $2 \sigma / 1 \sigma^{*}$ two-center-three-electron (2c-3e) adduct (Asmus and Bonifačič, 1999). These functional groups also affect the H -atom abstraction reaction by donating or withdrawing electrons on the $\mathrm{C}-\mathrm{H}$ bond. The group rate constant, $k_{\mathrm{R}_{4}}$, in equation (2.9) represents the $\mathrm{HO} \bullet$ interaction with S-, N -, or P-containing compounds. Because almost all of the functional groups in the
neighboring positions were alkyl functional groups, and therefore, we assume that the effect of the functional groups might be uniform, the influence of neighboring functional groups was not considered for the interaction reactions. Equation (2.23) shows an example for iminodiacetic acid ($\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{COOH}$).
$k=2 \times 2 k_{\text {sec }}^{0} X_{-\mathrm{COOH}} X_{- \text {-NH- }^{-}}+k_{- \text {-NH- }}+2 k_{-\mathrm{COOH}}$

2.4 Results and Discussion

2.4.1 Calibration and Prediction

The group rate constants and group contribution factors for each reaction mechanism were calibrated with literature-reported experimental rate constants. The objective function (OF) was minimized using the genetic algorithms (Goldberg, 1989; Charbonneau and Knapp, 1995). Appendix A includes the source code of genetic algorithms.
$\mathrm{OF}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left[\left(k_{\mathrm{exp}, i}-k_{\mathrm{cal}, i}\right) / k_{\mathrm{exp}, i}\right]^{2}}$
where, $k_{\text {exp }, i}$ and $k_{\text {cal }, i}$ are the experimental and calculated reaction rate constant of compound i, respectively, and N is the number of the rate constants. First, group rate constants, k^{0}, and group contribution factors for the H -atom abstraction, $X_{\mathrm{R}_{i}}$, were calibrated. Then, these group rate constants and group contribution factors were used when aliphatic side chains were present in the alkene and aromatic compounds upon the calibrations of the group rate constants and group contribution factors for alkenes and aromatic compounds (i.e., $Y_{\mathrm{R}_{i}}$ for alkene and $Z_{\mathrm{R}_{i}}$ for aromatic compounds, respectively). For the $\mathrm{HO} \cdot$ interaction, the group rate constant, $k_{\mathrm{R}_{4}}$, in equation (2.9), and group contribution factors for $\mathrm{S}-\mathrm{N}$-, or P -atom-containing functional groups were calibrated.

We critically evaluated the literature reported experimental rate constants before the calibrations. When several rate constants were reported for the same compound, an average value was used or the most reasonable rate constant was selected by comparing the value to those for compounds with similar structures (Hermann, 2003; Buxton et al., 1988; U of Notre Dame RCDC, 2009). The rate constants that we used for the calibration are at standard conditions (i.e., $25^{\circ} \mathrm{C}$ and $1 \mathrm{~mol} / \mathrm{L}$) in the aqueous phase. When the experimental conditions were not reported in the literature, we used those reported values. Our objective is to calibrate the group rate constants and group contribution factors with the experimental data and predict rate constants within a factor of 0.5 to 2.0 of the experimental value, which we refer to as our error goal (EG). This EG would be in the range of general experimental errors (Buxton et al., 1988; U of Notre Dame RCDC, 2009) and sufficient for decision-making that has been used for the physical-chemical property estimators (e.g., within an order of magnitude) (US EPA, 2007). For calibration, rate constants for single-functional group compounds were used to avoid the interference of different functional groups. For prediction, we used the calibrated group rate constants and group contribution factors to predict the rate constants for multifunctional group compounds. Sample deviation (SD) that was calculated from equation (2.24) was also used to evaluate the rate constants from calibrations and predictions. All observed overall $\mathrm{HO} \cdot$ rate constants for the 434 compounds were summarized in Table 2.1. Appendix B includes up-to-date literature-reported experimental $\mathrm{HO} \cdot$ rate constants.

Table 2.1: Calculated HO• reaction rate constants (Normal: calculated, Italic: predicted, Bold: error is out of the EG) as compared to literature-reported experimental values

group		formula	compound	$k \exp$	$k \mathrm{cal}$	$\left((k \exp -k\right.$ call $/ k \exp){ }^{2}$	$k \mathrm{cal} / \mathrm{kexp}$
Alkane	1	CH3-CH3	ethane	$1.80 \mathbf{E}+09$	$7.90 \mathrm{E}+08$	0.31476	0.44
	2	CH3-CH2-CH3	propane	$3.60 \mathrm{E}+09$	$2.11 \mathrm{E}+09$	0.17127	0.59
	3	$\mathrm{CH} 3-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3$	2-methylpropane	$4.60 \mathrm{E}+09$	$4.04 \mathrm{E}+09$	0.01490	0.88
	4	CH3-(CH2)2-CH3	butane	$4.60 \mathrm{E}+09$	$3.52 \mathrm{E}+09$	0.05556	0.76
	5	CH3-(CH2)3-CH3	pentane	$5.40 \mathrm{E}+09$	$4.92 \mathrm{E}+09$	0.00776	0.91
	6	CH3-(CH2) 4 -CH3	hexane	$6.60 \mathrm{E}+09$	$6.33 \mathrm{E}+09$	0.00164	0.96
	7	CH3-(CH2) $5-\mathrm{CH} 3$	heptane	$7.70 \mathrm{E}+09$	$7.74 \mathrm{E}+09$	0.00003	1.01
	8	CH3-(CH2)6-CH3	octane	$9.10 \mathrm{E}+09$	$9.15 \mathrm{E}+09$	0.00003	1.01
	9	$\mathrm{CH} 3-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3$	2-methylpropane	$4.60 \mathrm{E}+09$	$4.04 \mathrm{E}+09$	0.01490	0.88
	10	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3$	2-methylbutane	$5.20 \mathrm{E}+09$	$5.10 \mathrm{E}+09$	0.00035	0.98
	11	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 2-\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{CH} 3$	3-ethylpentane	$5.90 \mathrm{E}+09$	$8.49 \mathrm{E}+09$	0.19332	1.44
	12	$\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3) 2$ - $\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3$	2,2,4-Trimethylpentane	$6.10 \mathrm{E}+09$	$6.41 \mathrm{E}+09$	0.00259	1.05
Alcohol	13	CH3-OH	methanol	$9.70 \mathrm{E}+08$	$3.04 \mathrm{E}+08$	0.47157	0.31
	14	CH3-CH2-OH	ethanol	$2.10 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	0.19372	0.56
	15	CH3-(CH2)2-OH	1-propanol	$3.20 \mathrm{E}+09$	$2.55 \mathrm{E}+09$	0.04109	0.80
	16	CH3-(CH2)3-OH	1-butanol	$4.20 \mathrm{E}+09$	$3.96 \mathrm{E}+09$	0.00327	0.94
	17	(CH3)3-C-OH	tert-butanol	$7.00 \mathrm{E}+08$	$8.21 \mathrm{E}+08$	0.02972	1.17
	18	$\mathrm{CH} 3-(\mathrm{CH} 2) 5-\mathrm{OH}$	1-hexyanol	$7.00 \mathrm{E}+09$	$6.78 \mathrm{E}+09$	0.00102	0.97
	19	CH3-(CH2) $6-\mathrm{OH}$	1-heptanol	$7.40 \mathrm{E}+09$	$8.19 \mathrm{E}+09$	0.01127	1.11
	20	$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	2-propanol	$1.90 \mathrm{E}+09$	$2.37 \mathrm{E}+09$	0.06154	1.25
	21	$\mathrm{CH} 3-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{OH}$	2-methyl-1-propanol	$3.30 \mathrm{E}+09$	$4.55 \mathrm{E}+09$	0.14411	1.38
	22	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OH})-\mathrm{CH} 3$	2-methyl-2-butanol	$1.90 \mathrm{E}+09$	$2.34 \mathrm{E}+09$	0.05322	1.23
	23	CH3-C(CH3)2-CH2-OH	2,2-dimethyl-1-propanol	$5.20 \mathrm{E}+09$	$2.04 \mathrm{E}+09$	0.37026	0.39
	24	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{OH}$	3-methyl-1-butanol	$3.80 \mathrm{E}+09$	$6.04 \mathrm{E}+09$	0.34681	1.59
	25	$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 3$	2-butanol	$3.50 \mathrm{E}+09$	$3.78 \mathrm{E}+09$	0.00662	1.08
	26	$\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 3$	tert-amyl alcohol	$1.90 \mathrm{E}+09$	$1.77 \mathrm{E}+09$	0.00439	0.93
Diol	27	$\underline{\mathrm{HO}-\mathrm{CH} 2-\mathrm{OH}}$	dihydroxymethane	$\underline{1.30 E+09}$	$\underline{5.41 E+08}$	0.34047	0.42
	28	HO-CH2-CH2-OH	ethyleneglycol	$2.40 E+09$	$\underline{1.59 E+09}$	0.11475	0.66
	29	CH3-CH(OH)2	1.1-ethanediol	$\underline{1.20 E+09}$	1.36E+09	0.01753	1.13
	30	CH3-CH(OH)-CH2-OH	1.2-propanediol	$\underline{1.70 E+09}$	$\underline{2.82 E+09}$	0.43429	1.66
	31	HO-(CH2)3-OH	1.3-propanediol	$\underline{2.50 E+09}$	3.00E+09	0.03929	1.20
	32	CH3-CH(OH)-CH2-CH2-OH	1.3-butanediol	$\underline{2.20 E+09}$	$4.23 E+09$	0.85046	$\underline{1.92}$
	33	HO-(CH2) 4 - OH	1.4-butanediol	$3.20 E+09$	$4.40 E+09$	0.14158	$\underline{1.38}$
	34	CH3-CH(OH)-CH(OH)-CH3	2,3-butanediol	$\underline{1.30 E+09}$	$4.05 E+09$	4.48664	$\underline{3.12}$
	35	HO-(CH2) 5 - OH	1.5-pentanediol	$3.60 E+09$	5.81E+09	0.37775	1.61
	36	CH3-CH(OH)-CH2-CH(OH)-CH3	2,4-pentanediol	$\underline{2.30 E+09}$	$\underline{5.46 E+09}$	$\underline{1.89022}$	$\underline{2.37}$
	37	HO-(CH2) $6 . \mathrm{OH}$	1.6-hexvanediol	$4.70 E+09$	$7.22 E+09$	0.28774	1.54
	38	HO-CH2-CH(OH)-CH2-OH	glycerol	$\underline{2.00 E+09}$	$3.17 E+09$	$\underline{0.34377}$	1.59
Ether	39	$\mathrm{CH} 3 \mathrm{CH}(\mathrm{OCH} 3) 2$	1,1-dimethoxyethane	$2.20 \mathrm{E}+09$	$1.48 \mathrm{E}+09$	0.10720	0.67
	40	CH3-O-CH3	dimethylether	$1.00 \mathrm{E}+09$	$3.89 \mathrm{E}+08$	0.37364	0.39
	41	CH3-O-CH2-O-CH3	methylene glycol diethyl ether	$\underline{3.20 E+08}$	$6.99 E+08$	1.40301	$\underline{2.18}$
	42	CH3-CH2-O-CH2-CH3	diethylether	$2.90 \mathrm{E}+09$	$2.09 \mathrm{E}+09$	0.07809	0.72
	43	$(\mathrm{CH} 3) 2 \mathrm{HC}-\mathrm{O}-\mathrm{CH}(\mathrm{CH} 3)^{2}$	diisopropyl ether	$2.49 \mathrm{E}+09$	$4.41 \mathrm{E}+09$	0.59325	1.77
	44	(CH3)3-C-O-CH2-CH3	tert-butyl-ethyl-ether	$1.80 \mathrm{E}+09$	$1.77 \mathrm{E}+09$	0.00037	0.98
	45	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OCH}_{3}$	tert-amyl methyl ether	$2.37 \mathrm{E}+09$	$1.87 \mathrm{E}+09$	0.04479	0.79
	46	$\mathrm{CH} 3 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 3$	dietholene glycol diethvl ether	$3.20 E+09$	$6.23 E+09$	0.89594	$\underline{1.95}$
	47	$\mathrm{CH} 3 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 3^{2}$	ethvlene glvcol diethyl ether	$\underline{2.30 E+09}$	3.41E+09	0.23369	1.48
	48	CH3-O-CH2-CH2-O-CH3	ethylene glycol dimethyl ether	$\underline{1.60 E+09}$	1.71E+09	0.00481	1.07
	49	$\mathrm{CH} 2(\mathrm{OC} 2 \mathrm{H} 5) 2$	diethoxymethane	$1.60 \mathrm{E}+09$	$2.40 \mathrm{E}+09$	0.24995	1.50
	50	$\mathrm{CH} 2(\mathrm{OCH} 3) 2$	dimethoxymethane	$1.20 \mathrm{E}+09$	$6.99 \mathrm{E}+08$	0.17428	0.58
	51	CH3-C(CH3)(OCH3)CH2-OH	2-methyl-2-methoxy propanol	$\underline{8.40 E+08}$	$\underline{1.82 E+09}$	1.35033	$\underline{2.16}$
	52	CH3-O-CH2-CH2-OH	2-methoxyethanol	$\underline{1.30 E+09}$	$\underline{1.65 E+09}$	0.07206	$\underline{1.27}$
	53	C2H5-O-CH2-CH2-OH	2-ethoxyethanol	$\underline{1.70 E+09}$	$\underline{2.50 E+09}$	0.22113	$\underline{1.47}$
	54	HO-CH2-CH2-O-CH2-CH2-OH	diethvlene glvcol	2.10E+09	$\underline{2.91 E+09}$	0.14849	1.39
Ketone	55	CH3-CO-CO-CH3	2,3-butanedion	$2.80 E+08$	$\underline{1.09 E+08}$	$\underline{0.37456}$	0.39
	56	CH3-CH2-CO-CH3	2-butanone	$8.10 \mathrm{E}+08$	$6.45 \mathrm{E}+08$	0.04165	0.80
	57	CH3-CO-CH3	acetone	$1.10 \mathrm{E}+08$	$1.09 \mathrm{E}+08$	0.00015	0.99
	58	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CO}-\mathrm{CH} 3$	2-pentanone	$1.90 \mathrm{E}+09$	$2.00 \mathrm{E}+09$	0.00260	1.05
	59	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CO}-\mathrm{CH} 2-\mathrm{CH} 3$	3-pentanone	$1.40 \mathrm{E}+09$	$1.18 \mathrm{E}+09$	0.02453	0.84
	60	CH3-CO-CH(OH)-CH3	3-hydro-2-butanone	$\underline{2.90 E+09}$	$7.67 E+08$	$\underline{0.54106}$	0.26
	61	(CH3)2-CH-CH2-CO-CH3	methyl-iso-butyl ketone	$2.10 \mathrm{E}+09$	$4.00 \mathrm{E}+09$	0.81715	1.90
	62	CH3-CO-CH2CH2-CO-CH3	acetonvl acetone	$7.60 E+08$	$4.78 E+08$	0.13754	0.63

Table 2.1: Calculated HO• reaction rate constants (Normal: calculated, Italic: predicted, Bold: error is out of the EG) as compared to literature-reported experimental values (Continued)

Aldehyde	63	CH3-CHO	acetaldehyde	$9.50 \mathrm{E}+08$	$1.01 \mathrm{E}+09$	0.00464	1.07
	64	CH3-CH2-CHO	propionaldehyde	$2.20 \mathrm{E}+09$	$1.94 \mathrm{E}+09$	0.01355	0.88
	65	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CHO}$	butyraldehyde	$3.90 \mathrm{E}+09$	$3.32 \mathrm{E}+09$	0.02205	0.85
	66	(CH3)2-CH-CHO	isobutyl aldehyde	$2.90 \mathrm{E}+09$	3.17E+09	0.00876	1.09
	67	CH3-C(CH3)(OCH3)-CHO	2-methyl-2-methoxy-propanal	$3.99 E+09$	$\underline{1.52 E+09}$	0.38446	0.38
	68	HO-C(CH3)2-CHO	hydroxy-iso-butvlaldehvde	$3.00 E+09$	$1.77 E+09$	0.16826	0.59
	69	CH3-CO-CHO	methyl glyoxal	$\underline{5.30 E+08}$	$\underline{1.65 E+08}$	0.47519	0.31
	70	CHOCOOH	glyoxalic acid	$5.90 \mathrm{E}+08$	$3.15 E+07$	0.89604	0.05
	71	CH3-COCHO	pyruvic aldehyde	$6.49 E+08$	$8.51 E+07$	0.75487	0.13
Ester	72	CH3-COO-CH3	methyl acetate	$1.20 \mathrm{E}+08$	$1.52 \mathrm{E}+07$	0.76318	0.13
	73	$\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 3$	ethyl acetate	$4.00 \mathrm{E}+08$	$4.29 \mathrm{E}+08$	0.00536	1.07
	74	CH3-COO-CH2-CH2-CH3	propyl acetate	$1.40 \mathrm{E}+09$	$1.77 \mathrm{E}+09$	0.07099	1.27
	75	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 3$	methyl propionate	$4.50 \mathrm{E}+08$	$4.63 \mathrm{E}+08$	0.00088	1.03
	76	CH3-CH2-COO-CH2-CH3	ethyl propionate	$8.70 \mathrm{E}+08$	$8.77 \mathrm{E}+08$	0.00007	1.01
	77	CH3-COO-CH2CH2OH	2-hydroxvethyl acetate	$9.10 E+08$	$8.09 E+08$	0.01240	0.89
	78	$\mathrm{CH} 3 \mathrm{COOCH}(\mathrm{CH} 3)^{2}$	isopropyl acetate	$4.50 \mathrm{E}+08$	$8.43 \mathrm{E}+08$	0.76430	1.87
	79	$\mathrm{CH} 3-\mathrm{COO}-(\mathrm{CH} 2) 3-\mathrm{CH} 3$	n-butylacetate	$1.80 \mathrm{E}+09$	$3.18 \mathrm{E}+09$	0.58911	1.77
Carboxyl	80	CH3-CH2-COOH	propionic acid	$3.20 \mathrm{E}+08$	$4.64 \mathrm{E}+08$	0.20261	1.45
	81	CH3-(CH2)2-COOH	butyric acid	$2.20 \mathrm{E}+09$	$1.81 \mathrm{E}+09$	0.03140	0.82
	82	(CH3) 2 CHCH 2 COOH	3-methylbutyric acid	$1.40 \mathrm{E}+09$	$3.81 \mathrm{E}+09$	2.96711	2.72
	83	$(\mathrm{CH} 3) 3-\mathrm{C}-\mathrm{COOH}$	tri-methyl-acetic acid	$6.50 \mathrm{E}+08$	$7.21 \mathrm{E}+08$	0.01206	1.11
	84	CH3-C(CH3)(OCH3)- COOH	2-methyl-2-methoxy-propanoic acid	$7.73 E+08$	$6.76 E+08$	0.01590	0.87
	85	HOCH2COOH	glycolic acid	$\underline{5.40 E+08}$	$\underline{1.26 E+08}$	0.58749	0.23
	86	CH3-CH(OH)-COOH	lactic acid	$4.30 E+08$	$\underline{5.70 E+08}$	0.10634	1.33
	87	CH3CH2CH(OH) COOH	2-hvdroxybutvric acid	$\underline{1.30 E+09}$	1.92E+09	0.22499	1.47
	88	$\underline{\mathrm{HO}-\mathrm{CH} 2-(\mathrm{CHOH}) 4-\mathrm{COOH}}$	glucuronic acid	$\underline{1.30 E+09}$	$6.01 E+09$	$\underline{13.12216}$	4.62
	89	CH 3 COOH	acetic acid	$1.70 \mathrm{E}+07$	$1.59 \mathrm{E}+07$	0.00443	0.93
Dicarboxylic	90	HOOC-CH2-COOH	malonic acid	$\underline{1.60 E+07}$	$\underline{3.29 E+06}$	0.63098	0.21
	91	HOOC-(CH2)2-COOH	succinic acid	1.10E+08	$1.05 E+08$	0.00243	0.95
	92	HOOC-(CH2)3-COOH	glutaric acid	$8.30 E+08$	$\underline{1.51 E+09}$	0.67739	1.82
	93	HOOC-(CH2)4-COOH	adipic acid	$\underline{2.00 E+09}$	$\underline{2.92 E+09}$	0.21236	$\underline{1.46}$
	94	HOOC-(CH2)6-COOH	saberic acid	$4.80 E+09$	$\underline{5.74 E+09}$	0.03825	1.20
	95	HOOC-(CH2) 7 - COOH	azelaic acid	$\underline{5.40 E+09}$	$7.15 E+09$	0.10470	$\underline{1.32}$
	96	HOOC-(CH2) 8 - COOH	sabacic acid	$6.40 E+09$	8.56E+09	0.11347	1.34
	97	$\underline{\mathrm{HOOC}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}}$	tartaric acid	$7.00 E+08$	$\underline{3.18 E+08}$	0.29850	0.45
	98	$\underline{\mathrm{HOOC}-\mathrm{CH} 2-\mathrm{C}(\mathrm{COOH})(\mathrm{OH})-\mathrm{CH} 2-\mathrm{COOH}}$	citric acid	$\underline{5.00 E+07}$	$\underline{1.62 E+08}$	$\underline{5.01353}$	3.24
	99	HOOC-CH(OH)-COOH	tartoronic acid	$1.70 E+08$	$\underline{1.04 E+08}$	0.15289	0.61
	100	$\underline{\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}}$	malic acid	$8.20 E+08$	$\underline{2.11 E+08}$	0.55146	0.26
Halogenated	101	Cl-CH2-COOH	chloroacetic acid	$4.30 E+07$	$\underline{9.63 E+06}$	0.60227	0.22
	102	C12-CH2	dichloromethane	$5.80 \mathrm{E}+07$	$4.22 \mathrm{E}+07$	0.07428	0.73
	103	$\mathrm{Br} 2-\mathrm{CH} 2$	dibromomethane	$9.90 \mathrm{E}+07$	$1.45 \mathrm{E}+08$	0.21590	1.46
	104	$\mathrm{BrCl2CH}$	bromodichloromethane	$7.10 \mathrm{E}+07$	$3.10 \mathrm{E}+07$	0.31816	0.44
	105	$\mathrm{Cl} 3 \mathrm{C}-\mathrm{CHCl} 2$	pentachlrooethane	$1.00 \mathrm{E}+07$	$9.22 \mathrm{E}+06$	0.00603	0.92
	106	CHBr 2 Cl	chlorodibromomethane	$8.30 \mathrm{E}+07$	$5.74 \mathrm{E}+07$	0.09528	0.69
	107	CHBr 3	tribromomethane	$1.50 \mathrm{E}+08$	$1.06 \mathrm{E}+08$	0.08460	0.71
	108	$\mathrm{BrCH} 2-\mathrm{CH} 2 \mathrm{Br}$	1,2-dibromoethane	$2.60 \mathrm{E}+08$	$2.83 \mathrm{E}+08$	0.00756	1.09
	109	CH3-CHC12	1,1-dichloroethane	$1.30 \mathrm{E}+08$	$2.22 \mathrm{E}+08$	0.49556	1.70
	110	$\mathrm{CH} 2 \mathrm{Cl}-\mathrm{CH} 2 \mathrm{Cl}$	1,2-dichloroethane	$2.00 \mathrm{E}+08$	$1.52 \mathrm{E}+08$	0.05653	0.76
	111	$\mathrm{C} 12 \mathrm{CH}-\mathrm{CCl} 3$	pentachloroethane	$1.00 \mathrm{E}+07$	$9.22 \mathrm{E}+06$	0.00603	0.92
	112	$\mathrm{Br} 2 \mathrm{CH}-\mathrm{CHBr} 2$	1,1,2,2-tetrabromoethane	$2.20 \mathrm{E}+08$	$2.07 \mathrm{E}+08$	0.00332	0.94
	113	$\mathrm{Cl3C-CH2Cl}$	1,1,1-2-tetrachloroethane	$1.80 \mathrm{E}+07$	$2.33 \mathrm{E}+07$	0.08698	1.29
	114	$\mathrm{ClCH} 2-\mathrm{CHCl} 2$	1,1.-2-trichloroethane	$1.10 \mathrm{E}+08$	$1.06 \mathrm{E}+08$	0.00108	0.97
	115	CCl3-CH3	1,1,1-trichloroethane	$1.00 \mathrm{E}+08$	$3.96 \mathrm{E}+07$	0.36488	0.40
	116	CH3CH2CH2-Cl	1-chloropropane	$2.50 \mathrm{E}+09$	$1.08 \mathrm{E}+09$	0.32351	0.43
	117	CH2Cl-CHCl-CH2Br	1,2-dichloro-3-bromopropane	$7.30 \mathrm{E}+08$	$2.72 \mathrm{E}+08$	0.39359	0.37
	118	CH2Br-CH2-CH2Br	1,3-dibromopropane	$4.10 \mathrm{E}+09$	$1.04 \mathrm{E}+09$	0.55646	0.25
	119	$\mathrm{CH} 2 \mathrm{Cl}-\mathrm{CHCl}-\mathrm{CH} 3$	1,2-dichloropropane	$4.00 \mathrm{E}+08$	$3.72 \mathrm{E}+08$	0.00491	0.93
	120	CH3-(CH2)3-Cl	1-chlorobutane	$3.40 \mathrm{E}+09$	$2.44 \mathrm{E}+09$	0.07938	0.72
	121	Br-CH2-CH2-OH	2-bromoethanol	$\underline{3.50 E+08}$	$7.69 E+08$	1.43156	$\underline{2.20}$
	122	Cl-CH2-CH2-OH	2-chloroethanol	$9.50 E+08$	$\underline{5.61 E+08}$	0.16800	0.59
	123	CCl3-CH2-OH	2,2,2-trichloroethanol	$4.20 E+08$	$\underline{1.66 E+08}$	0.36485	0.40
	124	CF3-CH2-OH	2.2.2-trifluoroethanol	$2.30 E+08$	$1.60 E+08$	0.09227	0.70
	125	CCl3-CH(OH)2	chloral hydrate	$\underline{3.10 E+09}$	$\underline{2.75 E+08}$	$\underline{0.83066}$	0.09
	126	CF3-CHC1Br	Halothane	$1.30 \mathrm{E}+07$	$1.55 \mathrm{E}+07$	0.03719	1.19
	127	CHCl3	chloroform	$1.40 \mathrm{E}+07$	$1.67 \mathrm{E}+07$	0.03709	1.19
	128	CF3-CHC12	2,2-dichloro-1,1,1-trifluoroethane	$1.30 \mathrm{E}+07$	$8.36 \mathrm{E}+06$	0.12712	0.64
	129	CHF2-O-CHCl-CF3	Isoflurane	$\underline{2.40 E+07}$	$\underline{2.27 E+07}$	0.00300	0.95

Table 2.1: Calculated $\mathrm{HO} \bullet$ reaction rate constants (Normal: calculated, Italic: predicted, Bold: error is out of the EG) as compared to literature-reported experimental values (Continued)

Sulfide, Disulfide	130	H3C-S-CH3	dimethyl sulfide	$1.90 \mathrm{E}+10$	$4.05 E+09$	0.61940	0.21
	131	H3C-S-S-CH3	di-methyl-di-sulfides	$\underline{1.70 E+10}$	$5.36 E+09$	0.46893	0.32
	132	H3C-CH2-S-CH2-CH3	di-ethyl-sulfides	$\underline{1.40 E+10}$	8.66E+09	0.14554	0.62
	133	H3C-CH2-S-S-CH2-CH3	di-ethyl-di-sulfides	$\underline{1.40 E+10}$	$\underline{9.97 E+09}$	$\underline{0.08282}$	0.71
	134	(CH3)2-CH-S-S-CH-(CH3)2	di-ethyl-methyl-di-sulfides	$2.00 \mathrm{E}+10$	$1.73 \mathrm{E}+10$	0.01876	0.86
	135	$\mathrm{CH} 3-\mathrm{S}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}$	2-methylthio-ethanol	$7.90 \mathrm{E}+09$	$6.86 \mathrm{E}+09$	0.01719	0.87
	136	H3C-S-CH2-CH2-CHO	methional	$8.20 \mathrm{E}+09$	$7.63 \mathrm{E}+09$	0.00477	0.93
	137	HO-CH2-CH2-S-CH2-CH2-OH	2,2'-thiodiethanol	$\underline{2.00 E+10}$	$\underline{9.68 E+09}$	0.26617	0.48
	138	HO-CH2CH2CH2-S-CH2CH2CH2-OH	3.3'-thiodiethanol	$\underline{1.40 E+10}$	$7.67 E+09$	0.20451	0.55
	139	HOOC-CH2-S-CH2-COOH	thiodiacetic acid	$6.00 \mathrm{E}+09$	$2.57 \mathbf{E}+09$	0.32636	0.43
Sulfoxide	140	CH3-SO-CH3	di-methyl-sulfoxide	$6.50 \mathrm{E}+09$	$\underline{2.23 E+09}$	0.43088	0.34
	141	CH3-CH2-SO-CH2-CH3	di-ethyl-sulfoxide	$6.50 E+09$	$3.77 E+09$	0.17692	0.58
	142	CH3-CH2-CH2-SO-CH2-CH2-CH3	di-propvl-sulfoxide	$6.30 E+09$	$\underline{6.50 E+09}$	0.00103	$\underline{1.03}$
	143	(CH 3$) 2 \mathrm{CH}-\mathrm{SO}-\mathrm{CH}(\mathrm{CH} 3) 2$	di(1 -methvl-ethvl) sulfoxide	$6.80 E+09$	5.80E+09	$\underline{0.02176}$	0.85
	144	($\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 2) 2-\mathrm{SO}$	di-butyl-sulfoxide	$8.00 \mathrm{E}+09$	$9.32 \mathrm{E}+09$	0.02721	1.16
	145	CH3-SO-CH2-S-CH3	methyl methyl thiomethyl sulfoxide	$4.80 \mathrm{E}+09$	$6.37 \mathrm{E}+09$	0.10649	1.33
	146	HO-CH2CH2-SO-CH2CH2-OH	di(2-hydroxyethyl) sulfoxide	$5.30 \mathrm{E}+09$	$4.57 \mathrm{E}+09$	0.01877	0.86
	147	$(\mathrm{CH} 3) 2$ - $\mathrm{CH}-\mathrm{SO}-\mathrm{CH}-(\mathrm{CH} 3)^{2}$	diisopropyl sulfoxide	$6.80 \mathrm{E}+09$	$5.80 \mathrm{E}+09$	0.02176	0.85
Thiol	148	HS-CH2-CH2-OH	mercaptoethanol	$6.80 \mathrm{E}+09$	$4.65 \mathrm{E}+09$	0.09962	0.68
	149	HS-CH2-COOH	mercaptoacetic acid	$1.20 \mathrm{E}+09$	$1.10 \mathrm{E}+09$	0.00707	0.92
	150	HS-CH2-COOCH3	methyl thioglycolate	$2.10 \mathrm{E}+10$	$1.10 \mathrm{E}+09$	0.89813	0.05
	151	HS-CH2-CH $(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{SH}$	dithiothreitol	$1.50 \mathrm{E}+10$	$1.11 \mathrm{E}+10$	0.06789	0.74
Nitrile	152	CH3-CN	acetonitrile	$2.20 \mathbf{E}+07$	$6.46 \mathbf{E}+06$	0.49898	0.29
	153	$\mathrm{CN}-\mathrm{CN}$	cyanogen	$1.00 \mathrm{E}+07$	$1.09 \mathrm{E}+07$	0.00877	1.09
	154	CH3-CH2-CN	propionitrile	$9.30 \mathbf{E}+07$	$6.58 \mathrm{E}+06$	0.86352	0.07
	155	NC-CH2-CH2-CN	succino nitrile	$3.80 \mathrm{E}+07$	$1.11 \mathrm{E}+07$	0.50119	0.29
Nitro	156	CH3-CH2-CH2-NO2	1-nitropropane	$2.50 \mathrm{E}+08$	$1.89 \mathrm{E}+09$	43.05812	7.56
	157	(CH3)2-CH-NO2	2-nitropropane	$8.00 \mathrm{E}+07$	$9.61 \mathrm{E}+08$	121.23321	12.01
	158	CH2ClNO2	chloronitromethane	1.94E+08	$\underline{1.33 E+08}$	0.10015	0.68
	159	CHCl2NO2	dichloronitromethane	$5.12 E+08$	$\underline{1.33 E+08}$	0.54908	0.26
	160	CH 2 BrNO 2	bromonitromethane	$\underline{8.36 E+07}$	$\underline{1.33 E+08}$	0.34364	$\underline{1.59}$
	161	CHBr2NO2	dibromonitromethane	$4.75 E+08$	$\underline{1.33 E+08}$	0.51959	0.28
	162	CHBrClNO2	bromochloronitromethane	$4.20 E+08$	$\underline{1.33 E+08}$	0.46822	0.32
Amide	163	CH3-CO-NH2	acetamide	$1.90 \mathrm{E}+08$	$1.54 \mathrm{E}+08$	0.03564	0.81
	164	HO-CH2-CO-NH2	glycolamide	$1.10 \mathbf{E}+09$	$2.91 \mathrm{E}+08$	0.54119	0.26
	165	HO-CH(CH3)-CO-NH2	2-hydroxypropionamide	$1.30 \mathrm{E}+09$	$4.53 \mathrm{E}+08$	0.42496	0.35
	166	(CH3)2-CH-CO-NH2	2-methylpropionamide	$1.60 \mathbf{E}+09$	$5.93 \mathrm{E}+08$	0.39619	0.37
	167	C2H5-CO-NH2	propionamide	$7.00 \mathrm{E}+08$	$3.30 \mathrm{E}+08$	0.27881	0.47
	168	(CH3)3-C-CO-NH2	trimethylacetamide	$1.50 \mathrm{E}+09$	$1.34 \mathrm{E}+09$	0.01107	0.89
	169	(CH3)2-CH-CO-NH2	isobutyramide	$1.60 \mathbf{E}+09$	$5.93 \mathrm{E}+08$	0.39619	0.37
	170	CH3-CO-NH-C-(CH3)3	N-tert-butyl-acetamide	$1.10 \mathrm{E}+09$	$1.80 \mathrm{E}+09$	0.40164	1.63
	171	$\mathrm{CH} 3-\mathrm{CO}-\mathrm{NH}-\mathrm{CH} 3$	N -methylacetamide	$1.60 \mathrm{E}+09$	$1.68 \mathrm{E}+09$	0.00241	1.05
	172	(CH3)2-CH-CO-NH-CH3	N-butylformamide	$1.90 \mathrm{E}+09$	$2.84 \mathrm{E}+09$	0.24314	1.49
	173	(CH3)3-C-CO-NH-CH3	N-methyl-pivalamide	$2.40 \mathrm{E}+09$	$2.87 \mathrm{E}+09$	0.03779	1.19
	174	CH3-CH2-CO-NH-CH3	N-methyl-propionamide	$1.40 \mathrm{E}+09$	$1.85 \mathrm{E}+09$	0.10551	1.32
	175	(CH3)2-CH-CO-NH-CH3	N -methylisobutyramide	$1.90 \mathrm{E}+09$	$2.12 \mathrm{E}+09$	0.01308	1.11
	176	$\mathrm{CH} 3-\mathrm{CO}-\mathrm{N}-(\mathrm{CH} 3)^{2}$	N, N-dimethyl acetamide	$3.50 \mathrm{E}+09$	$3.30 \mathrm{E}+09$	0.00326	0.94
	177	(CH3)3-C-CO-N-(CH3)2	N, N-dimethyl pivalamide	$3.90 \mathrm{E}+09$	$3.41 \mathrm{E}+09$	0.01585	0.87
Amine	178	$\mathrm{H} 2 \mathrm{~N}-\mathrm{CH} 2-\mathrm{CO}-\mathrm{NH} 2$	2-aminoacetamide	$2.80 \mathrm{E}+09$	$4.35 \mathrm{E}+09$	0.30821	1.56
	179	CH3-NH2	methyl amine	$5.70 \mathrm{E}+09$	$4.57 \mathrm{E}+09$	0.03910	0.80
	180	CH3-CH2-NH2	ethyl amine	$6.40 \mathrm{E}+09$	$6.28 \mathrm{E}+09$	0.00037	0.98
	181	CH3-(CH2)3-NH2	N-butyl amine	$8.20 \mathrm{E}+09$	$9.12 \mathrm{E}+09$	0.01255	1.11
	182	CH3-CH2-CH2-NH2	propyl amine	$7.30 \mathrm{E}+09$	$7.71 \mathrm{E}+09$	0.00316	1.06
	183	H2N-CH2-CH2-NH2	ethylenediamine	$5.50 \mathbf{E}+09$	$1.19 \mathrm{E}+10$	1.35598	2.16
	184	(CH 3) 3 -C-NH2	tert-butyl amine	$6.00 \mathrm{E}+09$	$5.24 \mathrm{E}+09$	0.01601	0.87
	185	CH3-(CH2) 4 -NH2	N -amyl amine	$7.00 \mathrm{E}+09$	$1.05 \mathrm{E}+10$	0.25390	1.50
	186	CH3-(CH2) 5 -NH2	Hexylamine	$1.30 \mathrm{E}+10$	$1.19 \mathrm{E}+10$	0.00670	0.92
	187	CH3-(CH2) $7-\mathrm{NH} 2$	N-octylamine	$1.46 \mathrm{E}+10$	$1.48 \mathrm{E}+10$	0.00011	1.01
	188	$(\mathrm{CH} 3) 2$-CH-NH2	iso-propyl amine	$1.30 \mathrm{E}+10$	$8.89 \mathrm{E}+09$	0.09983	0.68
	189	CH3-O-NH2	O-methyl hydroxy amine	$1.40 \mathrm{E}+10$	$4.19 \mathrm{E}+09$	0.49073	0.30
	190	CH3-NH-CH3	dimethylamine	$8.90 \mathbf{E}+09$	$1.25 \mathrm{E}+09$	0.73888	0.14
	191	$\mathrm{CH} 3-(\mathrm{CH} 2) 3-\mathrm{NH}-(\mathrm{CH} 2) 3-\mathrm{CH} 3$	dibutyl amine	$1.80 \mathrm{E}+10$	$1.03 \mathrm{E}+10$	0.18103	0.57
	192	HOOC-CH2-NH-CH2-COOH	Iminodiacetic acid	$4.90 E+07$	$\underline{2.45 E+08}$	$\underline{16.05732}$	$\underline{5.01}$
	193	(C2H5)2-N-OH	N,N-diethyl hydroxyl amine	$\underline{1.30 E+09}$	$\underline{8.09 E+09}$	$\underline{27.27052}$	6.22
	194	(CH3(CH2)3)3-N	tributyl amine	$1.70 \mathrm{E}+10$	$1.89 \mathrm{E}+10$	0.01240	1.11
	195	(C2H5)3-N	triethyl amine	$1.00 \mathrm{E}+10$	$1.04 \mathrm{E}+10$	0.00135	1.04
	196	(CH3)3-N	trimethyl amine	$1.30 \mathrm{E}+10$	$5.26 \mathbf{E}+09$	0.35486	0.40
	197	($\mathrm{HO}-\mathrm{CH} 2-\mathrm{CH} 2$) $3-\mathrm{N}$	triethanolamine	$8.00 \mathrm{E}+09$	$1.18 \mathrm{E}+10$	0.22263	1.47
	198	$(\mathrm{CH} 2 \mathrm{COOH}) 3-\mathrm{N}$	Nitrilotriacetic acid	$2.10 \mathrm{E}+09$	$3.75 \mathrm{E}+09$	0.61681	1.79
	199	(HOCH 2 CH 2$)^{3}-\mathrm{N}$	Nitrilotriethanol	$8.00 \mathrm{E}+09$	$1.18 \mathrm{E}+10$	0.22263	1.47
	200	(CH3)2-N-NH2	1,1-dimethyl hydrazine	$1.60 \mathrm{E}+10$	$8.68 \mathrm{E}+09$	0.20932	0.54
	201	$\left(\mathrm{HO}-\mathrm{CH}_{2}\right)_{3 \mathrm{C}-\mathrm{NH} 2}$	2-amino-2-propane-1,3-diol	$\underline{1.50 E+09}$	$\underline{1.02 E+10}$	$\underline{33.33204}$	6.77

Table 2.1: Calculated $\mathrm{HO} \bullet$ reaction rate constants (Normal: calculated, Italic: predicted,
Bold: error is out of the EG) as compared to literature-reported experimental values
(Continued)

Nitroso, Nitramine	202	(CH3)2-N-NO	N-nitrosodimethylamine	$4.30 \mathbf{E}+08$	$7.44 \mathrm{E}+06$	0.96571	0.02
	203	CH3-CH2-N(CH3)-N=0	methylethylnitrosamine	$4.95 \mathrm{E}+08$	$1.00 \mathrm{E}+09$	1.04348	2.02
	204	$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{N}(\mathrm{N}=0)-\mathrm{CH} 2-\mathrm{CH} 3$	diethylnitrosamine	$6.99 \mathrm{E}+08$	$8.52 \mathrm{E}+08$	0.04814	1.22
	205	(CH3)2-N-NO2	dimethylnitramine	$5.44 \mathrm{E}+08$	$1.25 \mathrm{E}+08$	0.59463	0.23
	206	$(\mathrm{CH} 3-\mathrm{CH} 2) 2-\mathrm{N}-\mathrm{NO} 2$	diethyl nitramine	$8.67 \mathrm{E}+08$	$1.23 \mathrm{E}+09$	0.17748	1.42
	207	$(\mathrm{CH} 3)(\mathrm{CH} 3 \mathrm{CH} 2)-\mathrm{N}-\mathrm{NO} 2$	methyl ethyl nitramine	$7.60 \mathrm{E}+08$	$6.78 \mathrm{E}+08$	0.01153	0.89
	208	(CH3-CH2-CH2) 2 -N-NO	N-nitrosodipropylamine	$2.30 \mathrm{E}+09$	$3.52 \mathrm{E}+09$	0.27939	1.53
	209	(CH3-CH2-CH2-CH2)2-N-NO	N-nitrosodibutylamine	$4.71 \mathrm{E}+09$	$6.33 \mathrm{E}+09$	0.11871	1.34
	210	$(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 2)(\mathrm{CH} 3-\mathrm{CH} 2)-\mathrm{N}-\mathrm{NO}$	N -nitrosoethylbutylamine	$3.10 \mathrm{E}+09$	$3.58 \mathrm{E}+09$	0.02403	1.16
	211		N -nitrosopyrrolidine	$1.75 \mathrm{E}+09$	$2.42 \mathrm{E}+09$	0.14783	1.38
	212		N -nitrosopiperidine	$2.98 \mathrm{E}+09$	4.23E+09	0.17472	1.42
	213		N -nitrosohexamethyleneimine	$4.35 \mathrm{E}+09$	$5.63 \mathrm{E}+09$	0.08715	1.30
Phosphorus	214	(CH3)(CH3-O-)2-P=0	dimethyl methylphosphonate (DMMP)	$2.00 \mathrm{E}+08$	$9.83 \mathrm{E}+07$	0.25837	0.49
	215	$(\mathrm{CH} 3)(\mathrm{CH} 3 \mathrm{CH} 2)(\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{O})-\mathrm{PO}$	Diethyl methylphosphonate (DEMP)	$6.00 \mathrm{E}+08$	$9.72 \mathrm{E}+08$	0.38393	1.62
	216	PO4-(CH3)3	trimethyl phosphate	$1.20 \mathrm{E}+08$	$1.34 \mathrm{E}+08$	0.01274	1.11
	217	PO4-(CH2-CH3)3	triethyl phosphate	$2.90 \mathrm{E}+09$	$1.47 \mathrm{E}+09$	0.24189	0.51
	218	PO4-(CH2-CH2-CH3)3	tributyl phosphate	$1.00 \mathrm{E}+10$	$9.74 \mathrm{E}+09$	0.00069	0.97
Cyclo	219		cycloheptane	$7.70 \mathrm{E}+09$	$9.86 \mathrm{E}+09$	0.07867	1.28
	220		cycloheptanol	$\underline{1.70 E+09}$	$\underline{1.01 E+10}$	$\underline{24.63004}$	$\underline{5.96}$
	221		cyclohexane	$6.10 \mathrm{E}+09$	$8.45 \mathrm{E}+09$	0.14857	1.39
	222		cyclopentane	$4.50 \mathrm{E}+09$	$6.06 \mathrm{E}+09$	0.11974	1.35
	223		tetrahydrofuran	$4.00 E+09$	$\underline{1.14 E+09}$	0.51223	0.28
	224		1.4-dioxane	$3.10 E+09$	$\underline{2.64 E+09}$	0.02160	0.85
	225		1.4-dithiane	$\underline{1.80 E+10}$	$\underline{1.55 E+10}$	0.01891	0.86
	226		1,3,5-trioxane	$1.50 \mathrm{E}+09$	$1.60 \mathrm{E}+09$	0.00413	1.06
	227		tetramethvlene sulfoxide	$7.00 E+09$	$4.94 E+09$	0.08670	0.71
	228		2-methyl-1,3-dioxalane	$3.50 \mathrm{E}+09$	$1.61 \mathrm{E}+09$	0.29277	0.46
	229		1,3-dioxolane	$4.00 \mathrm{E}+09$	$1.59 \mathrm{E}+09$	0.36155	0.40
	230		ethylene oxide	$6.80 \mathrm{E}+07$	$6.87 \mathrm{E}+07$	0.00012	1.01
	231		1,2-epoxybutane	$7.80 \mathrm{E}+08$	$\underline{1.87 E+09}$	$\underline{1.95576}$	$\underline{2.40}$
	232		1,2-epoxypropane	$\underline{2.50 E+08}$	$\underline{5.23 E+08}$	1.19651	$\underline{2.09}$
	233		2.3-epoxvpropanol	$4.70 E+08$	$9.06 E+08$	$\underline{0.86236}$	$\underline{1.93}$
alkene	234	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{OH}$	allyl alcohol	$5.90 \mathrm{E}+09$	$4.62 \mathrm{E}+09$	0.04712	0.78
	235	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{CH} 3$	1-butene	$7.00 \mathrm{E}+09$	$5.49 \mathrm{E}+09$	0.04670	0.78
	236	H2C=CHCH3	propylene	$7.00 \mathbf{E}+09$	$2.08 \mathrm{E}+09$	0.49370	0.30
	237	$(\mathrm{CH} 3) 2 \mathrm{C}=\mathrm{CH} 2$	isobutylene	$5.40 \mathrm{E}+09$	3.67E +09	0.10322	0.68
	238		1,4-cyclohexadiene	$7.70 \mathrm{E}+09$	$7.75 \mathrm{E}+09$	0.00004	1.01
	239		cyclopentene	$7.00 \mathrm{E}+09$	$6.13 \mathrm{E}+09$	0.01558	0.88
	240		cyclohexene	$8.80 \mathrm{E}+09$	8.07E+09	0.00693	0.92
	241	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOCH} 3$	1-butene-3-one	$8.50 \mathrm{E}+09$	$6.11 \mathrm{E}+09$	0.07895	0.72
	242	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCONH} 2$	acrylamide	$5.90 \mathrm{E}+09$	$6.20 \mathrm{E}+09$	0.00251	1.05
	243	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3)-\mathrm{CO}-\mathrm{NH} 2$	methyl acrylamide	$1.30 \mathrm{E}+10$	$1.05 \mathrm{E}+10$	0.03674	0.81
	244	- $\mathrm{CO},-\mathrm{CO}$	1,4-benzoquinone	$1.20 \mathrm{E}+09$	$1.62 \mathrm{E}+09$	0.11969	1.35
	245	$\mathrm{H} 2 \mathrm{C}=\mathrm{CH}-\mathrm{OH}$	vinyl alcohol	$1.50 \mathrm{E}+08$	$1.00 \mathrm{E}+08$	0.11111	0.67
	246	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCHO}$	acrolein	$7.00 \mathrm{E}+09$	$6.77 \mathrm{E}+09$	0.00104	0.97
	247	$\mathrm{CH} 3 \mathrm{CH}=\mathrm{CHCHO}$	crotonaldehyde	$5.80 \mathrm{E}+09$	$7.25 \mathrm{E}+09$	0.06251	1.25
	248	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOOH}$	acrylic acid	$1.50 \mathrm{E}+09$	$2.37 \mathrm{E}+09$	0.33583	1.58
	249	Cis $\mathrm{HOOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$	maleic acid	$6.00 \mathbf{E}+09$	$2.66 \mathbf{E}+09$	0.31067	0.44
	250	HOOC-CH=CH-COOH (trans)	fumaric acid	$6.00 \mathbf{E}+09$	$1.15 \mathrm{E}+09$	0.65287	0.19
	251	H2C $=\mathrm{CHCOOCH} 2 \mathrm{CH} 2 \mathrm{OH}$	2-hydroxyethyl acrylate	$1.10 \mathrm{E}+10$	$3.16 \mathrm{E}+09$	0.50771	0.29
	252	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3) \mathrm{COOCH} 3$	methyl methacrylate	$1.10 \mathrm{E}+10$	4.41E+09	0.35916	0.40
	253	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCl}$	vinyl chloride	1.20E+10	$2.12 \mathrm{E}+09$	0.67771	0.18
	254	$\mathrm{H} 2 \mathrm{C}=\mathrm{CCl} 2$	vinylidine chloride	$6.80 \mathrm{E}+09$	$4.46 \mathrm{E}+09$	0.11884	0.66
	255	$\mathrm{ClCH}=\mathrm{CHCl}$ (cis)	dichloroethylene	$3.80 \mathrm{E}+09$	$2.66 \mathrm{E}+09$	0.09068	0.70
	256	$\mathrm{ClCH}=\mathrm{CHCl}$ (trans)	dichloroethylene	$4.40 \mathrm{E}+09$	$5.01 \mathrm{E}+09$	0.01935	1.14
	257	$\mathrm{Cl2}=\mathrm{CCl1} 2$	tetrachloroethylene	$2.00 \mathrm{E}+09$	$2.03 \mathrm{E}+09$	0.00017	1.01
	258	-F, -F, -F, -F	fluoranil	$3.90 \mathrm{E}+09$	$3.91 \mathrm{E}+09$	0.00001	1.00
	259	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{CN}$	allyl cyanide	$6.90 \mathrm{E}+09$	$3.94 \mathrm{E}+09$	0.18459	0.57
	260	$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCN}$	acrilonitrile	$5.30 \mathrm{E}+09$	$5.20 \mathrm{E}+09$	0.00032	0.98
	261	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3) \mathrm{CN}$	methacylonitrile	$1.20 \mathrm{E}+10$	$9.26 \mathrm{E}+09$	0.05215	0.77

Table 2.1: Calculated $\mathrm{HO} \bullet$ reaction rate constants (Normal: calculated, Italic: predicted,
Bold: error is out of the EG) as compared to literature-reported experimental values
(Continued)

Benzene	262	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{CH} 3$	ethylbenzene	$7.50 \mathrm{E}+09$	$7.11 \mathrm{E}+09$	0.00268	0.95
	263	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{OH}$	phenol	$6.60 \mathrm{E}+09$	$7.14 \mathrm{E}+09$	0.00674	1.08
	264	C6H5-F	fluorobenzene	$5.70 \mathrm{E}+09$	$5.40 \mathrm{E}+09$	0.00283	0.95
	265	C 6 H 5 Cl	chlorobenzene	$4.30 \mathrm{E}+09$	$5.43 \mathrm{E}+09$	0.06870	1.26
	266	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{Br}$	bromobenezene	$5.20 \mathrm{E}+09$	$4.87 \mathrm{E}+09$	0.00393	0.94
	267	C6H5-I	iodobenzene	$5.30 \mathrm{E}+09$	$4.56 \mathrm{E}+09$	0.01972	0.86
	268	C6H5-CN	benzonitrile	$3.90 \mathrm{E}+09$	$2.28 \mathrm{E}+09$	0.17232	0.58
	269	C6H5-NO2	nitrobenzene	$3.90 \mathrm{E}+09$	$2.25 \mathrm{E}+09$	0.17940	0.58
	270	C6H5-CHO	benzaldehyde	$4.40 \mathrm{E}+09$	$4.44 \mathrm{E}+09$	0.00010	1.01
	271	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{COOH}$	benzoic acid	$4.30 \mathrm{E}+09$	$3.77 \mathrm{E}+09$	0.01509	0.88
	272	C6H5-COCH3	acetophenone	$6.40 \mathrm{E}+09$	$5.50 \mathrm{E}+09$	0.01982	0.86
	273	C6H5-CONH2	benzamide	$4.60 \mathrm{E}+09$	$4.81 \mathrm{E}+09$	0.00210	1.05
	274	C6H5-SOCH3	methyl phenyl sulfoxide	$9.70 \mathrm{E}+09$	$4.89 \mathrm{E}+09$	0.24564	0.50
	275	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{OH}$	benzylalcohol	$8.40 \mathrm{E}+09$	$6.24 \mathrm{E}+09$	0.06591	0.74
	276	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NH}-\mathrm{CO}-\mathrm{CH} 3$	acetanilide	$5.20 \mathrm{E}+09$	4.80E+09	0.00592	0.92
	277	C6H5-SO3H	benzenesulfonic acid	$2.10 \mathrm{E}+09$	$2.07 \mathrm{E}+09$	0.00019	0.99
	278	C6H5-NH-OH	phenyl hydroxylamine	$1.50 \mathrm{E}+10$	$6.23 \mathrm{E}+09$	0.34155	0.42
	279	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{C}(\mathrm{CH} 3) 2-\mathrm{OH}$	2-methyl-4-phenyl-2-butanol	$5.90 \mathrm{E}+09$	$9.09 \mathrm{E}+09$	0.29222	1.54
	280	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CHOHCH}(\mathrm{CH} 3) 2$	2-methyl-1-phenyl-1-propanol	$9.50 \mathrm{E}+09$	$1.07 \mathrm{E}+10$	0.01498	1.12
	281	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CHOHCH} 3$	phenylethanol	$1.10 \mathrm{E}+10$	$7.42 \mathrm{E}+09$	0.10607	0.67
	282	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{OH})(\mathrm{CH} 2-\mathrm{CH} 3)$	1-phenyl-1-propanol	$1.00 \mathrm{E}+10$	$8.76 \mathrm{E}+09$	0.01534	0.88
	283	C6H5-CH2-CH2-OH	1-phenyl-2-propanol	$2.10 \mathrm{E}+10$	$7.55 \mathbf{E}+09$	0.41045	0.36
	284	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{O}-\mathrm{CH} 3$	anisol	$5.40 \mathrm{E}+09$	$5.93 \mathrm{E}+09$	0.00974	1.10
	285	(C6H5)2-CO	benzophenone	$9.00 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	0.04407	1.21
	286	(C6H5) $2-\mathrm{NH}$	diphenylamine	$1.00 \mathrm{E}+10$	$1.23 \mathrm{E}+10$	0.05141	1.23
	287	(C6H5)2-SO	diphenyl sulfoxide	$6.30 \mathrm{E}+09$	$7.28 \mathrm{E}+09$	0.02418	1.16
	288	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	1-phenyl-1-propanol	$1.00 \mathrm{E}+10$	$7.36 \mathrm{E}+09$	0.06994	0.74
	289	HO-C6H4-CH3	o-cresol	$\underline{1.10 E+10}$	$6.77 E+09$	0.14786	0.62
	290	HO-C6H4-CH3	p-cresol	$\underline{1.20 E+10}$	$7.14 E+09$	0.16394	0.60
	291	C6H4-C12	1,2-dichlorobenzene	$4.00 \mathrm{E}+09$	$4.76 \mathrm{E}+09$	0.03595	1.19
	292	C6H4-C12	1,3-dichlorobenzene	$5.70 \mathrm{E}+09$	$6.02 \mathrm{E}+09$	0.00308	1.06
	293	$\mathrm{C} 6 \mathrm{H} 4-\mathrm{Cl} 2$	1,4-dichlorobenzene	$5.40 \mathrm{E}+09$	$5.04 \mathrm{E}+09$	0.00450	0.93
	294	C6H4-(OH)2	1.2-benzenediol	$\underline{1.10 E+10}$	8.21E+09	0.06425	0.75
	295	1.3-C6H4 (OH)2	resorcinol	$\underline{1.20 E+10}$	8.68E+09	0.07644	$\underline{0.72}$
	296	HO-C6H4-Cl	2-chlorophenol	$\underline{1.20 E+10}$	$6.27 E+09$	0.22766	0.52
	297	HO-C6H4-Cl	3-chlorophenol	$7.20 E+09$	$7.91 E+09$	0.00963	$\underline{1.10}$
	298	HO-C6H4-Cl	4-chlorophenol	$9.30 E+09$	$6.64 E+09$	0.08199	0.71
	299	HO-C6H4-O-CH3	2-methoxyphenol	$\underline{2.00 E+10}$	6.82E+09	0.43408	0.34
	300	HO-C6H4-O-CH3	3-methoxyphenol	$3.20 E+10$	$8.55 E+09$	0.53706	0.27
	301	HO-C6H4-O-CH3	4-methoxyphenol	$\underline{2.60 E+10}$	$7.21 E+09$	0.52247	0.28
	302	HO-C6H4-NO2	4-nitrophenol	$3.80 E+09$	$\underline{2.94 E+09}$	0.05180	0.77
	303	$4-\mathrm{CH} 3-\mathrm{C} 6 \mathrm{H} 4-\mathrm{CN}$	4-tolunitrile	$\underline{1.20 E+10}$	$\underline{3.11 E+09}$	0.54935	$\underline{0.26}$
	304	$1,4-\mathrm{C} 6 \mathrm{H} 4(\mathrm{CN}) 2$	1,4-dicyanobenzene	$7.80 \mathrm{E}+08$	$8.90 \mathrm{E}+08$	0.01989	1.14
	305	4-F-C6H4-CN	p-fluorobenzonitrile	$\underline{3.50 E+09}$	$\underline{1.78 E+09}$	0.24221	0.51
	306	(CH3)3-C-C6H4-OH	tert-butylphenol	$1.90 \mathrm{E}+10$	$6.69 \mathrm{E}+09$	0.41986	0.35
	307	C6H4-F2	o-difluorobenzene	$7.50 \mathrm{E}+09$	$4.71 \mathrm{E}+09$	0.13884	0.63
	308	C6H4-F2	p-difluorobenzene	$1.00 \mathrm{E}+10$	$4.98 \mathrm{E}+09$	0.25182	0.50
	309	C6H4-(OCH3)2	1,2-dimethoxybenzene	$5.20 \mathrm{E}+09$	$5.71 \mathrm{E}+09$	0.00958	1.10
	310	C 6 H 4 -(OCH 3$)^{2}$	1,3-dimethoxybenzene	$7.20 \mathrm{E}+09$	$7.12 \mathrm{E}+09$	0.00014	0.99
	311	$\mathrm{C} 6 \mathrm{H} 4-(\mathrm{OCH} 3)^{2}$	1,4-dimethoxybenzene	$7.00 \mathrm{E}+09$	$6.02 \mathrm{E}+09$	0.01954	0.86
	312	4-O2N-C6H4-NH2	p-nitroaniline	$1.40 \mathrm{E}+10$	$3.16 \mathbf{E}+09$	0.59950	0.23
	313	CH3-C6H4-CN	p-tolunitrile	$\underline{1.20 E+10}$	$\underline{2.52 E+09}$	0.62419	0.21
	314	4-C1-C6H4NO2	1-chloro-4-nitrobenzene	$1.30 \mathrm{E}+09$	$2.09 \mathrm{E}+09$	0.36644	1.61
	315	$4-\mathrm{O} 2 \mathrm{~N}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{COCH} 3$	4 -nitroacetophenone	$3.30 \mathrm{E}+09$	$2.15 \mathrm{E}+09$	0.12185	0.65
	316	(HO) 2 - 66 H3-Cl	1.2.4--chlorocatecohol	$7.00 E+09$	$\underline{6.87 E+09}$	0.00034	0.98
	317	C6H3-(OH)3	phloroglucinol	$1.00 \mathrm{E}+10$	$1.06 \mathrm{E}+10$	0.00336	1.06
	318	3.4-(HO)2-C6H3-CHO	dihydroxybenzaldehyde	$8.30 E+09$	$\underline{5.50 E+09}$	0.11400	0.66
	319	(HO)2-C6H3-COCH3	2,4-dihydroxyacetophenone	$\underline{3.00 E+10}$	6.95E+09	0.59054	0.23
	320	(HO) 2 - $\mathrm{C}^{(2 \mathrm{H} 3-\mathrm{COCH3}}$	2.5-dihvdroxvacetophenone	$8.00 E+09$	$9.64 E+09$	0.04201	$\underline{1.20}$
	321	(HO) 2 - $\mathrm{C} 6 \mathrm{H} 3-\mathrm{COCH3}$	3.4-dihvdroxvacetophenone	$1.00 E+10$	$8.20 E+09$	0.03232	0.82
	322	(NO2) $2-\mathrm{C} 6 \mathrm{H} 3-\mathrm{OCH3}$	3,5-dinitroanisole	$5.20 E+09$	$\underline{1.05 E+09}$	$\underline{0.63751}$	$\underline{0.20}$
	323	$\mathrm{C} 6 \mathrm{H} 3-(\mathrm{OCH} 3)^{3}$	1,2,3-trimethoxybenzene	$7.00 \mathrm{E}+09$	$7.15 \mathrm{E}+09$	0.00047	1.02
	324	C6H3-(OCH3) 3	1,2,4-trimethoxybenzene	$6.20 \mathrm{E}+09$	$5.27 \mathrm{E}+09$	0.02267	0.85
	325	$\mathrm{C} 6 \mathrm{H} 3-(\mathrm{OCH} 3) 3$	1,3,5-trimethoxybenzene	$8.10 \mathrm{E}+09$	$6.15 \mathrm{E}+09$	0.05822	0.76
	326	HO-C6H3-CH3O	2,3-dimethoxyphenol	$\underline{2.00 E+10}$	8.55E+09	0.32778	0.43
	327	HO-C6H3-CH3O	2,4-dimethoxyphenol	$\underline{2.60 E+10}$	6.24E+09	0.57783	0.24
	328	HO-C6H3-CH3O	3,5-dimethoxyphenol	$\underline{2.00 E+10}$	$\underline{7.31 E+09}$	0.40229	0.37

Table 2.1: Calculated $\mathrm{HO} \bullet$ reaction rate constants (Normal: calculated, Italic: predicted,
Bold: error is out of the EG) as compared to literature-reported experimental values
(Continued)

	329	C6H5-CH3	toluene	$5.10 \mathrm{E}+09$	$5.91 \mathrm{E}+09$	0.02495	1.16
	330	$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NH} 2$	aniline	$1.70 \mathrm{E}+10$	$2.05 \mathrm{E}+10$	0.04239	1.21
	331	H3C-C6H4-CH3	o-xylene	$6.70 \mathrm{E}+09$	$5.69 \mathrm{E}+09$	0.02286	0.85
	332	H3C-C6H4-CH3	m -xylene	$7.50 \mathrm{E}+09$	$7.00 \mathrm{E}+09$	0.00437	0.93
	333	H3C-C6H4-CH3	p -xylene	$7.00 \mathrm{E}+09$	5.98E+09	0.02125	0.85
	334	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,2,3-trimethyl benzene	$7.00 \mathrm{E}+09$	$7.01 \mathrm{E}+09$	0.00000	1.00
	335	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,2,4-trimethyl benzene	$6.20 \mathrm{E}+09$	$5.30 \mathrm{E}+09$	0.02100	0.86
	336	- $\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,3,5-trimethyl benzene (mesitylene)	$6.40 \mathrm{E}+09$	$6.10 \mathrm{E}+09$	0.00222	0.95
	337	F, F, F, F, F	hexafluorobenzene	$1.40 \mathrm{E}+09$	$1.58 \mathrm{E}+09$	0.01714	1.13
	338	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	hexamethylbenzene	$7.20 \mathrm{E}+09$	$4.00 \mathrm{E}+09$	0.19813	0.55
	339	F,F,F,F,F,F	pentafluorobenzene	$7.00 \mathrm{E}+09$	$6.15 \mathrm{E}+09$	0.01478	0.88
	340	--CH3 (6)	pentamethylbenzene	$7.50 \mathrm{E}+09$	8.85E+09	0.03263	1.18
	341	F, F,F,F,F,I	pentafluoroiodobenzene	$1.20 \mathrm{E}+09$	$1.34 \mathrm{E}+09$	0.01295	1.11
	342	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,2,3,4-tetramethylbenzene	$7.20 \mathrm{E}+09$	8.80E +09	0.04952	1.22
	343	F, F, F, F	1,2,3,4-tetrafluorobenzene	$8.00 \mathrm{E}+09$	$6.59 \mathrm{E}+09$	0.03086	0.82
	344	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,2,3,5-tetramethylbenzene	$7.10 \mathrm{E}+09$	$7.04 \mathrm{E}+09$	0.00008	0.99
	345	$-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3,-\mathrm{CH} 3$	1,2,4,5-tetramethylbenzene	$7.00 \mathrm{E}+09$	$8.48 \mathrm{E}+09$	0.04498	1.21
	346	-OCH3 (4)	1,2,4,5-tetramethoxybenzene	$7.00 \mathrm{E}+09$	8.85E+09	0.06951	1.26
	347	-Cl, -Cl, --Cl, -OH	2,4,5-trichlorophenol	$1.20 \mathrm{E}+10$	$4.29 \mathrm{E}+09$	0.41309	0.36
	348	- $\mathrm{Cl},-\mathrm{Cl},-\mathrm{O}-\mathrm{COOH}$	2.4-dichlorophenoxvacetic acid	$6.60 E+09$	4.19E+09	0.13339	$\underline{0.63}$
	349	$-\mathrm{O}-\mathrm{COOH}$	phenoxvacetic acid	$\underline{1.00 E+10}$	$\underline{5.74 E+09}$	0.18155	$\underline{0.57}$
	350	-C1,-Cl, -OH	2,4-dichlrophenol	$7.10 \mathrm{E}+09$	$5.24 \mathrm{E}+09$	0.06860	0.74
	351	-OH, - $\mathrm{OH},-\mathrm{OH}$	1,2,4-trihydroxybenzene	$8.60 \mathrm{E}+09$	8.95E+09	0.00170	1.04
	352	- $\mathrm{OH},-\mathrm{OH},-\mathrm{C}(\mathrm{CH} 3)^{3}$	tert-butyl hydroquinone	$6.30 \mathrm{E}+09$	8.27E+09	0.09748	1.31
	353	1,2,4,5-Cl, OH, OH, Cl	2,5-dichlorohydroquinone	$2.10 \mathrm{E}+10$	5.63E+09	0.53545	0.27
	354	-F, -F, -F, -F, -OH, -OH	tetrafluorohydroquinone	$3.10 \mathrm{E}+09$	$2.90 \mathrm{E}+09$	0.00434	0.93
	355	$-F_{0}-F_{0}-F^{\text {a }}$	1.3.5-trifluorobenzene	4.10E+09	$4.63 E+09$	0.01651	$\underline{1.13}$
	356	$-F_{0}-F_{0},-F$	1.2,3-trifluorobenzene	$3.70 E+09$	$5.46 E+09$	0.22722	$\underline{1.48}$
	357	-F, -F, -F	1.2,4-trifluorobenzene	$\underline{3.90 E+09}$	$3.90 E+09$	$\underline{0.00000}$	$\underline{1.00}$
	358	F. F. F. F.F. - COCH 3	pentafluoroacetophenone (PFA)	$\underline{1.50 E+09}$	$\underline{1.65 E+09}$	0.01023	$\underline{1.10}$
	359	F. F. F, F. F. CHO	pentafluorobenzaldehvde	$\underline{2.00 E+09}$	1.81E+09	0.00902	0.91
	360	F.F.F.F. F. - COOH	pentafluorobenzoic acid	1.10E+09	1.11E+09	0.00004	$\underline{1.01}$
	361	$\underline{F, F, F, F, F-\mathrm{NH} 2}$	pentafluoroaniline	$\underline{9.60 E+09}$	$\underline{2.41 E+09}$	0.56079	0.25
	362	$\underline{F, F, F, F, F,-O H}$	pentafluorophenol	$\underline{9.50 E+09}$	$\underline{2.17 E+09}$	0.59599	0.23
pyridine	363	-CH3	2-methyl pyridine	$2.50 \mathrm{E}+09$	$2.82 \mathrm{E}+09$	0.01641	1.13
	364	-CH3	3-methyl pyridine	$2.40 \mathrm{E}+09$	$2.40 \mathrm{E}+09$	0.00000	1.00
	365	-NH2	2-pyridine amine	$8.40 \mathrm{E}+09$	$4.48 \mathrm{E}+09$	0.21746	0.53
	366	$-\mathrm{NH} 2$	4 -pyridine amine	$5.00 \mathrm{E}+09$	$5.87 \mathrm{E}+09$	0.03020	1.17
	367	$-\mathrm{Br}$	2-bromopyridine	$2.40 \mathrm{E}+09$	$1.55 \mathrm{E}+09$	0.12596	0.65
	368	$-\mathrm{Br}$	3-bromopyridine	$1.10 \mathrm{E}+09$	$1.28 \mathrm{E}+09$	0.02769	1.17
	369	-Cl	2-chloropyridine	$1.80 \mathrm{E}+09$	$2.08 \mathrm{E}+09$	0.02478	1.16
	370	-Cl	4-chloropyridine	$3.10 \mathrm{E}+09$	$1.61 \mathrm{E}+09$	0.23171	0.52
	371	-CN	3-cyanopyridine	$7.50 \mathrm{E}+08$	$7.07 \mathrm{E}+08$	0.00322	0.94
	372	-OH	2-pyridone	$6.50 \mathrm{E}+09$	$5.16 \mathrm{E}+09$	0.04247	0.79
	373	-OH	3-pyridinol	$5.40 \mathrm{E}+09$	$4.29 \mathrm{E}+09$	0.04197	0.80
	374	-OH	4-pyridinol	$1.10 \mathrm{E}+10$	$6.73 \mathrm{E}+09$	0.15102	0.61
	375	- COOH	2-pyridine carboxylic acid	$2.60 \mathrm{E}+07$	$2.84 \mathrm{E}+07$	0.00822	1.09
	376	$-\mathrm{COOH}$	3 -pyridinecarboxylic acid	$2.20 \mathrm{E}+07$	$2.36 \mathrm{E}+07$	0.00542	1.07
	377	- COOH	4 -pyridinecarboxylic acid	$6.00 \mathrm{E}+07$	$3.69 \mathrm{E}+07$	0.14812	0.62
	378	-pyr	4,4'-bipyridine	$5.30 \mathrm{E}+09$	$6.72 \mathrm{E}+09$	0.07154	1.27
	379	-pry	2,2'-bipyridine	$6.20 \mathrm{E}+09$	$5.13 \mathrm{E}+09$	0.02972	0.83
	380	-CONH2	4-pyridinecarboxyamide	$1.60 \mathrm{E}+09$	$1.67 \mathrm{E}+09$	0.00214	1.05
	381	-CONH2	3-pyridinecarboxyamide	$1.40 \mathrm{E}+09$	$1.06 \mathrm{E}+09$	0.05910	0.76
	382		2,6-dimethyl pyridine	$3.00 \mathrm{E}+09$	$3.28 \mathrm{E}+09$	0.00869	1.09
	383		3,5-dimethyl pyridine	$8.00 \mathrm{E}+09$	$8.30 \mathrm{E}+09$	0.00139	1.04
	384		2,4,6-trimethylpyridine	$2.50 \mathrm{E}+09$	$2.41 \mathrm{E}+09$	0.00122	0.97
Furan	385	-CH3	2-methylfuran	$1.90 \mathrm{E}+10$	$1.29 \mathrm{E}+10$	0.10188	0.68
	386	- $\mathrm{CH} 2-\mathrm{OH}$	furfuryl alcohol	$1.50 \mathrm{E}+10$	$1.33 \mathrm{E}+10$	0.01325	0.88
	387	-- CHO	furaldehyde	$7.80 \mathrm{E}+09$	$7.29 \mathrm{E}+09$	0.00434	0.93
	388	-CH3	5-methylfurfural	$7.20 \mathrm{E}+09$	$1.02 \mathrm{E}+10$	0.17522	1.42
	389	$-\mathrm{O}-\mathrm{CH} 3$	5-hydroxymethylfurfuryl	$5.80 \mathrm{E}+09$	$8.46 \mathrm{E}+09$	0.20982	1.46
	390	- NO 2	5-nitro-2-furaldehyde	$5.50 \mathrm{E}+09$	$6.46 \mathrm{E}+09$	0.03066	1.18
Urea	391	H2N-CO-NH2	urea	$7.90 \mathrm{E}+05$	$8.18 \mathrm{E}+05$	0.00123	1.04
	392	H2N-CS-NH2	thiourea	$1.20 \mathrm{E}+10$	$8.00 \mathrm{E}+09$	0.11129	0.67
	393	(CH3)2N-CS-N(CH3)2	tetramethyl thiourea	$8.00 \mathrm{E}+09$	$9.36 \mathrm{E}+09$	0.02902	1.17
	394	CH3-NH-CS-NH-CH3	1,3-dimethyl thiourea	$1.20 \mathrm{E}+09$	$1.35 \mathrm{E}+09$	0.01574	1.13
	395	CH3-NH-CO-NH-CH3	1,3-dimethylurea	$2.60 \mathrm{E}+09$	$2.25 \mathrm{E}+09$	0.01830	0.86
	396	$\mathrm{CH} 3-\mathrm{NH}-\mathrm{CO}-\mathrm{NH} 2$	methylurea	$2.00 \mathrm{E}+09$	$1.12 \mathrm{E}+09$	0.19160	0.56
	397	(CH3)2-N-CO-N-(CH3)2	tetramethyl urea	$5.20 \mathrm{E}+09$	$4.50 \mathrm{E}+09$	0.01836	0.86

Table 2.1: Calculated HO• reaction rate constants (Normal: calculated, Italic: predicted,
Bold: error is out of the EG) as compared to literature-reported experimental values (Continued)

Imidazole	398	xanthine	$5.20 \mathrm{E}+09$	$4.68 \mathrm{E}+09$	0.00994	0.90
	399	theophilline	$6.30 \mathrm{E}+09$	$6.93 \mathrm{E}+09$	0.00997	1.10
	400	isoguanine	$1.20 \mathrm{E}+10$	$7.47 \mathrm{E}+09$	0.14259	0.62
	401	guanine	$9.20 \mathrm{E}+09$	$5.31 \mathrm{E}+09$	0.17865	0.58
	402	imidazole	$3.90 \mathrm{E}+09$	$4.49 \mathrm{E}+09$	0.02312	1.15
	403	1-methyl imidazole	8.10E+09	$4.85 \mathrm{E}+09$	0.16141	0.60
	404	theobromine	$5.80 \mathrm{E}+09$	$6.78 \mathrm{E}+09$	0.02843	1.17
	405	caffeine	$6.90 \mathrm{E}+09$	$7.90 \mathrm{E}+09$	0.02107	1.15
	406	5-nitrofuroic acid	$\underline{5.30 E+09}$	6.18E+09	0.02730	$\underline{1.17}$
	407	nifuroxime	$1.00 \mathrm{E}+10$	$1.44 \mathrm{E}+10$	0.18964	1.44
	408	2-acetyl furan	$4.50 \mathrm{E}+09$	4.18E+09	0.00505	0.93
	409	2-furancarboxamide	$5.50 \mathrm{E}+09$	$6.34 \mathrm{E}+09$	0.02307	1.15
	410	2-phenylfuran	$1.60 \mathrm{E}+10$	$1.51 \mathrm{E}+10$	0.00297	0.95
	411	5-bromofurfural	$3.90 \mathrm{E}+09$	$5.49 \mathrm{E}+09$	0.16641	1.41
	412	5-nitrofuroic acid	$5.30 \mathbf{E}+09$	$1.32 \mathrm{E}+10$	2.23704	2.50
	413	5-phenylfurfural	5.90E+09	$\underline{1.51 E+10}$	$\underline{2.44642}$	$\underline{2.56}$
	414	furoin	$1.30 \mathrm{E}+10$	$1.69 \mathrm{E}+10$	0.08935	1.30
triazine	415	2,4,6-trimethoxy-1,3,5-triazine	$2.06 \mathbf{E}+08$	5.83E +08	3.35339	2.83
	416	2-chloro-4,6-diamino-s-triazine	$5.00 \mathbf{E}+07$	$3.03 \mathrm{E}+08$	25.52272	6.05
	417	simazine	$2.10 \mathrm{E}+09$	$3.12 \mathrm{E}+09$	0.23397	1.48
	418	atrazine	$2.00 \mathbf{E}+09$	$4.88 \mathrm{E}+09$	2.07497	2.44
	419	propazine	$1.20 \mathrm{E}+09$	$6.65 \mathrm{E}+09$	20.59739	5.54
	420	simetone	$4.70 \mathrm{E}+09$	$3.90 \mathrm{E}+09$	0.02866	0.83
	421	terbutazine	$2.80 \mathrm{E}+09$	$2.80 \mathrm{E}+09$	0.00000	1.00
	422	simetryne	$2.60 \mathrm{E}+10$	$6.48 \mathrm{E}+09$	0.56350	0.25
	423	ametryne	$2.60 \mathrm{E}+10$	$8.25 E+09$	0.46618	0.32
	424	cvcloserine	$\underline{9.00 E+09}$	5.47E+09	0.15376	0.61
	425	Linuron	$6.50 E+09$	4.78E+09	0.06980	0.74
	426	diuron	$7.50 E+09$	5.71E+09	0.05683	0.76
	427	isoproturon	$\underline{5.70 E+09}$	$\underline{1.01 E+10}$	0.59055	$\underline{1.77}$
	428	chlortoluron	$7.50 E+09$	6.15E+09	0.03263	0.82
	429	acetaminophen	$9.80 E+09$	$\underline{5.87 E+09}$	0.16076	$\underline{0.60}$
	430	Diazepam	$7.20 E+09$	$\underline{1.14 E+10}$	0.34270	$\underline{1.59}$
	431	Diclofenac	$7.50 E+09$	1.18E+10	0.33286	1.58
	432	Ibuprofen	$7.40 E+09$	$\underline{1.06 E+10}$	0.18241	1.43
	433	2.4-D (2.4-dichlorophenoxy)-acetic acid	$6.60 E+09$	$4.28 E+09$	0.12396	0.65
	434	clofibric acid	$4.70 E+09$	$\underline{5.81 E+09}$	0.05559	$\underline{1.24}$

2.4.2 Overall Results

Tables 2.2 and 2.3 summarize experimental data and statistical results for calibrations and predictions, respectively. The total degrees of freedom (DF) were 164. The best calibration for 83% (257 rate constants) of the rate constants and the prediction for 62% (76 rate constants) of the rate constants were within the EG. The SD was 0.92 from the calibration, which indicated that the calibrated data were distributed within the range from $1.65 \sigma(90 \%)$ to $1.96 \sigma(95 \%)$ from the experimental values under the assumption of a normal distribution. Figure 2.3 plots 434 rate constants from calibrations and predictions against the experimental rate constants for four reaction mechanisms.

The least-squares fit is $y=0.65 x$ and has a correlation coefficient, r, of 0.58 (note that the

OF in equation (2.24) weighs all data points equally, so that the lowest data point would not significantly change the overall correlation even though it is eliminated). The correlation coefficient is comparable to the literature-reported values (e.g., 0.56 with the recalculated MOOH method (Böhnhardt et al., 2008) and 0.59 with Atkinson's GCM (Kwok and Atkinson, 1995), respectively, from 805 gaseous phase $\mathrm{HO} \cdot$ rate constants).

Table 2.2: Summary of experimental data and statistical results for calibration

Group rate constant and functional group		$\begin{aligned} & \text { \# of group } \\ & \text { rate } \\ & \text { constant } \end{aligned}$	```# of group contribution factor```	\# of experimental data	\# of data within EG (\%)	S.D.
Overall		66	80	310	257 (83\%)	0.92
H-atom abstraction						
Overall for H-atom abstraction		5	18	84	71 (85\%)	0.42
alkyl	$\begin{gathered} k_{0}^{\text {prim }}, k_{0}^{\text {sec }}, k_{0}^{\text {tert }} \\ -\mathrm{CH}_{3},\left(-\mathrm{CH}_{2}-\approx-\mathrm{CH}<\approx>\mathrm{C}<\right) \end{gathered}$	3	2	12	11 (90\%)	0.27
alkyl halides	$\begin{gathered} \mathrm{Cl}, \mathrm{Br},-\mathrm{CF}_{3},-\mathrm{CCl}_{3},- \\ \mathrm{CH}_{n} \text { (halogen) }{ }_{m} \end{gathered}$	-	5	22	17 (77\%)	0.40
cycloalkanes	RS3, RS5, -O-(2nd)	-	3	7	5 (71\%)	0.41
alcohol	$k{ }_{\text {OH, }}$ - OH	1	1	14	12 (86\%)	0.37
ether	-O-	-	1	8	7 (88\%)	0.48
carbonyl	-CO-	-	1	5	5 (100\%)	0.47
aldehyde	-- CHO	-	1	4	4 (100\%)	0.13
ester	-OCOR	-	1	7	6 (86\%)	0.60
carboxylic	$k_{\text {COOH, }}(-\mathrm{COOH} \approx-\mathrm{COOR})$	1	2	12	10 (83\%)	0.70
HO• addition to alkene						
Overall for HO• addition		7	7	28	22 (79\%)	0.40
alkyl	-CH3 $\sim-\mathrm{CH} 2-$	-	1	7	6 (86\%)	0.34
carbonyl	--CO	-	1	4	4 (100\%)	0.28
aldehyde	-- CHO	-	1	2	2 (100\%)	0.25
carboxylic	$-\mathrm{COOH} \approx \mathrm{COO}$	-	1	5	1 (20\%)	0.74
alkyl halides	-F, -Cl	-	2	6	5 (83\%)	0.43
cyanide	-CN	-	1	3	3 (100\%)	0.34
HO• addition to aromatic compounds						
Overall for HO• addition to aromactic compounds		40	45	120	106 (88\%)	0.73
Overall for benzene		21	18	68	61 (90\%)	0.30
alkyl	$-\mathrm{CH}_{3} \approx-\mathrm{CH}_{2}-\approx-\mathrm{CH}<\approx>\mathrm{C}<$	-	1	22	21 (95\%)	0.30
alkyl halides	-F, -Cl, -Br, -I	-	4	17	14 (82\%)	0.32
oxygenated	$\begin{gathered} -\mathrm{OH},-\mathrm{CHO}, \\ -\mathrm{COOH},-\mathrm{CO},-\mathrm{O}- \end{gathered}$	-	5	20	18 (90\%)	0.27
S-containing	-SO, -SO3H	-	2	3	3 (100\%)	0.30
N -containing	$\begin{gathered} -\mathrm{CONH} 2,-\mathrm{CN},-\mathrm{NO} 2, \\ -\mathrm{NH}-\mathrm{CO}-,-\mathrm{NH}-,-\mathrm{NH} 2 \end{gathered}$	-	6	7	7 (100\%)	0.36
Overall for pyridine		12	8	22	22 (100\%)	0.24
alkyl	-CH3	-	1	5	5 (100\%)	0.083
oxygenated	-OH, -- COOH	-	2	6	6 (100\%)	0.28
alkyl halides	$-\mathrm{Cl},-\mathrm{Br}$	-	2	4	4 (100\%)	0.37
N -containing	-CONH2, -CN, -NH2	-	3	5	5 (100\%)	0.28
Overall for furan		4	10	13	13 (100\%)	0.52
alkyl	$-\mathrm{CH} 3 \approx-\mathrm{CH} 2$	-	1	3	3 (100\%)	0.38
oxygenated	-O-, -CHO, - $\mathrm{CO},-\mathrm{COOH}$	-	4	5	5 (100\%)	0.80
alkyl halides	-Br	-	1	1	1 (100\%)	N.A.
N -containing	-NO2, --CONH2-, -CHCN-	-	3	4	4 (100\%)	0.91
aromatic	-C6H5	-	1	1	1 (100\%)	N.A.
Overall for imidazole		2	4	8	8 (100\%)	0.29
alkyl	$-\mathrm{CH} 3 \approx>\mathrm{C}<$	-	1	2	2 (100\%)	0.55
carbonyl	--CO	-	1	5	5 (100\%)	0.25
N -containing	-NH, -N<	$-$	2	6	6 (100\%)	0.28
Overall for triazine		1	5	9	3 (33\%)	2.57
ether	-O-	-	1	1	0 (0\%)	N.A.
alkyl halides	-Cl	-	1	5	2 (40\%)	3.48
S-containing	-S-	-	1	2	0 (0\%)	1.01
N -containing	-NH2, -NH-	-	2	8	3 (38\%)	2.66
HO• Interaction with S, N, or P-atom containing compounds						
Overall for HO• interaction		14	10	78	58 (74\%)	1.5
Overall for S-containing		4	2	12	10 (83\%)	0.38
sulfide, thiol	-S- $\sim-\mathrm{S}-\mathrm{S}-\approx-\mathrm{HS}$	3	1	8	6 (75\%)	0.45
sulfoxide	-SO-	1	1	4	4 (100\%)	0.24
Overall for \mathbf{N}-containing		8	6	54	37 (69\%)	1.8
nitriles	-CN	1	1	4	3 (25\%)	0.79
nitro	-NO2	1	1	2	0 (0\%)	13
amide	-N-CO-	3	1	15	10 (67\%)	0.46
amine	-NH2 $\sim-\mathrm{NH}-\approx-\mathrm{N}<$	3	1	21	17 (81\%)	0.47
nitroso and nitramine	-N-NO, -N-NO2	0	2	12	9 (75\%)	0.58
urea	$k_{\text {-N-CO-N- }}$	1	0	7	7 (100\%)	0.25
phosphorus	$->\mathrm{P}=\mathrm{O},-\mathrm{O}-\mathrm{P}<-$	1	2	5	5 (100\%)	0.47

Table 2.3: Summary of experimental data and statistical results for prediction

Reaction mechanism	Number of experimental data	Number of data within EG (\%)	S.D.
Overall	$\mathbf{1 2 4}$	$\mathbf{7 6 (6 2 \%)}$	$\mathbf{1 . 2}$
H-atom abstraction	60	$35(58 \%)$	1.1
HO addition to aromatic compounds	46	$33(72 \%)$	0.53
HO \bullet Interaction with S, N , or P-atom containing compounds	18	$8(44 \%)$	2.2

Figure 2.3: Total of $434 \mathrm{HO} \cdot$ reaction rate constants from calibrations and predictions versus experimental rate constants for four reaction mechanisms. Error bars represent the range of experimentally reported values.

2.4.3 Hydrogen-Atom Abstraction from Saturated Aliphatic Compounds

The group rate constants of primary, secondary, and tertiary C-H bonds, $k_{\text {prim }}^{0}, k_{\text {sec }}^{0}$, and $k_{\text {tert }}^{0}$, respectively, and group contribution factors, $X_{\mathrm{R}_{i}}$, of alkyl and halogenated
functional groups were calibrated first. Then, other group contribution factors were subsequently calibrated using these group rate constants and alkyl group contribution factors. For the calibration, the multifunctional group compounds (e.g., glycol, polycarboxylic) were not used except for the alkyl halides (e.g., $\mathrm{CH}_{2} \mathrm{ClBr}$). As shown in Table 2.2, for the overall H -atom abstraction, the DF were 61.85% of the calibrated data was within the EG. The S.D. was 0.42 .

Once the group rate constants and group contribution factors were calibrated, 60 of the rate constants for the multifunctional group compounds were used to predict rate constants and were compared with experimental values. Table 2.3 summarizes the results from the prediction. A total of 58% of the predicted data were within the EG. The SD was 1.1.

2.4.3.1 Group Rate Constants for H-atom Abstraction

Group rate constants of $k_{\text {prim }}^{0}, k_{\text {sec }}^{0}$, and, $k_{\text {tert }}^{0}$ are $1.18 \times 10^{8}, 5.11 \times 10^{8}$, and 1.99×10^{9} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively. The trend $k_{\text {prim }}^{0}<k_{\text {sec }}^{0}<k_{\text {tert }}^{0}$ is consistent with the radical stability of primary, secondary, and tertiary carbon-centered radicals due to the hyperconjugation. The approximate magnitude of the group rate constants can be verified from the experimentally obtained E_{a} (Monod et al., 2005; Elliot and McCracken, 1989) and A (Monod et al., 2005; Asmus et al., 1973). For instance, $E_{\text {prim }}^{0}+E_{a, \text { abs }}^{-\mathrm{OH}}$ and $E_{\text {prim }}^{0}+E_{a, \text { abs }}^{-\mathrm{CO}}$ are equivalent to $4.8 \mathrm{~kJ} / \mathrm{mol}$ of methane and $11.6 \mathrm{~kJ} / \mathrm{mol}$ of acetone, respectively. Due to their electron withdrawing-ability (i.e., $E_{a, \text { abs }}^{-\mathrm{OH}}$ and $E_{a, \text { abs }}^{-\mathrm{CO}}$ are greater than 0), $E_{\text {prim }}^{0}$ should be less than $4.8 \mathrm{~kJ} / \mathrm{mol}$. Assuming the typical Arrhenius frequency factor, A, as $10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for the H -atom abstraction by $\mathrm{HO} \cdot$ (e.g., 7.2×10^{9} for methanol; 1.6×10^{10} for acetone), the
approximate magnitude of $k_{\text {prim }}^{0}$ can range from 10^{8} to 10^{9}, which is in agreement with our estimated $k_{\text {prim }}^{0}$.

When aqueous-phase group rate constants are compared with gaseous-phase ones, the aqueous-phase group rate constants are more variable than the gaseous-phase ones (i.e., $k_{\text {tert }}^{0} / k_{\text {prim }}^{0}=16.9 \operatorname{and} k_{\text {sec }}^{0} / k_{\text {prim }}^{0}=4.3$ versus $k_{\text {tert(gas })}^{0} / k_{\text {prim(gas) }}^{0}=4.3 \operatorname{and} k_{\text {sec(gas }}^{0} / k_{\text {prim(gas) }}^{0}=$ 1.0). This is probably due to both the cage effect and the effect of solvation (Benson, 1982). In the aqueous phase, $\mathrm{HO} \cdot$ and solute molecules significantly interfere with water molecules that form a first solvation cage surrounding a targeted molecule. As a result of restriction of their molecular rotation and translation in the solvent cage, the solutes suffer a significant decrease in entropy. According to the following equation (2.25) (Brezonik, 2002) that relates the activation of entropy in the aqueous phase, $\Delta \mathrm{S}^{\neq}$, with the Arrhenius frequency factor A,

$$
\begin{equation*}
A=e \kappa T / h \exp \left(\Delta S^{\neq} / R\right) \tag{2.25}
\end{equation*}
$$

the A in the aqueous phase generally becomes smaller than the gaseous phase one. In addition, it may be more difficult for $\mathrm{HO} \bullet$ to attack tertiary $\mathrm{C}-\mathrm{H}$ bond due to three other functional groups than to the secondary and primary C-H bonds. As a result, the following trend is observed: $A_{\text {tert }} / A_{\text {prim }}>A_{\text {tert(gas) }} / A_{\text {prim(gas) }}$. One can also understand the effect of water molecules to the E_{a} from free energy of solvation as shown in the following equation
$\Delta G^{\neq}=E_{\mathrm{a}}-R T-T \Delta S^{\neq}$
where ΔG^{\neq}is free energy of activation in solution, and for the aqueous phase (Brezonik, 2002)

$$
\begin{equation*}
E_{\mathrm{a}}=\Delta H^{\neq}+R T \tag{2.27}
\end{equation*}
$$

As a consequence, in general, larger rate constants are observed in the aqueous phase than in the gaseous phase, although this depends on the polarizability of solute molecules. For non-polarized molecules (e.g., alkanes), positive solvation energy is observed. Theoretically calculated solvation energy (i.e., $G_{\text {sov }}\left(\mathrm{CHCl}_{3}\right)<G_{\text {sov }}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)<G_{\text {sov }}$ $\left.\left(\mathrm{CH}_{3} \mathrm{Cl}\right)\right)\left(\right.$ Vassilev and Baerends, 2005) also verifies our obtained trend $k_{\text {tert }}>k_{\text {sec }}>k_{\text {prim }}$. In the aqueous phase, the H -atom abstraction reaction from a $\mathrm{C}-\mathrm{H}$ bond preferentially occurs before an $\mathrm{O}-\mathrm{H}$ bond due to the smaller BDEs of $\mathrm{C}-\mathrm{H}$ bond. In addition, the polarity of oxygen makes the molecule extensively soluble in the aqueous phase because of the formation of hydrogen bonds, which prevent attacks to the $\mathrm{O}-\mathrm{H}$ bond by HO• Nonetheless, several experimental studies reported approximately 10% of H -atom abstraction from the $\mathrm{O}-\mathrm{H}$ bond (Asmus et al., 1973). Therefore, a term $k_{\mathrm{R}_{4}}$ accounted for the group rate constants $k_{-\mathrm{OH}}$ and $k_{-\mathrm{COOH}}$, respectively, as shown in equation (2.9). The $k_{\text {-OH }}$ is $1.00 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, which represents $33,8.5$, and $<5 \%$ of the H -atom abstraction from the $\mathrm{O}-\mathrm{H}$ bond in methanol, ethanol, and other alcohol compounds, respectively. These percentages are comparable with the experimental observations (Asmus et al., 1973). The k_{COOH} is $7.0 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. The magnitude of the k_{COOH} is consistent with the rate constant for oxalic acid (Getoff et al., 1971).

2.4.3.2 Group Contribution Factors for H-atom Abstraction.

A total of 18 group contribution factors for H -atom abstraction (i.e., $X_{\mathrm{R}_{i}}$) are summarized in Table 2.4. The group contribution factors of $X_{-\mathrm{CH}_{2}-}, X_{>\mathrm{CH}}$, and $X_{>\mathrm{C}<}$ were assumed to be identical because of the following reasons: (1) limited data availability for the $>\mathrm{C}<$ functional group and (2) identical BDEs affected by the corresponding functional group (i.e., $400.8 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}-\mathbf{H}\left(\mathrm{CH}_{3}\right)_{2}, 399.2 \mathrm{~kJ} / \mathrm{mole}$ for
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}-\mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}$, and $400.4 \mathrm{~kJ} / \mathrm{mol}$ for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{H}$, respectively) (Luo, 2002). When the alkyl functional groups had the ether functional groups at both sides of the α positions, another group contribution factor $X_{-\mathrm{O} \text {-(second) }}$ was considered. Group contribution factors for carboxylic and ester functional groups, -COOH and -COOR , were assumed to be identical due to their similar electron-withdrawing ability. Because of their strong electron-withdrawing ability, the influence of the β-position that resulted from the halogen functional groups was considered. This represented $X_{-\mathrm{CH}_{\mathrm{n}}(\text { (halogen })_{\mathrm{m}}}$ where $(\mathrm{n}, \mathrm{m})=(1,1),(1,2)$, or $(2,1)$ for Cl or Br atom, (i.e., $X_{-\mathrm{CH}_{2} \mathrm{Cl}} \approx X_{-\mathrm{CHCl}_{2}} \approx X_{-\mathrm{CHCl}} \approx X_{-\mathrm{CH}_{2} \mathrm{Br}} \approx$ $\left.X_{-\mathrm{CHBr}_{2}} \approx X_{-\mathrm{CHBr}}\right)$, respectively, which was assumed to be identical for the purpose of reducing the number of group contribution factors. The values of $X_{-\mathrm{F}}, X_{-\mathrm{I}}$, and $X_{-\mathrm{CF}_{2}-}$ were not available because no experimental data were available for these functional groups. Ring structures were expected to increase E_{a} because of the extra energy to form the ring structure; consequently, group contribution factors for the 3-ring, $X_{\mathrm{RS}_{3}}$, and the 5-ring, $X_{\mathrm{RS}_{5}}$, for saturated cyclic compounds were considered, respectively.

Table 2.4: Group rate constants and group contribution factors for H -atom abstraction

Group rate constant ($\times 10^{-8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$)	
$k^{0}{ }_{\text {prim }}$	1.18
$k^{0}{ }_{\text {sec }}$	5.11
$k^{0}{ }_{\text {tert }}$	19.9
$k_{\text {OH }}$	1.00
$k_{\text {COOH }}$	0.00700
Group contribution factor, X	
$-\mathrm{CH}_{3}$	1.12
$-\mathrm{CH}_{2},>\mathrm{CH}-,>\mathrm{C}<$	1.17
->C-(oxygenated)-	0.681
-OH	0.578
-O-	0.551
-CO-	0.154
- CHO	0.602
$=\mathrm{O}$	0.360
$-\mathrm{COO},-\mathrm{COOH}$	0.0430
-O-second	0.945
-OCOR	0.000
-RS5 (5 ring strain)	0.860
-RS3 (3 ring strain)	0.0520
--Cl	0.203
-Br	0.377
$-\mathrm{CF}_{3}$	0.102
$-\mathrm{CCl}_{3}$	0.112
$\begin{aligned} & -\mathrm{CH}_{2} \mathrm{Cl},-\mathrm{CHCl}_{2},-\mathrm{CHCl}-, \\ & -\mathrm{CH}_{2} \mathrm{Br},-\mathrm{CHBr}_{2},-\mathrm{CHBr}- \end{aligned}$	0.367

The group contribution factors for the H -atom abstraction linearly correlate with the Taft constant, σ^{*} (Karelson, 2000), as shown in Figure 2.4. Because the alkyl functional groups contribute to weakening the C-H bond with release of the steric compression as the alkyl functional group moves apart to form a planar radical, they
increase in the $\mathrm{HO} \cdot$ reactivity in the H -atom abstraction reactions. Therefore, $X_{-\mathrm{CH}_{3}}$ and $X_{-\mathrm{CH}_{2}-} \approx X_{>\mathrm{CH}-} \approx X_{>\mathrm{C}<}$ values are greater than 1.0 , which correspond to negative values of the Taft constant. All of the group contribution factors for the oxygenated and the halogenated functional groups show smaller than 1.0, which indicate the electronwithdrawing ability of the functional groups.

Figure 2.4: Comparison of the group contribution factors for H -atom abstraction with the Taft constant, $\sigma^{*}[60]$. Group contribution factors include • : alkyl, oxygenated, and halogenated functional groups, $\mathbf{\Delta}: \mathrm{S}$-, N -, or P -atom containing functional groups.

2.4.4 HO• Addition to Alkenes

Twenty-eight alkenes were categorized based on the base $\mathrm{C}=\mathrm{C}$ double-bond structures and position(s) of hydrogen atom(s) adjacent to those base structures. Table 2.5 summarizes the structural configurations for equation (2.13) based on the basis of the compounds that are available in the literature. There were few rate constants reported for the conjugated and unconjugated dienes. Therefore, these compounds were excluded from calibration. As shown in Table 2.2, the total DF were 14. A total of 79% of the calibrated data was within the EG. The SD was 0.4.

Table 2.5: Summary of the structural configurations in equation (2.13) based on the experimental rate constants

structure	l	g	h
$>\mathrm{C}=\mathrm{C}<$	4	2	-
$\mathrm{H}>\mathrm{C}=\mathrm{C}<$	3	1	$\frac{1}{2}$
$\mathrm{HH}>\mathrm{C}=\mathrm{C}<$	2	1	$\frac{1}{2}$
$\mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H}(\mathrm{cis})$	2	2	-
$\mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H}$ (trans)	2	2	-
$\mathrm{HH}>\mathrm{C}=\mathrm{C}<\mathrm{H}$	1	1	$\frac{1}{2}$

2.4.4.1 Group Rate Constants and Group Contribution Factors for HO• Addition to Alkenes.

Group rate constants and group contribution factors are summarized in Table 2.6.
It was found that the group contribution factors did not linearly correlate with the Taft
constant (data not shown). Two reasons can be considered. First, the functional group contribution to the $E_{\text {a }}$ does not follow the general inductive effect (i.e., Taft constant). For example, the group contribution factor for alkane does not indicate the electrondonating value (i.e., $Y_{- \text {-alkane }}=0.171$). Because of the limited data availability and gaseous phase reaction mechanisms (Greenwald et al., 2005; Alvarez-Idaboy et al., 2000), the rate constant expression as shown in equation (2.13) did not consider the different effects of functional groups to two unsaturated carbons (one being attacked and the neighboring one). For example, the effects of three chlorine functional groups for 1,1,2trichloroethylene were treated identical in association with the two unsaturated carbons in the $>\mathrm{C}=\mathrm{CH}$ - base structure. Although Peeters et al. (2007) successfully applied the GCM to the gaseous phase $\mathrm{HO} \cdot$ rate constants with nonconjugated and conjugated (poly) alkenes on the basis of the number of functional groups on the neighboring carbon, their approach was limited to nonpolar functional groups, and it was not clear if it was applicable to the heteroatom functional groups and aqueous phase reactions. Second, the experimental rate constants do not seem to follow the inductive effect (e.g., vinyl chloride > ethylene > vinyl alcohol) because of the experimental errors or the existence of unknown reaction mechanisms. We suggest more experimental studies be conducted for alkenes to confirm this.

Table 2.6: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to alkenes

Group rate constant ($\times 10^{-9}$)	
$k^{0}{ }_{(H H>C=C<H)-1}$	10.0
$k^{0}{ }_{(\mathrm{HH}>\mathrm{C}=\mathrm{C}<\mathrm{H})-2}$	0.10
$k^{0}{ }_{(H H>C=C<)-1}$	97.9
$k^{0}{ }_{(\mathrm{HH}>\mathrm{C}=\mathrm{C}<)-2}$	3.16
$k^{0}{ }_{(\mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H})(\mathrm{cis})}$	30.1
$k^{0}{ }_{(\mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H})(\text { trans })}$	52.1
$k^{0}>\mathrm{C}=\mathrm{C}<$	514
Group contribution factor, Y	
-Alkane	0.171
-CO-	0.600
- CHO	0.600
-COOH, -COOR	0.234
-F	0.000
-Cl	0.210
- CN	0.171

Despite the observation of the nonlinear correlation between the group contribution factors and the Taft constant, 79% of the calibrated rate constants were within the EG, and this might be acceptable for a rate constant estimator. It should be addressed that more quantitative investigations are required to examine the effect of the functional groups in the aqueous phase.

2.4.5 HO• Addition to Aromatic Compounds

Table 2.7 summarizes the structural configurations for equation (2.17) based on the basis of the compounds that were available in the literature. As shown in Table 2.2, for the overall $\mathrm{HO} \cdot$ addition to aromatic compounds, the total DF were 35.88% of the
rate constants from the calibration was within the EG. The SD was 0.73 . Once the group rate constants and group contribution factors were calibrated, the rate constants for 46 compounds were predicted as shown in Table 2.3. A total of 64% of the rate constants from the prediction was within the EG. The SD was 0.53 .

Table 2.7: Summary of structural configurations in equation (2.17) based on the experimental rate constants with aromatic compounds

name		m	i	n	j
benz	mono-	1	1	2	2,6
				1	4
				2	3,5
	di-	2	1,2	2	3,6
				2	4,5
			1,3	1	2
				2	4,6
				1	5
			1,4	2	2,6
				2	3,5
	tri-	3	1,2,3	2	4,6
				1	5
			1,2,4	1	3
				1	5
				1	6
			1,3,5	3	2,4,6
	tetra-	4	1,2,3,4	2	5,6
			1,2,3,5	2	4,6
			1,2,4,5	2	3,6
	penta-	5	1,2,3,4,5	1	6
	hexa-	6	1,2,3,4,5,6	6	1,2,3,4,5,6
pyr	mono-	1	2	2	3,6
				2	4,5
			3	1	2
				2	4,6
				1	5
			4	2	2,6
				2	3,5
	di-	2	2,6	2	3,5
				1	4
			3,5	2	2,6
				1	4
	tri-	3	2,4,6	2	3,5
fur	mono-	1	2	1	3
				1	4
				1	5
	di-	2	2,5	2	3,4
imid	di-	2	3,4	1	1
				2	3,4
triaz	tri-	3	1,3,5	3	2,4,6

2.4.5.1 Group Rate Constants for HO• Addition to Aromatic Compounds.

Tables 2.8-2.12 summarize the group rate constants for aromatic compounds that include benzene, pyridine, furan, imidazole and triazine compounds, respectively. The approximate magnitude of the group rate constants can be compared with theoretical studies because there is no experimental data for E_{a}. According to Ashton et al. (1995), E_{a} between 13 and $21 \mathrm{~kJ} / \mathrm{mol}$ of the net reaction was observed for various aromatic compounds. From their conclusion that the electron-withdrawing functional groups increased the E_{a} by approximately $2.1-8.4 \mathrm{~kJ} / \mathrm{mol}$, the magnitude of group rate constants fell in the range of 10^{9} orders. This is consistent with the group rate constants from the calibration.

Because the group rate constants for pyridine, furan, imidazole, and triazine compounds include the hetero atoms (e.g., N, NH, and O) that affect the $\mathrm{HO} \cdot$ addition to aromatic ring, the calibrated group rate constants vary in magnitude of order from 10^{6} to $10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. For example, the group rate constant, $k_{(2-\mathrm{pyr})-3,6}^{0}$, that represents one functional group on 2-position and the addition of $\mathrm{HO} \bullet$ to either the 3- or 6-position is $9.9 \times 10^{8} \mathrm{M}^{-}$ ${ }^{1} \mathrm{~s}^{-1}$. This value and other group rate constants for pyridine are smaller than those of benzene compounds because of the lower reactivity and lower electrophilic nature of the pyridine nucleus toward the $\mathrm{HO} \cdot$ (Solar et al., 1993). For triazine compounds, the group rate constant $k_{(1,3,5-\text { triaz) } 2,4,6}^{0}$ (i.e., functional groups located on the 1,3,5-positions and $\mathrm{HO} \cdot$ interacts with each N -atom located on the 2,4,6-positions) represents the reactivity of $\mathrm{HO} \cdot$ with the triazine base structure other than the functional groups. However, this single group rate constant does not seem to represent the reaction mechanisms well.

Additional group rate constants may be required and can be calibrated when more experimental data are available.

Table 2.8: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include benzene rings

Group rate constant $\left(\times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (benzene)		Group contribution factor, Z (functional group on benzene ring)	
$k^{0}{ }_{(1-b e n z)-2,6}$	1.02	-Alkane	1.00
$k^{0}{ }^{(1-b e n z)-3,5}$	1.29	-OH	1.27
$k^{0}{ }_{(1-\text { benz)-4 }}$	0.914	-O-	1.03
$k^{0}{ }^{0}(1,2$-benz)-3,6	1.78	- CHO	0.672
$k^{0}{ }^{0}(1,2-$ benz)-4,5	0.706	--COOH	0.680
$k^{0}{ }_{(1,3-\text { benz })-2}$	0.989	-CO-	0.981
$k^{0}{ }_{(1,3-\text { benz)-4,6 }}$	1.70	- CONH_{2}	0.842
$\left.k^{0}{ }^{0} 1,3-\mathrm{benz}\right)-5$	1.91	-F	0.973
$k^{0}{ }^{(1,4-\text { benz)-2,6 }}$	0.713	--Cl	0.978
$k^{0}{ }_{(1,4-\mathrm{benz})-3,5}$	1.92	-Br	0.878
$k^{0}{ }^{0} 1,2,3-$ benz $)-4,6$	2.15	-I	0.821
$k^{0}{ }_{(1,2,3-\text { benz) }-5}$	1.64	-NH-	1.11
$k^{0}{ }_{(1,2,4-\text { benz })-3}$	2.80	-NH-CO-	0.855
$k^{0}{ }_{(1,2,4-\text { benz) }-5}$	0.307	-NH2	1.48
$k^{0}{ }_{(1,2,4-\text { benz) }-6}$	1.13	-CN	0.411
$k^{0}{ }_{(1,3,5-\text { benz)-2,4,6 }}$	1.68	$-\mathrm{NO}_{2}$	0.405
$k^{0}{ }_{(1,2,3,4-\mathrm{benz})-5,6}$	3.68	$-\mathrm{SO}_{3} \mathrm{H}$	0.373
$k^{0}{ }_{(1,2,3,5-\text { benz)-4,6 }}$	2.80	-SO	0.656
$k^{0}{ }_{(1,2,4,5-\text { benz })-3,6}$	3.53		
$k^{0}{ }_{(1,2,3,4,5-\text { benz)-6 }}$	7.06		
$k^{0}{ }_{(1,2,3,4,5,6-\text { benz) }) \text { - ,2,3,4,5,6 }}$	0.312		

Table 2.9: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include pyridine

Group rate constant $\left(\times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (pyridine)		Group contribution factor (functional group on pyridine)	
$k^{0}{ }_{(2-\mathrm{pyr})-3,6}$	0.990	-Alkane (Pyr)	0.962
$k^{0}{ }_{(2-\mathrm{pyr})-4,5}$	0.293	-OH (Pyr)	1.97
$k^{0}{ }^{(3-\mathrm{pyr})-2}$	0.456	- COOH (Pyr)	0.011
$k^{0}{ }_{(3-\mathrm{pyr})-4,6}$	0.823	- CONH_{2} (Pyr)	0.498
$k^{0}{ }_{(3-\mathrm{pyr})-5}$	0.025	-Cl (Pyr)	0.812
$k^{0}{ }^{0}(4-\mathrm{pyr})-2,6$	0.791	-Br (Pyr)	0.603
$k^{0}{ }_{(4-\mathrm{pyr})-3,5}$	0.889	-CN (Pyr)	0.333
$k^{0}{ }_{(2,6-\mathrm{pyr}) \cdot 3,5}$	1.03	$-\mathrm{NH}_{2}(\mathrm{Pyr})$	1.75
$k^{0}{ }_{(2,6-\mathrm{pyr})-4}$	0.732		
$k^{0}{ }_{(3,5 \text {-pyr) } 2,6}$	3.71		
$k^{0}{ }_{(3,5-\mathrm{pyr}) \cdot 4}$	0.793		
$k^{0}{ }_{(2,4,6-\mathrm{pyr})-3,5}$	0.761		

Table 2.10: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include furan

Group rate constant $\left(\times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (furan)		Group contribution factor (functional group on furan)	
$k^{0}{ }_{(2 \text {-fir)-3 }}$	3.92	-Alkane (fur)	1.24
$k^{0}{ }^{(2-f i r r)-4}$	4.81	-O- (fur)	1.02
$k^{0}{ }^{(2-\text {-fur })-5}$	1.42	- CHO (fur)	0.647
$k^{0}{ }_{(2,5-\text { fur }) 3,4}$	5.71	-CO- (fur)	0.406
		-COOH (fur)	0.600
		- CONH_{2}-(fur)	0.610
		- Br (fur)	0.647
		$-\mathrm{NO}_{2}$ (fur)	0.778
		- $\mathrm{CH}-\mathrm{CN}$-(fur)	0.903
		- $\mathrm{C}_{6} \mathrm{H}_{5}$ (fur)	0.943

Table 2.11: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include imidazole

Group rate constant $\left(\times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (imidazole)	Group contribution factor (functional group on imidazole)		
$k^{0}{ }_{(3,4-\text { imid })-1}$	1.71	- -Alkane (imid)	1.17
$k^{0}{ }_{(3,4-\text {-imid })-3,4}$	1.08	-CO (imid)	0.731
		-NH (imid)	1.43
		$-\mathrm{N}<(\mathrm{imid})$	1.61

Table 2.12: Group rate constants and group contribution factors for $\mathrm{HO} \bullet$ addition to aromatic compounds that include triazine

Group rate constant $\left(\times 10^{-6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (triazine)	Group contribution factor (funtional group on triazine)	
$k^{0}{ }_{(1,3,5-\text { triaz)-2,4,6 }}$	4.13	$-\mathrm{O}-$ (triaz)

2.4.5.2 Group Contribution Factors for HO• Addition to Aromatic Compounds.

Tables 2.9-2.12 summarize the group contribution factors for the $\mathrm{HO} \cdot$ addition to aromatic compounds. Figure 2.5 plots those values against electrophilic substituent constants, σ^{+}(Karelson, 2000), for benzene ($r=0.89$), pyridine ($r=0.93$), and furan ($r=$ 0.65) compounds. Because only one σ^{+}for imidazole functional groups is available, Figure 2.5 does not include the plot for imidazole. These observations validate that the group contribution factors that are empirically derived from the experimental rate constants linearly correlate with the general electron-donating and -withdrawing property. For furan compounds, the weak correlation may be due to insufficient number of data.

Electrophilic substituent, $\boldsymbol{\sigma}^{+}$

Figure 2.5: Comparison of the group contribution factors for $\mathrm{HO} \cdot$ addition to aromatic compounds with electrophilic substituent parameter, $\sigma+$, (Karelson, 2000) (right). Figure includes the group contribution factors for benzene $(\boldsymbol{\bullet})$, pyridine (\bullet), and furan compounds ($\mathbf{\Delta}$). The σ^{*} of [-CHCl 2], [-CO], [-COO, COOH$]$, $[-\mathrm{S}-,-\mathrm{SS}-\mathrm{HS}-],\left[-\mathrm{NH}_{2}\right.$, , $\mathrm{NH}-,-\mathrm{N}<]$ is an average of $\left[\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{CHCl}_{2}, \mathrm{CHBr}_{2}\right],\left[\mathrm{COCH}_{3}, \mathrm{COC}_{2} \mathrm{H}_{5}\right.$, $\left.\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{COF}, \mathrm{COCl}\right],\left[\mathrm{COOH}, \mathrm{COOC} \mathrm{H}_{5}\right],\left[\mathrm{SCH}_{3}, \mathrm{SC}_{2} \mathrm{H}_{5}, \mathrm{SCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, and $\left[\mathrm{NHCH}_{3}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}, \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]$, respectively. The σ^{*} of [-SO] and [-N-CO-] refer to $\left[\mathrm{S}(\mathrm{O}) \mathrm{CH}_{3}\right]$ and $\left[\mathrm{NHCOC}_{6} \mathrm{H}_{5}\right]$, respectively.

2.4.6 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-containing-Compounds

As shown in Table 2.2, the DF were 54. 74\% of the calibrated data was within the EG. The SD was 1.5 . Once the group rate constants and group contribution factors were determined, 18 of the rate constants were predicted and compared with the
experimental rate constants as shown in Table 2.3. A total of 44% of the rate constants was within the EG. The SD was 2.2 .

2.4.6.1 Group Rate Constants for HO• Interaction

The group rate constants and group contribution factors were summarized in Table 2.13. Because no direct interactions were experimentally observed (Mezyk et al., 2006; 2004), the group rate constants, $k_{-\mathrm{N}-\mathrm{NO}}$ and $k_{-\mathrm{N}-\mathrm{NO}_{2}}$ were not considered. The group rate constants $k_{-\mathrm{CN}}$ and $k_{-\mathrm{NH} 2}$ can be compared with the rate constants for compounds that react with $\mathrm{HO} \cdot$ via only interaction such as cyanogen and thiourea, respectively. The rate constant for thiourea is approximately twice of $k_{-\mathrm{NH} 2}$ because the electron positive -CSfunctional group does not significantly affect the electron density of the N -atom. The reaction of $\mathrm{HO} \cdot$ with urea may be different because two amine functional groups in urea bond to the electron-negative functional group, -CO-. As a result, another group rate constant $k_{-\mathrm{N}-\mathrm{Co}-\mathrm{N}-}$ was considered for methylurea, tetramethyl urea, and 1,3-dimethylurea.

The magnitude of most group rate constants for the S-containing compounds was in the same order as for the amine-related compounds but approximately 1 order of magnitude larger than those for the amide-related compounds. This is probably because of the electronegative - CO- functional group that is a part of amide functional groups.

Table 2.13: Group rate constants and group contribution factors for S, N, and P -atom containing compounds

Group rate constant ($\times 10^{-8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$)	
$k_{\text {-s }}$	23.6
$k_{\text {-s-S }}$	36.7
$k_{\text {-So }}$	19.2
$k_{\text {-HS }}$	9.93
$k_{\text {-CN }}$	0.0555
$k_{\text {-NO2 }}$	1.33
$k_{\text {-CO-NH2 }}$	0.998
k-CO-NH-	5.00
$k_{\text {-CO-N }}$	9.98
$k_{\text {-NH2 }}$	40.0
$k_{\text {-NH- }}$	1.00
$k_{\text {-N }}$	35.3
$k_{\text {-N-CO-N- }}$	0.00409
$k_{\text {- }}=$	0.258
Group contribution factor, X	
-S-, -SS-, -HS-	2.40
-SO	0.445
-CN	0.00292
$-\mathrm{NO}_{2}$	0.00
$-\mathrm{NH}_{2},-\mathrm{NH}-,-\mathrm{N}<$	1.63
-N-CO-	3.19
-N-NO	0.0105
- $\mathrm{N}-\mathrm{NO}_{2}$	0.176
$->\mathrm{P}=\mathrm{O}$	0.103
-O-P<-	0.00004

2.4.6.2 $\quad \mathbf{S}$-, \mathbf{N}-, or P-atom-Containing Group Contribution Factors

The $\mathrm{S}-, \mathrm{N}-$, or P -atom-containing group contribution factors apparently play the same role as the functional groups for H-atom abstraction, i.e., $X_{\mathrm{R}_{i}}=e^{-\frac{E_{\text {dabs }}^{\mathrm{R}_{i}}}{R T}}$. However, it is anticipated that S -, N -, or P -atom-containing functional groups may have different effects on H-atom abstraction. The group contribution factors for -S, -S-S- and -SH, and $-\mathrm{NH}_{2},-\mathrm{NH}-$ and $-\mathrm{N}<$, respectively, were assumed to be identical due to the following reasons: (1) limited data availability for single functional group compounds, (2) similar electron inductive ability, and (3) application for the gaseous phase. One might consider additional rate constants (e.g., amino acids) to overcome the limited data availability. However, the single-functional group compounds were used to calibrate the group contribution factors to avoid the interference of different functional groups. In addition, the same data sets for the S - and N -atom containing-compounds were used to calibrate the group rate constants, $k_{-\mathrm{S}-}, k_{-\mathrm{S}-\mathrm{S}-}$ and $k_{-\mathrm{SH}}$, and $k_{-\mathrm{NH} 2}, k_{-\mathrm{NH}-}$ and $k_{-\mathrm{N}<}$, respectively. These group rate constants were not assumed to be identical because the interaction of $\mathrm{HO} \cdot$ with each functional group might be more significant than the electron donating effects that result from these functional groups. Therefore, within the limited data availability, our assumption should be acceptable. For similar electron inductive ability, the Taft constant indicates similar values among these S - and N -atom-containing functional groups. For example, the Taft constants for $\mathrm{SCH}_{3}, \mathrm{SC}_{2} \mathrm{H}_{5}$, and SH are 1.66, 1.44, and 1.52, respectively (Karelson, 2000), and those for $\mathrm{NH}_{2}, \mathrm{NHCH}_{3}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$, and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ are $0.62,0.94,1.02,1.08$, and 1.00, respectively (Karelson, 2000). These values are well distinguished from 3.61 of $\mathrm{NH}_{3}{ }^{+}, 4.66$ of $\mathrm{NO}_{2}, 4.16$ of $\mathrm{N}+\left(\mathrm{CH}_{3}\right)_{3}$, and 3.64 of CN. Finally, Atkinson (Atkinson, 1986; 1987; Kwok and Atkinson, 1995)
assumed that the "substituent factors" for -S-, -S-S-, and -SH , and for $-\mathrm{NH}_{2},-\mathrm{NH}-,-\mathrm{N}<$, -NNO , and $-\mathrm{NNO}_{2}$ were identical and successfully predicted the gaseous phase $\mathrm{HO} \cdot$ rate constants. Although the reaction mechanisms for the interaction in the gaseous phase may be different from the aqueous phase, the manner in which S - and N -atom-containing functional groups affect the neighboring C-H bond could be very similar between two phases. The -SO and -N-CO- functional groups were treated separately because of the electronegative oxygen atom. In contrast, the $X_{\text {-CO-N- }}$ was treated as identical to $X_{\text {-co.. }}$ It is observed that the amide nitrogen is much more effective in activating the methyl group that undergoes the H -atom abstraction than ester oxygen (Hayon et al., 1970). This is consistent with the group contribution factors (i.e., $X_{-\mathrm{COO}}=0.04, X_{-\mathrm{N}-\mathrm{CO}}=3.19$).

Figure 2.4 compares the group contribution factors of S-, N-, or P-atomcontaining functional groups with the Taft constant, σ^{*} (Karelson, 2000). A linear correlation between these group contribution factors and σ^{*} was observed ($r=0.99$). As compared with $X_{\mathrm{R}_{i}}$ for the alkyl, oxygenated, and halogenated functional groups, those for $\mathrm{S}-\mathrm{N}$-, or P -atom-containing functional groups are greater. This implies that S, N, or P -atom-containing functional groups donate more electrons toward the neighboring $\mathrm{C}-\mathrm{H}$ bond(s), hence, enhancing the H -atom abstraction by $\mathrm{HO} \cdot$. It should be noted that insufficient experimental data resulted in poor calibration for nitrile and nitro compounds. As it turns out, we may have to consider the electron-negative effect of these compounds in the β-position because of their strong electron-withdrawing ability. However, this will have to wait until more data become available.

2.4.7 Predictabilities of GCM and Future Studies

Because the GCM is based on the group additivity of the rate constants, it is not able to predict the rate constants for the reactions that are close to the diffusion-control limit. The rate constant expression may not thoroughly reflect the reaction mechanisms in the aqueous phase due to the unknown reaction mechanisms (e.g., $\mathrm{HO} \cdot$ addition to alkenes). In addition, there are insufficient experimental data sets (e.g., nitriles and nitros, furan, and triazine compounds) and suspect data (e.g., alkenes). As a result, nonlinear correlation was observed between the group contribution factors with the electron-donating and -withdrawing ability, i.e., the Taft constant or electrophilic substitutent parameter. The observed inconsistencies of the experimental data may have resulted from the difference in experimental protocols such as the differences of analytical approach or $\mathrm{HO} \cdot$ production methods (e.g., pulse radiolysis, $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$). For these groups, additional experimental studies are needed to obtain better calibration.

Solvation effects can be expected to affect the reactions for polar- and nonpolar functional groups differently due to the absence or presence of the hydrogen bonds. These might cause over or under prediction for the oxygenated multifunctional group compounds (i.e., poly alcohols, poly carboxylic compounds, and benzenes with di- and trifunctional groups) because of the invalid thermochemical additivity. A more sophisticated approach (e.g., quantum mechanical calculation) may be required to investigate these effects, and this is an undergoing project.

Steric hindrance that results from the halogenated and carboxylic functional groups may also cause over and under prediction. While alcohols with $-\mathrm{CF}_{3}$ or $-\mathrm{CCl}_{3}$ functional groups undergo the solvation effect, steric hindrance might be more significant (i.e.,
steric constants, E_{s}, for $-\mathrm{CF}_{3}$ and $-\mathrm{CCl}_{3}$ are -2.40 and -3.30 , respectively, as compared to -1.24 for $-\mathrm{CH}_{3}$ and -0.46 for -Cl (Karelson, 2000)). We are also currently investigating the steric hindrance for specific functional groups. Although the GCM uses only experimentally reported rate constants based on the thermochemical additivity of the E_{a}, the group contribution factors linearly correlate with the general inductive constants for most cases. In addition, the rate constants for the multifunctional group compounds were predicted and compared with the experimental rate constants. It turns out that the GCM can predict most of the rate constants within the 0.5 to 2 times the experimental values. Therefore, the GCM can be used to predict the rate constants for many compounds with any kinds of functional groups that we have sufficient data to calibrate group rate constants and group contribution factors within the EG, and this may be acceptable for the design of AOPs, depending on how sensitive the model is to the rate constants.

As an extra trial, the GCM predicted the rate constants for 11 emerging aromatic compounds and compared them with the experimental rate constants as shown in Table 2.1. It was found that all of the predicted values were within the EG. In addition, the GCM predicted the rate constants for 68 emerging compounds that include the EPA's Contaminate Candidate List 2 (CCL2) and 3 (CCL3) compounds as shown in Table 2.14. Table 2.14 includes calculated half-lives for $\mathrm{HO} \bullet$ concentrations of $10^{-9}, 10^{-10}$, and 10^{-11} mole/L based on equations (2.28) and (2.29):

$$
\begin{align*}
& \frac{d C_{\mathrm{R}}}{d t}=-k_{\mathrm{HO}} \cdot C_{\mathrm{HO}} \cdot C_{\mathrm{R}} \tag{2.28}\\
& t_{1 / 2}=\frac{\ln (2)}{k_{\mathrm{HO}} \cdot C_{\mathrm{HO}} .} \tag{2.29}
\end{align*}
$$

It is clear that as the $\mathrm{HO} \bullet$ concentration decreases to $10^{-11} \mathrm{~mole} / \mathrm{L}$ due to $\mathrm{HO} \bullet$ scavengers (e.g., natural organic matters, carbonate and bicarbonate, iron and manganese) in water, longer retention time in AOPs will be required. Although the $\mathrm{HO} \bullet$ rate contants for these compounds have not been experimentally obtained, our calculcated half-life of these emergning contaminants can be used as a screening tool to examine the initial fate of these emerging contaminants during AOPs.

Table 2.14: Predicted $\mathrm{HO} \bullet$ reaction rate constants for emerging contaminants

	CAS	Note	$k \mathrm{cal}$	Half-life, min		
				[$\mathrm{HO} \cdot]=10^{-9}$	$=10^{-10}$	$=10^{-11} \mathrm{~mole} / \mathrm{L}$
1,1-dichloropropane	78-99-9	CCL2	$9.31 \mathrm{E}+08$	0.745	7.45	74.5
1,2-diphenylhydrazine	122-66-7	CCL2	$1.23 \mathrm{E}+10$	0.057	0.565	5.65
1,3-dichloropropane	142-28-9	CCL2	$6.25 \mathrm{E}+08$	1.11	11.1	111
cis-1,3-dichloropropene	10061-01-5	CCL2	$5.13 \mathrm{E}+09$	0.135	1.35	13.5
trans-1,3-dichloropropene	10061-02-6	CCL2	$8.72 \mathrm{E}+09$	0.079	0.795	7.95
2,2-dichloropropane	594-20-7	CCL2	7.92E+07	8.75	87.5	875
2,4-dichlorophenol	120-83-2	CCL2	$5.24 \mathrm{E}+09$	0.132	1.32	13.2
2,4-Dinitrophenol	51-28-5	CCL2	$1.14 \mathrm{E}+09$	0.610	6.10	61.0
2,4-dinitrotoluene	121-14-2	CCL2	$9.50 \mathrm{E}+08$	0.730	7.30	73.0
2,6-dinitrotoluene	606-20-2	CCL2	$1.23 \mathrm{E}+09$	0.564	5.64	56.4
2-methylphenol	95-48-7	CCL2	$6.32 \mathrm{E}+09$	0.110	1.10	11.0
Acetochlor	34256-82-1	CCL2	$1.14 \mathrm{E}+10$	0.061	0.610	6.10
Aldrin	309-00-2	CCL2	$2.58 \mathrm{E}+10$	0.027	0.268	2.68
DDE (dichlorodiphenyl dichloroethylene)	72-55-9	CCL2	$5.57 \mathrm{E}+10$	0.012	0.125	1.25
Diazinon	333-41-5	CCL2	9.90E+09	0.070	0.700	7.00
Dieldrin	60-57-1	CCL2	$1.53 \mathrm{E}+10$	0.045	0.452	4.52
Disulfoton	298-04-4	CCL3	$6.63 \mathrm{E}+09$	0.104	1.04	10.4
EPTC	759-94-4	CCL2	$2.08 \mathrm{E}+10$	0.033	0.334	3.34
Fonofos	944-22-9	CCL2	4.61E+09	0.151	1.51	15.1
Cymene, isopropyltoluene	99-87-6		$8.95 \mathrm{E}+09$	0.077	0.774	7.74
Methylbromide	74-83-9	CCL3	$1.33 \mathrm{E}+08$	5.22	52.2	522
Metolachlor	51218-45-2		$1.22 \mathrm{E}+10$	0.057	0.568	5.68
Metribuzin	21087-64-9		4.72E+09	0.147	1.47	14.7
Molinate	2212-67-1		$1.89 \mathrm{E}+10$	0.037	0.367	3.67
Cyclonite	121-82-4		$1.03 \mathrm{E}+08$	6.75	67.5	675
Alachlor	15972-60-8		$1.06 \mathrm{E}+10$	0.066	0.655	6.55
Carbofuran	1563-66-2		$7.73 \mathrm{E}+09$	0.090	0.896	8.96
Dalapon	75-99-0		$4.15 \mathrm{E}+08$	1.67	16.7	167
Endothall	145-73-3		$5.39 \mathrm{E}+09$	0.129	1.29	12.9
Epichlohydrin	106-89-8		$3.03 \mathrm{E}+08$	2.29	22.9	229
Glyphosate	1071-83-6		$7.45 \mathrm{E}+08$	0.930	9.30	93.0
Lindane (alpha-Hexachlorocyclohexane)	58-89-9	CCL3	$3.27 \mathrm{E}+08$	2.12	21.2	212
Methyoxychlor	72-43-5		$6.06 \mathrm{E}+09$	0.114	1.14	11.4
Oxamyl	23135-22-0		$6.97 \mathrm{E}+09$	0.099	0.995	9.95
TCEP tri(2-chloroethyl)phosphate	115-96-8		$8.68 \mathrm{E}+08$	0.799	7.99	79.9
Meprobamate	57-53-4		$3.86 \mathrm{E}+09$	0.180	1.80	18.0
DEET (N,N-diethyl-3-methyl-benzamide)	134-62-3		$1.44 \mathrm{E}+10$	0.048	0.483	4.83
Gemfibrozil	25812-30-0		$9.40 \mathrm{E}+09$	0.074	0.738	7.38
Dilantin	57-41-0		$5.55 \mathrm{E}+09$	0.125	1.25	12.5
Triclosan	3380-34-5		$9.72 \mathrm{E}+09$	0.071	0.713	7.13
Benzafibrate	41859-37-0		$1.60 \mathrm{E}+10$	0.043	0.433	4.33
Clofibric acid	882-09-7		$5.81 \mathrm{E}+09$	0.119	1.19	11.93
Cyclophosphamide	50-18-0		4.07E+09	0.170	1.70	17.01
Aspirin	50-78-2		$3.51 \mathrm{E}+09$	0.197	1.97	19.74
Decabromobipheyl ether (DBDE)	1163-19-5		$2.02 \mathrm{E}+09$	0.343	3.43	34.3
Hexabromobiphyl	36355-01-8		$9.56 \mathrm{E}+09$	0.073	0.725	7.25
Hexabromocyclodecane (HBCD)	3194-55-6		$7.03 \mathrm{E}+09$	0.099	0.987	9.87
Octabromobiphenyl ether (OBDE)	67889-00-3		$8.41 \mathrm{E}+09$	0.082	0.824	8.24
Pentabromodiphenyl ether (penta BDE)	32534-81-9		$8.32 \mathrm{E}+09$	0.083	0.833	8.33
Tetrabromobisphenol A (TBBPA)	79-94-7		$1.20 \mathrm{E}+10$	0.058	0.577	5.77
1,2-bis(2,4,6-tribromophenoxy)ethane (TBE)	37853-59-1		$9.18 \mathrm{E}+09$	0.075	0.755	7.55
2,3,4,5,6-pentabromoethylbenzene (PEB)	85-22-3		$2.54 \mathrm{E}+09$	0.273	2.73	27.3
1,2,3-Trichloropropane	96-18-4	CCL3	$1.04 \mathrm{E}+09$	0.663	6.63	66.3
1,3-Dinitrobenzene	99-65-0	CCL3	$1.03 \mathrm{E}+09$	0.671	6.71	67.1
2-Propen-1-ol	107-18-6	CCL3	$4.62 \mathrm{E}+09$	0.150	1.50	15.0
Benzylchloride	100-44-7	CCL3	$6.57 \mathrm{E}+09$	0.105	1.05	10.5
Cumen hydroperoxide	80-15-9	CCL3	$6.48 \mathrm{E}+09$	0.107	1.07	10.7
Hydrazine	302-01-2	CCL3	$8.00 \mathrm{E}+09$	0.087	0.867	8.67
n -Propylbenzene	103-65-1	CCL3	$8.51 \mathrm{E}+09$	0.081	0.814	8.14
o-Toluidine	95-53-4	CCL3	$1.17 \mathrm{E}+10$	0.059	0.591	5.91
Oxirane, methyl-	75-56-9	CCL3	$5.23 \mathrm{E}+08$	1.32	13.2	132
Oxydemeton-methyl	301-12-2	CCL3	$6.63 \mathrm{E}+09$	0.105	1.05	10.5
Profenofos	41198-08-7	CCL3	$1.18 \mathrm{E}+10$	0.059	0.587	5.87
RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine)	121-82-4	CCL3	$9.55 \mathrm{E}+07$	7.26	72.6	726
sec-Butylbenzene	135-98-8	CCL3	$1.03 \mathrm{E}+10$	0.067	0.670	6.70
Triethylamine	121-44-8	CCL3	$1.04 \mathrm{E}+10$	0.067	0.669	6.69
Tribufos	78-48-8	CCL3	$1.81 \mathrm{E}+10$	0.038	0.382	3.82
Urethane	51-79-6	CCL3	$4.14 \mathrm{E}+08$	1.67	16.7	167

2.5 Acknowledgement

This work was supported by National Science Foundation Award 0607332 award from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors also appreciate support from the Snell Research Assistantship at Arizona State University and the Hightower Chair and Georgia Research Alliance at Georgia Institute of Technology. We gratefully acknowledge the contributions of Jessica Brosilo for her editorial assistance.

2.6 Appendices

An executed program is provided along with an input text file for the calculations of the $\mathrm{HO} \cdot$ reaction rate constants. In addition, a Microsoft Excel spread sheet is also given for this purpose. Appendix A contains the source of genetic algorithm. Appendix B includes up-to-date experimental $\mathrm{HO} \bullet$ radical rate constants. Appendix C includes a GCM identifier.F90 program source code.

2.7 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Alvarez-Idaboy, J.R.; Mora-Diez, N.; Vivier-Bunge, A. A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc. 2000, 122, 3715-3720.

Ashton, L.; Buxton, G.V.; Stuart, C.R. Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. Evidence for the formation of a π complex intermediate? J. Chem. Soc. Faraday. Trans. 1995, 91(11), 1631-1633.

Asmus, K.-D.; Bonifačič, M. In Sulfur-Centered Reactive Intermediates as Studied by Radiation Chemical and Complementary Techniques; Chapter 5. 141-191. Alfassi, Z. B. Eds. The Chemistry of Free Radicals S-Centered Radicals. 1999. Chichester, U.K.

Asmus, K.-D.; Möckel, H.; Henglein, A. Pulse radiolytic study of the site of $\mathrm{OH} \cdot$ radical attack on aliphatic alcohols in aqueous solution. J. Phy. Chem. 1973, 77(10), 1218-1221.

Atkinson, R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinet. 1987, 19, 799-828.

Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric condition. Chem. Rev. 1986, 86, 69-201.

Avila, D.V.; Brown, C.E.; Ingold, K.U.; Lusztyk, J. Solvent effects on the competitive β scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem. J. Am. Chem. Soc. 1993, 115, 466-470.

Bakken, G.; Jurs, P.C. Prediction of hydroxyl radical rate constants from molecular structure. J. Chem. Inf. Comput. Sci. 1999, 39, 1064-1075.

Benson, S.W. "Thermochemical Kinetics", $2{ }^{\text {nd }}$ ed. Wiley, Interscience, New York, 1976.
Benson, S.W. The Foundations of Chemical Kinetics Robert E. Krieger, Malabar, Florida, 1982.

Böhnhardt, A.; Kühne, R.; Ebert, R-U.; Schüürmann, G. Indirect photolysis of organic compounds: Prediction of OH reaction rate constants through molecular orbital calculations. J. Phys. Chem. 2008, 112, 11391-11399.

Brezonik, P.L. Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers. CRC Press. Boca Raton, 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $\left(\cdot \mathrm{OH} / \cdot \mathrm{O}^{-}\right)$in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17 (2) 513-795.

Charbonneau, P.; Knapp, B. 1995, A User's guide to PIKAIA 1.0, NCAR Technical Note $418+I A$, National Center for Atmospheric Research, Boulder.

Cohen, N. Are reaction rate coefficients additive? Revised transition state theory calculations for $\mathrm{OH}+$ alkane reaction. Int. J. Chem. Kinet. 1991, 23, 397-417.

Cohen, N. The use of transition-state theory to extrapolate rate coefficients for reactions of OH with alkanes. Int. J. Chem. Kint. 1982, 14, 1339-1362.

Cohen, N.; Benson, S.W. Empirical correlations for rate coefficients for reactions of OH with haloalkanes. J. Phys. Chem. 1987, 91, 171-175.

Cramer, C.J. Essential of computational chemistry $2{ }^{\text {nd }}$ ed. John Wiley \& Sons. Ltd. England, 2004; Chapter 11.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{UV}$ process in a completely mixed batch reactor. Wat. Res. 1999, 33(10), 2315-2328.

Davey, J.B.; Greenslade, M.E.; Marshall, M.D.; Lester, M.I.; Wheeler, M.D. Infrared spectrum and stability of a π-type hydrogen-bonded complex between the OH and $\mathrm{C}_{2} \mathrm{H}_{2}$ reactants. J.Chem.Phys. 2004, 121(7), 3009-3018.

Dutot, A-L.; Rude, J.; Aumont, B. Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds. Atmos. Environ. 2003, 37, 269276.

Elliot, A.J.; McCracken, D.R. Effect of temperature on O^{-}reactions and equilibria: a pulse radiolysis study. Radiat. Phys. Chem. 1989, 33, 69-74.

Getoff, N. Radiation and photoinduced degradation of pollutants in water. A comparative study. Radiat. Phys. Chem. 1991, 37(5/6), 673-680.

Getoff, N.; Schwörer, F.; Markovic, V.M.; Sehested, K.; Nielsen, S.O. Pulse radiolysis of oxalic acid and oxalates. J. Phys. Chem., 1971, 75(6), 749-755.

Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, INC. Massachusetts, U.S.A. 1989.

Gramatica, P.; Pilutti, P.; Papa, E. Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training - test sets and consensus modeling. J. Chem. Inf. Comput. Sci. 2004, 44, 1794-1802.

Greenwald, E.E.; North, S.W.; Georgievskii, Y.; Klippenstein, S.J. A two transition state model for radical-molecule reactions: a case study of the addition of OH to $\mathrm{C}_{2} \mathrm{H}_{4}$. J. Phy. Chem. A. 2005, 109, 6031-6044.

Greenwald, E.E.; North, S.W.; Georgievskii, Y.; Klippenstein, S.J. A two transition state model for radical-molecule reactions: a case study of the addition of OH to $\mathrm{C}_{2} \mathrm{H}_{4}$. J. Phy. Chem. A. 2005, 109, 6031-6044.

Grosjean, D.; Williams II, E.L. Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics. Atmos. Environ. 1992, 26A(8), 1395-1405.

Hayon, E.; Ibata, T.; Lichtin, N.N.; Simic, M. Sites of attack of hydroxyl radicals on amides in aqueous solution. J. Am. Chem. Soc. 1970, 92(13), 3898-3903.

Heicklen, J. The correlation of rate coefficients for H -atom abstraction by HO radicals with C-H bond dissociation enthalpies. Int. J. Chem. Kint. 1981, 13, 651-665.

Herrmann, H. Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 2003, 103, 4691-4716.

Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016-1024.

Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley \& Sons, INC. New York, 2000.

King, M.D.; Canosa-Mas, C.E.; Wayne, R.P. A structure-activity relationship (SAR) for predicting rate constants for the reaction of $\mathrm{NO}_{3}, \mathrm{OH}$ and O_{3} with monoalkenes and conjugated dienes. Phys. Chem. Chem. Phys., 1999, 1, 2239-2246.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere. 1996, 32(4), 717-726.

Kwok, E.S.C.; Atkinson, R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 1995, 29(14), 1685-1695.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. Environ. Sci. Technol. 2009, 43, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. Wat. Res. 2008, 42(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ advanced oxidation process: product study and kinetic modeling. Environ. Sci. Technol. 2007, 41, 1696-1703.

Luo, Y-R. "Handbook of Bond Dissociation Energies in Organic Compounds", CRC Press, 2002.

Medven, Ž.; Güsten, H.; Sabljić, A. Comparative QSAR study on hydroxyl radical reactivity with unsaturated hydrocarbons: PLS versus MLR. J. Chemometrics. 1996, 10, 135-147.

Merga, G.; Schuchmann, H.-P.; Madhava Rao, B.S.; von Sonntag, C. •OH radicalinduced oxidation of chlorobenzene in aqueous solution in the absence and presence of oxygen. J. Chem. Soc., Perkin Trans. 2, 1996, 1097-1103.

Mezyk, S.P.; Cooper, W.J.; Madden, K.P.; Bartels, D.M. Free radical destruction of Nnitrosodimethylamine in water. Environ. Sci. Technol. 2004, 38, 3161-3167.

Mezyk, S.P.; Ewing, D.B.; Kiddle, J.J.; Madden, K.P. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water. J. Phy. Chem. A. 2006, 110, 4732-4737.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. Atmos. Environ. 2005, 39, 7667-7688.

Mvula, E.; Schuchmann, M.N.; von Sonntag, C. Reaction of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J. Chem. Soc., Perkin Trans. 2, 2001, 264-268.

Öberg, T. A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. Atmos. Environ. 2005, 39, 2189-2200.

Peeters, J.; Boullart, W.; Pultau, V.; Vandenberk, S.; Vereecken, L. Structure-activity relationship for the addition of OH to (poly)alkenes: site-specific and total rate constants. J. Phy. Chem. A. 2007, 111, 1618-1631.

Percival, C.J.; Marston, G.; Wayne, R.P. Correlations between rate parameters and calculated molecular properties in the reactions of the hydroxyl radical with hydrofluorocarbons. Atmos. Environ. 1995, 29(3), 305-311.

Persico, M.; Granucci, G. Photochemistry in condensed phase. In "Continuum Solvation Models in Chemical Physics." Mennucci, B.; Cammi, R. 2007, John Wiley \& Sons. Ltd. England.

Raghavan, N.V.; Steenken, S. Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J. Am. Chem. Soc. 1980, 102(10), 3495-3499.

Razavi, B.; Song, W.; Cooper, W.J.; Greaves, J.; Jeong, J. Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: Kinetic studies and degradation mechanisms. J. Phys. Chem. A. 2009, 113, 1287-1294.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol. 2004, 38, 5476-5483.

Schuchmann H-P.; von Sonntag, C. Photolysis at 185 nm of dimethyl ether in aqueous solution: involvement of the hydroxymethyl radical. J. Photochem. 1981, 16, 289-295.

Singleton, D.L.; Cvetanović, R.J. Temperature dependence of the reactions oxygen atoms with olefins. J.Am.Chem.Soc. 1976, 98, 6812-6819.

Solar, S.; Getoff, N.; Sehested, K.; Holcman, J. Pulse radiolysis of pyridine and methylphyridines in aqueous solutions. Radiat. Phys. Chem. 1993, 41(6), 825-834.

Stefan, M.I.; Hoy, A.R.; Bolton, J.R. Kinetics and mechanisms of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ. Sic. Technol. 1996, 30, 2382-2390.
U.S. Environmental Protection Agency. AOPWIN. v1.91, 2000.
U.S. EPA. Office of the Administrator Science Advisory Board. Science Advisory Board (SAB) Review of the Estimation Programs Interface Suite (EPI Suite ${ }^{\mathrm{TM}}$), 20460, 2007.

University of Notre Dame, The Radiation Chemistry Data Center (RCDC), http://www.rad.nd.edu/rcde/index.html (accessed June 12, 2009).

Vassilev, P.L., M.J.; Baerends, E.J., Hydroxyl radical and hydroxide ion in liquid water: A comparative electron density functional theory study. J. Phys. Chem. B. 2005. 109, 23605-23610.

Villá, J.; González-Lafont, A.; Lluch, J.M.; Corchado, J.C.; Espinosa-García, J. Understanding the activation energy trends for the $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}$ reaction by using canonical variational transition state theory. J.Chem.Phys. 1997, 107(18), 72667274.

Wang, Y-n.; Chen, J.; Li, X.; Wang, B.; Cai, X.; Huang, L. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation. Atmos. Environ. 2009, 43, 1131-1135.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649-6663.

CHAPETER 3

Linear Free Energy Relationships between Aqueous Phase Hydroxyl Radical Reaction Rate Constants and Free Energy of Activation
\dagger work from this chapter will be presented and plan to be published in the following citation:

Minakata, D.; Crittenden, J. Quantitative Understanding of Advanced Oxidation Processes for the Treatment of Emerging Contaminants. IWA World Water Congress \& Exhibition. Montreal, Canada, September 19-24, 2010.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The $16^{\text {th }}$ International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). Novermber 1518, 2010. San Diego, California.

Minakata, D.; Crittenden, J. Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants and the Free Energy of Activation. Environ. Sci. \& Technol. Submitted.

3.1 Abstract

Hydroxyl radical (HO_{\bullet}) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). For mechanistic modeling, we need to develop a method that can predict reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions. In this study, we develop linear free energy relationships (LFERs) between aqueous phase literaturereported $\mathrm{HO} \cdot$ reaction rate constants and theoretically calculated free energies of activation. The theoretical method uses $A b$ initio quantum mechanical calculations for gas phase reactions and solvation methods to estimate the impact of water. The aim of this study is to develop LFERs for H -atom abstraction from a $\mathrm{C}-\mathrm{H}$ bond and $\mathrm{HO} \bullet$ addition to alkenes. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for mechanistic modeling of AOPs.

3.2 Introduction

The hydroxyl radical $(\mathrm{HO} \cdot)$ is a reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites on organic contaminants. It is the active species that potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{TiO}_{2}$) and natural waters (Westerhoff et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Concerns regarding emerging contaminants (Richardson, 2009) and the many chemicals that are in use or production (CAS, 2009) necessitate mechanistic modeling (Pfaendtner and Broadbelt, 2008) that can quickly assess their removal by AOPs.

A mechanistic model to evaluate performance in AOPs includes three critical components: (1) numerical methods that solve ordinary differential equations (ODEs), (2)
algorithms that can predict reaction pathways, and (3) algorithms that can predict reaction rate constants. The DGEAR algorithm (Hindmarsh and Gear, 1974) was successfully used to solve the ODEs for $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). A model that generates reaction pathways for aqueous phase AOPs has also been developed (Li and Crittenden, 2009). A group contribution method (GCM) recently has been developed (Minakata et al., 2009) to predict aqueous phase $\mathrm{HO} \cdot$ reaction rate constants for compounds with a wide range of functional groups. The GCM calibrated 55 group rate constants and 80 group contribution factors with 310 compounds and predicted 124 compounds. It showed that 83% (257 rate constants) and 62% (77 rate constants) of the rate constants from calibrations and predictions were within 0.5 to 2.0 times the experimental values.

The GCM was shown to predict the rate constants for compounds with a wide range of functional groups. Nevertheless, certain assumptions and factors limit the use of the GCM. Essentially, the GCM can only deal with molecules for which all required group rate constants and group contribution factors have been calibrated before. As a result, for more minor functional groups and compounds with limited experimental rate constants, the GCM suffers from the parameters that do not represent comprehensive abiliy of functional groups. Table 3.1 summarizes number of literature-reported experimental rate constants for the reactions that are appeared in AOPs.

Table 3.1: Number of available experimental rate constants in the aqueous phase AOPs on the basis of the extensive literature review

Reaction mechanisms	Genetic representations of reaction mechanisms	Compound groups	Experimental k	Exp. Free energy of solvation of compounds	Arrehenius parameters, E_{a} and A
		Hydrocarbons (alkanes)	12	10	0
H -atom abstraction	$\mathrm{CHR}_{3}+\mathrm{HO} \cdot \rightarrow \bullet \mathrm{CR}_{3}+\mathrm{H}_{2} \mathrm{O}$	Oxygenated compounds (Alcohols, Diol, Ether, Ester, Aldehyde, Ketone, Carboxylic)	122	15	39
		Alkyl halides	52	7	0
$\mathrm{HO} \cdot$ addition to alkenes	$\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}^{\prime}{ }_{2}+\mathrm{HO} \bullet \rightarrow \mathrm{R}_{2}(\mathrm{HO}) \mathrm{C} \cdot{ }^{\bullet} \mathrm{CR}^{\prime}{ }_{2}$	Unsaturated alkenes	21	n.a.	0
O_{2} addition	$\bullet \mathrm{CR}_{3}+\mathrm{O}_{2} \rightarrow{ }^{\bullet} \mathrm{OOCR}_{3}$	Alkyl carbon centered radicals (Aliphatic)	34	n.a.	1
β-scission and 1,2-H shift	$\begin{aligned} & \mathrm{R}-\mathrm{C}(\mathrm{O}) \mathrm{O} \cdot \rightarrow \mathrm{R} \cdot+\mathrm{CO}_{2} \\ & \mathrm{CR}_{3} \mathrm{CR}^{\prime} \mathrm{O}^{\prime} \cdot \rightarrow \bullet \mathrm{CR}_{3}+\mathrm{R}_{2}^{\prime} \mathrm{C}=\mathrm{O} \\ & \mathrm{HR}_{2} \mathrm{CO} \cdot \rightarrow \cdot \mathrm{C}(\mathrm{OH}) \mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{C}=\mathrm{O} \end{aligned}$	Alkyl oxyl radicals (Aliphatics)	<5	n.a.	-
Formation of tetroxide	$\mathrm{R}_{3} \mathrm{COO} \cdot+\cdot \mathrm{OOCR}^{\prime} \rightarrow \mathrm{R}_{3} \mathrm{COOOOCR}^{\prime}$	Alkyl peroxyl radical (Aliphatics)	10	n.a.	-
		Uni-molecular decay (Elimination of $\mathrm{HO}_{2}{ }^{\bullet-} / \mathrm{O}_{2}{ }^{\bullet-}$)	12	n.a.	5
Peroxyl radical reaction mechanisms		Bi-molecular	-	n.a.	-
Hydrolysis (aldehyde)	$\begin{aligned} & \mathrm{R}-\mathrm{CHO} \rightarrow \mathrm{R}-\mathrm{CH}(\mathrm{OH})_{2} \rightarrow \mathrm{RC} \cdot(\mathrm{OH})_{2} \\ & \rightarrow \mathrm{R}-(\mathrm{OH})_{2} \mathrm{C}-\mathrm{OO} \cdot \rightarrow \mathrm{R}-\mathrm{COOH} \\ & \hline \end{aligned}$	Aliphatic compounds	a.v.	a.v.	-

According to Table 3.1, there are only limited number of rate constants that are available for the reaction mechanisms other than the $\mathrm{HO} \cdot$ involving reaction mechanisms. In addition, because the GCM assumes that a functional group has approximately the same interaction properties under a given molecule, it disregards the changes of the functional group properties that can arise from the intramolecular environment by electronic pushpull effects, or by intramolecular hydrogen bond formation, or by steric effects. It is expected that these intramolecular electron-interactions might be very different between the gaseous and aqueous phases and, therefore, solvation effect that results from the surrounding water molecules should be considered for the aqueous phase reactions.

Accordingly, there is a need to develop more robust approaches to consider the effect of
both intramolecular electron interactions and solvation for the aqueous phase (Klamt, 2005; Cohen, 1991).

Quantum mechanics is very attractive for investigation of electronic behavior for different functional groups. Quantum mechanical methods have proven to reliably reproduce molecular structures (Chen et al., 1993; Montogomery, 1999; Parkinson et al., 1999; Papasavva et al., 1996; DeFrees et al., 1982), vibrational spectroscopy (Pople et al., 1993; Wong, 1996), heats of reaction (Zhong and Bozzelli, 1997; Andzelm and Wimmer, 1992), activation energies (Jursic, 2000; Saeys et al., 2003) and kinetic rate data (Zhang et al., 2000; Zhu et al., 1999; Sheng et al., 2002; Fontana et al., 2001; Maity et al., 1999; Chandra et al., 2000; Gonzalez-Lafont et al., 2001; Masgrau et al., 2001; Louis et al., 2000; Melissas and Truhlar, 1993; Truong and Truhular, 1993; Urata et al., 2003). Due to the increased computational abilities as computers and software tools have improved, quantum chemical approaches have become attractive for examining larger and more complicated chemical systems.

A procedure to calculate the thermochemical properties in the gaseous phase using quantum mechanics has been well-established. Standard statistical mechanical calculations are applied following either Ochterski (2000) or Irikura (1998). The selection of a reasonable computational method and basis set combination is an important factor in quantum mechanical calculations. There is a tradeoff between the computational cost and the accuracy. To our best knowledge, there are little comprehensive studies that explore the computational methods and basis sets on the calculations of thermochemical properties for the reactions in AOPs. For example, the density functional theory (DFT) has been widely accepted to optimize structures of
molecules and radicals for both ground-state and transition state and recognized as the most cost-effective accurate method in quantum calculations. However, Izgorodina et al. (2007) found that all of the DFT methods they examined failed to provide an accurate description of the energetics of the radical reactions as compared with benchmark G3(MP2)-RAD values. While molecular structures are predicted well at lower levels of theories, reaction barriers are often underpredicted with the standard small basis sets like 6-31G(d). To eliminate these errors, high level single point calculations, or a series of them (i.e., multi-point energy calculations), are often done with much larger basis sets or more expensive and accurate methods.

A number of studies in calculating thermochemical properties in the gaseous phase have proved an improvement for calculated energies using multi-point energy calculations (e.g. Gaussian-n- series (Pople et al., 1989; Curtiss, 1991; Curtiss et al., 1998) and completely basis set (CBS) (Nyden and Perterson, 1981; Ochterski and Peterson, 1996; Montgomery and Frisch, 1999; 2000) over the expensive coupled-cluster method (e.g. CCST(T)). Table 3.2 summarizes the theoretical studies to examine the thermochemical properties for the gaseous phase reactions of $\mathrm{HO} \bullet$ at the transition state. Among these, some studies applied transition state theory (TST) (Eyring et al., 1935; Eyring, 1938) and variational transition state theory (VTST) (Truhlar and Garrett, 1980) to estimate temperature-dependent reaction rate constants. In addition to the $\mathrm{HO} \bullet$ induced mechanisms, the cyclization/fission mechanism for the 1,2-H shift in the gaseous phase (George et al., 2000), the gaseous phase beta-scission reactions of peptidebackbone alkoxyl radicals (Wood et al., 2006; 2005), neopentyl radical (Zheng et al., 2005), n-butyl radical (Zheng and Blowers, 2007), propyl radical (Zheng and Blowers,
2006), alkoxyl radicals (Rauk et al., 2003; Headlam and Davies, 2002; Fittschen et al., 2000) and peroxyl radical self-reaction [e.g., ethyl peroxyl radical (Sun et al., 2007;

Zheng et al., 2005; Boyd et al., 1990)] have been theoretically studied.

Table 3.2: Summary of theoretical studies about the gaseous phase reactions of $\mathrm{HO} \bullet$

Although many studies focused on individual compounds, few studies explored comprehensive relationships between computationally obtained molecular or reaction energies and observed reaction rate constants for the prediction. A William Green's group developed new group additivity values (GAV) for transition-state-specific moieties for H -abstraction from alkanes by H and CH_{3} radicals on the basis of the quantum mechanically calculated heats of formation, entropies, and heat of capacity values (Sumathi et al., 2001a). In their series of papers, they developed procedures for $\mathrm{H}-$ abstraction from alkenes, alkyl, alcohols, aldehydes, and acids by H-atoms, HO• addition, and isomerization reactions (Sumathi et al., 2001b). In addition, they presented the qualitative justification for partitioning the energy of the transition structure into contributions from unreactive and reactive moieties using atoms in molecule (AIM) analysis (Sumathi et al., 2002). Méreau et al (2000) built predictive structure-activity relationships (QSARs) on the basis of the kinetic and thermodynamic parameters obtained by using computational chemistry and transition state theory for the decomposition reactions of alkoxyl radicals and extrapolated to larger alkoxyl radicals. A Thanh Truong's group has developed a reaction class transition state theory hypothesizing that the reactions in the same class share similarities in the shape of the potential energy surfaces along the reaction path (Truong et al., 1999). Their method has been extended to H -atom abstraction by $\cdot \mathrm{CH}_{3}$ with alkane (Kungwan and Truong, 2005), reaction of $\bullet \mathrm{CHO}$ with alkane (Huynh and Truong, 2007), H -atom abstraction by $\mathrm{H} \cdot$ with alkane (Truong, 2000) and by HO• with alkane (Huynh et al., 2006) and addition of HO• to alkene (Huynh et al., 2008). Pfaendtner and Broadbelt (2008) established a library of kinetic correlations that are suitable for the computer-based mechanistic modeling of
condensed-phase autoxidation of hydrocarbons. The Evans-Polanyi relationship related experimentally obtained Arrhenius activation energy $\left(E_{\mathrm{a}}\right)$ with quantum mechanically calculated enthalpies of reactions $\left(\Delta H^{\neq}\right)$. They successfully captured the different reactivity trends for 17 different reaction families. However, the rate constants that result from the kinetics depend not only enthalpies but also entropic contribution, in particular for the solution phase. The significant contribution of the entropy that arises from the vibrational origin has been discovered for H -atom abstraction and proton-coupled electron-transfer (Mader et al., 2007). As a consequence, the free energy of activation (ΔG^{\neq}) should be considered for the thermodynamic parameters.

In contrast to the gaseous phase reactions, only a few studies have been conducted theoretically for the aqueous phase reactions due to the complexities and difficulties in the solvation contribution to quantum mechanics. There are two major ways to model reactions in the aqueous phase, including an explicit model or using an implicit model. The explicit representation of the aqueous phase involves a large number of degrees of freedom, thereby having a high dimensionality (Ayala and Schlegel, 1997). As a result, a solute molecule must be treated averagely over these degrees of freedom. Monte Carlo (MC) simulation or Molecular Dynamics (MD) can be used to average energies over a sufficiently long time frame or to choose configurations of the system randomly with the averaged thermodynamic properties, respectively. The MC and MD approaches would be appropriate when dealing with a larger molecule in the aqueous phase, e.g., protein (Eisenberg and McLachlan, 1986). However there are uncertainties to represent solvent molecules (Marenich et al., 2008).

In the implicit model, the solvent is implicitly expressed as a continuum solvent. The implicit model has two main advantages over the explicit model: 1) it reduces the degrees of freedom by assuming the aqueous phase as a continuum medium and 2) it provides an accurate way to deal with electrostatic forces such as electronic polarization that dominates most solvation processes (Cramer and Truhlar, 1999). As a result of the continuum medium, computational demand is significantly reduced because the size of the electronic structure problem is essentially the same as in the gaseous phase (Cramer and Truhlar, 2008). For example, phenol (Bonin et al., 2007), benzene (DeMatteo et al., 2005), quinoline (Nicolaescu et al., 2005), azacytosines (Pramod et al., 2006) and amino acid (Štefanić et al., 2009) have been examined using the polarizable continuum model (PCM). There are few studies examined computationally for other reaction mechanisms such as beta-fragmentation of aminyl radial from amino acids (Bonifačić et al., 2000). However, these studies were limited to examining the potential energy differences of the reactions and products and few studies accounted the activation energy at the transition state. Ashcraft et al (2007) addressed the use of computational chemistry calculations for the estimation of physical properties and constants in solution by connecting between the pseudochemcial potential of Ben-Naim (Ben-Naim, 1987; 2006) and the traditional standard state-based thermochemistry. This work seems to be the most sophisticated application of computational chemistry to the solution phase up to date. However, for the reaction phases, there are almost no studies concerned with the AOP related reactions in the aqueous phase.

The electron densities on frontier orbitals of atoms provide useful means for the characterization of electron donor/acceptor interactions between molecules. According to
the frontier electron reactivity theory (Fukui et al., 1952), the majority of chemical reactions take place at the position and in the direction where the overlapping of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the respective reactants is at maximum. While the HOMO energy characterizes the susceptibility of the molecule toward the attack by electrophiles, the LUMO energy features the susceptibility of the molecule toward the attack by nucleophiles. It has been anticipated that the energy gap between HOMO and LUMO could be related to the chemical stability of compounds. Larger HOMO-LUMO gaps are considered to be indicators of higher stability of compounds toward chemical reactions. For the H -atom abstraction reaction by $\mathrm{HO} \bullet$, a strong correlation between HOMO energy and the logarithms of the $\mathrm{HO} \cdot$ rate constants in the gaseous phase was observed (Pfrang et al., 2006a, b; King et al., 1999; Bartolorri and Edney, 1994; Cooper et al., 1992). Yet, in the aqueous phase, only a few papers have examined the correlation of the HOMOLUMO with the reaction rate constants in water treatment applications (e.g., O_{3} reactions, Hu et al., 2000).

Figure 3.1 represents the correlations between the logarithm of a total of 477 aqueous phase $\mathrm{HO} \cdot$ rate constants and the energy gap between HOMO and singly occupied molecular orbital (SOMO) of HO• (i.e., -1.83 eV , Schuiz et al., 1982). It is noted that the SOMO is used to represent the $\mathrm{HO} \bullet$ reactivity of electrophile in stead of LUMO. The energies were calculated using the semi-empirical AM1 method (Dewar et al., 1985) with the HyperChem software. As a result, it is found that there is little clear correlation except for the H -atom abstraction from alkanes by HO • Although the distribution of energy gap is close to each other for the same functional group, this
correlation is not quantitative enough to be useful for predicting the reaction rate constants for unknown compounds. In addition, the correlation of this energy gap neglects the electronic reorganization of the transition state, and therefore, may lead to quantitatively incorrect results. As a result, orbital energy that has been used for a number of organic compounds cannot be used for the aqueous phase $\mathrm{HO} \cdot$ radical rate constant estimation. Appendix D includes all calculated data.

Figure 3.1: Relationship between the logarithm of aqueous phase k_{HO}. and calculated energy gap of HOMO-SOMO for 477 compounds.

In this study, we will develop linear free energy relationships (LFERs) that relate literature-reported experimental $\mathrm{HO} \cdot$ reaction rate constants with theoretically calculated aqueous phase free energies of activation for two reaction mechanisms: H -atom abstraction from a C-H bond by $\mathrm{HO} \bullet$, and $\mathrm{HO} \bullet$ addition to alkenes. We will compare the free energies of activation to estimates from literature-reported experimental values. Quantum mechanical approaches for calculating the free energy of activation will be explored herein.

3.3 Linear Free Energy Relationships

In this section, we will establish LFERs that bridge kinetics and thermochemical properties. The kinetic information is literature-reported experimental $\mathrm{HO} \cdot$ reaction rate constants, while the thermochemical properties are theoretically calculated free energies of activation. The next section describes the theoretical methods in detail.

According to the LFERs, the \log of the rate constant and the \log of the equilibrium constant should be linearly related (Brezonik, 2002). Transition state theory (TST) (Eyring et al., 1935) states that the log of the rate constant and the free energy of activation are linearly related. For the same reaction mechanisms, the free energies of activation and the rate constants for an arbitrary and a reference reaction are related by equation (3.1):
$\log _{10} k_{\mathrm{I}}-\log _{10} k_{\mathrm{R}}=-\rho\left(\Delta G_{\mathrm{rxx}, \mathrm{I}}^{\text {act }}-\Delta G_{\mathrm{rxx}, \mathrm{R}}^{\text {act }}\right)+\sigma$
where k_{I} and k_{R} are the reaction rate constants, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$, for an arbitrary reaction, I, and a reference reaction, R , respectively; ρ denotes coefficients for the difference in the free energy of activation; σ is a constant; and $\Delta G_{\mathrm{rxx}, \mathrm{I}}^{\text {act }}$ and $\Delta G_{\mathrm{rxn}, \mathrm{R}}^{\text {act }}$ are the free energies of activation, $\mathrm{kcal} / \mathrm{mol}$, (Pu et al., 2006) for reactions I and R, respectively. Figure 3.2 plots
the logarithms of literature-reported $\mathrm{HO} \cdot$ rate constants versus $\Delta G_{\mathrm{rxn}}^{\text {act }}$. The reaction of $\mathrm{HO} \cdot$ with CH_{4} was selected as the reference. $\Delta G_{\mathrm{rxn}}^{\text {act }}$ was estimated from the experimentally obtained E_{a} values and frequency factors provided in the literature (Ervens, et al., 2003; Elliot and McCracken, 1989; Monod et al., 2005; Chin and Wine, 1994; Gligorovski and Herrmann, 2004; Herrmann, 2003).

The theoretically calculated free energy of activation in the aqueous phase, $\Delta G_{\mathrm{rxn}, \mathrm{aq}} \neq$ which is defined as a quasithermodynamic molar free energy of activation (Pu et al., 2006) at a given temperature T, is given by

$$
\begin{equation*}
\Delta G_{\mathrm{rxx}, \mathrm{aq}}^{\neq}=G_{\mathrm{aq}}^{\neq}-G_{\mathrm{reactants,aq}} \tag{3.2}
\end{equation*}
$$

where G^{\neq}aq is a quasithermodynamic quantity, $\mathrm{kcal} / \mathrm{mol}$, that indicates the free energy of the transition state, and $G_{\text {reactants,aq }}$ is the molar free energy of reactants, $\mathrm{kcal} / \mathrm{mol} . \Delta G_{\mathrm{rxn}}^{\text {act }}$ can be related to $\Delta G_{\text {rxn,aq }}^{\neq}$using the extrathermodynamic contribution to the free energy of activation (Pu et al., 2006), $\Delta G_{\text {extra }}, \mathrm{kcal} / \mathrm{mol}$, as shown in equation (3.3):

$$
\begin{equation*}
\Delta G_{\mathrm{rxn}}^{\mathrm{act}}=\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}+\Delta G_{\mathrm{extra}} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta G_{\mathrm{extra}}=-R T \ln \gamma(T) \tag{3.4}
\end{equation*}
$$

$\gamma(T)$ is a transmission coefficient that represents the effect of tunneling at temperature T. When a hydrogen atom is involved in a reaction, nuclear quantum effects, in particular quantized vibrations and tunneling, become important. Tunneling occurs when some systems pass through the transition state with less than the quantized energy. Because the transition state is a metastable state, it does not have quantized energy levels. To a good approximation, however, all bound modes of a potential energy surface can be assumed to have a quantized energy requirement (Wigner, 1932), and this is validated by accurate
quantum dynamics (Chartfield et al., 1992).
The solvated energy term should consider the interactions of the aqueous phase reactions. Essentially, the free energy of activation in the aqueous phase for a reaction, $\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}$, is the sum of the free energy of solvation (Cramer, 2004), $\Delta \Delta G_{\mathrm{rxn}, \text { solvation }}^{\neq}$, and the gaseous phase free energy of activation, $\Delta G_{\mathrm{rxn}, \mathrm{gas}}^{\neq}$, as shown below:
$\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}=\Delta G_{\mathrm{rxn}, \text { gas }}^{\neq}+\Delta \Delta G_{\mathrm{rxn}, \text { solvation }}^{\neq}$
where $\Delta \Delta G_{\text {rxn,solvation }}^{\neq}=\left(G_{\text {solvation }}^{\neq}-G_{\text {solvation }}^{\neq 0}\right)-\left(G_{\text {reactants,solvation }}-G_{\text {reactants,solvation }}^{0}\right)$
$\Delta \Delta G^{\neq r x n}$, solvation is free energy of solvation, $\mathrm{kcal} / \mathrm{mol}$, for a reaction measured with respect to a system composed of the pure, unperturbed aqueous phase at equilibrium and the solute molecule(s) in a separate phase considered to be an ideal gas; $G^{\neq 0}{ }_{\text {solvation }}$ and $G^{0}{ }_{\text {reactants,solvation }}$ are the standard state free energies of solvation for the transition state and reactants, respectively, and G^{\ddagger} solvation and $G_{\text {reactants,solvation }}$ are the free energies of solvation that are computed in solution for the transition state and reactants, respectively (Tomasi et al., 2005). The detailed modifications associaed with the change of state are given in the Results and Discussion.

3.4 Computational Methods

For the gaseous phase, $A b$ initio molecular orbital and density functional theory (DFT) calculations were performed using Gaussian03 (Frisch et al., 2003). The Berny geometry optimization algorithm (Schlegel, 1982) optimized the geometry of reactants, complex compounds, and products with a key word of "Opt=Tight." The transition states were found as first-order saddle points on the potential energy surface (PES) using the quadratic synchronous transit method (QST) (Peng and Schlegel, 1993; Peng et al.,
1996). All transition states were verified by a single negative frequency, and some of them were confirmed by obtaining the true reactant(s)/product(s) using the intrinsic reaction coordinate (IRC) (Fukui et al., 1952). Using the optimized geometry and frequencies obtained from a Hessian calculation, the total microcanonical partition function was calculated for each molecule and radical within the rigid-rotor harmonic oscillator assumption. The zero-point vibrational energy (ZPVE) was included in each thermochemical property. A quadratically convergent self-consistent field (SCF) procedure (Bacskay, 1981), $\mathrm{SCF}=\mathrm{QC}$, was used for linear searches when far from convergence, and Newton-Raphson steps when close. The harmonic oscillator approximation is known to incorrectly treat low-frequency torsional modes due to internal rotation (Pitzer and Gwinn, 1942). However, the internal rotation correction had a very minor effect on the activation energy, even for molecules with many dihedrals (Pfaendtner and Broadbelt, 2007; Van Cauter et al., 2006). Furthermore, low-frequency vibrational modes contributed little to the vibrational contribution to the internal energy. Therefore, the contribution of anharmonicity from hindered rotors was not included in this study. Basis set superposition error (BSSE) was not considered because 1) the BSSE may not be too large as compared to the accuracy of the transition state calculations, 2) methods for BSSE correction are still controversial, and 3) BSSE corrections by the counterpoise method require additional expensive calculations. The effect of tunneling was included using Wigner's equation (Wigner, 1932).

To calculate the free energy of solvation, three implicit solvation models were used, namely: 1) the conductor-like polarizable continuum model (CPCM) (Cossi et al., 2003; Barone and Cossi, 1998) implemented in Gaussian03 (Frisch et al., 2003), 2) the
solvent model (SM8) (Zhu et al., 1998; Cramer and Truhlar, 1996; Still et all., 1990) implemented in GAMESSPLUS-v2009 (Higashi et al., 1993), and 3) the conductor-like screening model for real solvation (COSMO-RS) (Klamt, 1996, Klamt et al., 1998) implemented in COSMOtherm (Eckert and Klamt, 2006). CPCM defined the cavity using a United Atom Hartree-Fock (UAHF) model (Barone et al., 1997). SM8 used the van der Waals radii in the solvent-accessible surface area (SASA) (Hermann, 1972; Mennucci and Tomashi, 1997) calculation (Marenich et al., 2008). The COSMO approach defines the molecular cavity as the union of all those points that have a smaller relative distance to an atom of the molecule under consideration than to other molecules. The relative distance is defined as the ratio of the distance and the vdW radius of the entire atom. We compared these three solvation models for molecules at the ground state and determined which to use to establish the LFERs. In particular, we decided to use the COSMO-RS model to calculate $\Delta \Delta G^{\neq} \neq$, solvation. In this process, the gaseous phase geometry was first optimized using DFT and MP2 (Moller and Plesset, 1934) with various basis sets. Because our investigations of the structures of reactants and transition states using the CPCM model showed few structural differences between the gaseous and aqueous phases, the optimized gaseous phase structures were used to calculate $\Delta \Delta G^{\neq}{ }_{\mathrm{rxn}}$, solvation. Second, the cosmo/ccf files that represent the charge distributions of the optimized structures were generated with the single point calculation using RI-DFT with BP-functional and def-TZVP basis set that are implemented in the TURBOMOLE (Ahlrichs et al., 1989) 'calculate' function. Lastly, the cosmo/ccf files were transmitted to COSMOtherm to calculate the chemical potential and partial pressure of a compound in the aqueous phase.

3.5 Results and Discussion

3.5.1 A Comparison of $A b$ initio Quantum Mechanical Methods for HO• + CH4 in the Gaseous Phase

It is important to compare various quantum mechanical methods and basis sets for transition state structure optimization and thermochemical property calculation for H atom abstraction by HO • We optimized the transition state structures of CH_{4} and $\mathrm{HO} \bullet$ using various DFT and MP2 methods and calculated the gaseous phase barrier height using both single point energy calculations and hybrid methods. The barrier height and energy of reaction for each method have been tabulated and compared to the literaturereported values, as shown in Table 3.3 and Figure 3.2.

Table 3.3: A comparison of $A b$ initio quantum mechanical methods for the gaseous phase reaction of $\mathrm{HO} \cdot$ with CH_{4}.

Reaction $\mathrm{CH}_{4}+\mathrm{HO} \bullet \rightarrow \bullet \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$							
Method and basis set	Barrier height, $\mathrm{kca} / \mathrm{mol}$	ZPE	$<S^{2}>$	Imaginary frequency	$\begin{gathered} \mathrm{r}(\mathrm{C}-\mathrm{H}), \\ \AA \end{gathered}$	$\underset{\AA}{\mathrm{r}(\mathrm{O}-\mathrm{H})},$	< HOH)
$\mathrm{mp} 2 / 6-311++\mathrm{G}(3 \mathrm{~d}, 3 \mathrm{p}) / / \mathrm{mp} 2 / 6-311++\mathrm{G}(3 \mathrm{~d}, 3 \mathrm{p})$	6.95	0.051725	0.779599	-1792.6293			
$\mathrm{mp} 2 / 6-311+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p}) / / \mathrm{MP} 2$ (Full)/6-31G(d)	7.29	0.052417	0.785448	-2314.8722	1.22594	1.26893	99.45222
mp2/aug-cc-pVTZ//MP2(Full)/6-31G(d)	6.41	0.052174	0.785466	-2296.2110	1.22594	1.26893	99.45222
B3LYP/6-31++G(d,p)//B3LYP/6-31++G(d,p)	0.48						
B3LYP/6-311++G(3df,3pd)//B3LYP/6-31++G(d,p)	0.24				1.21724	1.32403	100.31456
BHandHLYP/6-31+G(d,p)	8.12	0.052359	0.765306	-1851.8709			
MPWB1K/6-31+G(d,p)	7.12	0.055848	0.752871	-64.7369	1.22086	1.27783	99.90577
M05 2X/6-31+G(d,p)	4.26	0.052074	0.759078	-1183.3195	1.21871	1.30625	100.99250
CBS-QB3	3.76	0.050051	0.756548	-1109.0212	1.23306	1.28573	99.17334
G1	5.65	0.048208	0.784800		1.22597	1.26888	99.45768
G2	6.25	0.048208	0.784807		1.22597	1.26888	99.45768
G2MP2	5.48	0.048208	0.784804		1.22594	1.26893	99.45217
G3	5.45	0.048208	0.761336		1.22594	1.26893	99.45217
G3MP2	6.01	0.048208	0.784807		1.22597	1.26888	99.45770
G3B3	4.43	0.048492	0.757109	-1447.5378	1.27386	1.23835	100.19049
G3MP2B3	4.95	0.050467	0.757115	-1444.3300	1.27326	1.23889	100.15053
QCISD(T)/6-311+G(d,p)//MP2(Full)/6-31G(d)	6.31	0.051093	0.787455	-1618.2755			
CCSD/6-31+G(d,p)//MP2(Full)/6-31G(d)	7.73	0.052108	0.786781	-1781.8067			
CCSD/6-31++G(d, p)//MP2(Full)/6-31G(d)	7.60	0.052014	0.786817	-1778.8191	122594	1.26893	99.45222
CCSD/6-311++G(d,p)//MP2(Full)/6-31G(d)	6.66	0.051625	0.787459	-1734.7900	1.2259	1.26893	9.45222
CCSD $(\mathrm{T}) / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{MP2}$ (Full)/6-31G(d)	7.82	0.051666	0.786781	-1658.9361			
$\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{MP2}$ (Full)/6-31G(d)	6.52	0.051162	0.787455	-1622.9927			
MCG3/3 \dagger	6.35						
$\mathrm{MC} 3 \mathrm{BB} \dagger$	6.11						
MC3MPW \dagger	6.15						
W1\%	6.22						
Exp.*	6.70						

Figure 3.2: A comparison of calculated barrier height for the $\mathrm{CH}_{4}+\mathrm{HO} \cdot$

The various methods yielded only small differences in the optimized geometry of the transition states. DFT gives a larger angle for H-O-H. The addition of the diffuse function does not change the optimized geometry significantly. Overall, no significant spin contamination was observed. The MP2 methods provide similar barrier heights when different basis sets are used. The augmented correlation-consistent polarized valence triple- ζ sets (Dunning, 1989) are known to give more flexibility when considering electron-electron correlations. As compared to the $6-311+G(3 d f, 2 p)$ basis set, aug-cc-pVTZ provides a smaller barrier height. All values calculated by DFT with the B3LYP basis set (Becke, 1993; Lee et al., 1988) underestimate the barrier height significantly when compared to the values obtained by other methods. This is consistent
with the observation by Izgorodina et al. (2007). In addition, no improvement in the calculated energy was observed when the larger basis set, i.e., $6-311++G(3 d f, 3 \mathrm{pd})$, was used. The barrier heights calculated using the hybrid DFT methods varied based on the type of density functional used. In both of these functionals, the percentage of HF exchange has been parameterized for the calculation of accurate kinetics data (in particular barrier heights and energies of reaction). Nevertheless, for our tested system all hybrid-DFT methods slightly overestimate the barrier height as compared to the literature-reported values (e.g., W1 or the best estimated from the experiment) by approximately $1.0 \mathrm{kcal} / \mathrm{mol}$. A composite method [i.e., CBS-QB3 (Montgomery et al., 1999; 2000); G1 (Pople et al., 1989; Curtiss and Jones, 1990); G2 (Curtiss, 1991) and G3 (Curtiss et al., 1998)] that includes several thermochemical property calculations with higher order corrections slightly underestimates the barrier height when compared to the literature-reported values. The coupled cluster (CC) (Č'ížek, 1966) with various basis sets gives higher energy values than the literature, but the largest basis set (i.e., 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p}))$ provides a similar value to that in the literature. It should be mentioned that the Weizmann theory (Martin and Oliveira, 1999; Parthiban and Martin, 2001) and the CC method (e.g., $\operatorname{CCSD}(\mathrm{T}))($ Purvis and Bartlett, 1982) that is typically used for the high level thermochemical property calculations may not be relevant in our case due to the expensive computational demand. Because we calculate the ΔG^{\neq}gas using a high level $A b$ initio method for many compounds, the Gaussian- n-series should be sufficient.

3.5.2 Verifications of $A b$ initio Quantum Mechanical Methods for the Gaseous Phase HO• Reactions

To verify the Gaussian- n-series hybrid methods for different functional groups and atoms, we calculated the barrier heights for representative compounds from different functional groups (i.e., $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{~F}$, $\mathrm{CH}_{3} \mathrm{Cl}$ and $\left.\mathrm{CH}_{3} \mathrm{Br}\right)$ and compared them with literature-reported values. Table 3.4 summarizes the overall results for these calculations. Most of the calculated barrier heights are within $\pm 2 \mathrm{kcal} / \mathrm{mol}$ of the results that are obtained by $\operatorname{CCSD}(\mathrm{T})$ and QCISD(T). The G3 hybrid methods underestimate the barrier height. Little difference is observed between the G1 and G2 hybrid methods. However, the G2 method estimates most of the calculated energies lower than does the G1 hybrid method. According to a general performance evaluation of the G2 and G3 methods, the mean absolute deviations (MADs) of the 147 enthalpies of formation calculated in the experiment were 1.56 $\mathrm{kcal} / \mathrm{mol}$ and $0.94 \mathrm{kcal} / \mathrm{mol}$ (Curtiss et al., 1998), respectively. From these verifications, it can be concluded that the G1, G2 and G3 methods should be sufficient to provide highly accurate thermochemical properties within the acceptable computational errors for the gaseous phase reaction of $\mathrm{HO} \cdot$ with aliphatic alkanes as well as with oxygenated and halogenated compounds.

Table 3.4: Calculated energy barrier for the gaseous phase reactions of $\mathrm{HO} \cdot$ with $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{COCH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{Br}$, and the literature-reported values.

	$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CHO}$	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	$\mathrm{CH}_{3} \mathrm{COOH}^{2}$	$\mathrm{CH}_{3} \mathrm{~F}$	$\mathrm{CH}_{3} \mathrm{Cl}$	CH 3 Br
G3	0.41	2.84	3.01	2.20	3.76	3.90	3.12	
G3MP2	1.12	3.56	3.70	2.94	2.88	4.57	3.79	
G3B3	1.72	3.22	1.65	2.63	3.78	3.61	0.15	
G3MP2B3	2.68	0.05	2.26	0.15	4.53	4.32	0.17	
G2	2.14	1.02	1.25	0.40	1.97	2.06	1.33	1.77
G1	0.51	3.03	3.09	2.32	3.69	4.14	3.25	3.58
CBS-QB3	0.65	1.34	-0.61	1.40	2.61	2.84	-0.24	
MP2/aug-cc-pVTZ/MP2(Full)/6-31G(d)	2.89	3.96	2.47	3.36	5.16	5.39	4.61	4.50
CCSD(T)/6-311+G(d,p)//MP2(full)/6-31G(d)	1.75	4.54	0.45			5.26	4.08	
QCISD(T)						4.37^{e}	4.38^{g}	
CCSD(T)	1.0^{a}		2.55^{b}	3.99^{d}		5.1^{f}		
best estimate \ddagger			2.72^{c}			$2.80-3.06^{\mathrm{e}}$		3.39^{h}

a: $\operatorname{CCSD}(T) / 6-311+G(3 d f, 2 p) / / M P 2 / 6-311+G(3 d f, 2 p)$. Xu and Lin, 2007
b: $\operatorname{CCSD}(T) / 6-311++G(d, p) / / M P 2 / 6-31 G(d, p)$. Atadinc et al., 2002
c: Kasai and Meyers, 1959
d: $\operatorname{CCSD}(T) / 6-311 G(d, p) / / M P 2 / 6-31 G(d, p)$. Henon et al., 2003
e: $\operatorname{QCISD}(T) / 6-311++G(3 d f, 3 p d) / / M P 2 / 6-311+G(d, p)$. Lien et al., 2001
f: $\operatorname{CCSD}(T) /$ aug-pVTZ//MP2/6-31G(d,p) Espinosa-García et al., 1998
g: $Q C I S D(T) / 6-311 G(2 d f, 2 p) / / M P 2(f u l l) / 6-311 G(d, p)$. Chandra and Uchimaru, 2000
h: CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ. Tzima et al., 2006
f: values obtained by fitting to experimental values

3.5.3 A Comparison of Implicit Solvation Models

To compare the performances of implicit solvation models, the free energies of solvation for alkanes as well as oxygenated and halogenated compounds were calculated using three implicit solvation models: 1) CPCM (Cossi et al., 2003; Barone and Cossi, 1998), 2) SM8 (Zhu et al., 1998; Cramer and Truhlar, 1996; Still et all., 1990), and 3) COSMO-RS (Klamt, 1996, Klamt et al., 1998)). The oxygenated compounds included alcohols, ethers, esters, aldehydes, and carbonyl and carboxylic compounds. The calculated free energies of solvation were compared with the literature-reported experimental values (Marenich et al., 2009). In the COSMO-RS approach, the free energy of solvation for a compound, $i, \Delta G_{\text {solvation, calc, }}^{i}$, was calculated as corresponding to the partial vapor pressure of each compound (i.e., pure compound vapor pressure times the activity coefficient):
$\Delta G_{\text {solvation, calc }}^{i}=R T \ln (10) \times\left[\log _{10} P-\log _{10}(1000)\right]$
where P is the partial pressure, mbar. If the reference state is 1 bar, the $\log _{10}(1000)$ is the decadic logarithm of 1000 mbar pressure. This procedure was verified by comparing it to the COSMO-RS default method, as shown in equation (3.8):
$\Delta G_{\text {solvation, default }}^{i}=\left(\mu_{\text {gas }}^{i}-\mu_{\text {aq }}^{i}\right)-\mathrm{RT} \ln \left(\rho_{\mathrm{s}} V_{\text {gas }}^{i} / M W_{\text {aq }}\right)$
where $\mu_{\text {gas }}^{i}$ and $\mu_{\text {aq }}^{i}$ are the chemical potentials of the compound, i, in the ideal gas and aqueous phases, respectively; ρ_{s} is the density of water, $V_{\text {gas }}^{i}$ is the molar volume of the ideal gas; and the $M W_{\mathrm{aq}}$ is the molecular weight of water. The $\Delta G_{\text {solvation, calc }}^{i}$ was converted into the state at 1 atm of ideal gas and 1 mol of liquid solvent. CPCM calculates the energy values at the ideal gas state, and therefore, a correction factor (Liptak and Shields, 2001) of $1.89 \mathrm{kcal} / \mathrm{mol}$ (i.e., $R T \ln (24.47)$) was included to account for a state change from $1 \mathrm{~mol} / 24.47 \mathrm{~L}$ (gaseous phase at 298 K) to $1 \mathrm{~mol} / \mathrm{L}$ (aqueous
phase). SM8 calculates the free energy of solvation at the standard state of 1 atm and 1 $\mathrm{mol} / \mathrm{L}$. Figure 3.3 plots the calculated free energies of solvation against the literaturereported experimental values. The sample deviation (SD) calculated in equation (3.9) is $0.79(\mathrm{~N}=40)$ by COSMO-RS, $1.6(\mathrm{~N}=38)$ by CPCM with G3B3 and UAHF radii, and 1.8 ($\mathrm{N}=39$) by SM8 with M06-2X/6-31+G(d,p) and Bondi radii:
$\mathrm{SD}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(\frac{\Delta G_{\text {solvation, } \exp }^{i}-\Delta G_{\text {solvation,calc }}^{i}}{\Delta G_{\text {solvation, exp }}^{i}}\right)^{2}}$
where N is the total number of samples, and $G_{\text {solvation,exp }}^{i}$ and $G_{\text {solvation, calc }}^{i}$ are experimental and calculated free energies of solvation for molecule i.

Figure 3.3: A plot of calculated free energy of solvation versus experimental free energy of solvation

COSMO-RS performs slightly better than CPCM and SM8. All solvation methods indicate larger errors as compared to the literature-reported experimental values (Marenich et al., 2009) for the following compounds: $\mathrm{CHF}_{3}, \mathrm{CCl}_{3} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ than the rest of the compounds. For example, the calculated free energy of solvation for CHF_{3} is $0.583,-1.840$ and $1.768 \mathrm{kcal} / \mathrm{mol}$ with COSMO-RS, CPCM and SM8, respectively, as compared to the experimental value, $-0.200 \mathrm{kcal} / \mathrm{mol}$ (Marenich et al., 2009). For $\mathrm{CCl}_{3} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, we observed a similar inconsistency. Therefore, calculation of the free energy of solvation for halogenated compounds is still limited. If these three compounds were eliminated, the SD values for COSMO-RS, CPCM and SM8 would be $0.19,0.40$ and 0.48 , respectively.

In addition to its better performance, COSMO-RS has two major advantages over CPCM and SM8: 1) construction of potential energy operator and 2) the contribution of free energy of solvation. CPCM and SM8 model the surrounding solvent as a homogeneous medium characterized by a bulk permittivity (i.e., $\varepsilon=78.4$ for water) and electrostatic solute-solvent interactions are treated linearly depending on the solute wave function. COSMO-RS does not assume either homogeneous behavior of the solvent or a linear response of the electrostatic interactions. Whereas CPCM and SM8 consider no change in the association free energy in the solution phase, COSMO-RS includes a temperature-dependent entropic term as well as an enthalpic contribution. Accordingly, the COSMO-RS theory was selected for establishing the LFERs.

3.5.4 Linear Free Energy Relationships between Aqueous Phase Free Energy of Activation and Logarithm of HO• Reaction Rate Constant

In this section, we establish the LFERs between the calculated aqueous phase $\Delta G^{\neq} \quad$ rxn,aq and the literature-reported experimental $\mathrm{HO} \bullet$ reaction rate constants that were compiled in a previous study (Minakata et al., 2009). The gaseous phase free energy of activation, $\Delta G_{\text {rxn,gas, }}^{\neq}$was calculated using the G1, G2 and G3 methods, and $\Delta \Delta G^{\neq}{ }_{\text {rxn,solvation }}$ was calculated using the COSMO-RS theory. $\Delta G_{\text {rxn,gas }}^{\neq}$includes the zero point energy and the chemical potential, $\Delta \mu$, to consider the dissolution contribution of molecule. Among the different possible transition states and conformations of compounds, the lowest energy point was selected for the LFERs. The HO• reactions with methane and ethylene were selected for the reference reactions of H -atom abstraction and HO• addition to alkenes, respectively. Tables 3.5 and 3.6 summarize the calculated $\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}$and $\Delta G_{\text {extra }}$ values. Appendix E includes the optimized structures and their zmatrices of coordinates.
Table 3.5: Calculated $\Delta G^{\neq r \text { rnan }}{ }^{\neq}$tunneling factor and literature revorted $\mathrm{HO} \bullet$ reaction rate constants for the H -atom

Table 3.6: Calculated $\Delta G_{\text {rxn,aq }}^{\neq}$, tunneling factor and literature reported $\mathrm{HO} \cdot$ reaction rate constants for the $\mathrm{HO} \cdot$ addition to alkenes.

Molecules	Chemical formula ${ }^{* *} \mathbf{H O}$ indicates the added HO radical	$\Delta \mathrm{G}^{\ddagger}{ }_{\text {aq }}$				Tunneling			Rate constant		
		$\begin{aligned} & \text { G3 with } \\ & \text { COSMO-RS } \end{aligned}$	$\begin{gathered} \text { G2 with } \\ \text { COSMO-RS } \end{gathered}$	$\underset{\substack{\text { G1 with } \\ \text { COSMO-RS }}}{ }$	Estimated from TST	Imaginary freq $\mathrm{v}^{\frac{1}{4}, \mathrm{~cm}^{-1}}$ "uMP2(fill)/6 31 G(d)	$\begin{gathered} \gamma \\ {\left[=1+1 / 24\left(\mathrm{ha} \mathrm{w}^{\mathrm{t}} / \mathrm{k}\right.\right.} \\ \left.\mathrm{BT})^{2}\right] \end{gathered}$		$k_{\text {Ho. aq }}$ exp	$\log k_{\text {но ая }}$	Reference
$\mathrm{H} 2 \mathrm{C}=\mathrm{CH} 2$	H2C(OH)=CH2	-1.63	-3.32	-1.44	4.29		1.00	0.00	4.40E+09	9.64	Thomas 1967
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 3$	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CHCH} 3$	-1.74	-3.41	-1.42	4.02	-540.5534	1.28	-0.15	$7.00 \mathrm{E}+09$	9.85	Thomas 1967
	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{HCH}$	-0.31	-2.06	-0.08		-535.1928	1.28	-0.15			
H2C=C(CH3)2	$\mathrm{H} 2 \mathrm{C}(\mathrm{OH})=\mathrm{C}(\mathrm{CH} 3)^{2}$	-4.10	-5.25	-3.36	4.17		1.00	0.00	5.40E+09	9.73	Thomas 1967
	$\mathrm{H} 2 \mathrm{C}=\mathrm{C} \mathbf{(O H})(\mathrm{CH} 3)^{2}$	-1.23	-2.47	-0.52			1.00	0.00			
H2C=CHCH2CH3	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CHCH2CH3}$	-1.77	-3.35	-1.39	4.02	-503.9755	1.25	-0.13	7.00E+09	9.85	Thomas 1967
		1.05	-0.58	1.33			1.00	0.00			
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH2OH}$	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CHCH2OH}$	1.88	0.24	2.04	4.11	-599.8342	1.35	-0.18	6.00E+09	9.78	Maruthamutu 1980
	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathbf{O H}) \mathrm{HCH2OH}$	0.49	-1.23	0.78		-521.0079	1.26	-0.14			
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOCH} 3$	$\mathrm{H2C}(\mathbf{O H})=\mathrm{CHCOCH} 3$	6.16	4.51	6.49	5.26	-537.4719	1.28	-0.15	8.50E+08	8.93	Kumar et al, 1990
		7.25	5.44	7.40		-519.9402	1.26	-0.14			
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOOH}$	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CHCOOH}$	5.01	3.28	5.02	4.93	-531.1804	1.27	-0.14	1.50E+09	9.18	Walling et al., 1973
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCl}$	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CHCl}$	0.60	-1.18	0.67	3.70	-576.1003	1.32	-0.17	1.20E+10	10.08	Koester 1971
	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathbf{O H}) \mathrm{HCl}$	3.82	1.99	3.79		-658.1480	1.42	-0.21			
H2C=CHCL	$\mathrm{H} 2 \mathrm{C}(\mathbf{O H})=\mathrm{CC12}$	0.34	-1.60	0.10	4.03	-572.6321	1.32	-0.16	$6.80 \mathrm{E}+09$	9.83	Koester 1971
	$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{CL} 2$	6.15	4.14	5.90		-759.3241	1.56	-0.26			
$\mathrm{ClHC}=\mathrm{CHCl}$	$\mathrm{CHC}(\mathbf{O H})=\mathrm{CCHCl}(\mathrm{cis})$	3.20	1.54	3.19		-692.0306	1.47	-0.23			Koester and Asmus, 1971
	$\mathrm{CHC}(\mathbf{O H})=\mathrm{CCHCl}($ (rans $)$	2.19	0.20	2.02	4.22	-670.9326	1.44	-0.21	5.00E+09	9.70	Koester and Asmus, 1971
$\mathrm{HCIC}=\mathrm{CCL}$	CHCFC(OH)C12	6.23	4.14	5.91		-766.6935	1.57	-0.27			
	$\mathrm{CHHC}(\mathbf{O H})=\mathrm{CCL}$	3.42	1.42	2.83	4.46	-674.3879	1.44	-0.22	3.30E+09	9.52	Koester and Asmus, 1971
	$\mathrm{CR2C}(\mathbf{O H})=\mathrm{CCL}$	5.30	3.94	5.30	4.76		1.00	0.00	$2.00 \mathrm{E}+09$	9.30	Koester and Asmus, 1971

We observed linear correlations between $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}$ and $\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}$ for $\mathrm{H}-$ atom abstraction by $\mathrm{HO} \cdot$ and $\mathrm{HO} \bullet$ addition to alkenes, respectively (Figures 3.4 and 3.5). The compounds used include alkanes as well as oxygenated and halogenated compounds with a single functional group. With the exception of three chlorinated compounds (trichloromethane, dichloromethane and 1,1-dichloroethane), the least squares fit for H atom abstraction calculated with COSMO-RS obtains linear correlations as: $\log k_{\mathrm{I}}-\log$ $k_{\mathrm{R}}=-0.176\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+0.615\left(\mathrm{~N}=26, r^{2}=0.851\right)$ by G3, $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.188$ $\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+1.138\left(\mathrm{~N}=26, r^{2}=0.871\right)$ by G2, and $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.199\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\right.$ $\left.\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+0.498\left(\mathrm{~N}=26, r^{2}=0.871\right)$ by G1. Underestimation of $\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}$of the three chlorinated compounds can be attributed to a relatively small activation barrier and a complex formed in the entrance channel of potential energy surface (Louis et al., 2000). In addition, the literature-reported experimental values for trichloromethane are in a relatively wider range $\left(0.74-5.4 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ (Buxton et al., 1988), and almost all data were obtained in the 1960s without reporting the precise experimental conditions (e.g., temperature, pH). For these reasons, we did not include these three compounds in the correlation.

Figure 3.4: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}$ versus $\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}$ for H -atom abstraction from the $\mathrm{C}-\mathrm{H}$ bond by HO•

Figure 3.5: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}$ versus $\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}$ for $\mathrm{HO} \bullet$ addition to an alkene

For the $\mathrm{HO} \cdot$ addition calculated with COSMO-RS, the obtained linear correlations are $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.166\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+0.689\left(\mathrm{~N}=10, r^{2}=0.928\right)$ by G3, $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.156\left(\Delta G_{\mathrm{I}}^{\text {act }}-\Delta G_{\mathrm{R}}^{\text {act }}\right)+0.626\left(\mathrm{~N}=10, r^{2}=0.903\right)$ by G2, and $\log k_{\mathrm{I}}-\log$ $k_{\mathrm{R}}=-0.158\left(\Delta G_{\mathrm{I}}^{\text {act }}-\Delta G_{\mathrm{R}}^{\text {act }}\right)+0.612\left(\mathrm{~N}=10, r^{2}=0.915\right)$ by G1. Regardless of the calculated $\Delta G_{\text {rxn,aq }}^{\neq}$, the logarithms of the experimental rate constants for propylene, isobutylene and 1-butene are identical. This is probably because the reactions involved in HO• addition to these compounds are close to the diffusion limit. To investigate the diffusion rate constant, we calculated the diffusion coefficient and the diffusion reaction
rate constant for each molecule using the Hayduk-Laudie correlation (Hayduk and Laudie, 1974).

The diffusion-encounter rate constant is based on diffusion toward the surface of a sphere around the reacting molecule and leads to values of k_{D} that are about half those based on the frequency factor given by the Smoluchowski equation (Adamson, 1979):
$k_{\mathrm{D}}=4 \times \pi \times D_{l} \times r \times \mathrm{N}_{0} / 1000$
where k_{D} is the diffusion-encounter rate constant, $\mathrm{M}^{-1} \mathrm{~s}^{-1} ; D_{l}$ is the diffusion coefficient; r is the radius of the molecule; and N_{0} is Avogadro's number. The diffusivities of small, uncharged molecules in water can be calculated using the Hayduk-Laudie correlation (Hayduk and Laudie, 1974), which is derived from the Wilke-Chang correlation.

$$
\begin{equation*}
D_{l}=\frac{13.26 \times 10^{-5}}{\left(\mu_{\omega}\right)^{1.14}\left(V_{b}\right)^{0.589}} \tag{3.11}
\end{equation*}
$$

where $D_{l}=$ liquid-phase diffusion coefficient of solute, $\mathrm{cm}^{2} / \mathrm{s} ; \mu_{\omega}=$ viscosity of water, cP $(1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}=1000 \mathrm{cP})$; and $V_{\mathrm{b}}=$ molar volume of solute at normal boiling point, $\mathrm{cm}^{3} /$ mole. First, we calculated the V_{b} of a water molecule with B3LYP/6$311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$ and compared it to the value obtained from LeBas (LeBas, 1915) to validate our methodology. This calculated value, $16.83 \mathrm{~cm}^{3} / \mathrm{mole}$, is close to the 18.8 $\mathrm{cm}^{3} / \mathrm{mol}$ from LeBas. Then, we calculated the D_{l} of water as $2.51 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$, which is close to the literature-reported experimental value at $25^{\circ} \mathrm{C}, 2.40 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$ (Ferrell and Himmelblau, 1967). Using B3LYP/6-311++G(3df,3pd), we obtained $2.6 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$ for the D_{l} of $\mathrm{HO} \cdot$.

Table 3.7 summarizes the calculated k_{D} for the $\mathrm{HO} \cdot$ reactions that were investigated in the previous sections and provides a comparison with the chemical reaction rate k_{HO}. Figure 3.6 plots the ratio, $R\left(=k_{\text {exp }} / k_{\mathrm{D}}\right)$, against the calculated free
energy of activation in the aqueous phase, ΔG^{\neq}aq. The reactions considered here are all chemical rather than diffusion-limited reactions. As the calculated free energy of activation decreases (and molecular volume increases), the reaction approaches the diffusion rate reaction (i.e., R approaches 1.0).

Figure 3.6: Plot of the ratio, $R\left(=k_{\text {exp }} / k_{\mathrm{D}}\right)$, versus calculated free energy of activation.

Table 3.7: Calculated diffusion coefficients, molecular radii, and diffusion rate constants

Molecule A	$\begin{gathered} \text { Volume of } \\ \text { molecule } \mathrm{A}^{*}, \\ \mathrm{~cm}^{3} / \mathrm{mole} \\ \hline \end{gathered}$	$\begin{gathered} \text { Diffiusion } \\ \text { coefficient, } D_{A}, \\ \mathrm{~cm} 2 / \mathrm{sec} \\ \hline \end{gathered}$	radius of molecule A, \AA	$D\left(D_{\mathrm{A}}+D_{\text {но }} \cdot \dagger\right), \mathrm{cm}^{2} / \mathrm{sec}$	$\lambda\left(\lambda_{\mathrm{A}}+\lambda_{\text {но. }} \stackrel{ \pm}{+}\right), \mathrm{cm}$	$k_{\mathrm{D}}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$k_{\text {exp }}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$R\left(=k_{\text {exp }} / k_{\mathrm{D}}\right)$
CH4	27.31	$1.89 \mathrm{E}-05$	1.87	$4.49 \mathrm{E}-05$	$2.97 \mathrm{E}-08$	$1.0071 \mathrm{E}+10$	$1.20 \mathrm{E}+08$	0.012
C2H6	43.33	$1.44 \mathrm{E}-05$	2.18	$4.04 \mathrm{E}-05$	$3.74 \mathrm{E}-08$	$1.1418 \mathrm{E}+10$	$1.80 \mathrm{E}+09$	0.158
C3H8	53.56	$1.27 \mathrm{E}-05$	2.34	$3.87 \mathrm{E}-05$	$3.90 \mathrm{E}-08$	$1.1406 \mathrm{E}+10$	$3.60 \mathrm{E}+09$	0.316
C4H10	79.77	$1.01 \mathrm{E}-05$	2.67	$3.60 \mathrm{E}-05$	$4.23 \mathrm{E}-08$	$1.1526 \mathrm{E}+10$	$4.60 \mathrm{E}+09$	0.399
C5H12	84.21	$9.74 \mathrm{E}-06$	2.72	$3.57 \mathrm{E}-05$	$4.28 \mathrm{E}-08$	$1.1556 \mathrm{E}+10$	$5.40 \mathrm{E}+09$	0.467
$\mathrm{CH} 3 \mathrm{CH}(\mathrm{CH} 3) \mathrm{CH} 3$	77.45	$1.02 \mathrm{E}-05$	2.64	$3.62 \mathrm{E}-05$	$4.21 \mathrm{E}-08$	$1.1511 \mathrm{E}+10$	$4.60 \mathrm{E}+09$	0.400
CH 3 Cl	45.74	$1.40 \mathrm{E}-05$	2.22	$3.99 \mathrm{E}-05$	$3.78 \mathrm{E}-08$	$1.1410 \mathrm{E}+10$	$5.50 \mathrm{E}+07$	0.005
CHCl	76.90	$1.03 \mathrm{E}-05$	2.64	$3.62 \mathrm{E}-05$	$4.20 \mathrm{E}-08$	$1.1508 \mathrm{E}+10$	$1.40 \mathrm{E}+07$	0.001
CH2Cl2	59.64	$1.19 \mathrm{E}-05$	2.42	$3.79 \mathrm{E}-05$	$3.98 \mathrm{E}-08$	$1.1420 \mathrm{E}+10$	$9.00 \mathrm{E}+07$	0.008
CH3CHC12	84.84	$9.70 \mathrm{E}-06$	2.73	$3.57 \mathrm{E}-05$	$4.29 \mathrm{E}-08$	$1.1561 \mathrm{E}+10$	$1.30 \mathrm{E}+08$	0.011
CH 3 CCB	85.06	$9.68 \mathrm{E}-06$	2.73	$3.56 \mathrm{E}-05$	$4.29 \mathrm{E}-08$	$1.1562 \mathrm{E}+10$	$1.00 \mathrm{E}+08$	0.009
CH 3 Br	50.23	$1.32 \mathrm{E}-05$	2.29	$3.92 \mathrm{E}-05$	$3.85 \mathrm{E}-08$	$1.1404 \mathrm{E}+10$	$2.20 \mathrm{E}+08$	0.019
CH 2 ClCH 2 Cl	67.98	$1.10 \mathrm{E}-05$	2.53	$3.70 \mathrm{E}-05$	$4.09 \mathrm{E}-08$	$1.1456 \mathrm{E}+10$	$2.20 \mathrm{E}+08$	0.019
CH2CICHCL	69.01	$1.10 \mathrm{E}-05$	2.54	$3.69 \mathrm{E}-05$	$4.11 \mathrm{E}-08$	$1.1461 \mathrm{E}+10$	$3.00 \mathrm{E}+08$	0.026
CH 3 OH	28.90	$1.83 \mathrm{E}-05$	1.90	$4.42 \mathrm{E}-05$	$3.46 \mathrm{E}-08$	$1.1595 \mathrm{E}+10$	$9.70 \mathrm{E}+08$	0.084
CH 3 CH 2 OH	36.12	$1.60 \mathrm{E}-05$	2.05	$4.20 \mathrm{E}-05$	$3.61 \mathrm{E}-08$	$1.1471 \mathrm{E}+10$	$1.90 \mathrm{E}+09$	0.166
$\mathrm{CH} 3 \mathrm{CH}(\mathrm{OH}) \mathrm{CH} 3$	65.84	$1.13 \mathrm{E}-05$	2.50	$3.72 \mathrm{E}-05$	$4.07 \mathrm{E}-08$	$1.1445 \mathrm{E}+10$	$1.90 \mathrm{E}+09$	0.166
CH 3 CH 2 CH 2 OH	48.25	$1.35 \mathrm{E}-05$	2.26	$3.95 \mathrm{E}-05$	$3.82 \mathrm{E}-08$	$1.1405 \mathrm{E}+10$	$2.80 \mathrm{E}+09$	0.246
CH3OCH3	41.46	$1.48 \mathrm{E}-05$	2.15	$4.07 \mathrm{E}-05$	$3.71 \mathrm{E}-08$	$1.1427 \mathrm{E}+10$	$1.00 \mathrm{E}+09$	0.088
CH3COCH3	49.99	$1.32 \mathrm{E}-05$	2.29	$3.92 \mathrm{E}-05$	$3.85 \mathrm{E}-08$	$1.1404 \mathrm{E}+10$	$1.10 \mathrm{E}+08$	0.010
HCOOH	35.31	$1.62 \mathrm{E}-05$	2.04	$4.22 \mathrm{E}-05$	$3.60 \mathrm{E}-08$	$1.1481 \mathrm{E}+10$	$1.00 \mathrm{E}+08$	0.009
CH 3 COOH	38.39	$1.55 \mathrm{E}-05$	2.09	$4.14 \mathrm{E}-05$	$3.65 \mathrm{E}-08$	$1.1449 \mathrm{E}+10$	$1.70 \mathrm{E}+07$	0.001
CH 3 CH 2 COOH	53.27	$1.28 \mathrm{E}-05$	2.33	$3.87 \mathrm{E}-05$	$3.90 \mathrm{E}-08$	$1.1406 \mathrm{E}+10$	$3.20 \mathrm{E}+08$	0.028
CH3COOCH3	64.32	$1.14 \mathrm{E}-05$	2.49	$3.74 \mathrm{E}-05$	$4.05 \mathrm{E}-08$	$1.1439 \mathrm{E}+10$	$1.20 \mathrm{E}+08$	0.010
HCOOCH2CH3	67.33	$1.11 \mathrm{E}-05$	2.52	$3.71 \mathrm{E}-05$	$4.08 \mathrm{E}-08$	$1.1453 \mathrm{E}+10$	$3.30 \mathrm{E}+08$	0.029
НСНО	31.42	$1.74 \mathrm{E}-05$	1.96	$4.34 \mathrm{E}-05$	$3.52 \mathrm{E}-08$	$1.1541 \mathrm{E}+10$	$1.00 \mathrm{E}+09$	0.087
CH3CHO	34.76	$1.64 \mathrm{E}-05$	2.02	$4.24 \mathrm{E}-05$	$3.59 \mathrm{E}-08$	$1.1488 \mathrm{E}+10$	$3.60 \mathrm{E}+09$	0.313
$(\mathrm{CH} 3) 3 \mathrm{COH}$	68.14	$1.10 \mathrm{E}-05$	2.53	$3.70 \mathrm{E}-05$	$4.10 \mathrm{E}-08$	$1.1457 \mathrm{E}+10$	$6.00 \mathrm{E}+08$	0.052
HOCH2OH	45.38	$1.40 \mathrm{E}-05$	2.21	$4.00 \mathrm{E}-05$	$3.77 \mathrm{E}-08$	$1.1410 \mathrm{E}+10$	$7.60 \mathrm{E}+08$	0.067
CH3CHOHOH	44.76	$1.41 \mathrm{E}-05$	2.20	$4.01 \mathrm{E}-05$	$3.76 \mathrm{E}-08$	$1.1412 \mathrm{E}+10$	$7.80 \mathrm{E}+08$	0.068
$\mathrm{HO}(\mathrm{CH} 2) 2 \mathrm{OH}$	43.43	$1.44 \mathrm{E}-05$	2.18	$4.03 \mathrm{E}-05$	$3.74 \mathrm{E}-08$	$1.1417 \mathrm{E}+10$	$1.70 \mathrm{E}+09$	0.149
CH3COCHO	48.04	$1.36 \mathrm{E}-05$	2.26	$3.95 \mathrm{E}-05$	$3.82 \mathrm{E}-08$	$1.1405 \mathrm{E}+10$	$6.49 \mathrm{E}+08$	0.057
CH3COCOCH3	66.82	$1.12 \mathrm{E}-05$	2.52	$3.71 \mathrm{E}-05$	$4.08 \mathrm{E}-08$	$1.1450 \mathrm{E}+10$	$1.70 \mathrm{E}+08$	0.015
CHOCOOH	54.33	$1.26 \mathrm{E}-05$	2.35	$3.86 \mathrm{E}-05$	$3.91 \mathrm{E}-08$	$1.1407 \mathrm{E}+10$	$5.90 \mathrm{E}+08$	0.052
CH3COCOCH3	55.33	$1.25 \mathrm{E}-05$	2.36	$3.84 \mathrm{E}-05$	$3.93 \mathrm{E}-08$	$1.1409 \mathrm{E}+10$	$1.70 \mathrm{E}+08$	0.015
HOOCCH 2 COOH	68.66	$1.10 \mathrm{E}-05$	2.54	$3.69 \mathrm{E}-05$	$4.10 \mathrm{E}-08$	$1.1460 \mathrm{E}+10$	$2.40 \mathrm{E}+07$	0.002
CH2ClCOOH	56.75	$1.23 \mathrm{E}-05$	2.38	$3.82 \mathrm{E}-05$	$3.95 \mathrm{E}-08$	$1.1412 \mathrm{E}+10$	$4.30 \mathrm{E}+07$	0.004
HOCH 2 COOH	57.75	$1.22 \mathrm{E}-05$	2.40	$3.81 \mathrm{E}-05$	$3.96 \mathrm{E}-08$	$1.1415 \mathrm{E}+10$	$6.00 \mathrm{E}+08$	0.053
ClCH2CH2OH	58.75	$1.20 \mathrm{E}-05$	2.41	$3.80 \mathrm{E}-05$	$3.97 \mathrm{E}-08$	$1.1418 \mathrm{E}+10$	$9.50 \mathrm{E}+08$	0.083
CBCH 2 OH	59.75	$1.19 \mathrm{E}-05$	2.43	$3.79 \mathrm{E}-05$	$3.99 \mathrm{E}-08$	$1.1421 \mathrm{E}+10$	$4.20 \mathrm{E}+08$	0.037
F3CH2OH	60.75	$1.18 \mathrm{E}-05$	2.44	$3.78 \mathrm{E}-05$	$4.00 \mathrm{E}-08$	$1.1424 \mathrm{E}+10$	$2.30 \mathrm{E}+08$	0.020
F3CCHCL	61.75	$1.17 \mathrm{E}-05$	2.45	$3.76 \mathrm{E}-05$	$4.01 \mathrm{E}-08$	$1.1428 \mathrm{E}+10$	$1.30 \mathrm{E}+07$	0.001
$\mathrm{H} 2 \mathrm{C}=\mathrm{CH} 2$	39.19	$1.53 \mathrm{E}-05$	2.11	$4.12 \mathrm{E}-05$	$3.67 \mathrm{E}-08$	$1.1442 \mathrm{E}+10$	$4.40 \mathrm{E}+09$	0.385
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 3$	36.66	$1.59 \mathrm{E}-05$	2.06	$4.19 \mathrm{E}-05$	$3.62 \mathrm{E}-08$	$1.1465 \mathrm{E}+10$	$5.40 \mathrm{E}+09$	0.471
$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3)^{2}$	60.42	$1.18 \mathrm{E}-05$	2.43	$3.78 \mathrm{E}-05$	$4.00 \mathrm{E}-08$	$1.1423 \mathrm{E}+10$	$7.00 \mathrm{E}+09$	0.613
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{CH} 3$	68.55	$1.10 \mathrm{E}-05$	2.54	$3.69 \mathrm{E}-05$	$4.10 \mathrm{E}-08$	$1.1459 \mathrm{E}+10$	$6.00 \mathrm{E}+09$	0.524
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{OH}$	48.88	$1.34 \mathrm{E}-05$	2.27	$3.94 \mathrm{E}-05$	$3.83 \mathrm{E}-08$	$1.1404 \mathrm{E}+10$	$8.50 \mathrm{E}+08$	0.075
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOCH} 3$	48.23	$1.35 \mathrm{E}-05$	2.26	$3.95 \mathrm{E}-05$	$3.82 \mathrm{E}-08$	$1.1405 \mathrm{E}+10$	$7.00 \mathrm{E}+09$	0.614
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCl}$	41.73	$1.47 \mathrm{E}-05$	2.15	$4.07 \mathrm{E}-05$	$3.71 \mathrm{E}-08$	$1.1425 \mathrm{E}+10$	$6.80 \mathrm{E}+09$	0.595
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCl} 2$	61.95	$1.17 \mathrm{E}-05$	2.45	$3.76 \mathrm{E}-05$	$4.02 \mathrm{E}-08$	$1.1429 \mathrm{E}+10$	$7.30 \mathrm{E}+09$	0.639
$\mathrm{ClHC}=\mathrm{CHCl}$ (cis)	68.95	$1.10 \mathrm{E}-05$	2.54	$3.69 \mathrm{E}-05$	$4.11 \mathrm{E}-08$	$1.1461 \mathrm{E}+10$	$5.00 \mathrm{E}+09$	0.436
$\mathrm{ClHC}=\mathrm{CHCl}$ (trans)	50.59	$1.31 \mathrm{E}-05$	2.29	$3.91 \mathrm{E}-05$	$3.86 \mathrm{E}-08$	$1.1404 \mathrm{E}+10$	$5.00 \mathrm{E}+09$	0.438
$\mathrm{HClC}=\mathrm{CCL}$	82.06	$9.89 \mathrm{E}-06$	2.70	$3.58 \mathrm{E}-05$	$4.26 \mathrm{E}-08$	$1.1542 \mathrm{E}+10$	$4.00 \mathrm{E}+09$	0.347
$\mathrm{Cl2C}=\mathrm{CCL}$	88.58	$9.45 \mathrm{E}-06$	2.77	$3.54 \mathrm{E}-05$	$4.33 \mathrm{E}-08$	$1.1588 \mathrm{E}+10$	$2.80 \mathrm{E}+09$	0.242
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOOH}$	67.21	$1.11 \mathrm{E}-05$	2.52	$3.71 \mathrm{E}-05$	$4.08 \mathrm{E}-08$	$1.1452 \mathrm{E}+10$	$1.50 \mathrm{E}+09$	0.131
$\begin{aligned} & \text { * obtained by B3LYP/6 } \\ & \dagger D_{\text {Но. }}=2.60 \times 10^{-6} \mathrm{c} \\ & \ddagger \lambda_{\text {Но. }}=1.56 \times 10^{-8} \mathrm{cn} \end{aligned}$	$\begin{aligned} & 6-311++(3 d f, 3 p \\ & \mathrm{m}^{2} / \mathrm{s} \end{aligned}$							

Once the LFERs were established, we predicted the reaction rate constants of H atom abstraction for 14 compounds with multiple functional groups (i.e., oxygenated and halogenated compounds). Figure 3.7 compares the predicted $\mathrm{HO} \cdot$ rate constants with the literature-reported experimental values. Of the 14 predicted rate constants, $4(29 \%$ of
predicted rate constants) and 13 (93% of predicted rate constants) are within $0.5<$ $k_{\text {pred }} / k_{\exp }<2.0$ and $0.2<k_{\text {pred }} / k_{\exp }<5.0$, respectively. 1,1-dichloro-2,2,2-fluoroethane is the only compound outside the range of difference of factor of 5 . If this compound is eliminated, the SD values would be $1.38,1.45$ and 1.45 by G3, G2 and G1 with COSMORS, respectively.

Figure 3.7: Plot of predicted $\mathrm{HO} \cdot$ rate constants versus the literature-reported experimental rate constants. The error bar represents the range of the latter.

A limited number (37) of literature-reported experimental $\Delta G_{\mathrm{rxn}}^{\text {act }}$ values have been estimated for oxygenated compounds from Arrehnius activation energy and frequency factor (Figure 3.4) by assuming the equilibrium at transition state. When these values are
compared with the theoretically calculated values for compounds with both single- and multiple-functional groups, the calculated $\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}$are within $\pm 4 \mathrm{kcal} / \mathrm{mol}$. These errors should be within the errors derived from the quantum mechanical calculations and experiments. Typical errors (i.e., range of 95% of confidence value) in calculating aqueous phase free energy of activation based on experiments are reported in the range from $2 \mathrm{kcal} / \mathrm{mol}$ to $4 \mathrm{kcal} / \mathrm{mol}$. For example, Ervens et al. (2003) experimentally obtained $5.25 \mathrm{kcal} / \mathrm{mol}, 4.78 \pm 2.87 \mathrm{kcal} / \mathrm{mol}, 6.21 \pm 4.78 \mathrm{kcal} / \mathrm{mol}$ and 5.73 ± 3.10 $\mathrm{kcal} / \mathrm{mol}$ for the reaction of $\mathrm{HO} \cdot$ with methanol, ethanol, acetone and propionic acid. Although great uncertainty remains particularly in calculating the aqueous phase free energy at transition state, typical errors that are caused by calculating gaseous phase free energy and free energy of solvation is approximately $\pm 2.0 \mathrm{kcal} / \mathrm{mol}$ and $\pm 1.0 \mathrm{kcal} / \mathrm{mol}$, respectively. For example, the errors for the gaseous phase molecular atomization energies calculated by G3, G2 and G1 are reported within $2.0 \mathrm{kcal} / \mathrm{mol}$ (Pople et al., 1989; Curtiss, 1991; Curtiss et al., 1998). Although there is ongoing discussion regarding the free energy of solvation, the observed error for the aqueous phase free energy of solvation is within $1.0 \mathrm{kcal} / \mathrm{mol}$ (Klamt et al., 2009; Cramer and Truhlar, 2009). The SD for 17 calculated aqueous phase free energy of activation of compounds with both singleand multiple-functional groups are $0.61,0.71$ and 0.55 , respectively, for G3, G2, and G1 with COSMO-RS. Notably, $1 \mathrm{kcal} / \mathrm{mol}$ of difference in $\Delta G^{\neq}{ }_{\text {rxn,aq }}$ causes 5.4 times difference in the rate constant according to the TST equation (3.12):

$$
\begin{equation*}
\Delta G_{\mathrm{rxn}}^{\mathrm{act,TST}}=-R T \ln \left(k_{\mathrm{exp}} \frac{h}{\gamma T}\right) \tag{3.12}
\end{equation*}
$$

Although absolute prediction of reaction rate constants is not feasible, the LFERs that areestablished based on our theoretical calculations follow a trend in reactivity consistent with the experimental values, as shown in Figure 3.4.

Another validation for our theoretically calculated values is to compare them with the estimated $\Delta G_{\mathrm{rxn}}^{\mathrm{art}, \text { TST }}$ derived from TST (Eyring, 1938), as shown in equation (3.12). When compared to this $\Delta G_{\mathrm{rxn}}^{\text {act, TST }}$, our theoretically calculated $\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}$gives SD of 0.33 , 0.61 and 0.32 by G3, G2 and G1 with COSMO-RS, respectively ($N=40$). Although the TST does not thoroughly represent the aqueous phase reaction mechanisms (Kraut, 1988), this comparison proves the validity of our theoretically calculated $\Delta G^{\neq}{ }_{\text {rxn,aq }}$. For the 1,1 -dichloro-2,2,2-fluoroethane, the $\Delta G^{\neq}{ }_{\text {rxn,aq }}$ is $8.48 \mathrm{kcal} / \mathrm{mol}, 6.49 \mathrm{kcal} / \mathrm{mol}$ and 8.50 $\mathrm{kcal} / \mathrm{mol}$ by the G3, G2 and G1 with the COSMO-RS, respectively, and is close to the $8.91 \mathrm{kcal} / \mathrm{mol}$ of the $\Delta G^{\text {act,tst }}$. Because the reported rate constant is extremely low, $1.3 \times$ $10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Lal et al., 1988), which is close to the lower limit in the pulse radiolysis approach, the reported rate constant might have been significantly underestimated.

Despite the overall errors from the calculations, the theoretically calculated free energy of activation in the aqueous phase is within the errors derived from the gaseous phase quantum mechanical and free energy of solvation calculations. In addition, if uncertainty in the literature-reported experimental errors is accounted for, the LFERs should be acceptable for predicting the reaction rate constants of unknown compounds that have not been experimentally examined. Consequently, this approach may be applicable to other reaction mechanisms to establish a library of reaction rate constant predictors for mechanistic modeling.

3.6 Acknowledgement

This work was supported by the National Science Foundation Award 0854416 from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors appreciate the support from the Hightower Chair and the Georgia Research Alliance at the Georgia Institute of Technology. Authors also appreciate Dr. Matthew Wolf at the College of Computing in Georgia Tech for the high performance and clustered computing resources. We gratefully acknowledge the contribution of Linly Hall and Mary Kate Varnau for her editorial assistance.

3.7 Appendices

Appendix D includes all calculated data for HOMO and SOMO energy gap.
Appendix E includes the optimized structures and their z-matrices of coordinates.

3.8 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Adamson, A.W. A Textbook of Physical Chemistry, $2^{\text {nd }}$ edition., Academic Press, New York. 1979.

Ahlrichs, R; M. Bär, M.; Häse, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system TURBOMOLE. Chem. Physcs. Lett. 1989, 162(3), 165-169.

Andzelm, J.; Wimmer, E. Density functional gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies, J. Phys. Chem., 1992, 96, 1280-1303.

Ashcraft, R.W.; Raman, S.; Green, W.H. Ab initio aqueous thermochemistry: Application to the oxidation of hydroxylamine in nitric acid solution. J. Phys. Chem. B. 2007, 111, 11968-11983.

Atadinc, F.; Selcuki, C.; Sari, L.; Aviyente, V. Theoretical study of hydrogen abstraction from dimethyl ether and methyl tert-butyl ether by hydroxyl radical. Phys. Chem. Chem.

Ayala, P.Y.; Schlegel, H.B. A combined method for determining reaction paths, minima, and transition state geometries. J.Chem.Phys. 1997, 107(2), 375-384.

Bacskay, G.B. A Quadratically Convergent Hartree-Fock (QC-SCF) Method. Application to Closed Systems. Chem. Phys. 1981, 61, 385-404.

Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J.Phys. Chem. A, 1998, 102, 1995-2001.

Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J.Chem.Phys. 1997, 107(8), 3210-3221.

Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press Inc.: New York, 2006.

Ben-Naim, A. Solvation Thermodynamics; Plenum Press: New York, 1987.
Boese, A.D.; Martin, J. M.L. Development of density functional for thermochemical kinetics. J. Chem. Phys. 2004, 121(8), 3405-3416.

Bonifačić, M.; Möckel, H.; Bahnemann, D.; Asmus, K-D. Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. J. Chem. Soc. Perkin I. 1975, 675-685.

Brezonik, P.L. Chemical kinetics and process dynamics in aqueous systems. Lewis Publishers. 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $\left(\cdot \mathrm{OH} / \cdot \mathrm{O}^{-}\right)$in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17 (2) 513-795.

Chandra, A. K.; Uchimaru, T.; Sugie, M., Kinetics of hydrogen abstraction reactions of 1,1- and 1,2-difluoroethane with hydroxyl radical: an ab initio study, J. Comp. Chem., 2000, 21, 1305-1318.

Chandra, A.K.; Uchimaru, T. Kinetics of hydrogen abstraction from chloromethanes by the hydroxyl radical: A computational study.

Chartfield, D.C.; Friedman, R.S.; Schwenke, D.W.; Truhlar, D.G. Control of chemical reactivity by quantized transition states. J. Phys. Chem. 1992, 96, 2414-2421.

Chen, H., M. Krasowski, and G. Fitzgerald, Density functional pseudo potential studies of molecular geometries, vibrations, and binding energies, J. Chem. Phys., 1993, 98, 8710-8717.

Čížek, J. On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. J. Chem. Phys. 1966, 45(11), 4256-4266.

Cohen, N. Are reaction rate coefficients additive? Revised transition state theory calculations for $\mathrm{OH}+$ alkane reaction. Int. J. Chem. Kinet. 1991, 23, 397-417.

Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem. 2003, 24(6), 669-681.

Cramer, C.J. Essential of computational chemistry $2^{\text {nd }}$ ed. John Wiley \& Sons. Ltd. England, 2004; Chapter 11.

Cramer, C.J.; Truhlar, D.G. A universal approach to solvation modeling. Acc. Chem. Res. 2008, 41(6), 760-768.

Cramer, C.J.; Truhlar, D.G. Commentary. On the performance of continuum solvation methods. Reply to comment on "A universal approaches to solvation modeling". Acc. Chem. Res. 2009, 42(4), 493-497.

Cramer, C.J.; Truhlar, D.G. In Solvent Effects and Chemical Reactivity; Tapia, O., Bertrán, J., Eds.; Kluwer: Dordrecht, 1996; p1.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{UV}$ process in a completely mixed batch reactor. Wat. Res. 1999, 33(10), 2315-2328.

Curtiss, L.A. Gaussian-2 theory for molecular energies of first- and second-row compounds, J. Chem. Phys. 1991, 94(11), 7221-7230.

Curtiss, L.A.; Jones, C. Gaussian-1 theory of molecular energies for second-row compounds. J. Chem. Phys. 1990, 93(4), 2537-2545.

Curtiss, L.A.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3(G3) theory for molecules containing first and second-row atoms, J. Chem. Phys. 1998, 109(18), 77647776.

DeFrees, D. J., Raghavachari, K.; Schlegel, H. B.; Pople, J. A., Effect of electron correlation on theoretical equilibrium geometries. 2. Comparison of third-order
perturbation and configuration interaction results with Experiment, J. Am. Chem. Soc., 1982, 104, 5576-5580.

DeMatteo, M.P.; Poole, J.S.; Shi, X.; Sachdeva, R.; Hatcher, P.G.; Hadad, C.M.; Platz, M.S. On the electrophicility of hydroxyl radical: A laser flash photolysis and computational study. JACS. 2005, 147, 7094-7109.

Dunning, Jr. T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90(2), 1007-1023.

Eckert, F and Klamt, A. COSMOtherm, Version C2.1, Release 01.08; COSMOlogic GmbH \& Co. KG, Leverkusen, Germany, 2006.

Eisenberg, D.; McLachlan, A.D. Solvation energy in protein folding and binding. Nature, 1986, 319, 199-203.

Ellingson, B.A.; Pu, J.; Lin, H.; Zhao, Y.; Truhlar, D.G. Multicoefficient Gaussian-3 calculation of the rate constant for the $\mathrm{OH}+\mathrm{CH} 4$ reaction and its $12 \mathrm{C} / 13 \mathrm{C}$ kinetic isotope effect with emphasis on the effects of coordinate system and torsional treatment. J. Phys. Chem. A., 2007, 111, 11706-11717.

Elliot, A.J.; Geertsen, S.; Buxton, G.V. J. Oxidation of thiocyanate and iodide ions by hydrogen atoms in acid solutions. Chem. Soc. Faraday Trans. 1988, 1, 84, 1101-1112.

Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. Phys. Chem. Chem. Phys., 2003, 5, 1811-1824.

Espinosa-García, J.; Coitino, E.L.; González-Lafont, A.; Lluch, J.M. Reaction-path and dual-level dynamics calculations of the CH3F + OH reaction. J.Phys.Chem.A. 1998, 102, 10715-10722.

Eyring, H. The calculation of activation energies. Reaction Kinetics. 1938. 3-11.
Eyring, H.; Cershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. J. Chem. Phys. 1935, 3, 786-796.

Eyring, H.; Gershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. J. Chem. Phys. 1935, 3, 786-796.

Fittschen, C.; Hippler,H.; Viskolcz, B. The β C-C bond scission in alkoxy radicals: thermal unimolecular decomposition of t-butoxy radicals. Phys.Chem.Chem.Phys. 2000, 2, 1677-1683.

Fontana, G.; Causa, M; Gianotti, V.; Marchionni, G., Computational studies of the reaction of the hydroxyl radical with hydroflurocarbons (HFCs) and hydrofluoroethers (HFEs), J. Fluorine Chem., 2001, 109, 113-121.

Foreman, J.B.; Frisch, E. Exploring chemistry with electronic structure methods. $2^{\text {nd }}$ ed. Gaussian, Inc. Pittsburgh, PA.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision E. 01; Gaussian, Inc.: Wallingford, CT, 2003.

Fukui, K.; Yonezawa, Y.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J.Chem.Phys. 1952, 20(4), 722-725.

Gonzalez-Lafont, A.; Lluch, J. M., Espinosa-Garcia, J., Variational transition state calculations of the CH2F2 + OH hydrogen abstraction reaction, J. Phys. Chem. A, 2001, 105, 10553-10561.

Hayduk, W.; Laudie, H. Prediction of diffusion coefficients for non-electrolytes in dilute aqueous solutions. AIChEJ., 1974, 20(3), 611-615.

Headlam, H.A.; Davies, M.J. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. Free Radical Biol \& Med. 2002, 32(11), 1171-1184.

Henon, E.; Canneaux, S.; Bohr, F.; Dobe, S. Features of the potential energy surface for the reaction of OH radical with acetone. Phys. Chem. Chem. Phys. 2003, 5, 333-341.

Hermann, R.B. Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water s with solvent cavity surface area. J. Phys. Chem. 1972, 76, 2754.

Higashi, M.; Marenich, A. V.; Olson, R. M.; Chamberlin, A. C.; Pu, J.; Kelly, C. P.; Thompson, J. D.; Xidos, J. D.; Li, J.; Zhu, T.; Hawkins, G. D.; Chuang, Y.-Y.; Fast, P. L.; Lynch, B. J.; Liotard, D. A.; Rinaldi, D.; Gao, J.; Cramer, C. J.; Truhlar, D. G. GAMESSPLUS - version 2008-2, University of Minnesota, Minneapolis, 2008, based on
the General Atomic and Molecular Electronic Structure System (GAMESS) as described in Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery J. A. J. Comput. Chem. 1993, 14, 1347.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys.Rev. 1964, 136, B864-871.
Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016-1024.

Huynh, L.K.; Ratkiewicz, A.; Truong, T.N. Kinetics of the hydrogen abstraction OH + alkane $\rightarrow \mathrm{H} 2 \mathrm{O}+$ alkyl reaction class: An application of the reaction class transition state theory. J. Phys. Chem. A. 2006, 110, 473-484.

Huynh, L.K.; Truong, T.N. Kinetics of the hydrogen abstraction CHO + alkane $\rightarrow \mathrm{HCH}$ alkyl reaction class: An application of the reaction class transition state theory. Theor. Chem. Acc. 2007

Huynh, L.K.; Zhang, S.; Truong, T.N. Kinetics of hydrogen abstraction O(3P) + alkane $\rightarrow \mathrm{OH}+$ alkyl reaction class: An application of the reaction class transition state theory. Combustion and Flame, 2008, 152, 177-185.

Irikura, K. K., Fruruip, D. J., Computational thermochemistry: Prediction and estimation of molecular thermodynamics, 1998, American Chemical Society.

Izgorodina, E.I.; Brittain, D.R.B.; Hodgson, J.L.; Krenske, E.H.; Lin, C.Y.; Namazian, M.; Coote, M.L. Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions? J.Phys.Chem. A. 2007, 111, 1075410768.

Izgorodina, E.I.; Brittain, D.R.B.; Hodgson, J.L.; Krenske, E.H.; Lin, C.Y.; Namazian, M.; Coote, M.L. Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions? J.Phys.Chem. A. 2007, 111, 1075410768.

Jursic, B.S. Computing transition state structure and estimating reaction barriers with complete basis set ab initio method. J. Mol. Structure (Theochem), 2000, 499, 223-231.

Kasai, P.H.; Meyers, R.J. J. Chem. Phys. 1959, 30, 1096
Klamt, A. COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. 2005 Elservier. Amsterdam.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere. 1996, 32(4), 717-726.

Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and parametrization of COSMO-RS. J.Phys.Chem. A. 1998, 102, 5074-5085.

Klamt, A.; Mennucci, B.; Tomasi, J.; Barone, V.; Curutchet, C.; Orozco, M.; Luque, F.J. Commentary. On the performance of continuum solvation methods. A comment on "Universal approaches to solvation modeling". Acc. Chem. Res. 2009, 42(4), 489-492.

Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-1138.

Kraut, J. How do enzymes work? Science. 1988, 242, 533-540.
Kungwan, N.; Truong, T.N. Kinetics of the hydrogen abstraction ${ }^{\bullet} \mathrm{CH} 3+$ alkane $\rightarrow \mathrm{CH} 4$ + alkyl reaction class: An application of the reaction class transition state theory? J. Phys. Chem. A. 2005, 109, 7742-4450.

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Rate constants for the reaction of halogenated organic radicals. Int. J. Radiat. Biol. 1988, 54, 773-785.

LeBas The Molecular Volumes of Liquid Chemical Compounds. 1915, Longmans, London.Ferrell and Himmelblau 1967 Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data, 12, 111-115.

Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 1988, 37, 785-789.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. Environ. Sci. Technol. 2009, 43, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. Wat. Res. 2008, 42(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ advanced oxidation process: product study and kinetic modeling. Environ. Sci. Technol. 2007, 41, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. Environ. Sci. Technol. 2004, 38, 6685-6693.

Lien, P-Y.; You, R-M.; Hu, W-P. Theoretical modeling of the hydrogen abstraction reaction of fluoromethane by the hydroxyl radical. J.Phys.Chem.A, 2001, 105, 23912400.

Liptak, M. D.; Shields, G. C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc. 2001, 123, 7314-7319.

Louis, F.; Gonzalez, C.A.; Huie, R.E.; Kurylo, M.J. An ab initio study of the kinetics of the reactions of halomethanes with the hydroxyl radical. 2. A comparison between theoretical and experimental values of the kinetic parameters for 12 partially halogenated methanes. J. Phys. Chem. A. 2000, 104, 8773-8778.

Louis, F.; Gonzalez, C.A.; Huie, R.E.; Kurylo, M.J. An ab initio study of the kinetics of the reactions of halomethanes with the hydroxyl radical. 2. A comparison between theoretical and experimental values of the kinetic parameters for 12 partially halogenated methanes. J. Phys. Chem. A. 2000, 104, 8773-8778.

Lynch, B.J.; Truhlar, D. G. How well can hybrid density functional methods predict transition state geometries and barrier heights? J. Phys. Chem. A. 2001, 105, 2936-2941.

Mader, E.A.; Davidson, E.R.; Mayer, J.M. Large ground-state entropy changes for hydrogen atom transfer reactions of iron complexes. J.A.C.S. 2007, 129, 5153-5166.

Maity, D.K.; Duncan, W.T.; Truong, T.N. Direct ab inito dynamics studies of the hydrogen abstractions of hydrogen atom with fluoromethanes. J. Phys. Chem. A. 1999, 103, 2152-2159.

Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.; Chambers, C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvation Database version 2009, University of Minnesota, Minneapolis, 2009.

Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Perspective on foundations of solvation modeling: The electrostatic contribution to the free energy of solvation. J. Chem. Theory Comput. 2008, 4, 877-887.

Martin, J. M. L.; Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry - W1 and W2 theory. J. Chem. Phys. 1999, 1843-1856.

Masgrau, L., Gonzalez-Lafont, A.; Lluch, J. M., The reactions CHnD4-n + OH -? P and $\mathrm{CH} 4+\mathrm{OD}->\mathrm{CH} 3+\mathrm{HOD}$ as a test of current dynamics computational methods to determine variational transition-state rate constants, J. Chem. Phys., 2001, 114, 5, 21542165.

Melissas, V. S., Truhlar, D. G., Interpolated variational transition state theory and tunneling calculations of the rate constant of the reaction $\mathrm{OH}+\mathrm{CH} 4$ at $223-2400 \mathrm{~K}, J$. Chem. Phys, 1993, 99, 2, 1013-1027.

Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 51515158.

Méreau, R.; Rayez, M-T.; Caralp, F.; Rayez, J-C. Theoretical study of alkoxyl radical decomposition reactions: structure-activity relationship. Phys. Chem. Chem. Phys. 2000, 2, 3765-3772.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environ. Sci. \& Technol. 2009, 43, 6220-6227.

Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618-622.

Montgomery, J.A.; Frisch, M.J. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110(6), 2822-2827.

Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 2000, 112(15), 6532-6542.

Nicolaescu, A.R.; Wiest, O.; Kamat, P. Mechanistic pathways of the hydroxyl radical reactions of quinoline. 2. Computational analysis of hydroxyl radical attack at C atoms. J. Phys. Chem. A. 2005, 109, 2829-2835.

Nyden, M.R.; Perterson, G.A. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 1981, 75(4), 1843-1862.

Ochterski J.W.; Peterson, G.A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1996, 104(7), 2598-2619.

Ochterski, J. W., Thermochemistry in Gaussian, Gaussian, Inc., 2000. on workstation computers: The program system Turbomole. Chem. Phys. Lett., 1989, 162(3), 165-169

Papasavva, S.; Illinger, K. H.; Kenny, J. E., Ab initio calculations on fluoroethanes: Geometries, dipole moments, vibrational frequencies, and infrared intensities, J. Phys. Chem., 1996, 100, 10100-10110.

Parkinson, C. J., P. M. Mayer, and L. Radom, An assessment of theoretical procedures for the calculation of reliable radical stabilization energies, J. Chem. Soc., Perkin Trans. 2, 1999, 2305-2313.

Parthiban, S.; Martin, J. M. L. Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J. Chem. Phys. 2001, 114(14), 6014-6029.

Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996, 17, 4986.

Peng, C.; Schlegel, H.B. Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States. Israel J. Chem. 1993, 33, 449-54.

Pfaendtner, J.; Broadbelt, L. J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. Chem. Eng. Sci. 2007, 62, 5232-5239.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autooxidation of decane and octane. Ind. Eng. Chem. Res. 2008, 47, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 2008, 47, 2886-2896.

Pitzer, K.S.; Gwinn, W. Energy levels and thermodynamic functions for molecules with internal rotation. J. Chem. Phys. 1942, 10, 428-440.

Pople, J. A.; Scott, A.P.; Wong, M.W.; Radom, L., Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31g* and MP2/631g* harmonic frequencies, Is. J. Chem., 1993, 33, 345-350.

Pople, J.A.; Gordon, M.H.; Fox, D.J. Gaussian-1 theory: A general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90(10), 5622-2629.

Pramod, G.; Prasanthkumar, K.P.; Mohan, H.; Manoj, V.M.; Manoj, P.; Suresh, C.H.; Aravindakumar, C.T. Reaction of hydroxyl radicals with azacytosines: A pulse radiolysis and theoretical study. J. Phys. Chem. A. 2006, 110, 11517-11526.

Pu, J.; Gao, J.; Truhlar, D.G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem. Rev. 2006, 106, 3140-3169.

Purvis III, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76(4), 1910-1918.

Rauk,A.; Boyd, R.J.; Boyd, S.L.; Henry, D.J.; Radom, L. Alkoxy radicals in the gaseous phase: β-scission reactions and formation by radical addition to carbonyl compounds. Can.J.Chem. 2003, 81, 431-442.

Richardson, S. D. Water Analysis: Emerging contaminants and current issues. Anal. Chem., 2009, 81, 4645-4677.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol. 2004, 38, 5476-5483.

Saeys, M.; Reyniers, M-F.; Marin, G.B.; Speybroeck, V.V.; Waroquier, M. Ab initio calculations for hydrocarbons: Enthalpy of formation, transition state geometry, and activation energy for radical reactions. J. Phys. Chem. A. 2003, 107, 9147-9159.

Schlegel, H.B. Optimization of equilibrium geometries and transition structures. J. Comp. Chem. 1982, 3(2), 214-218.

Sheng, L.; Li, Z.-S.; Xiao, J.-F.; Liu, J.-Y.; Huang, X.-R.; Sun, C.-C., Direct ab initio dynamics studies on hydrogen-abstraction reactions of 1,1,1-trifluoroethane with hydroxyl radical, Chem. Phys., 2002, 282, 1-8.

Štefanić, I.; Ljubić, M.; Bonifačić, M.; Sabljić, A.; Asmus, K.-D. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H / D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals. Phys. Chem. Chem. Phys. 2009, 11, 2256-2267.

Still, W.C.; Tempczyk, A.T.; Hawley, R.C.; Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc., 1990, 112(16), 6127-6129.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 1: H abstraction from alkanes by H and CH3. J. Phys. Chem. A. 2001, 105, 6910-6925.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 2: H abstraction from alkanes, alkynes, alcohols, aldehydes, and acid by H atoms. J. Phys. Chem. A. 2001, 105, 8969-8984.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 3: Effect of substituents with CH2 as the mediator. J. Phys. Chem. A. 2002, 106, 5474-5489.

Sun, W.; Saeys, M. First principles study of the reaction of formic and acetic acids with hydroxyl radicals. J. Phys. Chem. A. 2008, 112, 6918-6928.

Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999-3093.

Truhlar, D.; Garrett, B.C. Variational transition-state theory. Acc.Chem.Res. 1980, 13, 440-448.

Truong, T. N., Truhlar, D. G., Ab initio transition-state theory calculations of the reaction-rate for $\mathrm{OH}+\mathrm{CH} 4->\mathrm{H} 2 \mathrm{O}+\mathrm{CH} 3$, J. Chem. Phys., 1990, 93, 3, 1761-1769.

Truong, T.N. Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test cases. J. Chem. Phys. 2000, 113(12), 4957-4964.

Truong, T.N.; Duncan, W.T.; Tirtowidjojo, M. A reaction class approach for modeling gas phase reaction rates. Phys, Chem. Chem. Phys., 1999, 1, 1061-1065.

Tzima, T.D.; Papavasoleiou, K.D.; Papayannis, D.K.; Melissas, V.S. Theoretical kinetic study of the CH3Br + OH atmospheric system. Chem. Phys. 2006, 324, 591-599.

Urata, S., Takada, A.; Uchimaru, T.; Chandra, A. K., Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals, Chem. Phys. Lett., 2003, 368, 215-223.

Van Cauter, K.; Van Speybroeck, V.; Vansteenkiste, P.; Reyniers, M. F.; Waroquier, M. Ab initio study of free-radical polymerization: Polyethylene propagation kinetics. Chem. Phys. Chem 2006, 7, 131-140.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649-6663.

Wigner, E. Z. f. physic. Chemie B19, 203, 1932.
Wilke, C.R.; Chang, P.C. Correlation of diffusion coefficients in dilute solutions. AIChEJ., 1955, 1, 264-270.

Wong, M. W., Vibrational frequency prediction using density functional theory, Chem. Phys. Lett., 1996, 256, 391-399.

Wood, G.P.F.; Easton, C.J.; Rauk, A.; Davies, M.; Radom, L. Effect of side chains on competing pathways for β-scission reactions of peptide-backbone alkoxyl radicals. J.Phys.Chem. A. 2006, 110, 10316-10323.

Wood, G.P.F.; Rauk, A.; Radom,L. Modeling β-scission reactions of peptide backbone alkoxy radicals: Backbone C-C bond fission. J.Chem.Theory Comput. 2005, 1, 889-899.

Xu, S.; Lin, M.C. Theoretical study on the kinetics for OH reactions with CH 3 OH and C2H5OH. Proceedings of the combusion institute. 2007, 31, 159-166.

Zhang, X..-H. Ding, Z.-S. Li, X.-R. Huang, and C.-C. Sun, Accurate ab initio calculations on the rate constants of the direct hydrogen abstraction reaction $\mathrm{C} 2 \mathrm{H}+\mathrm{H} 2->\mathrm{C} 2 \mathrm{H} 2+\mathrm{H}$, J. Phys. Chem. A, 2000, 104, 8375-8391.

Zheng, X.; and Blowers, P., The application of composite energy methods to n-butyl radical β-scission reaction kinetic estimations, Theor. Chem. Acc., 2007, 117, 207-212.

Zheng, X.; Blowers, P. A first principle kinetic modeling of the 1-chloroethyl unimolecular decomposition reaction, Industrial \& Engineering Chemistry Research, 2006, 45, 2981-2985.

Zheng, X.; Blowers, P. The investigation of hydrocarbon cracking reaction energetics with composite energy methods, Molecular Simulation, 2005, 31(14-15), 979-986.

Zhong, X. and J. W. Bozzelli, Thermochemical and kinetic analysis on the addition reactions of H, O, OH, and HO2 with 1,3-cyclopentadiene, Int. J. Chem. Kinet., 1997, 29, 893-913.

Zhu, L., J. W. Bozzelli, and W.-P. Ho, Reaction of OH radical with C2H3Cl: rate constant and reaction pathway analysis, J. Phys. Chem. A, 1999, 103, 7800-7810.

Zhu, T.; Li, J.; Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Density functional solvation model based on CM2 atomic charges. J. Chem. Phys. 1998, 109(20), 9117-9133.

CHAPTER 4

Quantitative Understanding of Aqueous Phase Hydroxyl Radical

 Reactions with Haloacetate Ions:

 Reactions with Haloacetate Ions:
 Experimental and Theoretical Studies

\dagger work from this chapter will be presented and plan to be published in the following citation:

Minakata, D.; Crittenden, J. Linear Free Energy Relationship (LFER) for the Aqueous Phase Hydroxyl Radical (HO•) Reactions with Ionized Species: Experimental and Theoretical Studies. $240^{\text {th }}$ American Chemical Society (ACS) National Meeting \& Exposition, Boston, Massachusetts. August 22-26, 2010.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The $16^{\text {th }}$ International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). Novermber 1518, 2010. San Diego, California.

Minakata, D.; Song, W.; Crittenden, J.C. Temperature-dependent aqueous phase hydroxyl radical reaction rate constants with ionized compounds: Experimental and theoretical studies. Environ. Sci.Technol. 2010. In preparation.

Minakata, D.; Song, W.; Crittenden, J.C. Group Contribution Method for Aqueous Phase Hydroxyl Radical Reaction Rate Constant Prediction: Update and Experimental Verification. Environ. Sci.Technol. 2010. In preparation.

4.1 Abstract

Hydroxyl radical $(\mathrm{HO} \cdot)$ is a highly reactive electrophile that potentially leads to complete mineralization of emerging contaminants in aqueous phase advanced oxidation processes (AOPs). Widespread usage and adverse human and ecological effect of halogenated and carboxylic compounds are of great concern. These compounds are major intermediates and byproducts from the reactions of $\mathrm{HO} \bullet$ with many organic contaminants and indicate lower reactivity with $\mathrm{HO} \bullet$ in aqueous phase AOPs. As a consequence, quantitative understanding in their reactions is necessary. In addition, considering deprotonated ionized state of these carboxylic compounds at around neutral pH , we need to verify if our previously established linear free energy relationships for neutral compounds can be applied to ionized compounds for our ultimate goal of establishing a mechanistic model.

We measured temperature-dependent aqueous phase $\mathrm{HO} \bullet$ reaction rate constants for a series of halogenated acetates using electron-pulse radiolysis technique and calculated thermochemical properties from Arrhenius activation energies and frequency factors. We developed linear free energy relationships from logarithms of the $\mathrm{HO} \bullet$ reaction rate constants and free energies of activation that were obtained at several temperatures. The free energy of activation was compared to quantum mechanically calculated values that were obtained by $A b$ initio quantum mechanical calculations using G4 with the SMD solvation model. Theoretical investigations based on quantum mechanical methods provide quantitative understandings of effects that result from halogenated functional groups and hydrogen bonding in the process of solvation. We found that quantum mechanical calculations can predict the aqueous phase free energies
of activation accurately and this may allow us to predict reaction rate constants for unknown compounds that have not been examined experimentally.

4.2 Introduction

The hydroxyl radical (HO•) is a highly reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites on organic contaminants. The HO• potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{UV} / \mathrm{TiO}_{2}$) and natural waters (Westerhoff et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Among emerging contaminants, halogenated compounds are of serious concern (Eljarrat and Barceló, 2003; Woo et al., 2002; Eisenberg and Mckone, 1998) due to the widespread usage in industries and unknown adverse human and ecological effects. In particular, halogenated acetates are one of the major intermediates and byproducts that are appeared in AOPs at around neutral pH because of their lower reactivity with active radical species. However, due to the lack of understandings in detailed reactivity of these compounds with $\mathrm{HO} \cdot($ (Fliount et al., 1997) and almost no experimental studies in examining Arrhenius kinetic parameters, there is no tool to predict the intermediates and products, and assess their human health effects based on thermochemical property and reaction kinetics. Accordingly, there is a need to investigate the detailed reactivity and develop a mechanistic model (Pfaendtner and Broadbelt, 2008) that can quickly assess their removal efficacy by AOPs.

A mechanistic model to evaluate the performance in AOPs includes the three critical components: (1) numerical methods that solve ordinary differential equations (ODEs), (2) algorithms that can predict reaction pathways, and (3) algorithms that can
predict reaction rate constants. The DGEAR algorithm (Hindmarsh and Gear, 1974) successfully solved the ODEs for the UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). A reaction pathway generator for the aqueous phase AOPs was developed (Li and Crittenden, 2009). A group contribution method (GCM) has been recently developed (Minakata et al., 2009) to predict the aqueous phase $\mathrm{HO} \cdot$ reaction rate constants for compounds with a wide range of functional groups in the datasets.

Because the GCM assumes that a functional group has approximately the same interaction properties under a given molecule, it disregards the changes of the functional group properties that can arise from the intramolecular environment by electronic pushpull effects, or by intramolecular hydrogen bond formation, or by steric effects. It is expected that these intramolecular electron-interactions might be very different between the gaseous and aqueous phases, and therefore, solvation effect that results from the surrounding water molecules should be considered for the aqueous phase reactions. Accordingly, it is customary to seek a linear relation between a reaction energy accounting solvation and the logarithm of the rate constant for reaction (Partington, 1951; Beckwith et al., 1992; Wold and Sjöström, 1978). We have developed linear free energy relationships (LFERs) between logarithms of the literature-reported $\mathrm{HO} \bullet$ reaction rate constants and quantum mechanically calculated aqueous phase free energies of activation for neutral compounds for H -atom abstraction by $\mathrm{HO} \bullet$ from a $\mathrm{C}-\mathrm{H}$ bond and $\mathrm{HO} \bullet$ addition to unsaturated $\mathrm{C}=\mathrm{C}$ double bond (Minakata and Crittenden, 2010). The calculated free energies of activation in the aqueous phase were within $\pm 4.0 \mathrm{kcal} / \mathrm{mol}$ of those that were estimated from experimentally obtained Arrhenius activation energy and frequency factors.

When it comes to ionized compounds for aqueous phase molecular modeling, one must notice that the magnitudes of solvation free energies are much larger than those for the neutral compounds (Liu et al., 2010; Marenich et al., 2009; Kelly et al., 2006). The majority of the free energy of solvation is dominated by large electrostatic contributions (Marenich et al., 2009). In particular, the polarizability that results from the charge distribution at the transition state significantly changes the dipole moment and affects the process of solvation as compared to the viscosity or internal pressure (Tanko and Suleman, 1996). The large electrostatic contribution includes short-range and nonbulk electrostatics, as well as cavitation, exchange repulsion, dispersion, and disruption or formation of the nearby solvent structure (Marenich et al., 2009). Accordingly, entropy changes that arise from the solvent structure effect may be significant (Warren and Mayer, 2010; Mader et al., 2007). Because a pure dielectric continuum model (Cossi et al., 2003; Tomasi and Persico, 1994) includes only long range solute-solvent interaction in the bulk phase (Marenich et al., 2009) but the short-range and nonbulk electrostatics, the dielectric continuum model do not treat satisfactorily with the solvation process for ionized compounds.

Figure 4.1: Schematic picture of waters distributed in the cavity, first solvation shell and bulk phase for transition state for the reaction of $\mathrm{HO} \bullet$ with acetate. Dotted line represents the hydrogen bond.

In addition to the difficulties in molecular modeling for the ionized compounds, the effects of functional groups (e.g., halogen atoms and deprotonated carboxylate) are not thoroughly elucidated yet (Aquino et al., 2002). For example, because of their strong electron-withdrawing ability and larger atom size of halogen atoms, there is a qualitative agreement that the halogenated functional groups decrease the overall reactivity of $\mathrm{HO} \bullet$ in particular for the H -atom abstraction from a C-H bond (Minakata et al., 2009; Lal et al., 1988; Neta et al., 1969). For the carboxylic functional groups in the aqueous phase, formation of H-bond (i.e., short-range intermolecular interactions between water molecules and carboxylate functional group) can be expected to affect the overall reactivity significantly.

Not many experimental efforts have investigated the effect of solvation associated with the reaction energy and validate the quantum mechanically calculated thermochemical properties. Hermann's group and Monod et al. (2005) have reported the temperature-dependent aqueous phase $\mathrm{HO} \bullet$ rate constants and thermochemical properties for various oxygenated compounds (Gligorovski, et al., 2009; Gligorovski and Herrmann, 2004; Herrmann et al., 2003, Ervens et al., 2005). Their data compilation is for atmospheric chemistry, and therefore, there is a significant lack of data for the aqueous phase contaminants (e.g., halogenated compounds, and ionized compounds). Fliout et al (1997) experimentally investigated the fate of halogenated acetate radicals $\left(\cdot \mathrm{CBr}_{2} \mathrm{COO}-\right.$ and $\bullet \mathrm{CCl}_{2} \mathrm{COO}-$) and reactivity with other carbon centered radicals. They did not examine the thermochemical properties for these reactions. It is noted that the Arrhenius activation energy is obtained by the slope of logarithm of the reaction rate constant as a function of an inverse of temperature. Accordingly, obtaining the accurate thermochemical properties based on the Arrhenius parameters requires one careful investigation in the temperature using reliable methodology. It is commonly observed that the literature-reported E_{a} and A are scarce due to the diversity of the methodologies (Buxton et al., 1988).

In this study, temperature-dependent $\mathrm{HO} \cdot$ reaction rate constants in the aqueous phase will be measured to obtain thermochemical properties for a series of halogenated acetates. Theoretical studies based on quantum mechanical methods will be conducted to reveal the function of halogenated functional groups toward the $\mathrm{HO} \bullet$ reactivity and hydrogen bonding in the combination of explicit and implicit solvation model. The
experimentally obtained thermochemical properties will be compared with those that will be calculated based on the $A b$ initio quantum mechanical approaches.

4.3 Methods

4.3.1 Experimental

It is known that electron-pulse radiolysis coupled with standard time-resolved detection method is able to deliver reproducibility a short burst of energy as a function of nano- to micro-seconds that induces ionization and excitation among fast-kinetic studies in chemistry (von Sonntag and Schuchmann, 1997). In the past several decades, electronpulse radiolysis has been used for measuring the uni-/bi-molecular reaction rate constants for various reactions that are induced by radical compounds (Buxton et al., 1988; Bielski and Cabelli, 1991). Followings are descriptions about the linear accelerator for the electron-pulse radiolysis, setup and experimental procedure.

4.3.1.1 Linear Accelerator (LINAC)

The linear accelerator (LINAC) electron pulse radiolysis system at the Radiation Laboratory, University of Notre Dame (NDRL) (Whitman et al., 1995) was used for determining all $\mathrm{HO} \bullet$ reaction rate constants. Figure 4.2 represents the overall system of the LINAC that is comprised of electron accelerator, light source, sample flow cell, sample solution and data acquisition computer.

Figure 4.2: Overall system of Linear Electron Accelerator (LINAC)

This system has the following features (Whitman et al., 1995): (1) the system is designed to have very repeatable shot with low pre and post pulse radiation and give reproducible data, (2) the system has a ceramic envelope that is capable of withstanding 150 kV DC in air, stainless steel electrodes and vacuum parts, (3) the injector gun is followed by a high vacuum tee with ion pump, and isolation vacuum valve and a fast beam current monitor, (4) the accelerator is a $2 \mathrm{pi} / 3$ mode, temperature stabilized guide with a tapered velocity buncher, (5) in order to maintain dose repeatability with $\pm 1 \%$ between single pulse taken up to 30 minutes apart, the electron gun HV and control voltages and the PFN firing level are stabilized prior to triggering the pulse, (6) a water cooling system is employed to maintain the beam centerline components at $40 \pm 4^{\circ} \mathrm{C}$. This system is also able to remove the heat from the klystron, modulator, and magnetic. The specification of the system is

2586 mHz of frequency and 18 mW maximum of input power. For the steady state operation, the system has 1.5 second of beam pulse width, 2 A of peak beam current and 6 MeV of energy. For the stored energy operation, the system ranges from 2 ns to 10 ns of beam pulse width, 4 A of beam current, 8 MeV of energy, less than 10 pC of dark current, $\pm 100 \mathrm{pS}$ of pulse jitter and $\pm 1 \%$ of dose stability (i.e., pulse to pulse) (Hug et al., 1999; Asmus 1984; von Sonntag and Schuchmann 1997). The accuracy of an individual radiation chemical experiment is generally considered to be about plus and minus 10%. Numerical values for a specific yield or rate constant are always obtained for at least three different scavenger concentrations. Error margins for the mean of such a serides of single measurements never exceed 3\% (von Sonntag, 1987).

4.3.1.2 Flow Cell

The 10 mm of quartz flow cell is located at the center of electron beam. The flow rate can be adjusted from $1 \mathrm{~mL} / \mathrm{min}$ to $10 \mathrm{~mL} / \mathrm{min}$. Through the experiments the setup of the flow rate was $3 \mathrm{~mL} / \mathrm{min}$. Each pulse radiation was 2 ns and the spectra were recorded up to $100 \mu \mathrm{~s}$. The flux of the solution was $3 \mathrm{~cm} / \mathrm{min}$. The solution moved $5 \times 10^{-6} \mathrm{~cm}$ in $100 \mu \mathrm{~s}$. When comparing to the electron irradiation diameter (i.e., 0.5 cm), we assumed that the solution was not replaced during the 100μ s of pulse radiation. All experimental data were taken by averaging 15 replicate pulses. The interval time of every pulse was 1.0 min , and therefore, the degradation products should be removed at the $3 \mathrm{ml} / \mathrm{min}$ of flow rate.

4.3.1.3 Radiolysis of Water

When water is irradiated by a fast electron injected from an accelerator, water is ionized immediately at approximately 10^{-16} seconds followed by the subsequent reactions (Buxton et al., 1988; Spinks and Woods, 1964; Schwarz, 1962):

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { radiation }]{\text { ionization }} \mathrm{H}_{2} \mathrm{O}^{\oplus}+e^{-} \tag{4.1}\\
& \mathrm{H}_{2} \mathrm{O} \cdot{ }^{\bullet} \rightarrow \mathrm{HO} \cdot+\mathrm{H}^{\oplus} \tag{4.2}\\
& e^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} e_{a q}^{-} \tag{4.3}\\
& \mathrm{H}_{2} \mathrm{O}^{*} \rightarrow \mathrm{H} \bullet+\mathrm{HO} \cdot \tag{4.4}\\
& \mathrm{H} \bullet+\mathrm{H} \bullet \rightarrow \mathrm{H}_{2} \tag{4.5}\\
& e_{a q}^{-}+e_{a q}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{HO}^{-} \tag{4.6}\\
& \mathrm{HO}_{\bullet} \cdot+\mathrm{HO}_{\bullet} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \tag{4.7}\\
& e_{a q}^{-}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2} \cdot- \tag{4.8}\\
& \mathrm{H} \bullet+\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2} \cdot \tag{4.9}
\end{align*}
$$

Initial radiolysis products are produced via spur expansion and reactions. With expansions of spur via diffusion, a fraction of the compounds reacts together. In water, 10^{-7} second is the lifetime of a radical reacting at the diffusion-controlled state when the concentration of the solute is $10^{-3} \mathrm{~mole} / \mathrm{L}$. The overall stoichiometry (Buxton et al., 1988; Spinks and Woods, 1964) at 10^{-5} second (for the pH range from 3 to 11) is shown in equation.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { radiation }]{\text { ionitan }} 0.27 e_{a q}^{-}+0.06 \mathrm{H}^{\oplus}+0.28 \mathrm{HO} \bullet+0.05 \mathrm{H}_{2}+0.07 \mathrm{H}_{2} \mathrm{O}_{2}+0.27 \mathrm{H}_{3} \mathrm{O}^{\oplus} \tag{4.10}
\end{equation*}
$$

The numbers are the G values for species production and the G is defined in $\mu \mathrm{mol} / \mathrm{J}$.
Total radical concentrations that are produced by the pulse radiolysis are typically 2-4
$\mu \mathrm{M}$. To exclude the other radical species but $\mathrm{HO} \cdot$ at near neutral pH , all solutions are saturated with gaseous $\mathrm{N}_{2} \mathrm{O}(\sim 24.5 \mathrm{mM})$ to quantitatively convert the hydrated electrons and hydrogen atoms that are formed into this radical (Buxton et al., 1988):
$\mathrm{e}^{-}(\mathrm{aq})+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{OH}^{-}+\mathrm{HO} \bullet$
$\mathrm{H} \bullet+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{HO} \bullet+\mathrm{N}_{2}$
Reaction rate constants for reactions (4.11) and (4.12) are $9.1 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $2.1 \times 10^{6} \mathrm{M}^{-}$ ${ }^{1} \mathrm{~s}^{-1}$, respectively (Buxton et al., 1988). At around neutral pH , the reaction (4.12) is several magnitude of order slower than other reactions, and therefore, is not complete on typical measurement timescales. Furthermore, hydrogen atom also reacts with the added $\operatorname{SCN}^{-}\left(k=2.3 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}, t_{1 / 2} \approx 90 \mu \mathrm{~s}\right.$, Mezyk and Bartels, 2005) to produce $\mathrm{H}(\mathrm{SCN})_{2}{ }^{-}$ (Elliot et al., 1988) following by $\mathrm{CN} \bullet$ at around neutral pH and $(\mathrm{SCN})_{2}{ }^{\bullet-}$ (Martin et al., 2008). However, while these reactions occur, the reaction (4.12) (i.e., $\mathrm{N}_{2} \mathrm{O}$ pathway) is dominant and constant fraction ($8-10 \%$, Martin et al., 2008) of the initially produced hydrogen atoms are ensured to be converted to $\mathrm{HO} \bullet$. Accordingly, these side reactions should not affect main reactions for competition kinetics (see below) significantly. The advantage of radiolysis method over other methods results in the fact that there is proportional relationship between the amount of energy absorbed by any component of the system and its electron fraction. As a result, in the dilute aqueous solution, all the energy is absorbed by the water and the yields of the primary radicals are always confirmed.

4.3.1.4 Competition Kinetics

Competition kinetics was used in pulse radiolysis when neither the primary radical nor the reaction product can be obtained directly. In two separate solutions, $\mathrm{HO} \bullet$ reacts with each solution producing its product:

$$
\begin{align*}
& \mathrm{HO} \bullet+\mathrm{S}_{1} \xrightarrow{k_{1}} \mathrm{P}_{1} \tag{4.13}\\
& \mathrm{HO} \bullet+\mathrm{S}_{2} \xrightarrow{k_{2}} \mathrm{P}_{2} \tag{4.14}
\end{align*}
$$

From each reaction, the decay of the solution S_{1} and S_{2} can be expressed as below:

$$
\begin{align*}
& -\frac{d\left[\mathrm{~S}_{1}\right]}{d t}=k_{1}\left[\mathrm{~S}_{1}\right][\mathrm{HO} \cdot] \tag{4.15}\\
& -\frac{d\left[\mathrm{~S}_{2}\right]}{d t}=k_{2}\left[\mathrm{~S}_{2}\right][\mathrm{HO} \cdot] \tag{4.16}
\end{align*}
$$

Integration of equations (4.15) and (4.16) from time 0 to time t yields:
$\int_{0}^{t} \frac{d\left[\mathrm{~S}_{1}\right]}{\left[\mathrm{S}_{1}\right]}=\int_{0}^{t} \frac{k_{1}}{k_{2}} \frac{d\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{S}_{2}\right]}$
$\Leftrightarrow \ln \left(\frac{\left[\mathrm{S}_{1}\right]_{0}}{\left[\mathrm{~S}_{1}\right]_{t}}\right)=\frac{k_{1}}{k_{2}} \ln \left(\frac{\left[\mathrm{~S}_{2}\right]_{0}}{\left[\mathrm{~S}_{2}\right]_{t}}\right)$
When the HO• reaction rate constant with S_{2}, k_{2}, is known, k_{1} will be obtained by plotting the decay of both S_{1} and S_{2} concentration.

In practical manner, if there is no significant transient absorbance over the range from $250-800 \mathrm{~nm}$, competition kinetics with use of thiocyanate ion $\left(\mathrm{SCN}^{-}\right)$is effective. SCN^{-}ion reacts with $\mathrm{HO} \bullet$ forming radical ion $(\mathrm{SCN})_{2}{ }^{\bullet-}$. The reactions that are involved in the competition kinetics are as below:
$\mathrm{HO} \cdot+\mathrm{X} \rightarrow$ products
$\mathrm{HO} \cdot+\mathrm{SCN}^{-} \rightarrow(\mathrm{HOSCN})^{\bullet}$
$(\mathrm{HOSCN})^{\bullet-} \rightarrow \cdot \mathrm{SCN}+\mathrm{OH}^{-}$
$\cdot \mathrm{SCN}+\mathrm{SCN}^{-} \rightarrow(\mathrm{SCN})_{2}{ }^{-}$
$(\mathrm{SCN})_{2}{ }^{\circ}$ indicates the strong absorbance at wavelength of 472 nm (Milosavljevic et al., 2005). The second order reaction rate constant of hydroxyl radical with $(\mathrm{SCN})_{2}{ }^{-}$is known as $1.05 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Buxton et al., 1988). We can obtain the following relations from the reaction rates:

$$
\begin{align*}
& {\left[\mathrm{HO} \bullet+\mathrm{SCN}^{-}\right]:[\mathrm{HO} \bullet+\mathrm{X}]=k_{2}\left[\mathrm{SCN}^{-}\right]: k_{1}[\mathrm{X}]=\mathrm{A}_{\left[\mathrm{SCN}^{-}\right]+[\mathrm{X}]}:\left(\mathrm{A}_{\left[\mathrm{SCN}^{-}\right]}-\mathrm{A}_{\left[\mathrm{SCN}^{-}\right]+[\mathrm{X}]}\right)} \tag{4.23}\\
& \frac{1}{A_{\left[\mathrm{SCN}^{-}\right]+[\mathrm{X}]}}=\frac{1}{A_{\left[\mathrm{SCN}^{-}\right]}}+\frac{k_{1}[\mathrm{X}]}{A_{\left[\mathrm{SCN}^{-}\right]} k_{2}\left[\mathrm{SCN}^{-}\right]} \\
& \Leftrightarrow \frac{A_{\left[\mathrm{SCN}^{-}\right]}}{A_{\left[\mathrm{SCN}^{-}\right]+[\mathrm{X}]}}=1+\frac{k_{1}[\mathrm{X}]}{k_{2}\left[\mathrm{SCN}^{-}\right]} \tag{4.24}
\end{align*}
$$

Therefore, the following relationship can be obtained:

$$
\begin{equation*}
\frac{\left[(\mathrm{SCN})_{2}^{--}\right]_{0}}{\left[(\mathrm{SCN})_{2}^{--}\right]}=1+\frac{k_{1}[\mathrm{X}]}{k_{2}\left[\mathrm{SCN}^{-}\right]} \tag{4.25}
\end{equation*}
$$

where $\left[(\mathrm{SCN})_{2}^{--}\right]_{0}$ is the absorbance of blank solution. $\left[(\mathrm{SCN})_{2}^{--}\right]$is the absorbance obtained in the presence of compound X. The $[\mathrm{X}]$ is the concentration of compound X. $\left[\mathrm{SCN}^{-}\right]$is the concentration of thiocyanate ion.

4.3.1.5 Procedures

All chemicals that were used for the reaction rate constant measurements were of the highest purity available ($>99 \%$) and used as received. Solutions of these chemicals were made by a Millipore Milli-Q system. All solutions were continuously sparged with high-purity $\mathrm{N}_{2} \mathrm{O}$ gas to remove dissolved oxygen. The SCN^{-}solution that was used for all experiments was 0.3 mM with 20 mM of buffer solution at $\mathrm{pH}=6.9-7.0$. The
temperature of solution was severely controlled using water baths that have the heating unit, and both solution and water bath temperatures were continuously monitored with the thermostat during the experiments. The measurements were repeated 15 times to obtain each absorbance at each dose. At each concentration, the 15 times measurement at the same dose was repeated 4 times to obtain average value.

4.3.1.6 Thermochemical Properties

According to the transition state theory (TST) (Eyring, 1935), the reaction rate constant can be expressed in equation (4.24) using thermochemical properties at the transition state (i.e., free energy, entropy, and enthalpy of activation, respectively).

$$
\begin{equation*}
k=\frac{\kappa T}{h} \exp \left(\frac{-\Delta G_{\mathrm{rx}}^{\mathrm{act}}}{R T}\right)=\frac{\kappa T}{h} \exp \left(\frac{-\Delta S_{\mathrm{rxn}}^{\mathrm{act}}}{R}\right) \exp \left(\frac{-\Delta H_{\mathrm{rxn}}^{\text {act }}}{R T}\right) \tag{4.26}
\end{equation*}
$$

where k is reaction rate constant, $\mathrm{M}^{-1} \mathrm{~s}^{-1}, \kappa$ is Boltzman constant, T is absolute temperature, h is plank constant, R is universal gas constant, and $\Delta G_{\mathrm{rxn}}^{\text {act }}, \Delta S_{\mathrm{rxn}}^{\text {act }}$ and $\Delta H_{\mathrm{rxn}}^{\text {act }}$ are free energy, entropy and enthalpy of activation (Pu et al., 2006) that are obtained from the experiments, respectively. The equation (4.26) above represents the difference in the respective thermodynamic properties between the transition state and the reactants, when all are in their standard states (i.e., at unit concentration). It should be noted that the thermodynamic properties associated with the transition state are more numerous and complicated. Putting logarithm of both side of equation (4.26) yields the equation (4.27), and the left side of this equation equals to $E_{\mathrm{a}} / R T$ from the Arrhenius equation.
$\ln k=\ln \frac{\kappa}{h}+\ln T+\ln K^{\neq}$

According to the Clapeyron equation shown in the equation (4.28), the experimental Arrhenius activation energy, E_{a}, relates to the internal energy of activation $\Delta E^{\text {act }}$ and enthalpy of activation $\Delta H^{\text {act }}$
$\frac{d \ln k}{d T}=\frac{1}{T}+\frac{d \ln K^{\neq}}{d T}$
$E_{a}=\Delta E^{\text {act }}+R T$

Because the internal energy, ΔE, is expressed in equation (4.30), the internal energy of activation can be approximately equal to the enthalpy of activation assuming that the volume of activation, $\Delta V^{\text {act }}$, is nearly zero in solution.
$\Delta E=\Delta H-P \Delta V=\Delta H-\Delta n R T$

As a consequent, experimental Arrhenius activation energy can be expressed in equation (4.31):
$E_{\mathrm{a}}=\Delta H_{\mathrm{rxn}}^{\mathrm{act}}+R T$

From the equation (4.31) and Arrhenius expression, the Arrhenius frequency factor can be expressed in the following equation (4.32):

$$
\begin{equation*}
A=\frac{e \kappa T}{h} \exp \left(\frac{-\Delta S_{\mathrm{rxn}}^{\text {act }}}{R}\right) \tag{4.32}
\end{equation*}
$$

where $e=2.72$

The $\Delta G_{\text {rxn }}^{\text {act }}$, can be calculated as below:
$\Delta G_{\mathrm{rxn}}^{\mathrm{act}}=\Delta H_{\mathrm{rxn}}^{\mathrm{act}}-T \Delta S_{\mathrm{rxn}}^{\mathrm{act}}$

4.3.2 Group Contribution Method

The detailed descriptions of group contribution method (GCM) can be found in our previously published paper (Minakata et al., 2009). In short, according to the GCM, the rate constant for H -atom abstraction, k_{abs}, can be written in equation (4.34)
$k_{\mathrm{abs}}=3 \sum_{0}^{I} k_{\mathrm{prim}}^{0} X_{\mathrm{R}_{1}}+2 \sum_{0}^{J} k_{\mathrm{sec}^{0}}^{0} X_{\mathrm{R}_{1}} X_{\mathrm{R}_{2}}+\sum_{0}^{K} k_{\mathrm{tert}}^{0} X_{\mathrm{R}_{1}} X_{\mathrm{R}_{2}} X_{\mathrm{R}_{3}}+k_{\mathrm{R}_{4}}$
where, I, J, and K denote the number of the fragments $\mathrm{CH}_{3} \mathrm{R}_{1}, \mathrm{CH}_{2} \mathrm{R}_{2}$, and $\mathrm{CHR}_{1} \mathrm{R}_{2} \mathrm{R}_{3}$, respectively, $k_{\mathrm{prim}}^{0}, k_{\mathrm{sec}}^{0}$, and k_{tert}^{0} are the group rate constants that represent H -atom abstraction from the primary, secondary, and tertiary C-H bond as expressed in equations (4.35)-(4.37).
$k_{\text {prim }}^{0}=A_{\text {prim }}^{0} e^{-\frac{E_{\text {a, prim }}^{0}}{R T}}$
$k_{\mathrm{sec}}^{0}=A_{\mathrm{sec}}^{0} e^{-\frac{E_{a, s \mathrm{sec}}^{0}}{R T}}$
$k_{\text {tert }}^{0}=A_{\text {tert }}^{0} e^{-\frac{E_{a}^{0}, \text { tert }}{R T}}$
$k_{\mathrm{R}_{4}}$ is defined for the $\mathrm{HO} \cdot$ interaction with the functional group R_{4} (e.g., -OH and $\mathrm{COOH})$. The group contribution factor, $X_{\mathrm{R}_{i}}$, that represents the influence of functional group R_{i} is defined in equation (4.38).
$X_{\mathrm{R}_{i}}=e^{-\frac{E_{a, \text { abss }}^{R_{i}}}{R T}}$
and $E_{a, \text { abs }}^{\mathrm{R}_{i}}$ is the contribution of the functional groups and is defined as a group contribution parameter due to the functional group R_{i} for H -atom abstraction. In this study, we will calibrate new group rate constants ($k_{\mathrm{Br}}, k_{\mathrm{I}}, k_{\mathrm{CH} 3 \mathrm{COO}}$) and group contribution factors ($X_{\text {-Coo-, }} X_{-\mathrm{F}}, X_{-\mathrm{I}}, X_{-\mathrm{CF} 2-}$) that were not determined due to the lack of literature-
reported experimental rate constants. The objective function (OF) in equation (4.39) was minimized using the genetic algorithms (Goldberg, 1989; Charbonneau and Knapp, 1995).
$\mathrm{OF}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left[\left(k_{\mathrm{exp}, i}-k_{\mathrm{cal}, i}\right) / k_{\mathrm{exp}, i}\right]^{2}}$
Here $k_{\text {exp }, i}$ and $k_{\text {call, } i}$ are the experimental and calculated reaction rate constant of compound i, respectively, and N is the number of the rate constants.

4.3.3 Theoretical Basis

The $A b$ initio molecular orbital and density functional theory (DFT) based on quantum mechcanical calculations were performed using Gaussian09 (Frisch et al., 2009). The Berny geometry optimization algorithm (Schlegel, 1982) using GEDIIS (Li and Frisch, 2006) in redundant internal coordinate optimized the geometry of reactants, complex compounds and products. Transition states were found as first-order saddle points on the potential energy surface (PES). The quadratic synchronous transit method (QST) (Peng and Schlegel, 1993; Peng et al., 1996) was used to locate many of the transition states. All transition states were verified by a single negative frequency. It is known that the harmonic oscillator approximation incorrectly treats low-frequency torsional modes due to the internal rotation (Pitzer and Gwinn, 1942). However, it has recently been shown that the internal rotation correction has a very minor effect on the activation energy, even for molecules with many dihedrals (Pfaendtner and Broadbelt, 2007; Cauter et al., 2006). Additionally, low-frequency vibrational modes contribute little to the vibrational contribution to the internal energy. Therefore, the contribution of anhamonicity from hindered rotors can be neglected for studies in which the free energy
of activation is the only property desired (Pfaendtner and Broadbelt, 2008). Basis set superposition error (BSSE) was not considered because of the following reasons: 1) the BSSE may not be too large as compared to the transition state calculations, 2) methods for the BSSE correction are still controversial, and 3) the BSSE corrections by the counterpoise require the additional expensive calculations. The effect of tunneling was included using the Wigner's equation (Wigner, 1932).

For the aqueous phase, universal solvation model, SMD (Marenich et al., 2009), was used for calculating the aqueous phase free energy of activation. SMD includes two components: 1) the bulk electrostatic contribution that results from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics associated with the integral equation-formalism polarizable continuum model (IEF-PCM) and 2) the contribution that arises from short-range interactions between the solute and solvent molecules in the first solvation shell. The atomic radii used the SMD-Coulomb for the polarizable continuum model calculations, which is called the intrinsic Coulomb radii. The van der Waals surface was used for the cavity formation using the GePol algorithms (Pascual-Ahuir and Silla, 1990). The default settings were used for the GePol algorithms.

Three High Performance and Cluster Computing Resources were used: (1) IBM BladeCenter H (16 blades $\times 2$ sockets \times Core 2 Quad) with Red Hat Enterprise Linux 5 of Operation System; (2) Dell PowerEdge 1850 (2×3.2 GHz Pentium4 Xenon EMT64) with Red Hat Enterprise Linux 5 of Operation System and (3) 6 Core-AMD Opteron 8431 processors Atlus $2704(24 \times 2.34 \mathrm{GHz})$ with Red Hat Enterprise Linux 5. First two systems are maintained by College of Computing at Georgia Institute of Technology and
third system is by Office of Information Technology at Georgia Tech. In addition to these computing resources, we used a user-based workstation: Intel Core i7-960 3.2GHz Quad-Core with Red Hat Enterprise Linux 5 of OS.

4.3.4 Linear Free Energy Relationships

LFERs bridge kinetics and thermochemical properties. The kinetic information is the experimentally obtained or literature-reported $\mathrm{HO} \cdot$ reaction rate constants, while the thermochemical properties are quantum mechanically calculated free energies of activation. According to LFERs, \log of the rate constant and \log of the equilibrium constant should be linearly related (Brezonik, 2002). Transition state theory (TST) (Eyring et al., 1935) states that log of rate constant and free energy of activation are linearly related. For the same reaction mechanisms, free energies of activation and rate constants for an arbitrary and a reference reaction are related by equation (4.40):
$\log _{10} k_{\mathrm{I}}-\log _{10} k_{\mathrm{R}}=-\rho\left(\Delta G_{\mathrm{rxn}, \mathrm{I}}^{\text {act }}-\Delta G_{\mathrm{rxn}, \mathrm{R}}^{\text {act }}\right)+\sigma$
where k_{I} and k_{R} are the reaction rate constants, $\mathrm{M}^{-1} \mathrm{~s}^{-1}$, for an arbitrary reaction, I , and a reference reaction, R , respectively; ρ denotes coefficients for the difference in the free energy of activation; σ is a constant; and $\Delta G_{\mathrm{rxn}, \mathrm{I}}^{\mathrm{act}}$ and $\Delta G_{\mathrm{rxx}, \mathrm{R}}^{\text {act }}$ are the free energies of activation, $\mathrm{kcal} / \mathrm{mol}$, (Pu et al., 2006) for reactions I and R , respectively.

The quantum mechanically calculated free energy of activation in the aqueous phase, $\Delta G_{\mathrm{rxn,aq}}^{\neq}$, which is defined as a quasithermodynamic molar free energy of activation (Pu et al., 2006) at a given temperature T, is given by

$$
\begin{equation*}
\Delta G_{\mathrm{rxn}, \mathrm{aq}}^{\neq}=G_{\mathrm{aq}}^{\neq}-G_{\mathrm{reactants,aq}} \tag{4.41}
\end{equation*}
$$

where $G^{\neq}{ }_{\text {aq }}$ is a quasithermodynamic quantity, $\mathrm{kcal} / \mathrm{mol}$, that indicates the free energy of
the transition state, and $G_{\text {reactants,aq }}$ is the molar free energy of reactants, $\mathrm{kcal} / \mathrm{mol} . \Delta G_{\mathrm{rxn}}^{\text {act }}$ can be related to $\Delta G^{\neq}{ }_{\mathrm{rxn}, \mathrm{aq}}$ using the extrathermodynamic contribution to the free energy of activation (Pu et al., 2006), $\Delta G_{\text {extra }}, \mathrm{kcal} / \mathrm{mol}$, as shown in equation (4.42):
$\Delta G_{\mathrm{rxn}}^{\text {act }}=\Delta G_{\mathrm{rxn,aq}}^{\neq}+\Delta G_{\text {extra }}$
where
$\Delta G_{\text {extra }}=-R T \ln \gamma(T)$
$\gamma(T)$ is a transmission coefficient that represents the effect of tunneling at temperature T. When a hydrogen atom is involved in a reaction, nuclear quantum effects, in particular quantized vibrations and tunneling, become important. Tunneling takes place when some systems pass through the transition state with less than the quantized energy. It should be noted that because the transition state is a metastable, it does not have quantized energy levels. To a good approximation, however, all bound modes of a potential energy surface can be assumed to have a quantized energy requirement (Wigner, 1932), and this is validated by accurate quantum dynamics (Chartfield et al., 1992). The free energy change associated with moving from a gaseous phase of 1 atm to an aqueous phase concentration of 1 M (i.e., $1.89 \mathrm{kcl} / \mathrm{mol}$ (Liptak and Shields, 2001)) was included. The solvent cage effects were included according to the corrections that were proposed by Okuno (1997), taking into account the free volume (FV) theory (Benson, 1982). These corrections are in good agreement with those independently obtained by Ardura et al (2005) and have been successfully used by other authors. The $\Delta G^{\neq}{ }_{\text {rxn,aq }}$ decreases by 2.96 $\mathrm{kcal} / \mathrm{mol}$ for a bimolecular reaction at 298 K , with respect to the gaseous phase free energy of activation. This lowering is expected because the cage effects of the solvent reduce the entropy loss associated with any addition reaction or transition state formation
in reactions with molecularity equal to or greater than 2 . Therefore, if the translational degrees of freedom in solution are treated as they are in the gaseous phase, the cost associated with their loss when two or more molecules from a complex system in solution is overestimated in case of the implicit continuum solvation model, and consequently, these processes are kinetically overpenalized in solution, leading to rate constants that are artificially underestimated. The Gaussian-4 theory (G4) (Curtiss et al., 2007) using the SMD solvation model (Marenich et al., 2009) was used for calculating $\Delta G^{\neq}{ }_{\mathrm{rxn}, \mathrm{aq}}$ and $\Delta G_{\text {extra. }}$. The G4 theory includes the geometry optimization at the B3LYP/6-31G(2df,p), 0.9854 of a scaled factor for the zero-point energy (ZPE) frequency calculations, and several combinations of high level complementary single-point energy calculations.

4.4 Results and Discussion

4.4.1 Experimental Section

4.4.1.1 Hydroxyl Radical Reaction Rate Constants

The rate constants, Arrhenius parameters, and calculated thermochemical properties are summarized in Table 4.1. Typical kinetic data for chloroacetate that were obtained at 475 nm of wavelength and room temperature $\left(22^{\circ} \mathrm{C}\right)$ are shown in Figure 4.3. An increased in the maximum $(\mathrm{SCN})_{2}{ }^{-}$absorption intensity was observed when chloroacetate was diluted by the SCN^{-}solution. The transformed plot shown in Figure 4.3 gives a weighted linear fit corresponding to a reaction rate constant of $k=(1.61 \pm$ $0.07) \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Figure 4.4 compares the kinetic data of chloroacetate, dichloroacetate, and trichloroacetate. The observed errors are within $\pm 10 \%$, which arises from the measurement precision (e.g., electron beam stability from the LINAC) and the chemical solution (e.g., purity, dilution).
Table 4．1：Experimentally obtained temperature－dependent $\mathrm{HO} \bullet$ rate constants and
thermochemical properties，and theoretically calculated free energies of activation

	（İs） $\begin{gathered}\text { czz } \\ \end{gathered}$	（861） $8 z^{\prime \prime}$	（z＇11－） 8＇9t $^{\text {¢ }}$	${ }_{01} 0 \times \times 1.9$			${ }_{8} 01 \times\left(0 S^{\circ} \mathrm{O}+L L^{\prime}\right.$ ）	でぇ	－оог（но）ноєно
					$\left(960^{\circ}+S^{\prime}\right.$ ¢ $)$ ¢ \ddagger ¢ 6		${ }_{8} 0 \mathrm{I} \times($（ $\mp\llcorner)$	$0 \cdot s z$	－оозозєно
ru							${ }_{6} 0 \mathrm{~L} \times\left(6^{\circ} \mathrm{O} \mathrm{F}^{\circ} \mathrm{Z}\right)$	0 0＇sz	－ооэоно
（09\％） T ＇st		（960\％s¢Tて）\ddagger ¢ 6		${ }_{01} 01 \times\left(\right.$（ $\left.^{\circ} 00^{\circ} 0^{\prime} s\right)$			${ }_{8} 0 \mathrm{~L} \times\left(\mathrm{S}_{0} \mathrm{FO}_{0} \mathrm{~S}\right.$ ）	0 0＇sz	－оозz（zн） ¢о－$^{-}$
（st＇9）\langle＇s		（960FSTTて）\dagger ¢ 6	（siででくL－） 6 ¢てL－	${ }_{6} 01 \times\left(\right.$ do $\left.^{0} \tau^{\prime} \varepsilon\right)$			${ }_{6} 0 \mathrm{O} \times(\mathrm{T} 9$ ）	0．sz	－ооэгноэоон
（เI＇ร） 0 ¢ $¢$		（zL＇0FOTE）¢FE！						$0 \cdot s z$	－ооггноєно
	（ L^{\prime} ） 8τ	（0г¢ ¢）\＆	（L＇ZI）¢s－	${ }_{01} 01 \times 8.2$	（8¢¢）¢ı	ャ861＇כu！M put uч\％	${ }_{201} 0 \times 0.2$	$0 . s z$	－Ооэ¢но
（LST） 801	（£＇） t ¢ s		（ss\％－） 0 －	${ }^{10} 0 \times \chi^{\circ} \mathrm{t}$	（E0\％）$¢ 8$	จ66I＇suosuis pue ұo！it＇ t661＇๖u！M pur uبчว 	－${ }_{6} 01 \times 8.8$	0＇sz	－ооОн
	（ ξ^{\prime} ） 0 ） 85	（8t＇0）$s^{\prime \prime}$	（ז¢¢）sc－	${ }_{01} 01 \times \tau$ \％	（960）\dagger		${ }_{6} 01 \times 8 \pm$		
	（t＇t） 9 ¢ 8	（6ct）$s^{\circ} \mathrm{L}$	（ $+88^{-8}$－$\left\langle\varepsilon^{-}\right.$	${ }_{\mathrm{H}} \mathrm{O}^{0 \times 1 \times 0} \mathrm{O}^{\circ} \mathrm{Z}$	（6\％$)^{\text {or }}$		${ }_{6} 01 \times L^{-1}$		
				${ }_{01} 010 \times\left(L^{\circ} \square^{\prime} \sigma^{\prime} L^{\prime}\right)$			${ }_{6} 0 \mathrm{~L} \times\left(\right.$ ¢ $^{\circ} \mathrm{O} 巾^{\prime}$ T）		
－				${ }_{40} 01 \times\left(988^{\prime}+7 S^{\prime} 9\right)$		גpms sṭ		0.05	
								0＇0t	
								${ }^{0} 08$	
								sm	
						Apms stı		0．ot	．ооэО ${ }^{2}$ ²
								0．08	
（88） $8^{\circ} 9 \mathrm{\varepsilon}$				${ }_{91} 01 \times\left(566^{\prime} 788^{8} 8\right)$				$0 . \varepsilon \varepsilon$	
						＾pms s ṣp		0．os	．0000 ${ }^{8 / \mathrm{g}}$
							${ }_{8} 0 \tau \times\left(00^{\prime} 0 \neq 0 \angle, z\right)$	0．0t	
								9.08	
（Ľて）τ ¢				${ }_{z 1} 0 \times \times\left(t \mathrm{I}^{\circ} \mathrm{O} \times 9^{\circ} \mathrm{T}\right)$				0 0 ε	
						גpms s！̣		0 ＇is	．0030 ${ }^{\text {Tg }}$
								0．0t	
							${ }_{8} 01 \times\left(00^{-0799 \%)}\right.$	$9{ }^{\circ} \mathrm{E}$	
（t＇s） 9 ＇zz							${ }_{8} 01 \times\left(9005588^{\circ} \mathrm{T}\right)$	O＇sz	
						גpms s．t\％	${ }_{8} 01 \times\left(20^{\circ} 0^{\circ}+6^{\circ} \mathrm{T}\right)$	0．0s	ט๐
								0．0t	
							${ }_{8} 01 \times\left(80^{\circ} 0 \times 60^{\circ} \mathrm{T}\right)$	oos	
（z＇¢z） t L6								sm	
ru				${ }^{\mathrm{n}^{00} \times\left(66^{\circ} 0786^{\circ} \mathrm{t}\right)}$		＾pms s！¢	${ }_{8} 01 \times\left(8000 \mathrm{zr} 8^{\text {\％}}\right.$	oos	．ооэОН7）
								0．0t	
							${ }_{8} 00 \times\left(80^{\circ} \mathrm{O} \mathrm{F} 6^{\circ} \mathrm{T}\right)$	00\％	
							${ }_{8} 01 \times\left(800 \mp \varepsilon^{\circ} \mathrm{C}\right.$ ）	su	
						Apmus s!̣p	${ }_{8} 01 \times(8000999 \%)$	0＇0s	．ооз％но
								0．0t	
							${ }_{8} 01 \times\left(80^{\circ} 0 \mp \angle 0^{\circ} \mathrm{z}\right)$	0．08	
							${ }_{8} 0 \mathrm{~L} \times\left(20^{\circ} \mathrm{O}\right.$ ¢ $\left.9^{\circ} \mathrm{T}\right)$	0＇ε	
						ээээдมม		$\begin{gathered} \jmath_{0} \\ \text { ‘düュ } \end{gathered}$	
breme	${ }_{\text {mxx }}^{\text {mex }}$ ¢ ${ }^{\text {a }}$	${ }_{{ }^{2 x u}{ }_{10 x} H V}$	${ }^{4 \times x}{ }_{\text {pr }} \delta \nabla$	$\text { ' } V$					

Figure 4.3: Kinetics of $(\mathrm{SCN})_{2}{ }^{-{ }^{-}}$formation at 472 nm for $\mathrm{N}_{2} \mathrm{O}$ saturated $3.00 \times 10^{-4} \mathrm{M}$ KSCN solution containing $0(\boldsymbol{\square}), 1.56(\bigcirc), 2.41(\nabla), 3.48(\Delta)$, and $5.01(\mathrm{O}) \mathrm{mM}$ $\mathrm{ClCH}_{2} \mathrm{COO}^{-}$

Figure 4.4: Competition kinetics plots for hydroxyl radical reaction with chloroacetate, dichloroacetate and trichloroacetate, respectively, using SCN^{-}as a standard. The error bar represents 95% of confidential values

4.4.1.2 Arrhenius Parameters

Figure 4.5 plots logarithms of k versus inverse of temperature for each compound. For all compounds that were investigated in this study, linear increases of the logarithms of reaction rate constants with the increase of inverse of the temperature were observed. The Arrhenius parameters, A and E_{a}, are obtained from the values on the y-axis and the slope of these linear relationships, respectively, and summarized in Table 4.1.

The experimentally obtained Arrhenius parameters are consistent with the general electron withdrawing ability of halogenated functional groups. For example, the experimentally obtained E_{a} for mono-, di- and tri-chloroacetate were $14.1 \pm 0.2,20.1 \pm 0.4$ and $33.3 \pm 0.1 \mathrm{~kJ} / \mathrm{mol}$, respectively. As the increase of chlorine atoms, the E_{a} increases due to the stronger influence of electron-withdrawing ability that is derived from the chlorine functional group, and hence the rate constant decreases. When comparing E_{a} of di-fluoro, di-chloro and di-bromo acetate, the experimentally obtained E_{a} were 53.3 ± 2.61, 20.1 ± 0.4 and $23.6 \pm 0.03 \mathrm{~kJ} / \mathrm{mol}$, respectively. Although the obtained temperaturedependent reaction rate constants were consistent with the trend of electron-withdrawing ability (i.e., $k_{\mathrm{F} 2 \mathrm{HCCOO}}<k_{\mathrm{Cl} 2 \mathrm{HCCOO}}<k_{\mathrm{Br} 2 \mathrm{HCCOO}}$), the trend of E_{a} is not consistent with the Taft constants (i.e., $\sigma^{*}=3.19,2.94$ and 2.80 for fluorine, chlorine and bromine, respectively (Karelson, 2000)) that represent the electron-withdrawing ability of functional group. This inconsistency probably results from the underestimation of the E_{a} for di-chloroacetate. If the impact of single chlorine atom to reduce the overall E_{a} is proportional to number of chlorine atoms, the E_{a} for di-chloroacetate would be approximately $24 \mathrm{kcal} / \mathrm{mol}$. Accordingly, this would lead to the consistent relation with the E_{a} for di-fluoro and di-bromo acetates.

Figure 4.5: Plot of logarithm of k versus inverse of temperature

A comparison of obtained A values gives an insight of reaction mechanisms.
Under the same reaction mechanism, it is typical that the A is within the close range of magnitude. We obtained the A for mono-chloro, di-chloro, di-bromo and tri-bromo acetate in the range from 10^{10} to $10^{12} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, while the A for tri-chloro and iodo-acetate ions is several orders of magnitude larger than this. This is probably because the former is H -atom abstraction reaction and the latter is electron transfer reaction mechanisms. Evans et al (2003) examined the A in the range of magnitude from 10^{10} to 10^{12} for H atom abstraction from a C-H bond of the linear aliphatic oxygenated compounds. They excluded compounds that had $10^{14}-10^{15}$ of A because of electron-transfer reactions. The detailed discussions on the reaction mechanisms will be given in the later section.

4.4.1.3 Thermochemical Properties of Reactions

Table 4.1 includes the $\Delta G_{\mathrm{rxn}}^{\text {act }}, \Delta H_{\mathrm{rxn}}^{\text {act }}$ and $\Delta S_{\mathrm{rxn}}^{\text {act }}$ for those reactions that are calculated based on the experimentally obtained E_{a} and A. Thermochemical properties that are obtained from the experiments give interesting insights. A linear relation is observed between the logarithms of the obtained reaction rate constants and the free energies of activation, $\Delta G_{\mathrm{rxn}}^{\text {act }}$, for ionized compounds (Figure 4.6) as we previously observed for the neutral compounds (Minakata and Crittenden, 2010). A least-square fit provides the LFER: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.741\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}\right)+0.0001\left(\mathrm{~N}=13, r^{2}=0.978\right)$, whereas the LFER for neutral compounds was $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.542\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+$ $1.074\left(\mathrm{~N}=37, r^{2}=0.817\right)$ (Minakata and Crittenden, 2010). The reference reaction for the LFER of ionized compounds was the reaction of $\mathrm{HO} \bullet$ with acetate.

Figure 4.6: LFERs obtained from experiments, calculations at G4 and the SMD solvation model, and calculations that include two explicit water molecules. 1 : formate; 2 : propionate; 3: malonate; 4: succinate; 5: chloroacetate; 6: difluoroacetate; 7: dibromoacetate; 8: pyruvate; 9: dichloroacetate; 10: acetate; 11: glyoxylate; 12: trichloroacetate; 13: tribromoacetate; 14: iodoacetate; 15: lactate (note that the compound \# is consistent for other Figures though this chapter).

The enthalpy of activation, $\Delta H_{\mathrm{rxn}}^{\text {act }}$, for halogenated acetates are in the range from $2.8 \mathrm{kcal} / \mathrm{mol}$ to $12.2 \mathrm{kcal} / \mathrm{mol}$, which is relatively larger than those that are obtained from the literature-reported experimental values for the various acetates. This is probably because the halogenated functional groups that represent strong electron-withdrawing effect raises the barrier height. It is commonly assumed that for the same reaction group, the change of entropy is little so that the enthalpies are often used as thermodynamic properties that relate to Arrhenius activation energy (Pfaendtner and Broadbelt, 2008) using the Evans-Polanyí relation (Evans and Polanyí, 1938). However, when the entropy
contribution is significant (see isokinetic relation in Figure 2) due to the solvent effect and for the reactions that are involved in ionized compounds causing tighter binding of nearby solvent molecules, and polar molecules that results from the electrostatic contribution and loss of entropy, free energy change should be considered. This is verified for H -atom abstraction reactions of iron complexes (Mader et al., 2007). Detailed examination of the source of entropic contribution will be given in the theoretical section.

Figure 4.7: Isokinetic relation between the experimentally obtained enthalpy and entropy of activation.

4.4.2 Update of Group Contribution Method

The experimentally obtained reaction rate constants in this study are used to recalibrate the group rate constants and group contribution factors that were not determined in the previous study (Minakata et al., 2009). New group rate constants and
group contribution factors are calibrated and summarized in Table 4.2. The molecules that were used for the calibration are summarized along with the experimental and calculated rate constants in Table 4.3. All calibrated rate constants except propionate are within the $0.5 \leq k_{\text {cal }} / k_{\text {exp }} \leq 2.0$. When compared to the group rate constant for the carboxylic functional group (i.e., k_{COOH}), the k_{COO} is two magnitude of order larger. The magnitude of $k_{\text {coo- }}$ can be verified with the rate constant of oxalate ion di-anion $\left(k=1.6 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$ (Ervens et al., 2003)) and mono-anion $\left(k=1.9 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$ (Ervens et al., 2003)). The calibrated group rate constants are consistent with the general electrondonating and withdrawing ability (i.e., Taft constant).

Once group rate constants and group contribution factors are calibrated, they are used to predict the rate constants that are obtained in this study. Table 4.3 includes the predicted rate constants for halogenated acetates and acetate ions. The SD is 0.318. A total of three compounds such as $\mathrm{CHOCOO}^{-}, \mathrm{CH}_{3} \mathrm{COCOO}^{-}$and $\mathrm{CHCl}_{2} \mathrm{COO}^{-}$are out of our error goal (i.e., $0.5 \leq k_{\text {cal }} / k_{\exp } \leq 2.0$).

Table 4.2: Calibrated group rate constants and group contribution factors

Group rate constant $\left(\times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	
k_{I}	360
$k_{\text {coo- }}$	3.97
k_{Br}	0.362
Group contribution factor, X	
-COO-(ion)	0.184
-F	0.119
-I	0.166
$-\mathrm{CF}_{2}-$	0.00003

Table 4.3: Molecules and rate constants that were used for the calibration

group		formula	compound	kexp	kcal	$((k \exp -k$ cal $) / \mathrm{kexp}) 2$	$\mathrm{kcal} / \mathrm{kexp}$
halogenated acetate	435	I2-CH2	diiodomethane	$6.30 \mathrm{E}+09$	$7.23 \mathrm{E}+09$	0.02170	-0.15
	436	I-CH2-COO-	iodoacetate	$4.11 \mathrm{E}+09$	$3.67 \mathrm{E}+09$	0.01142	0.11
	437	ICH2C1	chloroiodomethane	$4.00 \mathrm{E}+09$	$3.63 \mathrm{E}+09$	0.00838	0.09
	438	CH3COO-	acetate	$7.30 \mathrm{E}+07$	$1.05 \mathrm{E}+08$	0.18640	-0.43
	439	CH3CH2COO-	propionate	$\mathbf{7 . 2 0 E}+08$	$\mathbf{3 . 1 5 E}+08$	0.31651	0.56
	440	F-CH2-COO-	fluoroacetate	$2.89 \mathrm{E}+07$	$2.24 \mathrm{E}+07$	0.05104	0.23
	441	C13CCOO-	trichloroacetate	$5.50 \mathrm{E}+07$	$3.97 \mathrm{E}+07$	0.07768	0.28
	442	CF3-CHC1Br	Halothane	$1.30 \mathrm{E}+07$	$1.49 \mathrm{E}+07$	0.02070	-0.14
	443	CHF2-O-CF2-CHC1F	Enflurane	$9.50 \mathrm{E}+06$	$1.01 \mathrm{E}+07$	0.0442	-0.07
	444	CF3-CHC1-O-CHF2	Isoflurane	$2.40 \mathrm{E}+07$	$2.44 \mathrm{E}+07$	0.00031	-0.02
	445	H3C-O-CF2-CHC12	Methoxyflurane	$8.30 \mathrm{E}+07$	$1.35 \mathrm{E}+08$	0.38627	-0.62
	446	Br3CCOO-	tribromoacetate	$1.48 \mathrm{E}+08$	$1.48 \mathrm{E}+08$	0.00001	0.00

4.4.3 Theoretical

4.4.3.1 Ab initio Quantum Mechanical Approach

There is a tradeoff between computational accuracy and demand. To seek reasonable approach, we compared a limited number of methods and basis sets for $\mathrm{HO} \bullet$ reactions in both gaseous and aqueous phases. Table 4.4 summarizes quantum mechanically calculated gaseous and aqueous phase barrier height and free energy of activation for reaction of $\mathrm{HO} \bullet$ with acetate. The observed gaseous phase reactions are exergonic (i.e., $\Delta G_{\text {rxn,gas }}^{\neq}<0$). This is consistent with the results from the reaction energies of HO• with glycine anions (Štefanić et al., 2009). The agreement among G4, $\operatorname{CCSD}(\mathrm{T}) / 6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ and $\mathrm{QCIST}(\mathrm{T}) / 6-31++\mathrm{G}(\mathrm{d}, \mathrm{p})$ for the gaseous phase reactions is encouraging. The G4 theory significantly reduces the computational cost with the similar accuracy to the coupled cluster and configuration interaction methods in calculating the thermochemical properties.

Aqueous phase reactions are found to be exergonic (i.e., $\Delta G^{\neq}{ }_{\text {rxn,gas }}>0$). G4 and M05-2X/6-31+G(d,p) give similar values to the experimentally obtained literaturereported value (Chin and Wine, 1994). It was found that our previously established approach (i.e., G3 with COSMO-RS) (Klamt, 1996 and Klamt et al., 1998) significantly overestimates the aqueous phase free energy of activation. To confirm this, we calculated ground state free energy of solvation for ionized compounds and compared with the literature values (Marenich et al., 2009). The free energies of solvation of ionized compounds that are calculated by COSMO-RS are far from the experimental values (Figure 4.8). For the example, we obtained $-94.5 \mathrm{kcal} / \mathrm{mol},-74.0 \mathrm{kcal} / \mathrm{mol}, 65.8$ $\mathrm{kcal} / \mathrm{mol}$ and $-57.6 \mathrm{kcal} / \mathrm{mol}$ of free energy of solvation for $\mathrm{CH}_{3} \mathrm{COO}-, \mathrm{ClH}_{2} \mathrm{CCOO}-$, $\mathrm{Cl}_{2} \mathrm{HCCOO}-$ and $\mathrm{F}_{3} \mathrm{CCOO}-$, respectively, as compared to the experimental values -77.6 $\mathrm{kcal} / \mathrm{mol},-69.70 \mathrm{kcal} / \mathrm{mol},-62.30 \mathrm{kcal} / \mathrm{mol}$ and $-59.3 \mathrm{kcal} / \mathrm{mol}$ (Marenich et al., 2009). It is anticipated that the free energy of solvation for transition state may be overestimated by COSMO-RS.

Figure 4.8: Comparison of calculated and experimental free energy of solvation for ionized compounds

SMD includes nonelectrostatic interactions (e.g., short range interaction) in addition to long range solute-solvent interaction in bulk phase, whereas CPCM does not include nonelectrostatic term. In addition, SMD is based on the polarized continuous quantum mechanical charge density of the solute (Marenich et al., 2009) and seems to be reasonable to represent the large electrostatic interactions that arise from ionized compounds and water molecules. As a consequent, SMD was chosen to calculate the aqueous phase free energy of activation. It is noted that G4 optimizes the geometry of molecules at B3LYP/6-31G(2df,p) that does not include diffuse functions. Although the inclusion of diffuse function for the ionized compounds is recommended (Cramer, 2004), it is speculated that the use of diffuse functions often decreases accuracy due to outlying
charge in the SMD model (Liu et al., 2010). Therefore, we use the default method for G4 upon the geometry optimization.
Table 4.4: Calculated gaseous and aqueous phase barrier height and free energy of activation

Water		MP2/Aug-cc-pVDZ CPCM *scale $=0.9615$	MP2/6-311+G(3d,p) CPCM /MP2/aug-cc-pVDZ CPCM *scale $=0.9570$	$\begin{gathered} \text { MP2(fuill)/6-311++G(d,p) } \\ \text { CPCM } \\ \text { /MP2/aug-cc-pVDZ } \\ \text { CPCM } \end{gathered}$	$\begin{gathered} \text { G3 (gas) } \\ \text { cosmo-RS } \end{gathered}$	MP2/Aug-cc-pVDZ CPCM *scale $=0.9615$	MP2/Aug-cc-pVDZ SMD ${ }_{\text {scale }}=0.9615$	$\begin{gathered} \text { MP2/Aug-cc-pVTZ } \\ \text { SMD } \\ \text { //MP2/Aug-cc-pVDZ } \\ \text { SMD } \\ \text { *scale }=0.9598^{2} \end{gathered}$	$\begin{gathered} \text { G09 M05-2X/ } \\ \text { 6-31+(d,p) } \\ \text { SMD } \end{gathered}$	$\begin{gathered} \text { G4 } \\ \text { SMD } \end{gathered}$	$\begin{gathered} \text { G4 (gas) } \\ \stackrel{+}{4} \\ \text { COSMO-RS } \end{gathered}$	Exp. [Chin and Wine, 1994]
	$\Delta E^{*}{ }_{\text {rx, aq }}$	6.87	7.33	8.33		9.20	3.62	3.56		0.99		
	$\Delta G_{\text {rxn,aq }}{ }^{*}+\Delta G_{\text {extra }}$	12.3	13.6	14.6	21.2	14.4	9.7	9.6	6.6	7.4	26.3	6.7

4.4.3.2 Optimized Structure of Stationary, Pre-reactive Complex and Transition States

Tables 4.5-4.7 and Figures 4.9-4.11 summarize aqueous phase optimized stationary structures of $\mathrm{HO}, \mathrm{H}_{2} \mathrm{O}$ and a series of halogenated acetates as well as prereactive complexes and transition state structures. Several gaseous phase optimized structures are given as a comparison. When the gaseous phase optimized structures are compared to the aqueous phase ones, it is found that there are a few structural differences associated with the length of bonds, angle and dihedral. For the stationary equilibrium structures of halogenated acetates, pre-reactive complexes and transition state, the effects of halogen atoms to the optimized structure are substantial due to the larger size of their atoms. For example, the bond length of carbon-halogen atom, $l(\mathrm{C}-\mathrm{R})$ (where $\mathrm{R}=\mathrm{F}, \mathrm{Cl}$, $\mathrm{Br})$ of dehalogenated acetate are $1.365 \AA, 1.803 \AA$ and $1.971 \AA$, respectively. Despite the presence of the halogen atoms, the bond length of carbon-hydrogen, $l(\mathrm{C}-\mathrm{H})$, that is subject to be attacked by $\mathrm{HO} \cdot$ does not differ. When it comes to the pre-reactive complex and transition state structures, the hydrogen bonds between the H -atom of the $\mathrm{HO} \cdot$ and the oxygen of carboxylic functional group are produced. This hydrogen bond is approximately 1.6-1.7 \AA and 1.8-1.9 \AA for the pre-reactive complex and transition state, respectively, for the halogenated acetates. Because of this hydrogen bond, the angle $\angle \mathrm{HOH}$ at the transition state is smaller (<90 degree) for the halogenated acetates than typical angle (≈ 90 degree (Minakata et al., 2010)). The angle $\angle \mathrm{CHO}$ of the abstracted H -atom becomes larger as the halogenated atoms become larger. One of the distinctive differences in the transition state structures when the halogenated atoms are employed is the length of the oxygen of the $\mathrm{HO} \cdot$ and the abstracted hydrogen (i.e., $l(\mathrm{O}-\mathrm{H})$). For
example, the $l(\mathrm{O}-\mathrm{H})$ is $1.358 \AA$ for acetate while it is $1.450 \AA$ and $1.464 \AA$, respectively, for difluoroacetate and dibromoacetate.

Table 4.5: Geometry of $\mathrm{HO} \bullet$ and $\mathrm{H}_{2} \mathrm{O}$

		$\mathrm{O}-\mathrm{H}, \AA$	$<\mathrm{HOH}$, degree
$\mathrm{HO} \bullet$	vacuo	0.976	
	water	0.977	
$\mathrm{H}_{2} \mathrm{O}$	vacuo	0.962	103.726
	water	0.964	102.918

Figure 4.9: Schematic picture of acetate with R functional group

Table 4.6: Geometry of acetate and halogenated acetate

	$\mathrm{C}-\mathrm{C}, \AA$	$\mathrm{C}=\mathrm{O}, \AA$	$\mathrm{C}-\mathrm{H}, \AA$	$\mathrm{C}-\mathrm{R}, \AA$	$<\mathrm{HCC}$, degree	$<\mathrm{RCC}$, degree	$<\mathrm{OCC}$, degree	$<\mathrm{OCO}$, degree
$\mathrm{CH}_{3} \mathrm{COO}-$	1.538	1.262	$1.093 / 1.097$		$111.454 / 107.544$		117.033	125.913
$\mathrm{CH}_{2} \mathrm{ClCOO}-$	1.548	1.256	1.089	1.830	112.143	109.405	116.160	127.681
$\mathrm{CHCl}_{2} \mathrm{COO}-$	1.566	$1.244 / 1.251$	1.085	$1.803 / 1.815$		112.020	117.653	129.751
$\mathrm{Cl}_{3} \mathrm{CCOO}-$	1.608	1.240		$1.796 / 1.813$		$112.492 / 106.547$	114.278	131.387
$\mathrm{CHF}_{2} \mathrm{COO}-$	1.552	1.252	1.097	1.365	111.564	111.039	115.446	129.041
$\mathrm{CHBr}_{2} \mathrm{COO}-$	1.563	$1.242 / 1.254$	1.085	$1.971 / 1.969$	112.085	$110.879 / 111.540$	112.305	129.547
$\mathrm{Br}_{3} \mathrm{CCOO}-$	1.609	1.240		$1.966 / 1.985$		$112.729 / 106.263$	114.344	131.274

Figure 4.10: Schematic picture of pre-reactive complex between $\mathrm{HO} \bullet$ with acetate, R is functional group

Figure 4.11: Schematic picture of transition state between $\mathrm{HO} \bullet$ with acetate, R is functional group

Table 4.7: Geometry of transition states for the reaction of $\mathrm{HO} \bullet$ with halogenated acetate

	H-bond		Abstracted H-atom				$\mathrm{H}-\mathrm{CR}_{2} \mathrm{COO}-$			
	O-H, \AA	$\begin{aligned} & \text { Dihedral } \\ & \text { H-O-H-O } \end{aligned}$	C-H(R), \AA A	$\mathrm{O}-\mathrm{H}(\mathrm{R}), \mathrm{A}$	$\begin{gathered} <\mathrm{CH}(\mathrm{R}) \mathrm{O}, \\ \text { degree } \end{gathered}$	$\begin{gathered} <\mathrm{H}(\mathrm{R}) \mathrm{OH}, \\ \text { degree } \end{gathered}$	C-C, \AA	$\mathrm{C}=\mathrm{O}, \AA$	$<\mathrm{HCC}$, degree	$\begin{aligned} & <\text { OCO, } \\ & \text { degree } \end{aligned}$
HO...H... $\mathrm{CH}_{2} \mathrm{COO}-$	1.915	-0.004	1.221	1.346	158.276	85.376	1.551	1.251/1.250	107.703	129.448
	1.896	-1.763	1.209	1.358	156.416	87.246	1.528	1.255/1.261	108.139	126.483
HO...Н...CHClCOO-			1.150	1.547	151.046	90.718	1.609	1.230/1.242	108.881	134.663
	1.929	4.014	1.188	1.395	151.648	88.277	1.549	1.261/1.243	105.759	128.447
$\mathrm{HO} \ldots \mathrm{H} . . . \mathrm{CCl}_{2} \mathrm{COO}-$ water										
$\mathrm{HO} \ldots \mathrm{Cl} . . . \mathrm{CCl}_{2} \mathrm{COO}-$ water			2.233	1.922	173.330	99.168	1.595	1.238	96.884	132.364
HO... $\mathrm{H} . . . \mathrm{CF}_{2} \mathrm{COO}$ - water	1.923	-1.850	1.174	1.450	154.948	87.701	1.570	1.252/1.243	108.453	130.194
$\mathrm{HO} \ldots \mathrm{H} . . . \mathrm{CBr}_{2} \mathrm{COO}-$ water	1.874	2.218	1.155	1.464	155.259	87.622	1.574	1.254/1.238	109.639	129.701
$\underline{\mathrm{HO} \ldots \mathrm{Br} \ldots \mathrm{CBr}_{2} \mathrm{COO}-\text { water }}$			2.315	2.030	162.343	100.687	1.588	1.240	101.334	131.465

4.4.3.3 Linear Free Energy Relationships

As was previously observed for neutral compounds (Minakata and Crittenden, 2010), we obtained a linear correlation: $\log k_{\mathrm{I}}-\log k_{\mathrm{R}}=-0.272\left(\Delta G^{\text {act }}{ }_{\mathrm{I}}-\Delta G^{\text {act }}{ }_{\mathrm{R}}\right)+0.062$ $\left(\mathrm{N}=8, r^{2}=0.817\right)$. The reaction of $\mathrm{HO} \bullet$ with acetate was used for the reference reaction. The LFER includes the literature-reported $\mathrm{HO} \bullet$ reaction rate constants including formate, acetate, propionate, malonate, succinate and lactate as well as our experimentally obtained rate constants for a series of halogenated acetates (i.e., chloroacetate, difluoroacetate, dibromoacetate). All free energies of activation for these acetates are quantum mechanically calculated in this study and summarized in Table 4.1. Transition state for dichloroacetate could not be located. It is anticipated that quantum mechanically calculated free energy of activation for pyruvate and the reported rate constants might have been overestimated. We are able to identify three transition states for the reaction of $\mathrm{HO} \bullet$ with pyruvate and all free energies of activation are similar (i.e., $9.7 \mathrm{kcal} / \mathrm{mol}, 12.0$ $\mathrm{kcal} / \mathrm{mol}$, and $12.1 \mathrm{kcal} / \mathrm{mol}$). These calculated values seem to be reasonable if compared to the structurally-similar compounds. In contrast, Ervens et al (2003) reported five temperature-dependent $\mathrm{HO} \bullet$ reaction rate from 288 K to 328 K using a laser photolysis technique. It is not clear whether the different techniques produce different rate constants. Yet, we did not include the pyruvic acetate for the correlation.

Our quantum mechanically obtained free energies of activation for various carboxylic acetates turn to be acceptable. Eight out of 10 compounds indicate that the calculated aqueous phase free energies of activation are within $\pm 2.0 \mathrm{kcal} / \mathrm{mol}$ as compared to those that are obtained from the experiments, while the calculated aqueous phase free energy of activation for formate and propionate show $2.23 \mathrm{kcal} / \mathrm{mol}$ and 2.19 $\mathrm{kcal} / \mathrm{mol}$ of difference from the experimental values. Considering the general error
arising from the G4 gaseous phase calculations (i.e., $0.83 \mathrm{kcal} / \mathrm{mol}$, Curtiss et al., 2007) and uncertainty for calculating free energy of transition state, these results should be within the reasonable range. Sample deviation (SD) that is obtained from equation (4.44) is 0.27 for 10 ionic compounds ($N=10$).
$\mathrm{SD}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(\frac{\Delta G_{\mathrm{rxn}}^{\mathrm{act}, i}-\left(\Delta G_{\mathrm{rxnnaq}}^{\neq, i}+\Delta G_{\mathrm{extra}}^{i}\right)}{\Delta G_{\mathrm{rxn}}^{\mathrm{act}, i}}\right)^{2}}$
We have shown that G4 with the SMD model calculates the acceptable aqueous phase free energy of solvation. From next sections, we will examine significant contribution of the free energy of solvation, in particular for the ionized compounds: 1) entropic contribution and 2) electrostatic contribution.

4.4.3.4 Entropy Contribution

The entropic contribution to the free energy of activation is significant for ionic compounds because solvent is re-organized after significant change in the interactions (i.e., hydrogen-bonding) between ionized compounds and implicitly expressed water molecules. Nonelectrostatic interactions represent cavity formation, dispersion interactions, and changes in solvent structure (Marenich et al., 2009) between solute and water molecules. The nonelectrostatic energies of activation $\left(\Delta E_{\text {non-ES }}^{\text {act }}\right)$ that are calculated at G4 with the SMD model for the reactions of $\mathrm{HO} \bullet$ with halogenated acetates range from -0.84 to $-0.14 \mathrm{kcal} / \mathrm{mol}$ (Table 4.8). Although these interactions are smaller contribution to free energies of activation, this is due to significant cancellation between enthalpic and entropic contributions (Ashcraft et al., 2007). As Ashcraft et al. (2007) addressed, for example, neglecting nonelectrostatic energies would introduce 4.45 $\mathrm{kcal} / \mathrm{mol}$ of entropic term (i.e., entropy of cavitation) of water. Accordingly, the entropic
contribution should be considered independently by assuming that the dispersion interaction is enthalpic, and the cavity formation and the changes in solvent structure are completely entropic. It is noted that the nonelectrostatic enrgy of activation as well as the change in cavity volume weakly correlated with the experimentally obtained entropy of activation (see Figure 4.12).

The entropic contribution that arises from the cavity formation examines the effect of confining the solute in the accessible free volume of the solution and can be estimated using a methodology outlined by Pierotti (Pierotti, 1963; Hofinger and Zerbetto, 2003) as shown in equation (4.45). This approach has been shown to work for calculating cavitation entropy by Ashcraft et al. (2007).

$$
\begin{aligned}
& \Delta G_{\text {cav }}=K_{0}+K_{1} r_{\text {cav }}+K_{2} r_{\text {cav }}{ }^{2}+K_{3} r_{\text {cav }}^{3} \\
& K_{0}=R T\left[-\ln (1-y)+\frac{9}{2}\left(\frac{y}{1-y}\right)^{2}\right]-\frac{4 \pi r_{\text {water }}^{3} P}{3} \\
& K_{1}=-\frac{R T}{2 r_{\text {water }}}\left[6\left(\frac{y}{1-y}\right)+18\left(\frac{y}{1-y}\right)^{2}\right]+4 \pi r_{\text {water }}^{2} P \\
& K_{2}=\frac{R T}{4 r_{\text {water }}^{2}}\left[12\left(\frac{y}{1-y}\right)+18\left(\frac{y}{1-y}\right)^{2}\right]+4 \pi r_{\text {water }} P \\
& K_{3}=\frac{4 \pi P}{3} \\
& y=\frac{4 \pi \rho r_{\text {water }}^{3}}{3}
\end{aligned}
$$

where $r_{\text {water }}$ is the hard-sphere radius of a water molecule and taken to be $1.35 \AA$ that is approximately half the distance to the first peak in the experimental oxygen-oxygen radial distribution function for water (Ashcraft et al., 2007; Narten and Levy, 1971), ρ is
the number density of the solvent, molecules $/ \AA^{3}, P$ is the pressure $(1 \mathrm{~atm}=0.01458$ $\left.\mathrm{cal} / \mathrm{mol} \cdot \AA^{3}\right), R$ is the gas constant, and T is the temperature. The cavity radius is estimated from the volume of cavity that is calculated at G4 with SMD. The entropy of cavitation can relate to the free energy through a temperature derivative as shown in equation (4.46):

$$
\begin{equation*}
\Delta S_{\mathrm{cav}}=-\left(\frac{\partial \Delta G_{\mathrm{cav}}}{\partial T}\right)_{P} \tag{4.46}
\end{equation*}
$$

Table 4.8: Calculated cavitation entropy of activation, change in cavity volume, nonelectrostatic energy of activation and experimentally obtained entropy of activation

a: Ervens et al., 2003

Table 4.8 summarizes the calculated cavitation entropy of activation, the change in cavity volume, and nonelectstatic energy of activation and experimentally obtained entropy of activation. The calculated cavitation entropy is consistent with the values that were obtained by Ashcraft et al. (2007). Aqueous phase entropy contains solvent ordering entropy (Leung et al., 2004) in addition to the cavity entropy. Ashcraft et al. (2007) estimated the typical solvent ordering entropy of ground sate molecules from -2 to
$+5 \mathrm{cal} / \mathrm{mol} \mathrm{K}$ that were obtained by fitting empirical parameters with a few available experimental entropy data. However, this approch is not feasible for transition state due to the lack of experimental values. Nevertheless, the cavitation entropy of activation turns out to be dominant in the entropy of activation.

Figure 4.12: Experimentally obtained free energies of entropies versus quantum mechanically calculated change in cavity, $\Delta V_{\text {cav }}$, \AA^{3} (top), and non-electrostatic energy of activation (bottom) at G4 with the SMD model for series of acetate

4.4.3.5 Charge Distribution and Reaction Mechanisms

The analysis of atomic charge distributions on each element enables one to understand the effects of different functional groups to the molecular reactivity in progression from reactants \rightarrow transition state \rightarrow products. In Figures 4.13 and 4.14, the charges obtained from a natural population analysis (NPA) (Foster and Weinhold, 1980) at MP2/aug-cc-pVTZ//B3LYP/6-31G(2df,p) with the SMD model for the reactions of $\mathrm{HO} \cdot$ with $\mathrm{CH}_{3} \mathrm{COO}^{-}$in the gaseous and aqueous phases and a series of halogenated acetates in the aqueous phase, respectively.

For the reactions of $\mathrm{HO} \bullet$ with $\mathrm{CH}_{3} \mathrm{COO}^{-}$, the analysis confirms that as the abstracted hydrogen of acetate becomes more positive at the transition state and the oxygen of $\mathrm{HO} \cdot$ becomes more negative at the transition state. The negative charge on the oxygen of hydroxyl radical indicates that this oxygen can be a hydrogen bond acceptor. This development of negative charge on the oxygen of the $\mathrm{HO} \bullet$ affords the opportunity for the solvent to stabilize the transition state through its polarity and/or ability to participate in hydrogen bonding. In contrast, the hydrogen on the hydroxyl radical (not involved in the reaction) bears substantial positive charge in the reactant, transition state, and product. Although this hydrogen can also participate in hydrogen bonding, this interaction does not affect the relative energies because the charge on this hydrogen remains almost constant in the progression from reactant to transition state to product. In the aqueous phase, the degree of the polarizability at the transition state is less substantial, which implies that smaller barrier height and faster reactions. The carboxylic functional group is known to manifest the inductive effects of electrons from the C-H bond due to electron-withdrawing properties of oxygen, although the resonance stabilization afforded by the lone pair of electrons offset this inductive effect. Because
oxygen is more electronegative than carbon and hydrogen, in the transition state for hydrogen abstraction, electron density is pulled toward the oxygen of the hydroxyl radical, giving it a partial negative charge and a partial positive charge on the alkyl portion of the transition state. The carboxylic functional group in the aqueous phase becomes less negative due to the impact of surrounding continuum water molecules, whereas little change in charge distribution of carboxylic functional group in the gaseous phase is observed.
vacuo:

SMD:

Figure 4.13: Charge distributions of reactants, transition states and products for the gaseous and aqueous phases $\mathrm{HO} \bullet$ reactions with acetate

Figure 4.14 compares the charge distributions of halogenated acetates in the aqueous phase. Halogenated atoms (i.e., F, Cl, and Br) significantly affect the charge distributions and hence the activation energies and reaction rates. When the electronnegative halogenated functional groups are accommodated besides carboxylic functional groups, the transition state is less polarized because the functional group competes for electron density; there is less transfer of negative charge to the oxygen of the hydroxyl
radical and hydrogen bonding interactions are expected to be weaker. Fluorine atom that has more negative charge produces the least positive charge on the abstracted hydrogen, and the largest barrier height and smallest rate constant is obtained. Bromine affects the charge distribution in the process from reactant to transition state to product in the same manner as is observed for acetate. The abstracted hydrogen becomes slightly positive and the oxygen of hydroxyl radical becomes more negative than the reactants that have chlorine and fluorine. Nevertheless, the significant large rate constants for dibromoacetate suggest the electron-transfer reaction between the bromine atom and hydroxyl radical to produce a $2 \sigma / 1 \sigma^{*}$ two-center-three-electron ($2 \mathrm{c}-3 \mathrm{e}$) adduct containing two bonding σ and one antibonding σ^{*} electrons (Asmus and Bonifačič, 1999)

Figure 4.14: Charge distributions of reactants, transition states and products for the aqueous phases $\mathrm{HO} \bullet$ reactions with halogenated acetate

To investigate the dominant reaction mechanisms, we examine spin populations from the natural population analysis (NPA) at MP2/aug-cc-pVTZ//B3LYP/6-31G(2df,p) with the SMD model. For the H -atom abstraction, the spin populations that are shown in the parentheses at the transition state are concentrated on the two atoms which undergo the H exchange, while the transition states of $\mathrm{Cl}_{3} \mathrm{CCOO}^{-}$and $\mathrm{Br}_{3} \mathrm{CCOO}^{-}$locate the spin populations mainly on one of the garments. The former indicates the three-center threeelectron bond and corresponds to H -atom abstraction. The latter indicates the electron transfer as was observed by for iodine and bromine-atom-containing compounds. Such electron transfer interaction may take place both by inter- and intra-molecular coordination through overlap of p-orbitals. In general, fully halogenated compounds are practically inert toward the $\mathrm{HO} \bullet($ Lal et al., 1988). Nevertheless, we observe significant temperature-dependent reactivity for perhalocarbons such as $\mathrm{Cl}_{3} \mathrm{CCOO}-$ and $\mathrm{Br}_{3} \mathrm{CCOO}$ These perhalocarbons are good halogen donors to chlorine and bromine radical under the abstraction of halogen atom (Kerr, 1973). Fliount et al (1997) concluded that HO• at least indirectly particulate in the degradation mechanism (equation (4.47)), which is induced by the reaction with bromide liberated in the $\mathrm{H} \bullet$ and $\mathrm{e}_{\mathrm{aq}}{ }^{-}$induced processes.
$\mathrm{HO} \cdot+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}{ }^{-}+\mathrm{OH}^{-}$
The $\mathrm{Br}_{2}{ }^{\bullet}$ - compounds are in equilibrium state with bromine radical in equation (4.48)
$\mathrm{Br}_{2}{ }^{\bullet^{-}} \leftrightarrow \mathrm{Br} \bullet+\mathrm{Br}^{-}$
Accordingly, $\mathrm{Br} \bullet$ induces either Br^{-}atom abstraction from the $\mathrm{Br}_{3} \mathrm{CCOO}^{-}$or oxidize the carboxyl function in a one-electron transfer process (Fliount et al., 1997).
$\mathrm{Br} \bullet+\mathrm{Br}_{3} \mathrm{CCOO}-\rightarrow \mathrm{Br}_{2}+\cdot \mathrm{Br}_{2} \mathrm{CCOO}$
$\mathrm{Br} \bullet+\mathrm{Br}_{3} \mathrm{CCOO}-\rightarrow \mathrm{Br}-+\mathrm{Br}_{3} \mathrm{CCOO} \bullet$

However, at neutral pH and in the $\mathrm{N}_{2} \mathrm{O}$ saturated solution, all $\mathrm{e}^{-}{ }_{\mathrm{aq}}$ is supposed to be converted into hydroxyl radicals according to the following equation and the reaction forming $\mathrm{H} \bullet$ in equation is not present at neutral pH but in very acidic condition.
$\mathrm{e}_{\mathrm{aq}}{ }^{-}+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HO} \bullet+\mathrm{OH}^{-}+\mathrm{N}_{2}$
$\mathrm{H}^{+}+\mathrm{eaq}^{-} \rightarrow \mathrm{H}^{\bullet}$
Therefore, we exclude the possibility of the reactions involving Br^{-}substitutions. Accordingly, it is very likely that $\mathrm{HO} \cdot$ reacts with one of the halogenated atoms in perhalocarbons via electron-transfer.

4.4.3.6 Addition of Explicit Water Molecules

It is reported that water molecule is able to stabilize the developing negative charge on the hydroxyl radical in the transition state by acting as a hydrogen bond donor (Mitroka et al., 2010; Vöhringer-Martinez et al, 2007). An addition of explicit water molecules to the implicit polarizable continuum model has been reported to predict the absolute solvation free energies more accurately for a series of charged ions by considering short-range interactions between solvent and solute (Kim et al., 2009; Jaque et al., 2007; Pliego and Riveros, 2001). The SMD model that is used for this study includes the short-range interaction. However, the SMD does not include the explicit nonbulk electrostatic contribution that represents the deviation of short-range electrostatics from bulk electrostatics (Liu et al., 2010). Accordingly, we included a limited number of explicit water molecules $(n=1 \sim 3)$ upon the transition state search and see differences in calculating the free energies of activations. As Mitroka et al. (2010) observed for the barriers of reaction of $\mathrm{HO} \bullet$ with CH_{4}, addition of explicit water molecule(s) significantly decreases the barrier height of the reactions of $\mathrm{HO} \bullet$ with a
series of halogenated acetates (Figure 4.15). The effect of individual water molecules appear to be additive. Three conformations of explicit one water molecule are found (Figure 4.16). Hydrogen of all explicit water molecules forms a hydrogen-bond with either oxygen of hydroxyl radical or carboxylic functional group. A total of two hydrogen bonds are observed for each configuration. When two and three explicit water molecules are added, carboxylic functional groups produce two and three hydrogen bonds, respectively, with hydrogen of hydroxyl radical and hydrogen of water molecules.

Figure 4.15: Comparison of observed barrier height for the reactions of $\mathrm{HO} \bullet$ with a series of halogenated acetates in the absence of presence of explicit water molecule(s). Note that the transition state of the reaction of $\mathrm{HO} \cdot$ with $\mathrm{CHCl}_{2} \mathrm{COO}^{-}$could not be located.

Figure 4.16: Optimized transition state for the reaction of $\mathrm{HO} \bullet$ with chloroacetate in the presence of explicit water molecule(s). The dotted line represents hydrogen bond.

Addition(s) of explicit water molecules significantly change the charge distributions when compared to the case obtained from the absence of water molecules. Regardless several configurations of explicit water molecule(s), the charge distributions (Figure 4.17) revealed that the abstracted hydrogen-atom becomes less positive as
increasing explicit water molecules and the transition state becomes less polarized. As a result of this, the barrier heights become smaller with an increase of explicit water molecules. The presence of an explicit water molecule decreases the negative charges of a carboxylic functional group as well as a chlorine atom by almost half due to a hydrogen bond. When two or three water molecules are added, the degree of polarizability of transition state does not appear to be as much distinctive as the degree where one implicit water molecule is employed.

We establish the LFER using the calculated free energy of activation that is obtained by including explicit water molecules (Figure 4.1). The clear linear relation becomes closer to the LFER that is obtained from the experimental investigation. This observation suggests that the inclusion of explicit water molecule in addition to the SMD solvation model provides the actual solvation phenomena and the calculated free energies of activation that is a driving force can be quantum mechanically calculated. This approach may be used for the other reaction mechanisms to establish a library of reaction rate constants for a mechanistic modeling in AOPs.

Figure 4.17: Charge distributions of reactants, transition states and products for the aqueous phases $\mathrm{HO} \bullet$ reactions with chloroacetate in the absence and presence of explicit water molecule(s). The transition state in the presence of one explicit water molecule shows three conformations

4.5 Conclusions

Temperature-dependent aqueous phase $\mathrm{HO} \bullet$ reaction rate constants enables us to obtain Arrhenius parameters and calculate thermochemical properties of activation. With the experimentally obtained free energies of activation and logarithms of the reaction rate constants, we established linear free energy relationships (LFERs) for a series of halogenated acetates. The experimentally obtained free energies of activation are compared with quantum mechanical calculations that utilize $A b$ initio quantum mechanical approaches and the SMD solvation model. Quantum mechanical calculations revealed that effects that arise from halogenated functional groups and hydrogen bonding in process of solvation. We found that an addition of explicit water molecule(s) to
implicit SMD solvation model provides the LFER that is consistent with that is established from the experiments.

4.6 Acknowledgement

This work was supported by the National Science Foundation Award 0854416 from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors appreciate the support from the Hightower Chair and the Georgia Research Alliance at the Georgia Institute of Technology. Authors also appreciate Dr. Matthew Wolf at the College of Computing in Georgia Tech and Dr. Ron Huchinsons at Office of Information Technology for the high performance and clustered computing resources. We gratefully acknowledge the contribution of Mary Kate Varnau for her editorial assistance.

4.7 Appendices

Appendic F contains all optimized structures for reactants, transition states, complex and products at G4 with SMD.

4.8 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Aquino, A.J.A.; Tunega, D.; Haberhauer, G.; Gerzaberk, M.H.; Lischka, H. Solvent effects on hydrogen bonds - A theoretical study. J. Phys. Chem. A. 2002, 106, 18621871.

Ardura, D.; López, R.; Sordo, T.L. Relative gibbs energies in solution through continuum models: Effect of the loss of translational degrees of freedom in bimolecular reactions on gibbs energy barriers. J. Phys. Chem. B. 2005, 109, 23618-23623.

Asmus, K.-D.; Bonifačič, M. In Sulfur-Centered Reactive Intermediates as Studied by Radiation Chemical and Complementary Techniques; Chapter 5. 141-191. Alfassi, Z. B. Eds. The Chemistry of Free Radicals S-Centered Radicals. 1999. Chichester, U.K.

Beckwith, A.L.J.; Bowry, V.W.; Ingold, K.U. Kinetics of nitroxide radical trapping. 1. Solvent effects. J. Am. Chem. Soc. 1992, 114, 4983-4992.
Benson, S.W. The Foundations of Chemical Kinetics. McGraw-Hill: New York. 1982.
Bielski, B.H.J.; Cabelli, D.E. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat. Biol. 1991, 59(2), 291-319.

Brezonik, P.L. Chemical kinetics and process dynamics in aqueous systems. Lewis Publishers. 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $\left(\cdot \mathrm{OH} / \cdot \mathrm{O}^{-}\right)$in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17 (2) 513-795.

Charbonneau, P.; Knapp, B. 1995, A User's guide to PIKAIA 1.0, NCAR Technical Note $418+I A$, National Center for Atmospheric Research, Boulder.

Chartfield, D.C.; Friedman, R.S.; Schwenke, D.W.; Truhlar, D.G. Control of chemical reactivity by quantized transition states. J. Phys. Chem. 1992, 96, 2414-2421.

Chin, M.; Wine, P.H. Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp and D.G. Crosby (eds.), CRC Press, Inc., Boca Raton, FL, 1994, p.85-96.

Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem. 2003, 24(6), 669-681.

Cramer, J.C. Essentials of Computational Chemistry. Theories and Models. $2^{\text {nd }}$ ed. John Wiley \& Sons, Ltd. 2004. England.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{UV}$ process in a completely mixed batch reactor. Wat. Res. 1999, 33(10), 2315-2328.

Curtiss, L.A. Gaussian-2 theory for molecular energies of first- and second-row compounds, J. Chem. Phys. 1991, 94(11), 7221-7230.

Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys., 2007, 126, 084108.

Curtiss, L.A.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3(G3) theory for molecules containing first and second-row atoms, J. Chem. Phys. 1998, 109(18), 77647776.

Eisenberg, J.N.S.; Mckone, T.E. Decision tree method for the classification of chemical pollutants: Incorporation of across-chemical variability and within-chemical uncertainty. Environ. Sci. Technol. 1998, 32, 3396-3404.

Eljarrat, E.; Barceló, D. Priority lists for persistent organic pollutants and emerging contaminants based on their relatice toxic potency in environmental samples. Trends in Analytical Chem. 2003, 22(10), 655-665.

Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. Phys. Chem. Chem. Phys., 2003, 5, 1811-1824.

Eyring, H.; Gershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. J. Chem. Phys. 1935, 3, 786-796.

Evans, M.; Polanyı', M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 1938, 34, 11-29.

Fliount, R.; Makogon, O.; Guldi, D.M.; Asmus, K-D. Radical-mediated degradation mechanisms of tribromo- and other trishalogenated acetic acids in oxygen-free solutions as studied by radiation chemistry methods. J. Chem. Soc., Perkin Trans. 2. 1997, 15351545.

Foester, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 72117218.

Galano, A.; Macías-Ruvalcaba, N.A.; Campos, O.N.M.; Pedraza-Chaverri, J. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: A combined theoretical and experimental study. J. Phys. Chem. B. 114, 6625-6635.

Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

Gligorovski, S.; Herrmann, H. Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 4118-4126.

Gligorovski, S.; Rousse, D.; George, C.H.; Herrmann, H. Rate constants for the OH reactions with oxygenated organic compounds in aqueous solution. Int. J. Chem. Kinet. 2009, 41, 309-326.

Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, INC. Massachusetts, U.S.A. 1989.

Herrmann, H. Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 2003, 103, 4691-4716.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hofinger, S.; Zerbetto, F. On the cavitation energy of water.Eur. J. Chem. 2003, 9, 566.
Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 1016-1024.

Hug, G.L.; Wang, Y.; Schöneich, C.; Jiang, P.-Y.; Fessenden, R.W. Multiple time scales in pulse radiolysis. Application to bromide solutions and dipeptides. Rad. Phys. Chem. 1999, 54, 559-566.

Jaque, P.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Computational electrochemistry: The aqueous Ru3+|Ru2+ reduction potential. J. Phys. Chem. C. 2007, 111, 5783-5799.

Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley \& Sons, INC. New York, 2000.

Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Aqueous solvation free energies of ions and ion -water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B. 2006, 110, 16066-16081.

Kim, Y.; Marenich, A.V.; Zheng, J.; Kim, K-H.; Kolodziejska-Huben, M.; Rostkowski, M.; Paneth, P.; Truhlar, D.G. Mechanistic analysis of the base-catalyzed HF elimination from 4-fluoro-4-(4'-nitrophenyl)butane-2-one based on liquid-phase kinetic isotope effects calculated by dynamic modeling with multidimensional tunneling. J. Chem. Theory Comput. 2009, 5, 59-67.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere. 1996, 32(4), 717-726.

Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and parametrization of COSMO-RS. J.Phys.Chem. A. 1998, 102, 5074-5085.

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Rate constants for the reaction of halogenated organic radicals. Int. J. Radiat. Biol. 1988, 54, 773-785.

Leung, B. O.; Reid, D. L.; Armstrong, D. A.; Rauk, A. Entropies in solution from entropies in the gas phase. J. Phys.Chem. A. 2004, 108, 2720-2725.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. Environ. Sci. Technol. 2009, 43, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating $\mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}$ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. Wat. Res. 2008, 42(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/ $\mathrm{H}_{2} \mathrm{O}_{2}$ advanced oxidation process: product study and kinetic modeling. Environ. Sci. Technol. 2007, 41, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. Environ. Sci. Technol. 2004, 38, 6685-6693.

Li, X.; Frisch, M.J. Energy-represented DIIS within a hybrid geometry optimization method. J. Chem. Theory and Comput. 2006, 2, 835-839.

Liptak, M. D.; Shields, G. C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc. 2001, 123, 7314-7319.

Liu, J.; Kelly, C.P.; Goren, A.C.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G.; Zhan, CG. Free energies of solvation with surface, volume, and local electrostatic effects and atomic surface tensions to represent the first solvation shell. J. Chem. Theory. Comput. 2010, 6, 1109-1117.

Mader, E.A.; Davidson, E.R.; Mayer, J.M. Large ground-state entropy changes for hydrogen atom transfer reactions of iron complexes. JACS. 2007, 129, 5153-5166.

Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.; Chambers, C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G. Minnesota Solvation Database version 2009, University of Minnesota, Minneapolis, 2009.

Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378-6396.

Mezyk, S.P.; Bartels, D.M. Rate constant and activation energy measurement for the reaction of atomic hydrogen with thiocyanate and azide in aqueous solution. J. Phys. Chem. A. 2005, 109, 11823-11827.

Milosavljevic, B.H.; LaVerne, J.A. Pulse radiolysis of aqueous thiocyanate solution. J. Phys. Chem. A. 2005, 109, 165-168.

Minakata, D.; Crittenden, J.C. Linear free energy relationships between the aqueous phase hydroxyl radical reaction rate constants and the free energy of activation. Environ. Sci. \& Technol. 2010 Submitted.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environ. Sci. \& Technol. 2009, 43, 6220-6227.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. Atmos. Environ. 2005, 39, 7667-7688.

Narten, A. H.; Levy, H. A. Liquid water: Molecular correlation functions from X-ray diffraction. J. Chem. Phys. 1971, 55, 2263.

Neta, P.; Simic, M.; Hayon, E. Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids. J. Phys. Chem. 1969, 73(12), 4207-4213.

Okuno, Y. Theoretical investigation of the mechanism of the Baeyer-Villiger reaction in nonpolar solvents. Chemistry: a European Journal. 1997, 3, 212.

Partington, J.R. An advanced Treatise on Physical Chemisty, Longmans, Green and Co. London. 1951. Vol. 2 pp2. And Vol. 5 pp390.

Pascual-Ahuir, J. L.; Silla, E. GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set. J. Comput. Chem. 1990, 11, 1047.

Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem. 1996, 17, 4986.

Peng, C.; Schlegel, H.B. Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States. Israel J. Chem. 1993, 33, 449-54.

Pfaendtner, J.; Broadbelt, L. J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. Chem. Eng. Sci. 2007, 62, 5232-5239.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autooxidation of decane and octane. Ind. Eng. Chem. Res. 2008, 47, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 2008, 47, 2886-2896.

Pierotti, R. A. The solubility of gases in liquids. J. Phys. Chem. 1963, 67, 1840-1845. Pitzer, K.S.; Gwinn, W. Energy levels and thermodynamic functions for molecules with internal rotation. J. Chem. Phys. 1942, 10, 428-440.

Pliego, J.R.; Riveros, J.M. The cluster-continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A. 2001, 105, 7241-7247.

Pople, J.A.; Gordon, M.H.; Fox, D.J. Gaussian-1 theory: A general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90(10), 5622-2629.

Pu, J.; Gao, J.; Truhlar, D.G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem. Rev. 2006, 106, 3140-3169.

Richardson, S. D. Water Analysis: Emerging contaminants and current issues. Anal. Chem., 2009, 81, 4645-4677.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ. Sci. Technol. 2004, 38, 5476-5483.

Schlegel, H.B. Optimization of equilibrium geometries and transition structures. J. Comp. Chem. 1982, 3(2), 214-218.

Schwarz, H. A determination of some rate constants for the radical processes in the radiation chemistry of water. 1962, 66, 255-262.

Spinks, J. W. T.; Woods, R. J. An Introduction to Radiation Chemistry: John Wiley \& Sons: New York, 1964; Chapter 8, pp 237-308.

Štefanić, I.; Ljubić, M.; Bonifačić, M.; Sabljić, A.; Asmus, K.-D. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals. Phys. Chem. Chem. Phys. 2009, 11, 2256-2267.

Tanko, J. M.; Suleman, N. K. Solvent Effects in the Reactions of Neutral Free Radicals. In Energetics of Organic Free Radicals; Martinho Simo~es, J. A., Greenburg, A., Liebman, J. F., Eds.; SEARCH Series 4; Blackie: Glasgow, 1996; pp 244-293.

Van Cauter, K.; Van Speybroeck, V.; Vansteenkiste, P.; Reyniers, M. F.; Waroquier, M. Ab initio study of free-radical polymerization: Polyethylene propagation kinetics. Chem. Phys. Chem. 2006, 7, 131-140.

Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J.S.; Troe, J.; Abel, B. Water catalysis of a radical-molecule gas-phase reaction. Science. 2007, 315, 497-501.
von Sonntag, C.; Schuchmann, H.-P. In., Alfassi, Z. B. Peroxyl Radicals; John Wiley and Sons Ltd.: New York, 1997; p 173.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649-6663.

Whitman, K.; Lyons, S. Miller, R.; Nett, D.; Treas, P.; Zante, A.; Fessenden, R. W.; Thomas, M. D.; Wang, Y. In Proceedings of the '95 Particle Accelerator Conference and International Conference on High Energy Accelerators, Dallas, Texas, May 1-5, 1995.

Wigner, E. Z.f. physic. Chemie B19, 203, 1932.
Wold, S.; Sjöström, M. Liner Free Energy Relationships as Tools for Investigating Chemical Similarity- Theory and Practice. 1-54 in Chapman, N.B.; Shorter, J. Correlation Analysis in Chemistry Recent Advances. Plenum Press New York and Longdon, 1978.

Woo, Y-T.; Lai, D.; McLain, J.L.; Manibusan, M.L.; Dellarco, V. Use of mechanismbased structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ. Health Perspectives. 2002, 110, 75-87.

CHAPTER 5

Implications and Future Studies

The GCM is innovative because it is the first comprehensive tool to predict the aqueous phase HO • reaction rate constant and it includes a wide range of functional groups and four reaction mechanisms: 1) H -atom abstraction by $\mathrm{HO} \cdot$, 2) $\mathrm{HO} \cdot$ addition to alkenes, 3) $\mathrm{HO} \cdot$ addition to aromatic compounds, and 4) $\mathrm{HO} \cdot$ interactions with S -, N -, or P-atom-containing compounds. The GCM's predictability (i.e., $0.5 \leq k_{\text {cal }} / k_{\text {exp }} \leq 2.0$) is an acceptable range in terms of predicting reaction rate constants. The GCM provides a user-friendly Microsoft excel spread sheet and an executed FORTRAN program named GCM Identifier.f90. These tools enable one to calculate the aqueous phase $\mathrm{HO} \cdot$ reaction rate constants with a minimum input of structural information of a compound of interest. This will help researchers and water treatment engineers estimate the "reactivity" when coming across a new chemical compound in application of AOPs. With newly obtained HO• reaction rate constants, we should be able to update the GCM to include missing functional groups that have not been employed in the original GCM.

The LFERs that have been developed using sophisticated quantum mechanical approaches bridge kinetic information that is obtained from experiments with theoretically calculated thermochemical properties (i.e., free energy of activation). The application of the LFERs to chemical reactivity is a new concept. The theoretically calculated free energy of activation was validated with those that were obtained from the experimental investigations. Aqueous phase molecular modeling using quantum mechanical approaches is a challenging task due to water molecules. Nevertheless, our
methodologies that utilize combinations of gaseous phase Ab initio quantum mechanical calculations with implicit solvation model have been shown to calculate aqueous phase free energy of activation with acceptable errors as compared to those that were obtained from experiments. This proof of concept study should be applied to other reaction mechanisms where few experimental reaction rate constants are available. Figures 5.15.3 demonstrate the aqueous phase free energy profiles that are calculated at G3 and COSMO-RS for the $\mathrm{HO} \bullet$ induced reactions with methane. Figure 5.1 includes the hydrogen-atom abstraction by $\mathrm{HO} \bullet$, oxygen addition followed by peroxy radical reaction mechanisms that are predicted by the reaction pathway generator. Figure 5.2 shows 1.2H shift of oxyl radical in the absence and presence of a water molecule. Figure 5.3 shows the hydrolysis reactions of formaldehyde with one and two water molecules assisted. These energy profiles are in good agreement with the gaseous phase potential energy profiles for the reaction of $\mathrm{HO} \bullet$ with methane (Green, 1994), although he did not locate transition states for any reactions. For example, Green (1994) obtained approximately 30 $\mathrm{kcal} / \mathrm{mol}$ of gaseous phase reaction energy for $\mathrm{CH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OO} \bullet$ while we obtained $30.0 \mathrm{kcal} / \mathrm{mol}$ of aqueous phase free energy of reaction for this exorthermic reaction. Furthermore, he calculated approximately $60 \mathrm{kcal} / \mathrm{mol}$ of reaction energy for the gaseous phase uni-molecular reaction of $\mathrm{CH}_{3} \mathrm{OO} \bullet \rightarrow \mathrm{CH}_{3} \mathrm{O} \bullet+\mathrm{O}$, whereas we obtained 53.7 $\mathrm{kcal} / \mathrm{mol}$ of aqueous phase free energy of reaction. The similar agreements were observed for other reactions for $\mathrm{CH}_{3} \mathrm{OO} \bullet \rightarrow \mathrm{H}_{2} \mathrm{C} \bullet \mathrm{OOH}$ and $\mathrm{H}_{2} \mathrm{C} \bullet \mathrm{OOH} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}$. Although these free energy profiles are limited to the $\mathrm{HO} \bullet$ induced reactions with methane, same procedures should be applied for other reactions to build LFERs and establish a library of rate constant predictions for the reactions that take place in AOPs.

Figure 5.2: Aqueous phase free energy change profiles for 1,2-H shift reaction of oxyl radical in the absence or presence of a water molecule

Figure 5.3: Aqueous phase free energy change profiles for hydrolysis reaction of formaldehyde with one and two water molecules assisted

There are significant differences in basic principle, theory, approach, and reaction mechanism that are applied between the GCM and LFERs. While the GCM shows the predicatability: $0.5 \leq k_{\text {cal }} / k_{\exp } \leq 2.0$ (i.e., difference of factor 2), the LFER indicates: $0.2 \leq$ $k_{\text {cal }} k_{\exp } \leq 5.0$ (i.e., difference of factor 5). The GCM includes a wide range of functional groups and four $\mathrm{HO} \bullet$ reaction mechanisms (i.e., H -atom abstraction, $\mathrm{HO} \bullet$ adition to alkenes and aromatic compounds, and $\mathrm{HO} \bullet$ interaction with $\mathrm{S}-$, N -, or P -atom-containing compounds). The LFERs include aliphatic hydrocarbons, oxygenated and halogenated compounds for H -atom abstraction from $\mathrm{C}-\mathrm{H}$ bond and $\mathrm{HO} \bullet$ addition to alkenes. While the GCM utilizes overall reaction rate constant using Benson's thermochemical and rate constant additivity, the LFERs consider the lowest energy point of aqueous phase free energy of activation among different transition states and conformers. The GCM does not include electron-electron interactions in the process from reactants to transition state, whereas the LFERs consider transition state energy based on Ab initio quantum mechanical calculations. Both the GCM and LFERs used single-functional-group compounds for calibration and multi-functional-group compounds for prediction. The GCM shows applicability of predicting rate constant for a limited number of emerging contaminants, whereas the LFERs do not because of many possible transition states and conformers. The largest molecules that the LFERs include are $\mathrm{HOOCCH}_{2} \mathrm{COOH}$ for neutral, and $\mathrm{Br}_{2} \mathrm{HCCOO}^{-}$and ${ }^{-} \mathrm{OOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}$for ionized compounds. These aliphatic saturated compounds would be comprised of 8 equivalent carbon-atoms if all elements are carbons and hydrogens. Considerable efforts have to be made to deal with emerging contaminant using the LFERs. Although the GCM shows better predicatability of aqueous phase $\mathrm{HO} \cdot$ reaction rate constants for compounds with multi-functional-groups
than the LFERs, the LFERs can be applied to other reaction mechanisms based on $A b$ initio reaction rate constant predictions. As a consequence, the LFERs approach should be used for the reaction rate constant predictors of mechanistic modeling in aqueous phase AOPs.

Application of computational chemistry using quantum mechanical approaches to water treatment engineering is not common. With recent improvement in high performance computing resources, aqueous phase molecular simulations in relatively larger molecules become feasible. The proof of concept approach using the LFERs implicates the validity of application of computational chemistry to chemical reactivity that is observed in water treatment engineering. The LFERs may be applied not only AOPs technology but also other oxidation and disinfection processes (e.g., chlorination, ozonation, manganese).

To apply water treatment, mechanics modeling must include the effect of natural organic matter (NOM). Our modeling only represents a starting point by developing the theoretical approach and modeling framework in water containing only the target compound. NOM reactions with radical species are complex (Westerhoff et al., 1999; von Gunten, 2003) and they could be added in the future, if the knowledge-base on the structural and chemical characteristics of NOM become available. To date, the impact of NOM on target compound destruction has been considered by accounting for NOM quenching of hydroxyl radical (Westerhoff et al., 2007; 1999; Elovitz et al., 2000) and UV light absorption (Li et al., 2008; Weishaar et al., 2003). This approach could also be applied to the by-products that are formed. However, a considerable amount of effort
remains to understand the byproduct formation of target compounds in the presence of NOM (Weber et al., 2005).

A contribution of this dissertation to engineering field is significant. This dissertation shows an application of existing scientific disciplines to water treatment engineering field by shedding light on developing tools to predict aqueous phase $\mathrm{HO} \bullet$ reaction rate constants for aqueous phase AOPs. In general, when a ciritical chemical contaminant is identified, it is typical to measure the rate constant with chemical oxidant experimentally or estimate the rate constant on the basis of structurally similar compounds. For engineering design, an over-design is a typical strategy using a safety factor. This approach is also applied for intermediates and byproducts by extending retention time and scaling reactor volume. However, considering a number of chemical contaminants that emerge in industries, this approach is not practical in particular for fate of intermediate and byproducts. The reaction rate constant predictors that have been developed in this study enable water treatment engineers to screen reactivity of a new contaminant in the application of AOPs. Once the mechanistic model is developed based on a library of reaction rate constant predictors, it will be used to help engineers assess the treatment efficiency of a parent contaminant and evaluate the fate of intermediate and byproducts in aqueous phase AOPs.

Literature Cited

Elovitz, M. S.; von Gunten, U; Kaiser H-P. Hydroxyl radical/ozone ratios during ozonationprocesses. II. The effect of temperature, pH , alkalinity, and DOM properties. Ozone. Sci. Eng. 2000, 22, 123-150.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatment options and light sources. Wat. Res. 2008, 42, 5045-5053.
von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Wat. Res. 2003, 37, 1443-1467.

Weber, J.R. W.; Huang, Q.; Pinto, A. Reduction of disinfection byproduct formation by molecular reconfiguration of the fulvic constituents of natural background organic mater. Environ. Sci. Technol. 2005, 39, 6446-6452.

Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702-4708.

Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Wat. Res. 1999, 33 (10), 2265-2276.

Westerhoff, P.; Mezyk, S.P.; Cooper, W.J.; Minakata, D. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ. Sci. \& Technol. 2007, 41, 4610-4646.

APPENDIX A: GENETIC ALGORITHM

MODULE Genetic_Algorithm

IMPLICIT NONE
Common block to make iseed visible to rninit (and to save it between calls)
! COMMON/rnseed/ iseed
INTEGER, SAVE :: iseed

CONTAINS

SUBROUTINE pikaia(ff,n,ctrl,x,f,STATUS)
! Code converted using TO_F90 by Alan Miller ! Date: 2001-07-09 Time: $\overline{15: 54: 13}$
! Optimization (maximization) of user-supplied "fitness" function ff ! over n-dimensional parameter space x using a basic genetic algorithm ! method.
! Paul Charbonneau \& Barry Knapp
! High Altitude Observatory
! National Center for Atmospheric Research
! Boulder CO 80307-3000
! USA
! paulchar@hao.ucar.edu
! knapp@hao.ucar.edu
! Web site:
! http://www.hao.ucar.edu/public/research/si/pikaia/pikaia.html
! Version 1.0 [1995 December 01]
! Genetic algorithms are heuristic search techniques that incorporate in a ! computational setting, the biological notion of evolution by means of
! natural selection. This subroutine implements the three basic operations
! of selection, crossover, and mutation, operating on "genotypes" encoded as
! strings.
! References:
! Charbonneau, Paul. "Genetic Algorithms in Astronomy and Astrophysics." Astrophysical J. (Supplement), vol 101, in press (December 1995).
! Goldberg, David E. Genetic Algorithms in Search, Optimization, \& Machine Learning. Addison-Wesley, 1989.
! Davis, Lawrence, ed. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991

```
! USES: ff, urand, setctl, report, rnkpop, select, encode, decode cross, mutate, genrep, stdrep, newpop, adjmut
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN OUT) :: \(\operatorname{ctrl}(12\)
REAL, INTENT(OUT) \(\quad:: \mathrm{x}(\mathrm{n})\)
REAL, INTENT(OUT) \(\because: f\)
INTEGER, INTENT(OUT) :: STATUS
```


INTERFACE

```
FUNCTION ff(n, x) RESULT(fn_val)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: \(x(:)\)
REAL :: fn_val
END FUNCTION f
END INTERFACE
! EXTERNAL ff
```


! Input:

! o Integer n is the parameter space dimension, i.e., the number
! of adjustable parameters.
! o Function ff is a user-supplied scalar function of n variables, which must have the calling sequence $f=f f(n, x)$, where x is a real parameter array of length n . This function must be written so as to bound all parameters to the interval $[0,1]$; that is, the user must determine ! a priori bounds for the parameter space, and ff must use these bounds ! to perform the appropriate scalings to recover true parameter values in ! the a priori ranges.
! By convention, ff should return higher values for more optimal ! parameter values (i.e., individuals which are more "fit").
! For example, in fitting a function through data points, ff could return the inverse of chi**2.
! In most cases initialization code will have to be written
1 (either in a driver or in a separate subroutine) which loads
! in data values and communicates with ff via one or more labeled
! common blocks. An example exercise driver and fitness function
are provided in the accompanying file, xpkaia.f.
! Input/Output:
! o Array ctrl is an array of control flags and parameters, to ! control the genetic behavior of the algorithm, and also printed output. A default value will be used for any control variable which is supplied with a value less than zero. On exit, ctrl
contains the actual values used as control variables. The elements of ctrl and their defaults are:
$\operatorname{ctrl}(1)$ - number of individuals in a population (default is 100)
$\operatorname{ctrl}(2)$ - number of generations over which solution is to evolve (default is 500)
$\operatorname{ctrl}(3)$ - number of significant digits (i.e., number of genes) retained in chromosomal encoding (default is 6) (Note: This number is limited by the machine floating point precision. Most 32-bit floating point representations have only 6 full digits of precision. To achieve greater precision this routine could be converted to double precision, but note that this would also require a double precision random number generator, which likely would not have more than 9 digits of precision if it used 4-byte integers internally.)
$\operatorname{ctrl}(4)$ - crossover probability; must be $<=1.0$ (default is 0.85) $\operatorname{ctrl}(5)$ - mutation mode; $1 / 2=$ steady $/$ variable (default is 2) $\operatorname{ctrl}(6)$ - initial mutation rate; should be small (default is 0.005) (Note: the mutation rate is the probability that any one gene locus will mutate in any one generation.)
$\operatorname{ctrl}(7)$ - minimum mutation rate; must be $>=0.0$ (default is 0.0005)
$\operatorname{ctrl}(8)$ - maximum mutation rate; must be $<=1.0$ (default is 0.25)
$\operatorname{ctrl}(9)$ - relative fitness differential; range from 0 (none) to 1 (maximum). (default is 1.)
$\operatorname{ctrl}(10)$ - reproduction plan; $1 / 2 / 3=$ Full generational replacement/Steady-state-replace-random/Steady-state-replace-worst (default is 3)
$\operatorname{ctrl}(11)$ - elitism flag; $0 / 1=$ off/on (default is 0) (Applies only to reproduction plans 1 and 2) $\operatorname{ctrl}(12)$ - printed output $0 / 1 / 2=$ None/Minimal/Verbose (default is 0)

! Output:

```
! o Array x(1:n) is the "fittest" (optimal) solution found
! i.e., the solution which maximizes fitness function ff
! o Scalar f is the value of the fitness function at x
! o Integer status is an indicator of the success or failure
! of the call to pikaia (0=success; non-zero=failure)
```

! Constants
INTEGER, PARAMETER $:: \mathrm{nmax}=200, \mathrm{pmax}=128, \mathrm{dmax}=6$
! o NMAX is the maximum number of adjustable parameters ($\mathrm{n}<=$ NMAX)
! o PMAX is the maximum population $(\operatorname{ctrl}(1)<=$ PMAX $)$
! o DMAX is the maximum number of Genes (digits) per Chromosome
! segement (parameter) $(\operatorname{ctrl}(3)<=$ DMAX $)$
! Local variables
INTEGER :: np, nd, ngen, imut, irep, ielite, ivrb, k , ip, ig, ip1, \&
ip2, NEW, newtot
REAL :: pcross, pmut, pmutmn, pmutmx, fdif

REAL :: ph(nmax,2), oldph(nmax,pmax), newph(nmax,pmax)
INTEGER :: gn1(nmax*dmax), gn2(nmax*dmax)
INTEGER :: ifit(pmax), jfit(pmax)
REAL :: fitns(pmax)
! User-supplied uniform random number generator
! REAL :: urand
! EXTERNAL urand
! Function urand should not take any arguments. If the user wishes to be able
! to initialize urand, so that the same sequence of random numbers can be
! repeated, this capability could be implemented with a separate subroutine,
$!$ and called from the user's driver program. An example urand function
$!$ (and initialization subroutine) which uses the function ran0 (the "minimal
! standard" random number generator of Park and Miller [Comm. ACM 31, 1192-
! 1201, Oct 1988; Comm. ACM 36 No. 7, 105-110, July 1993]) is provided.
! Set control variables from input and defaults
CALL setctl(ctrl, n, np, ngen, nd, pcross, pmutmn, pmutmx, pmut, imut, fdif, \& irep, ielite, ivrb, STATUS)
IF (STATUS $/=0$) THEN
WRITE $\left({ }^{*},{ }^{*}\right)$ ' Control vector (ctrl) argument(s) invalid
RETURN
END IF
! Make sure locally-dimensioned arrays are big enough
IF ($\mathrm{n}>$ nmax .OR. $\mathrm{np}>$ pmax .OR. $\mathrm{nd}>$ dmax) THEN
WRITE $\left({ }^{*},{ }^{*}\right)$ ' Number of parameters, population, or genes too large'
STATUS $=-1$
RETURN
END IF
! Compute initial (random but bounded) phenotypes
DO ip $=1$, np
DO $\mathrm{k}=1$, n
oldph(k,ip) $=\operatorname{urand}()$
END DO
fitns(ip) $=\mathrm{ff}(\mathrm{n}, \operatorname{oldph}(:, \mathrm{ip}))$
END DO
! Rank initial population by fitness order
CALL rnkpop(np,fitns,ifit,jfit)
! Main Generation Loop
DO $\mathrm{ig}=1$, ngen
! Main Population Loop
newtot $=0$
DO $\mathrm{ip}=1, \mathrm{np} / 2$
! 1. pick two parents
CALL select(np,jfit,fdif,ip1)
30 CALL select(np,jfit,fdif,ip2)
IF (ip1 = ip2) GO TO 30
2. encode parent phenotypes

CALL encode(n, nd,oldph($1, \mathrm{ip} 1$),gn1)
CALL encode(n, nd,oldph(1,ip2),gn2)
$!$ 3. breed
CALL cross(n,nd,pcross,gn1,gn2)
CALL mutate(n,nd,pmut,gn1)
CALL mutate(n,nd,pmut,gn2)
4. decode offspring genotypes CALL decode(n,nd,gn1,ph(1,1))
CALL decode(n, nd,gn2,ph(1,2))
5. insert into population

IF (irep $==1$) THEN
CALL genrep(nmax,n,np,ip,ph,newph)
ELSE
CALL stdrep(ff,nmax,n,np,irep,ielite,ph,oldph,fitns,ifit, jfit,NEW)
newtot $=$ newtot + NEW
END IF
End of Main Population Loop
END DO
! if running full generational replacement: swap populations
IF (irep ==1) CALL newpop(ff,ielite,nmax,n,np,oldph,newph,ifit, \& jfit,fitns,newtot)
! adjust mutation rate?
IF (imut $=$ 2) CALL adjmut(np,fitns, ifit,pmutmn,pmutmx,pmut)
! print generation report to standard output?
IF (ivrb >0) CALL report(ivrb,nmax,n,np,nd,oldph,fitns,ifit,pmut,ig,newtot)
! End of Main Generation Loop
END DO
! Return best phenotype and its fitness
DO $\mathrm{k}=1$, n
$\mathrm{x}(\mathrm{k})=\operatorname{oldph}(\mathrm{k}$, ifit(np) $)$
END DO
$\mathrm{f}=$ fitns(ifit(np))

RETURN

END SUBROUTINE pikaia
$\xrightarrow{!* * *}$

SUBROUTINE setctl(ctrl,n,np,ngen,nd,pcross,pmutmn,pmutmx,pmut, \&
imut,fdif,irep,ielite,ivrb,STATUS)

END IF
IF (irep $==1$.AND. imut $==1$.AND. pmut >0.5.AND. ielite $==0$) THEN WRITE (*,5800)
END IF
IF (irep $==1$.AND. imut $==2$.AND. pmutmx >0.5.AND. ielite $==0$) THEN WRITE (*,5900)
END IF
IF (fdif <0.33.AND. irep $/=3$) THEN
WRITE $\left({ }^{*}, 6000\right)$
END IF
IF (MOD(np, 2) > 0) THEN
$\mathrm{np}=\mathrm{np}-1$
WRITE $(*, 6100) \mathrm{np}$
END IF
RETURN
5000 FORMAT (/' ', 60('*')/ \&
' *', t16, 'PIKAIA Genetic Algorithm Report ', t60, '*' / \&
' ', 60('*') // \&
Number of Generations evolving: ', i4 / \&
Individuals per generation: ', i4 / \&
Number of Chromosome segments: ', i4 / \&
Length of Chromosome segments: ', i4 / \&
Crossover probability: ', f9.4 / \&
Initial mutation rate: ', 99.4 / \&
Minimum mutation rate: ', 99.4 / \&
Maximum mutation rate: ', f 9.4 / \&
Relative fitness differential: ', f9.4)
5100 FORMAT (\quad Mutation Mode: $/ /$ a)
5200 FORMAT (' Reproduction Plan: '/ a)
5300 FORMAT (' ERROR: illegal value for imut $(\operatorname{ctrl}(5))$)')
5400 FORMAT (' ERROR: illegal value for fdif $\left.(\operatorname{ctrl}(9))^{\prime}\right)$
5500 FORMAT (' ERROR: illegal value for irep $\left.(\operatorname{ctrl}(10))^{\prime}\right)$
5600 FORMAT (' ERROR: illegal value for pcross ($(\operatorname{ctrl}(4))$)')
5700 FORMAT (' ERROR: illegal value for ielite $(\operatorname{ctrl}(11))$)'
5800 FORMAT (' WARNING: dangerously high value for pmut $(\operatorname{ctrl}(6)) ; '$ / \& ' (Should enforce elitism with $\operatorname{ctrl}(11)=1$.)')
5900 FORMAT (' WARNING: dangerously high value for pmutmx ($\operatorname{ctrl}(8)$);'/ \&
' (Should enforce elitism with $\operatorname{ctrl}(11)=1$.)')
6000 FORMAT (' WARNING: dangerously low value of fdif $(\operatorname{ctrl}(9))$)
6100 FORMAT (' WARNING: decreasing population size ($\operatorname{ctrl}(1)$) to $n p=1 / \mathrm{i} 4$) END SUBROUTINE setctl
\qquad

SUBROUTINE report(ivrb, ndim, n, np, nd, oldph, fitns, ifit, pmut, ig, nnew)
! Write generation report to standard output
! Input
INTEGER, INTENT(IN) :: ivrb
INTEGER, INTENT(IN) :: ndim
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: np
INTEGER, INTENT(IN) :: nd
REAL, INTENT(IN) $\quad::$ oldph(ndim, np)
REAL, INTENT(IN) :: fitns(np)
INTEGER, INTENT(IN) : : ifit(np)
REAL, INTENT(IN) :: pmut
INTEGER, INTENT(IN) $\quad::$ ig
INTEGER, INTENT(IN) $::$ nnew
! Output: none
! Local
REAL, SAVE :: bestft $=0.0$, pmutpv $=0.0$
INTEGER :: ndpwr, k
LOGICAL :: rpt
$\mathrm{rpt}=. \mathrm{false}$.
IF (pmut / = pmutpv) THEN
pmutpv = pmut
$\mathrm{rpt}=$. true
END IF
IF (fitns(ifit(np)) /= bestft) THEN
bestft $=$ fitns(ifit(np))
$\mathrm{rpt}=. \mathrm{true}$.
END IF
IF (rpt .OR. ivrb >= 2) THEN
! Power of 10 to make integer genotypes for display ndpwr $=\operatorname{nint}\left(10 .{ }^{* *}\right.$ nd $)$

WRITE (*, '(/i6, i6, f10.6, 4f10.6)') ig, nnew, pmut, \&
fitns(ifit(np)), fitns(ifit(np-1)), fitns(ifit(np/2))
DO $\mathrm{k}=1, \mathrm{n}$
WRITE (*, '(22x, 3i10)') nint(ndpwr*oldph(k, ifit(np))), \& nint(ndpwr*oldph(k, ifit(np-1))), nint(ndpwr*oldph(k, ifit(np/2))) END DO

END IF

RETURN
END SUBROUTINE report

```
********************************************************************
*****
! GENETICS MODULE
```

! ENCODE: encodes phenotype into genotype
called by: PIKAIA
DECODE: decodes genotype into phenotype
called by: PIKAIA
! CROSS: Breeds two offspring from two parents
called by: PIKAIA
MUTATE: Introduces random mutation in a genotype
called by: PIKAIA
ADJMUT: Implements variable mutation rate
called by: PIKAIA

SUBROUTINE encode(n, nd, ph, gn)

```
encode phenotype parameters into integer genotype
\(\mathrm{ph}(\mathrm{k})\) are \(\mathrm{x}, \mathrm{y}\) coordinates \([0<\mathrm{x}, \mathrm{y}<1\) ]
```

INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) $::$ nd
REAL, INTENT(IN OUT) $:: \mathrm{ph}(\mathrm{n})$
INTEGER, INTENT(OUT) :: gn(n*nd)

```
Inputs:
```

! Output:
! Local:
INTEGER :: ip, i, j, ii
REAL :: z
$\mathrm{z}=10 .{ }^{* *}$ nd
ii $=0$
DO $\mathrm{i}=1, \mathrm{n}$
ip $=\operatorname{INT}(\mathrm{ph}(\mathrm{i}) * \mathrm{z})$
$\mathrm{ip}=\mathrm{INT}\left(\mathrm{ph}(\mathrm{i})^{*} \mathrm{z}\right)$
DO $\mathrm{j}=\mathrm{nd}, 1,-1$
$\mathrm{gn}(\mathrm{ii}+\mathrm{j})=\operatorname{MOD}(\mathrm{ip}, 10)$
$\mathrm{ip}=\mathrm{ip} / 10$
END DO
ii $=\mathrm{ii}+\mathrm{nd}$
END DO
RETURN
END SUBROUTINE encode
!****

SUBROUTINE decode(n , nd, gn, ph)
decode genotype into phenotype parameters
$\mathrm{ph}(\mathrm{k})$ are x , y coordinates $[0<\mathrm{x}, \mathrm{y}<1$]

INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: nd
INTEGER, INTENT(IN) :: gn(n*nd)
REAL, INTENT(OUT) :: ph(n)
! Inputs:

! EXTERNAL urand
Subject each locus to mutation at the rate pmut
DO $\mathrm{i}=1, \mathrm{n} *$ nd
IF $($ urand ()$<$ pmut $)$ THEN
gn(i) $=\mathrm{INT}\left(\right.$ urand ()$\left.^{*} 10.\right)$
END IF
END DO
RETURN
END SUBROUTINE mutate

SUBROUTINE adjmut(np, fitns, ifit, pmutmn, pmutmx, pmut)

SUBROUTINE select(np, jfit, fdif, idad)

Selects a parent from the population, using roulette wheel
algorithm with the relative fitnesses of the phenotypes as
the "hit" probabilities [see Davis 1991, chap. 1].
! USES: urand
! Input:
INTEGER, INTENT(IN) :: np
INTEGER, INTENT(IN) :: jfit(np)
REAL, INTENT(IN) :: fdif
Output
INTEGER, INTENT(OUT) :: idad

SUBROUTINE rnkpop(n, arrin, indx, rank)

Calls external sort routine to produce key index and rank order of input array arrin (which is not altered).

```
! USES: rqsort
| Input
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: arrin(:)
INTEGER, INTENT(OUT) :: indx(:)
INTEGER, INTENT(OUT) :: rank(:)
```

! Local
INTEGER ::
! External sort subroutine
! EXTERNAL rqsort
! Compute the key index
CALL rqsort(n, arrin, indx)
...and the rank order
DO $\mathrm{i}=1$, n
$\operatorname{rank}(\operatorname{indx}(\mathrm{i}))=\mathrm{n}-\mathrm{i}+1$
END DO
RETURN
END SUBROUTINE rnkpop
\qquad
SUBROUTINE genrep(ndim, $\mathrm{n}, \mathrm{np}, \mathrm{ip}, \mathrm{ph}$, newph)
full generational replacement: accumulate offspring into new
population array

```
! Input:
INTEGER, INTENT(IN) :: ndim
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: np
INTEGER, INTENT(IN) :: ip
REAL, INTENT(IN) :: ph(ndim, 2)
! Output:
REAL, INTENT(OUT) :: newph(ndim, np)
Local:
INTEGER :: i1, i2, k
! Insert one offspring pair into new population
in
i
DO k=1,n
```


CALL rnkpop(np, fitns, ifit, jfit)
RETURN
END SUBROUTINE newpop
\qquad

FUNCTION urand() RESULT(fn_val)
! Return the next pseudo-random deviate from a sequence which is
uniformly distributed in the interval $[0,1]$
! Uses the function ran0, the "minimal standard" random number
! generator of Park and Miller (Comm. ACM 31, 1192-1201, Oct 1988;
! Comm. ACM 36 No. 7, 105-110, July 1993).

```
! Input-none
Outp
REAL :: fn_val
Local
INTEGER :: iseed
! REAL :: ran0
! EXTERNAL ran0
```

Common block to make iseed visible to rninit (and to save
it between calls)
COMMON /rnseed/ iseed
in $\mathrm{val}=\operatorname{ran} 0()$
RETTURN
END FUNCTION urand

SUBROUTINE rninit(seed)
Initialize random number generator urand with given seed
Input
INTEGER, INTENT(IN) :: seed
! Output - none
Local
I INTEGER :: iseed
! Common block to communicate with uran
! COMMON /rnseed/ iseed
Set the seed value
seed $=$ seed
F (iseed $<=0$) iseed $=123456$
RETURN
END SUBROUTINE minit

FUNCTION ran0() RESULT(fn_val)

```
"Minimal standard" pseudo-random number generator of Park and Miller
Returns a uniform random deviate r s.t. \(0<r<1.0\)
Set seed to any non-zero integer value to initialize a sequence, then do
not change seed between calls for successive deviates in the sequence.
References
    Park, S. and Miller, K., "Random Number Generators: Good Ones
    are Hard to Find", Comm. ACM 31, 1192-1201 (Oct. 1988)
    Park, S. and Miller, K., in "Remarks on Choosing and Implementing
    Random Number Generators", Comm. ACM 36 No. 7, 105-110 (July 1993)
! *** Declaration section ***
Outpu
REAL :: fn_val
! Constants:
INTEGER, PARAMETER :: \(\mathrm{a}=48271, \mathrm{~m}=2147483647, \mathrm{q}=44488, \mathrm{r}=3399\)
```

REAL, PARAMETER $::$ scale $=1 . / \mathrm{m}, \mathrm{eps}=1.2 \mathrm{E}-7, \mathrm{rnmx}=1 .-\mathrm{eps}$

INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: a(:)
INTEGER, INTENT(OUT) :: p(:
! Constants
INTEGER, PARAMETER $:: \operatorname{lgn}=32, q=11$
(LGN $=\log$ base 2 of maximum n;
$\mathrm{Q}=$ smallest subfile to use quicksort on)
! Local:
INTEGER :: stackl(lgn), stackr(lgn), s, t, l, m, r, i, j
! Initialize the stack
$\operatorname{stackl}(1)=1$
$\operatorname{stackr}(1)=n$
$\mathrm{s}=1$
! Initialize the pointer array
DO $\mathrm{i}=1$, n
$\mathrm{p}(\mathrm{i})=\mathrm{i}$
END DO
20 IF ($\mathrm{s}>0$) THEN
$1=\operatorname{stackl}(\mathrm{s})$
$\mathrm{r}=\operatorname{stackr}(\mathrm{s})$
$\mathrm{s}=\mathrm{s}-1$
30 IF ((r-1) < q) THEN
Use straight insertion
DO $\mathrm{i}=1+1$, r
$\mathrm{t}=\mathrm{p}(\mathrm{i})$
$\mathrm{x}=\mathrm{a}(\mathrm{t})$
DO $\mathrm{j}=\mathrm{i}-1,1,-1$
IF $(\mathrm{a}(\mathrm{p}(\mathrm{j}))<=\mathrm{x})$ GO TO 50 $\mathrm{p}(\mathrm{j}+1)=\mathrm{p}(\mathrm{j})$

END DO
$\mathrm{j}=1-1$
$50 \mathrm{p}(\mathrm{j}+1)=\mathrm{t}$
END DO
ELSE
Use quicksort, with pivot as median of $\mathrm{a}(\mathrm{l}), \mathrm{a}(\mathrm{m})$, $\mathrm{a}(\mathrm{r})$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
IF $(\mathrm{a}(\mathrm{t})<\mathrm{a}(\mathrm{p}(\mathrm{l})$)) THEN
$\mathrm{p}(\mathrm{m})=\mathrm{p}(\mathrm{l})$
$\mathrm{p}(\mathrm{l})=\mathrm{t}$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
END IF
IF ($\mathrm{a}(\mathrm{t})>\mathrm{a}(\mathrm{p}(\mathrm{r})$)) THEN
$\mathrm{p}(\mathrm{m})=\mathrm{p}(\mathrm{r})$
$\mathrm{p}(\mathrm{r})=\mathrm{t}$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
IF $(\mathrm{a}(\mathrm{t})<\mathrm{a}(\mathrm{p}(\mathrm{l}))$) THEN
$\mathrm{p}(\mathrm{m})=\mathrm{p}(\mathrm{l})$
$\mathrm{p}(\mathrm{l})=\mathrm{t}$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
END IF
END IF
Partition
$\mathrm{x}=\mathrm{a}(\mathrm{t})$
$\mathrm{i}=1+1$
$\mathrm{j}=\mathrm{r}-1$
70 IF (i<= j) THEN
80 IF $(\mathrm{a}(\mathrm{p}(\mathrm{i}))<\mathrm{x})$ THEN$\mathrm{i}=\mathrm{i}+1$
END IF
90 IF ($\mathrm{x}<\mathrm{a}(\mathrm{p}(\mathrm{j})$) THEN
$\mathrm{j}=\mathrm{j}-1$
GO TO 90
END IF
IF ($\mathrm{i}<=\mathrm{j}$) THEN
$\mathrm{t}=\mathrm{p}(\mathrm{i})$
$\mathrm{p}(\mathrm{i})=\mathrm{p}(\mathrm{j})$
$\mathrm{p}(\mathrm{j})=\mathrm{t}$
$\mathrm{i}=\mathrm{i}+1$
$\mathrm{j}=\mathrm{j}-1$
END IF
GO TO 70
END IF
Stack the larger subfile
$\mathrm{s}=\mathrm{s}+1$
IF (j-1> r-i) THEN
stackl(s) $=1$
stackr(s) = j
1 = i
ELSE
stackl(s) $=\mathrm{i}$
stackr(s) $=$ r
$\mathrm{r}=\mathrm{j}$
END IF
GO TO 30
END IF
GO TO 20
END IF
RETURN
END SUBROUTINE rqsort
END MODULE Genetic_Algorithm

 \(\mathrm{j}=\mathrm{l}-1\)
 $50 \mathrm{p}(\mathrm{j}+1)=$
END DO
ELSE
Use quicksort, with pivot as median of $\mathrm{a}(\mathrm{l}), \mathrm{a}(\mathrm{m}), \mathrm{a}(\mathrm{r})$
$\mathrm{m}=(\mathrm{l}+\mathrm{r}) / 2$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
(a(t)<a(p(1))) THEN
(m) $=p(1)$
=p(m)
END IF
IF $(\mathrm{a}(\mathrm{t})>\mathrm{a}(\mathrm{p}(\mathrm{r})))$ THEN
$\mathrm{p}(\mathrm{m})=\mathrm{p}(\mathrm{r})$
$\mathrm{p}(\mathrm{r})=\mathrm{t}$
$t=p(m)$
IF $(\mathrm{a}(\mathrm{t})<\mathrm{a}(\mathrm{p}(\mathrm{l})))$ THEN
$\mathrm{p}(\mathrm{m})=\mathrm{p}(\mathrm{l})$
$\mathrm{p}(\mathrm{l})=\mathrm{t}$
$\mathrm{t}=\mathrm{p}(\mathrm{m})$
END IF
Partition
$\mathrm{i}=1+1$
$\mathrm{j}=\mathrm{r}-1$
70 IF ($\mathrm{i}<=\mathrm{j}$) THEN
80 IF (a(p(i)) < x) THEN
GO TO 80
END IF
90 IF ($\mathrm{x}<\mathrm{a}(\mathrm{p}(\mathrm{j}))$) THEN
GO TO 90
END IF
IF ($\mathrm{i}<=\mathrm{j}$) THEN
$\mathrm{p}(\mathrm{i})=\mathrm{p}(\mathrm{j})$
$\mathrm{p}(\mathrm{j})=\mathrm{t}$
$\mathrm{i}=\mathrm{i}+1$
$j=j-1$
END IF
GO TO 70
$\mathbf{s}=\mathrm{s}+1$
(j-1 > r-i) THEN
$\operatorname{stackl}(\mathrm{s})=1$
stackr(s) $=\mathrm{j}$
$1=1$
ELSE
$\operatorname{stackr}(\mathrm{s})=\mathrm{r}$
$\mathrm{r}=\mathrm{j}$
END IF
GO TO 30
END if
GD IF
RETURN
END SUBROUTINE rqsor
END MODULE Genetic_Algorithm

APPENDIX B: SURVEY OF LITERATURE-REPORTED

EXPERIMENTAL AQUEOUS PHASE HYDROXYL RADICAL

REACTION RATE CONSTANTS

During the past three decades, the $\mathrm{HO} \cdot$ rate constants with a number of organic compounds were experimentally investigated. There is currently one critical review available on the $\mathrm{HO} \cdot$ rate constants (Buxton et al., 1988). However, there is no comprehensive report available to cover the experimental data which have been reported since 1988. One of the main objectives for this survey of the experimentally reported $\mathrm{HO} \cdot$ rate constants is for the group contribution method to predict $\mathrm{HO} \cdot$ rate constant with emerging contaminants. For the accurate parameter calibration, selection and critical review of the original data is inevitable. The data used here were referred to Buxton et al (1988), University Notre Dame, The Radiation Chemistry Data Center (RCDC) (http://www.rad.nd.edu/rcde/index.html), and each literature on the peer-reviewed paper.

Table A-B1: Survey of HO• rate constants with alkane

chemcial formura	compound	$k_{\text {HO. }}$ (M-1 s-1)	references	experimental method	evaluation method	pH	Temp. (K)	$\begin{gathered} k_{\text {HO }} \\ \left(\mathrm{cm} 3 \text { molecules }{ }^{-1} \mathrm{~s}^{-1}\right) \\ \text { in gas at } 298 \mathrm{~K} \end{gathered}$	Exp. Solvation free energy (kJ/mol) at 298 K	Exp. Solvation free energy (kcal/mol) at 298 K
CH4	methane	$1.20 \mathrm{E}+08$	Getoff 1989	pulse radiolysis	C.K.		N.R.	$8.50 \mathrm{E}+09$	8.37	2.00
		$1.00 \mathrm{E}+08$	Hickel, 1975	pulse radiolysis	D.K.		298.0			
		$1.20 \mathrm{E}+08$	Stevens et al., 1972	pulse radiolysis	D.K.	5.5	N.R.			
CH3-CH3	ethane	$1.40 \mathrm{E}+09$	Getoff 1989	pulse radiolysis	C.K.		N.R.	$3.40 \mathrm{E}+11$	7.66	1.83
		$1.80 \mathrm{E}+09$	Hickel, 1975	pulse radiolysis	C.K.	4.4	298.0			
CH3-CH2-CH3	n-propane	$2.30 \mathrm{E}+09$	Getoff 1989	pulse radiolysis	C.K.	7.5-8.5	N.R.	$1.26 \mathrm{E}+12$	8.21	1.96
		$3.60 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-(CH2)2-CH3	n-butane	$2.90 \mathrm{E}+09$	Getoff 1989	pulse radiolysis	C.K.	7.5-8.5	N.R.	$2.56 \mathrm{E}+12$	8.71	2.08
		$4.60 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-(CH2)3-CH3	n-pentane	$5.40 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$4.06 \mathrm{E}+12$	9.76	2.33
CH3-(CH2) 4 - CH 3	n-hexane	$6.60 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$5.55 \mathrm{E}+12$	10.43	2.49
CH3-(CH2)5-CH3	n-heptane	$7.70 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$7.18 \mathrm{E}+12$	10.97	2.62
CH3-(CH2)6-CH3	n-octane	$9.10 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$8.86 \mathrm{E}+12$	12.10	2.89
CH3-CH(CH3)-CH3	2-methylpropane	$4.60 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$2.67 \mathrm{E}+12$	9.71	2.32
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3$	2 -methylbutane	$5.20 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$3.87 \mathrm{E}+12$		
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 2-\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{CH} 3$	3-ethylpentane	$5.90 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-C(CH3)2-CH2-CH(CH3)-CH3	2,2,4-Trimethylpentane	$6.10 \mathrm{E}+09$	Rudakov 1981	Fenton reaction	steady-state	2.0		$3.90 \mathrm{E}+12$	11.93	2.85

Table A-B2: Survey of HO• rate constants with alcohol

chemcial formura	compound	$k_{\text {HOO }}$ ($\mathrm{M}-1 \mathrm{~s} \mathrm{s-1}$)	references	experimental	evaluation	pH		Exp. Solvation free energy ($\mathrm{kJ} / \mathrm{mol}$) at 298 K	Exp. Solvation free energy ($\mathrm{kcal} / \mathrm{mol}$) at 298K
CH3-OH	methanol	$9.70 \mathrm{E}+08$	Buxton 1988				selected values	-21.39	-5.11
		$8.30 \mathrm{E}+08$	Motohashi and Saito, 1993	γ radiolysis	c.	$\begin{gathered} 7.5 \\ 293-298 \mathrm{~K} \end{gathered}$			
			Elliot and McCracken, 1989	Pulse radiolysis	c.		$\mathrm{Ea}=4.8 \mathrm{~kJ} / \mathrm{mol}, \log (\mathrm{A})=9.856, \mathrm{~T}=293.353 \mathrm{~K}$		
		1.00E+09					$\mathrm{T}=293 \mathrm{~K}$		
		1.10E+09					303 K		
		$1.20 \mathrm{E}+09$					313 K		
		1.30E+09					323 K		
		1.40E+09					333 K		
		1.40E+09					343 K		
		$1.50 \mathrm{E}+09$					353 K		
		$1.00 \mathrm{E}+09$	Wolfenden and Willson, 1982	Pulse radiolysis	CK.	6.0	temperature: ND.		
		$9.70 \mathrm{E}+08$	Willson et al, 1971	Pulse radiolysis	CK.				
		$9.50 \mathrm{E}+08$	Baxendale and Khan, 1969	Pulse radiolysis	ck.				
		8.30E+08	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		$k_{\text {tamenca }}=5.9 \mathrm{~F} 9$		
		8.30E+08	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		$k_{\text {remence }}=2.6$ E9		
		$8.30 \mathrm{E}+08$	Neta and Dorfman, 1968	Pulse radiolysis	c. .		$k_{\text {tefancese }}=7.9 \mathrm{EP}$		
		8.80E+08	Adams et al, 1965	Pulse radiolysis	C.K.	10.7	$k_{\text {tefence }}=3.9$ E 8		
		$7.80 \mathrm{E}+08$	Adams et al, 1965	Pulse radiolysis	c.	7.0	$k_{\text {remance }}=1.1 \mathrm{E} 10$		
		$1.20 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	D.	2.0			
		8.00E+08	Adams et al, 1965	Pulse radiolysis	D.M	7.0			

CH 3 - CH 2 -OH	ethanol	$1.90 \mathrm{E}+09$	Buxton 1988				selected values	-20.98	-5.01
		2.20E+09	Motohashi and Saito, 1993	γ radiolysis	C.K.	$\begin{gathered} 7.5 \\ 293-298 \mathrm{~K} \end{gathered}$			
		$1.90 \mathrm{E}+09$	Park and Getoff, 1992	Pulse radiolysis	c.	9.0			
		$1.90 \mathrm{E}+09$	Wolfenden and Willson, 1982	Pulse radiolysis	C.K.	6.0	temperature: N. .		
		$1.90 \mathrm{E}+09$	Matheson et al, 1973	Pulse radiolysis	C.K.	298 K			
		$2.10 \mathrm{E}+09$	Willson et al, 1971	Pulse radiolysis	C.K.				
		$2.10 \mathrm{E}+09$	Button, 1970	Pulse radiolysis	с.K.	11.0			
		$1.60 \mathrm{E}+09$	Baxendale and Khan, 1969	Pulse radiolysis	c.				
		1.80E+09	Neta and Doffman, 1968	Pulse radiolysis	с...		$k_{\text {tramese }}=7.9 \mathrm{EP}$		
		$1.80 \mathrm{E}+09$	Neta and Doffman, 1968	Pulse radiolysis	c.		$k_{\text {tremese }}=2.6$ E 9		
		$1.80 \mathrm{E}+09$	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		$k_{\text {trames }}=5.9 \mathrm{E} 9$		
		2.00E+09	Heckel et al, 1966	Pulse radiolysis	C.K.				
		2.20E+09	Adams et al, 1965	Pulse radiolysis	C.K.				
		$2.80 \mathrm{E}+09$	Matthews and Sangster, 1965	γ radiolysis	C.K.	3-10.5, N. .			
		$1.80 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	C.K.	7.0			
		$1.90 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	C.K.	7,10.7			
		$2.80 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	C.K.	2.0			
		$1.90 \mathrm{E}+08$	Adams et al, 1965	Pulse radiolysis	C.K.	7.0			
		$2.10 \mathrm{E}+09$	Ervens et al, 2003	Laser-phototysis	C.K.	298 K	$\mathrm{Ea}=10 \pm 5 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=(1.0 \pm 0.1) \mathrm{el1} \mathrm{M}-1 \mathrm{~s}-1$		
		$1.60 \mathrm{E}+09$				283 K			
		1.70E+09				288 K			
		$2.10 \mathrm{E}+09$				298 K			
		$2.40 \mathrm{E}+09$				308 K			
		$2.40 \mathrm{E}+09$				318 K			
						pH^{1-2}			
		2.10E+09	Monod et al, 2005	Photo-fenton	C.K.	298 K	$\mathrm{Ea}=6.9 \pm 1.2 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=(3.2 \pm) \mathrm{el1} \mathrm{M}-1 \mathrm{~s}-1$		
		$1.80 \mathrm{E}+09$				276K			
		1.70E+09				285 K			
		$2.10 \mathrm{E}+09$				298 K			
		$2.60 \mathrm{E}+09$				328 K			
CH3-(CH2)2-OH	1-propanol	$2.80 \mathrm{~F}+09$	Buxton 1988				average of 3 values	-20.22	-4.83
		$3.00 \mathrm{E}+09$	Willson et al, 1971	Pulse radiolysis	C.K.				
		2.90E+09	Adams et al, 1965	Pulse radiolysis	C.K.	10.7			
		$2.50 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	c.	7.0			
		$3.20 \mathrm{E}+09$	Ervens et al, 2003	Laser-photolysis	CK.	$\mathrm{pH}=6.0$	$\mathrm{Ea}=(\mathrm{S} \pm 0 \mathrm{f} \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(5.6 \pm 0.0 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$		
		$3.30 \mathrm{E}+09$		Laserphotysis		288 K			
		$3.20 \mathrm{E}+09$				298 K			
		4.20E+09				308 K			
		$4.30 \mathrm{E}+09$				318 K			
		$4.40 \mathrm{E}+09$				328 K			
						pH 1-2			
		$2.70 \mathrm{E}+09$	Monod et al, 2005	Photo-fenton	c.	298 K	$\mathrm{Ea}=6.5 \pm 1.7 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=4.4 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$		
		2.80E+09				276.0			
		$2.70 \mathrm{E}+09$				298.0			
		$3.80 \mathrm{E}+09$				323.0			
		$4.20 \mathrm{E}+09$				339.0			
CH3-(CH2)3-OH	1-butanol	$4.20 \mathrm{E}+09$	Buxton 1988				average of 3 values	-19.76	4.72
		$4.50 \mathrm{E}+09$	Willson et al, 1971	Pulse radiolysis	C.K.				
		$4.30 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	C.K.	7.0	$k_{\text {tramese }}=3.9 \mathrm{ES}$		
		$3.70 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	c.	7.0	$k_{\text {ramama }}=1.1 \mathrm{E} 10$		
		$4.20 \mathrm{E}+09$	Monod et al, 2005	Photo-fenton	C.K.				
		$410 \mathrm{E}+09$	Ervens etal 2003	Laser photolysis	CK				
CH3-(CH2)4-OH	1-pentanol	$3.70 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	c.		$k_{\text {tabema }}=1.11{ }^{\text {a }} 10$	-18.71	-4.47
		$4.00 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	c..		$k_{\text {remaers }}=1.0 \mathrm{E} 10$		
$\mathrm{CH} 3-(\mathrm{CH} 2) 5 . \mathrm{OH}$	1-hexyanol	$7.00 \mathrm{E}+09$	Scholes and Willson, 1967	γ radiolysis	C.K.	-2.0		-18.25	4.36
CH 3 -(CH2)6-OH	1-heptanol	$7.40 \mathrm{E}+09$	Scholes and Willson, 1967	γ radiolysis	C.K.	-2.0		-17.75	4.24
CH 3 - $\mathrm{CH}(\mathrm{OH})$ - CH 3	2-propanol	1.90 E+09	Buxton 1988				selected values	-19.93	4.76
						7.5			
		$1.60 \mathrm{E}+09$	Motohashi and Saito, 1993	γ radiolysis	c. .	293-298 K			
		$2.30 \mathrm{E}+09$	Elliot and Simsons, 1984	Pulse radiolysis	C.K.	292 K	$\mathrm{Ea}=5 \mathrm{~kJ} / \mathrm{mol}, \log (\mathrm{A})=10.256, \mathrm{~T}=292-352 \mathrm{~K}$		
		1.90 E+09	Wolfenden and Willson, 1982	Pulse radiolysis	C.K.	6.0	temperature: N.D.		
		$2.30 \mathrm{E}+09$	Willson et al, 1971	Pulse radiolysis	C.K.				
		$1.90 \mathrm{E}+09$	Greenstock et al, 1968	Pulse radiolysis	C.K.	2.0-10.0			
		1.90 E +09	Thomas, 1965	Pulse radiolysis	C.K.	$\begin{gathered} 7.0 \\ 298 \mathrm{~K} \end{gathered}$			
						pH 1.2			
		$1.90 \mathrm{E}+09$	Monod et al, 2005	Photo-fenton	c.	298 K			
			Ervens etal 2003	Laser photolysis	CK	${ }_{\substack{\text { pH } \\ 298.8}}$	$\mathrm{Ea}_{\mathrm{a}}=(8 \pm 2) \mathrm{kJ} / \mathrm{mol} \mathrm{A}=(61 \pm 03) \mathrm{el}$ M-1s-1		
$\mathrm{CH3} 3 \mathrm{CH}(\mathrm{OH})$ - $\mathrm{CH} 2 . \mathrm{CH} 3$	2-butanol	3.10E +09	Adams et al, 1965	Pulse radiolysis	C. .	7.0			
						pH 5.8			
		$3.50 \mathrm{E}+09$	Ervens et al, 2003	Laser photolysis	C.K.	298 K	$\mathrm{Ea}=(8 \pm 3) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(7.4 \pm 0.3) \mathrm{el} 1 \mathrm{M}-1 \mathrm{~s}-1$		
CH3-CH2-CH(OH)-CH2-CH3	3-pentanol	$2.10 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction	C.K.	-1.8			
(CH3)3-C.OH	tert-butanol	$7.20 \mathrm{E}+08$	Eliot and Simons, 1989		ck.		$\mathrm{Ea}=10 \mathrm{~kJ} / \mathrm{mol}$		
		$5.00 \mathrm{E}+08$	Ervens et al, 2003	Laser photolysis	CK.	298 K	$\mathrm{Ea}=(10 \pm 3) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(3.3 \pm 0.1) \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$		
		$1.80 \mathrm{E}+09$				283 K			
		$2.30 \mathrm{E}+09$				288 K			
		$2.40 \mathrm{E}+09$				298 K			
		$3.00 \mathrm{E}+09$				308 K			
		2.70 E+09				318 K			
		3.30E+09				328 K			
			Monod et al. 2005			${ }_{298}{ }_{29}$			
			Monod et al, 2005	Photo-fenton	${ }_{\text {CK }}^{\text {CK }}$	298 K			
		$4.80 \mathrm{E}+08$	Motohashi and Saito, 1993						
		$5.90 \mathrm{E}+08$	Willson et al, 1971						
		$6.00 \mathrm{E}+08$	Buton et al, 1988				recommended values		
		$6.00 \mathrm{E}+08$	Wolfenden and Willson, 1982		C.				
		7.60 E+08	Gordon et al, 1977		D. K .				
		$6.00 \mathrm{E}+08$	Buston 1988				selected values		
		$4.80 \mathrm{E}+08$	Motohashi and Saito, 1993	γ radiolysis	C.	$\begin{gathered} 7.5 \\ 293-298 \mathrm{~K} \end{gathered}$			
		$6.60 \mathrm{E}+08$	Elliot and Simsons, 1984	Pulse radiolysis	ck.	292 K	$\mathrm{Ea}=10 \mathrm{~kJ} / \mathrm{mol}, \log (\mathrm{A})=10.609, \mathrm{~T}=292-352 \mathrm{~K}$		
		$6.00 \mathrm{E}+08$	Wolfenden and Willson, 1982	Pulse radiolysis	CK.	6.0			
		7.60 E+08	Gordon et al, 1977	Pulse radiolysis	D. .	7.0			
		$5.90 \mathrm{E}+08$	Willson et al, 1971	Pulse radiolysis	CK.				
		$4.20 \mathrm{E}+08$	Adams et al, 1965	Pulse radiolysis	C.	7.0			
CH 3 - $\mathrm{CH} 2 . \mathrm{C}(\mathrm{CH} 3)(\mathrm{OH})-\mathrm{CH} 3$	2-methyl-2-butanol	$1.90 \mathrm{E}+09$	Anbar 1966	γ radiolysis	C.K.	9.0			
CH3-CH(CH3)--CH2-OH	2 -methyl-1-propanol	$3.30 \mathrm{E}+09$	Buxton 1988				average of 3 values	-18.88	4.51
		2.90E+09	Reuvers 1973	Pulse radiolysis	CK.		$k_{\text {tamence }}=1.0 \mathrm{E} 10$		
		$3.60 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	C.		$k_{\text {spanesa }}=1.11 \mathrm{E} 10$		
		$3.30 \mathrm{E}+09$	Adams et al, 1965	Pulse radiolysis	C.	7.0			
$\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3)_{2}-\mathrm{CH} 2-\mathrm{OH}$	2,2-dimethyl-1-propanol	$5.20 \mathrm{E}+09$	Walling 1975	Fenton reaction	teady-stat	$<$			
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{OH}$	3-methyl-1-butanol	$3.80 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text {retama }}=1.0 \mathrm{E} 10$		
		$3.70 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text {stamesa }}=1.1 \mathrm{E} 10$		

Table A-B3: Survey of HO• rate constants with poly-alcohol

chemcial formura	compound	$k_{\text {HO }}$ ($\left.\mathrm{M}-1 \mathrm{~s}-1\right)$	references	experimental method	evaluation method	pH	
HO-CH2-OH	dihydroxymethane	$7.60 \mathrm{E}+08$	Chin 1994	Flash photolysis	C.K.	297 K	$\mathrm{Ea}=8.5 \mathrm{~kJ} / \mathrm{mol}, \log (\mathrm{A})=10.37, \mathrm{~T}=279.319 \mathrm{~K}, \mathrm{pH}=1.5-5.7$
		$1.00 \mathrm{E}+09$	Hart et al., 1964		C.K.		
		$1.30 \mathrm{E}+09$	Merz and Waters, 1949	Fenton reaction	C.K.	1.0	
HO-CH2-CH2-OH	ethyleneglycol	$2.40 \mathrm{E}+09$	Matheson 1973	Pulse radiolysis	C.K.		
		$1.70 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	C.K.		
		$1.70 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	$k_{\text {rearence }}=1.0 \mathrm{E} 10$
		$1.40 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{HO}-(\mathrm{CH} 2) 3 \mathrm{O}-\mathrm{OH}$	1,3-propanediol	$2.50 \mathrm{E}+09$	Anbar 1966	γ radiolysis	C.K.	9.0	
HO-(CH2) 4 -OH	1.4-butanediol	$3.20 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	
HO-(CH2) 5 -OH	1,5-pentanediol	$3.60 \mathrm{E}+09$	Anbar 1966	γ radiolysis	C.K.	9.0	
HO-(CH2)6-OH	1,6-hexyanediol	$4.70 \mathrm{E}+09$	Anbar 1966	γ radiolysis	C.K.	9.0	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH}) 2$	1,1-ethanediol	$1.20 \mathrm{E}+09$	Shuchmann 1988	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{OH}$	1,2-propanediol	$1.70 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}$	1,3-butanediol	$2.20 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	2,3-butanediol	$1.30 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	2,4-pentanediol	$2.30 \mathrm{E}+09$	Ulanski 1994	Pulse radiolysis	C.K.		
HO-CH2-CH(OH)-CH2-OH	glycerol	$2.00 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text {refrence }}=1.1 \mathrm{E} 10$
		$1.80 \mathrm{E}+09$	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text {rearence }}=1.0 \mathrm{E} 10$
		$2.10 \mathrm{E}+09$	Willson et al, 1971	Pulse radiolysis	C.K.		
		$1.90 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	10.7	
		$1.50 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	7.0	
		$2.10 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.		contains 0.04 M NasCO3-
$\mathrm{HO}-\mathrm{CH} 2-[\mathrm{CH}(\mathrm{OH})] 3-\mathrm{CH} 2-\mathrm{OH}$	arabinitol	$1.80 \mathrm{E}+09$	Moore 1979	Pulse radiolysis	C.K.	7.0	
HO-CH2-[CH(OH)] $4-\mathrm{CH} 2-\mathrm{OH}$	mannitol	$1.70 \mathrm{E}+09$	Buxton 1988	Fenton reaction	C.K.	7.4	$\mathrm{T}=310 \mathrm{~K}$
		$1.40 \mathrm{E}+09$	Ching et al., 1993	Fenton reaction	C.K.	7.4	$\mathrm{T}=310 \mathrm{~K}$
		$1.90 \mathrm{E}+09$	Motohashi and Saito, 1993	γ radiolysis	C.K.	$\begin{gathered} 7.5 \\ 293-298 \mathrm{~K} \\ \hline \end{gathered}$	
$\mathrm{C}(\mathrm{CH} 2 \mathrm{OH}) 4$	pentaerythritol	$3.30 \mathrm{E}+09$	Anbar 1966	γ radiolysis	C.K.	9.0	
CH2OH-CHOH-CHOH-CH2OH	erythritol	$1.50 \mathrm{E}+09$	Moore 1979	Pulse radiolysis	C.K.	7.0	
HOCH 2 COOH	glycolic acid	$5.40 \mathrm{E}+08$	Scholes 1967				

Table A-B4: Survey of HO• rate constants with ether

chemcial formura	compound	$k_{\text {Hob }}$ (M-1 s-1)	references	experimental method	evaluation method	pH		Exp. Solvation free energy (kJ/mol) at 298K	Exp. Solvation free energy (kcal/mol) at 295 K
CH3-O.CH3	dimethylether	$100 \mathrm{E}-09$	Eiberberger 1980	Pulse radiolysis	CK			8.04	1.92
$\mathrm{CH} 3 \mathrm{CH}_{2} \mathrm{O} \mathrm{CH} 2 \mathrm{CH} 3$	dethystether	290E-099	Eibentergu 1980	Pulue radulysis	CK			.737	1.76
(CH3)3-C.O.CH3	tett-buty-methyl-ether (MTBE)	$160 \mathrm{~F}-09$	Eibenterger 1980	Pulse radiolvsis	cK			925	221
(CHD) 3-C.O-CH2-CH3	tert buty - ebyy- ether (ETBE)	1.905-09	Meryk 2001	Pulse radiolysis	c.K	$\begin{gathered} \mathrm{pH} 2 \mathrm{H} \\ 29542 \mathrm{~K} \end{gathered}$			
		$1.50 \mathrm{E}-09$	Monod et al, 2005	Photo fenton	C.K	$\begin{gathered} \mathrm{pH} 1.2 \\ 298 \mathrm{~K} \end{gathered}$	$\begin{gathered} \mathrm{Ea}_{\mathrm{a}}=48+4 \mathrm{7kJ} \mathrm{~mol}, \\ \mathrm{~A}=1.2 \mathrm{e} 10 \mathrm{M} \cdot \mathrm{ss}-1 \end{gathered}$		
		$170 \mathrm{E}-09$				279			
		$150 \mathrm{E}-09$				2360			
		$1.502-09$				297.0			
		$130 E-09$				3095			
		$240 \mathrm{E}-09$				320			
		2300.09				333			
(CH3) 2- $\mathrm{HC}-\mathrm{CO} \mathrm{CH}$ (CH) $)^{2}$	disopropy t ether (DIPE)	2,99E-09	Meryk 2001	Pulse radiolysis	T.S.	$\begin{gathered} \mathrm{pH} 2.0 \\ 295 \pm 2 \mathrm{~K} \end{gathered}$			
			Schuchmann						
		$3.705-09$	and von Sorntag. 1987	Pulse radiolysis	CK	ND.			
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OCH}_{3}$	tert amyl methyl ether (TAMI)	23 25-09	Meryk 2001	Pube radulysis	TS.	$\begin{gathered} \mathrm{pH} 20 \\ 29922 \mathrm{~K} \end{gathered}$			
CH2(OCHi) 2	dinethosymelhane	$120 \mathrm{E}-09$	Eibenterger 1980	Pulue radiolysis	CK				
CHCH(OCH3)2	1,1-dimethoryethane	220E-09	Eibenberger 1980						
$\mathrm{CH}(\mathrm{OC} 2 \mathrm{HS} 2$	diechorymethane	$100 \mathrm{~F}-09$	Anber 1966	y madolysis	CK	90			
CH3 0 CH 2 OCH		3.20E-98	Neta						
CH3-CH2-CH2-OH	2-methoryethanol	$1.30 \mathrm{E}-09$	Anbe 1966	y radiolysis	CK	9.0			
C2H5-O.CH2-CH2OH	2 2ethoryethanal	$170 E-09$	Anher 1966	y madolysis	ck	90			
CH 30 CH 2 CH 2 OCH 3	ethylene dy y of dimathyt ether	$1.005=09$	Anbar 1966	7 radolysis	ck	9.0			
CHBCH2-OCH2CH2-OCH2CH	ethylene glycol diethy t ether	$230 \mathrm{E}-09$	Anber 1966	y rabolysis	CK	9.0			
CH3CH2-O.CH2CH2.CHSCH2-C.CH2CH3	diethylene glycel dierthy ether	320E-09	Anber 1966	y madolysis	ck	90			
$\mathrm{HO} \mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OCH2} \mathrm{CH} 2 \mathrm{OH}$	deethytuee ply	$210 \mathrm{E}-09$	Anbas 1960	y radoly ${ }^{\text {as }}$	CK	9.0			
	2-methy-2-methoxy propanol	S.40E-08	Mesyk 2004						

Table A-B5: Survey of HO• rate constants with ester

chemcial formura	compound	$k_{\text {HO }}$. (M-1 s-1)	references	experimental method	evaluation method	pH	
HCOO-CH2-CH3	ethyl formate	$3.90 \mathrm{E}+08$	Adams 1965	Pulse radiolysis	C.K.		
		3.30E +08	Gligorovski and Hermann, 2004	Photo-fenton	C.K.	298 K	$\begin{gathered} \mathrm{Ea}=10 \pm 4 \mathrm{~kJ} / \mathrm{mol}, \mathrm{~A}=1.8 \pm 0.1 \mathrm{e} 10 \mathrm{M}- \\ 1 \mathrm{~s}-1 \\ 288-328 \mathrm{~K} \\ \mathrm{G}^{* *}=24 \pm 11 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}^{* *}=7 \pm 3 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{~S}^{* *}=-(57 \pm 4) \mathrm{kJ} / \mathrm{mol} \end{gathered}$
CH3-COO-CH3	methyl acetate	$1.20 \mathrm{E}+08$	Adams 1965	Pulse radiolysis	C.K.	2.0	
CH3-COO-CH2-CH3	ethyl acetate	$4.00 \mathrm{E}+08$	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 3$	propyl acetate	1.40E+09	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-\mathrm{COO}-(\mathrm{CH} 2) 3$ - CH 3	n -butylacetate	1.80E+09	Monod et al, 2005	Photo-fenton	C.K.	298 K	$\mathrm{Ea}=8.3 \pm 1.7 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=5.3 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$
		1.30E+09				278	
		1.80E+09				288.0	
		1.80E+09				297.0	
		$1.90 \mathrm{E}+09$				307.0	
		$2.30 \mathrm{E}+09$				318.0	
$\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH}(\mathrm{CH} 3)^{2}$	iso-propyl acetate	4.50E+08	Adams 1965	Pulse radiolysis	C.K.	2.0	
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 3$	methyl propionate	$4.50 \mathrm{E}+08$	Buston 1988	Pulse radiolysis	C.K.		
		3.20E+08	Biro and Wojnarovits, 1992	Pulse radiolysis	C.K.		
CH3-CH2-COO-CH2-CH3	ethyl propionate	8.70E+08	Adams 1965				
$\mathrm{CH} 3-(\mathrm{CH} 2)^{2}-\mathrm{COO}-\mathrm{CH} 3$	methyl butyrate	1.70E+09	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-(\mathrm{CH} 2) 2$ - $\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 3$	ethyl butyrate	$1.60 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OH}$	2-hydroxyethyl acetate	$9.10 \mathrm{E}+08$	Matsusige et al, 1975	Pulse radiolysis	C.K.	$\mathrm{T}=293 \mathrm{~K}$	
$\mathrm{CH} 3 \mathrm{CH} 2-\mathrm{O}-\mathrm{CO}-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 2 \mathrm{CH} 3$	diethyl malonate	$6.50 \mathrm{E}+08$	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3 \mathrm{CH} 2-\mathrm{O}-\mathrm{CO}-(\mathrm{CH} 2) 2$ - $\mathrm{COO}-\mathrm{CH}_{2} \mathrm{CH} 3$	diethylsuccinate	$7.80 \mathrm{E}+08$	Adams 1965	Pulse radiolysis	C.K.		
$\mathrm{CH} 3-\mathrm{O}-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 3$	methyl methoxy acetate	$1.80 \mathrm{E}+09$	Massaut 1988	Pulse radiolysis	C.K.	-7.0	

Table A-B6: Survey of $\mathrm{HO} \bullet$ rate constants with aldehyde

chemcial formura	compound	$k_{\text {HO}}$. (M-1 s-1)	references	experimental method	evaluation method	pH	
HCHO	form aldehyde	1.00E+09					
CH3-CHO	acetaldehyde	3.60E+09	Schuchmann and von Sonntag, 1988	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=5.0 \\ -293 \mathrm{~K} \end{gathered}$	
		$9.50 \mathrm{E}+08$	Merz and Waters, 1949	Fenton reaction	C.K.	1.0	
CH3-CH2-CHO	propionaldehyde	2.20E+09	Mezyk 1994	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=5.2 \\ \mathrm{~T}=298 \mathrm{~K} \end{gathered}$	$\mathrm{Ea}=28 \mathrm{~kJ} / \mathrm{mol}, \log (\mathrm{A})=14.207, \mathrm{~T}=276.313 \mathrm{~K}$
		$2.80 \mathrm{E}+09$	Hesper and Hermann	Photo-fenton	C.K.	$\begin{gathered} \mathrm{pH}=6.0 \\ 298 \mathrm{~K} \end{gathered}$	$\mathrm{Ea}=11 \pm 3 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=2.6 \pm 0.1 \mathrm{e} 11 \mathrm{M}-1 \mathrm{~s}-1$
CH3-CH2-CH2-CHO	butyraldehyde	$3.90 \mathrm{E}+09$	Adams 1965	Pulse radiolysis	C.K.	2.0	
		$3.90 \mathrm{E}+09$	Hesper and Hermann	Photo-fenton	C.K.	$\begin{gathered} \mathrm{pH}=5.9 \\ 298 \mathrm{~K} \end{gathered}$	$\mathrm{Ea}=8 \pm 3 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=8.1 \pm 0.3 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$
(CH3)2-CH-CHO	isobutyl aldehyde	$2.90 \mathrm{E}+09$	Gligorovski and Hermann, 2004	Photo-fenton	C.K.	298 K	$\begin{gathered} \mathrm{Ea}=6 \pm 3 \mathrm{~kJ} / \mathrm{mol}, \mathrm{~A}=3.0 \pm 0.1 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1 \\ 288-328 \mathrm{~K} \\ \mathrm{G}^{* * *}=19 \pm 10 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}^{* *}=3.3 \pm 1.7 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{~S}^{* *}=-(53 \pm 3) \mathrm{kJ} / \mathrm{mol} \end{gathered}$
CHO-CHO	glyoxal	$6.60 \mathrm{E}+07$	Draganic and Marcovic	Radiolysis	C.K.	1.3	$\mathrm{Ea}=131$
CH3-CO-CHO	methyl glyoxal	$5.30 \mathrm{E}+08$	Monod et al, 2005	Photo-fenton	C.K.	$\begin{aligned} & \mathrm{pH} 1-2 \\ & 298 \mathrm{~K} \end{aligned}$	$\mathrm{Ea}=9.1 \pm 2.5 \mathrm{~kJ} / \mathrm{mol}, \mathrm{A}=2.0 \mathrm{e} 10 \mathrm{M}-1 \mathrm{~s}-1$
		$5.30 \mathrm{E}+08$				276.0	
		$3.10 \mathrm{E}+08$				276.0	
		$5.30 \mathrm{E}+08$				288.0	
		$4.80 \mathrm{E}+08$				288.0	
		$5.30 \mathrm{E}+08$				298.0	
		$4.60 \mathrm{E}+08$				298.0	
		$7.00 \mathrm{E}+08$				318.0	
		$6.70 \mathrm{E}+08$				318.0	
(CH3)3-C-0-CHO	tertbutylformate (TBA)	4.10E+08	Onstein 1999	UV/H2O2	С. K .	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=298 \mathrm{~K} \end{gathered}$	
$\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OCH} 3)-\mathrm{CHO}$	2-methyl-2-methoxy-propanal	$3.99 \mathrm{E}+09$	Mezyk 2004				
HO-C(CH3)2-CHO	hydroxy-iso-butylaldehyde	3.00E+09	Acero 1991				

Table A-B7: Survey of HO• rate constants with carbonyl

chemcial formura	compound	$\mathrm{k}_{\text {R }} \cdot(\mathrm{C} \cdot 1-15-1)$	references	experimental method	evaluation methed	ph		Exp. Solvation free energy ($\mathrm{kJ} / \mathrm{mol}$) at 298 K	Exp. Solvation free energy (kcal mol) at 298K
CH3-CO-CH3	actens	$1.10 \mathrm{E}=08$	Butren et al, 1988					-1612	-3.85
		$1.30 \mathrm{E}-08$	Wolfenden and Willton, 1952	Pulse radiolysir	c.	60			
		$1.40 \mathrm{E}-08$	Willsen et al, 1971	Puber radiolysis	ck				
		B.30E-07	Thomas 1985	Pulse nadiotyzis	c.				
		$9.70 \mathrm{E}-07$	Adams 1965	Pulse radiolysis	ck				
		$2.00 \mathrm{E}-08$	Eviens et at, 2003	Laseer phototysis	ck	298 K	$\mathrm{Sa}_{a}=(18 \pm 11) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(3.4 \pm 0.4) \mathrm{e} 11 \mathrm{M}-15 \cdot 1$		
		$1.30 \mathrm{E}-08$				283 K			
		$1.20 \mathrm{E}-08$				288 K			
		$2.10 \mathrm{E}-08$				298 K			
		$2.20 \mathrm{E}=08$				308 K			
		$2.70 \mathrm{E}-08$				318 K			
		$1.10 \mathrm{E}-08$	Monodetal, 2005	Photo foton		$\mathrm{pH}^{1.2}$			
		8. $00 \mathrm{E}=07$,	Morornor		2780			
		$1.10 \mathrm{E}=08$				2880			
		1.20E-08				2380			
		$1.30 \mathrm{E}-08$				3010			
		$1.30 \mathrm{E}-08$				37\%			
		$1.70 \mathrm{E}-08$				3230			
						$\mathrm{pH}=0.0$			
		$1.30 \mathrm{E}-08$	Hesper and Hemarn	Photofenton	C.	298K			
CH 3 CH 2 CO CH	2.butanone	$6.60 \mathrm{E}-08$	Maryk 1994	Pulse radolysis		5.2. T-297K	$\mathrm{Ea}=12 \mathrm{~W}$ mol Log $(\mathrm{A})=11.009, \mathrm{~T}=275.340 \mathrm{~K}$	-15.24	3.64
		$9.00 \mathrm{E}-08$	Adams 1969	Pulse radiolysis	ck				
		$8.10 \mathrm{E}=08$	Monod etal, 2005	Photo fenton	ck	$\begin{aligned} & \mathrm{pH1} H 2 \\ & 208 \mathrm{~K} \end{aligned}$	Ea $=13.3 \pm 256 \mathrm{mmol}, \mathrm{A}=26.2611 \mathrm{M} .15 .1$		
		5.30E-08				2760			
		$7.80 \mathrm{E}-08$				2760			
		$7.00 \mathrm{E}=08$				230			
		$8.10 \mathrm{E}-08$				2980			
		$9.00 \mathrm{E}-08$				224.0			
		$103 \mathrm{E}-09$				3180			
		$1.02 \mathrm{E}-09$				3280			
		1. $30 \mathrm{E}=09$	Cligorovskia and Mermamn, 2004	Photo-fenton	ck	298 K			
		$1.80 \mathrm{E}=09$	George et al, 2003	Teflon wavelength			$\mathrm{EA}=3126 \mathrm{WJmol}, \mathrm{A}=4.10 .3 \mathrm{el4} \mathrm{M} / \mathrm{ls}-1$		
$\mathrm{CH} \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{COCH}^{\text {CH }}$	2 pentanone	$1.90 \mathrm{E}+09$	Adams 1965	Pulse	CK.			44.78	353
(CH5)2-CH.CH2-CO.CH3	methyl-iso-buty ketont	$2.10 \mathrm{E}-09$	Monod et al, 2005	Photo-fenton	CK.	$\begin{aligned} & \mathrm{pH} 1.2 \\ & 298 \mathrm{~K} \end{aligned}$			
		$2.10 \mathrm{E}-09$		Thoren		2760	(1)		
		$2.10 \mathrm{E}-09$				2980			
		$3.50 E+09$				3230			
		4.20E+09				3390			
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{-\mathrm{CH}} 2 \mathrm{CH}_{3}$ CH3 $\mathrm{CO}-\mathrm{CO} \mathrm{CH} 3$	3 -pentanone	1.t0E -09	Adams 1965	Pulse radolyas	CK			14.28	3.4
	2,3-butanelion	$1.70 \mathrm{E}-08$	Lilie 1968	Pulse radiolysis	CK				
		$2.80 \mathrm{E}=08$	Gbgotovsha and Hermamin, 2004	Photo fenton	CK	298 K			
CH3 COCH2 ${ }^{\text {COCH3 }}$	2.4.pentanione	9.90E +09	Brosibewas 1982	Pulse radolysis	ck	6.4			
	acelormlacetone	$7.00 \mathrm{E}+08$	Chgoravala and Hermanm, 2004	Photo fereten	ck	293 K			
$\mathrm{CH3}^{\text {CO }} \mathrm{CH}(\mathrm{OH}) \mathrm{CH3}$	3 hyduo. 2 butanone	$1.20 \mathrm{E}=09$	Libe 1968	Pulse radolysis	ck				
		$8.50 \mathrm{E}-08$	Adams et al, 1965	Pulse radiolyzis	ck.	20			
		2.905 -09	Hesper and Hemann	Photo-fenton	CK.	$\begin{gathered} \mathrm{pH}-508 \\ 299 \mathrm{~K} \end{gathered}$	$\mathrm{Ea}_{\mathrm{a}} \mathbf{1 1} 33 \mathrm{~kJ}$ mol $\mathrm{A}=2.920 .1 \mathrm{el1} \mathrm{M} \cdot 1 \mathrm{~s}-1$		
CH3-CO.CHO	methyl glyonal	$110 \mathrm{E}-09$	Evens etal, 2003	Laser photolysis	CK	298 K	$\mathrm{Ea}=(13+6) \mathrm{kl} / \mathrm{mol}, \mathrm{A}=(29+0$ 3) $\mathrm{e} 11 \mathrm{M} .1 \mathrm{~s} \cdot \mathrm{~T}$		
		$110 \mathrm{E}+09$				288 K			
		1.10E-09				298 K			
		1.50E-09				308 K			
		$1.80 \mathrm{E}-09$				318 K			
		$2.00 \mathrm{E}-09$				328 K			

Table A-B8: Survey of $\mathrm{HO} \bullet$ rate constants with carboxylic acid

chemod formuna	compound	$k_{\text {mo }}(\mathrm{M} \cdot 1 \pm .1)$	teferences	experimental method	evaluation method	pH		Exp. Solvation free energy ($\mathrm{kJ} / \mathrm{mol}$) at 298K	Exp. Solvation free energy (kcal/mol) at 298K
H.COOH	forme eacd	$1.30 \mathrm{E}+13$	Butun 1983				average of 2 values		
		$1.40 \mathrm{E}+03$	Thomas 1995	Pulse radoty	c.				
		$1.30 \mathrm{E}+03$	Admus et al, 1965	Pulse radolyas	ck.	1.0			
		$1.00 E+08$	Clun and Wine, 1997	Flush photolyys	c.	T-297K			
HCOO	fommate ion	$3.20 \mathrm{E}-09$	Bution 1985				selected value		
		3.10E+09	Clan and Wire, 1994	Fhush photolyas	CK.	$\begin{aligned} & \mathrm{T}=297 \mathrm{~K} \\ & \mathrm{pH}=5.7 \end{aligned}$	Ea $=10 \mathrm{~N} / \mathrm{mol}$ Logeg $(\mathrm{A})=113, \mathrm{~T}-279.319 \mathrm{~K}, \mathrm{pH}=0.31 .0$		
		320E+09	Motohashi ma Sato, 1993	γ matysis	ck	$\begin{gathered} 75 \\ 293-298 \mathrm{~K} \end{gathered}$			
		: $30 \mathrm{E}+09$	Fliot te al, 1980	Pulse radotyws	ck.	$\mathrm{T}=208 \mathrm{~K}$	$\mathrm{Ea}=4.0 \mathrm{~V} / \mathrm{mol} \log (\mathrm{A})=10333, \mathrm{~T}=292.473 \mathrm{~K}$		
		$5.10 \mathrm{E}+09$	Logan, 1989	Flash photolysis oxdative quenching	CK.	9.0			
		3.80E +09	Ellot and Sumsons, 1934	Pulse radolyss	c.K.	T-292K	$\mathrm{Ea}=8.5 \mathrm{~kJ} \mathrm{~mol} \log (\mathrm{~A})=11.101, \mathrm{~T}=292.352 \mathrm{~K}$		
		3.50E-09	Wolfenden and Wilason, 1982	Pulse radiolysis	CK.	6.0			
		$3.20 \mathrm{E}-09$	Willson et al, 1971	Rulse radiolysis	ck.				
		$2.20 \mathrm{E}-09$	Bareodale and Khan, 1969	Pulse radiolysis	CK.				
		4.10E-09	Duten, 1969	Pulse radiolysis	CK	12.0	pHII and 13		
		$2.60 \mathrm{E}+09$	Thomas, 1965	Pulse radiolyzis	CK.	7.0			
CHS-COOH	acteic acid	1.70E-07	Chin 1994	Flash photolysis	C.K.	$\begin{aligned} & \mathrm{pH}--1.8 \\ & \mathrm{~T}=297 \mathrm{~K} \end{aligned}$	$\mathrm{Ea}=1 \mathrm{lkJ}$ moL Log $(A)=9.18, \mathrm{~T}=279.319 \mathrm{~K}$	28.05	-6.70
		9,20E-06	Thomas 1985	Pulse radiotysis	DK.	1.0			
		$1.508-07$	Thomas 1865	Pulse radiolysis	c.	1.0			
		$230 \mathrm{E}-07$	Adams et al, 1965	Pulse radiolysis	ck				
CH3-COO.	acetate ion	130E+07	Crin and Wine, 1094	flash photolysis	ck	$\begin{aligned} & \mathrm{pH}=8 \mathrm{~s} \\ & \mathrm{~T}=297 \mathrm{~K} \end{aligned}$	$\mathrm{EA}=15 \mathrm{~kJ}$ mol, $\log (\lambda)=10.45, \mathrm{~T}=279.319 \mathrm{~K}$		
		$710 \mathrm{E}+07$	Schuler, 1981	Pulse radolysis	ck	107			
		$100 \mathrm{E}+08$	Fisher and Hamill 1973	Pdase radulyas	ck				
		190k+07	Willsonetal 1971	Pdere ratolyws	c.				
		$850 \mathrm{E}+07$	Willson et al 1971	Pulse radotyas	PBK				
CH3 $\mathrm{CH}_{2} \mathrm{COOH}$	proporna acad	$6.20 \mathrm{E}+08$	Scholes 1967	y radoly ms	ck.	2.0		27.09	6.47
		3.30E-03	Mer and Wates, 1949	Fenton reaction	ck	10			
		$3.20 \mathrm{E}-08$	Invens etal, 2003	Laser photolysis	ck.	298 K			
		$2.90 \mathrm{E}-08$				288 K			
		3.20 E -08				298 K			
		4.70E-08				300 K			
		$5.20 \mathrm{E}-08$				318K			
		1,70E-08				328 K			
CH3CH2-COO.	propionate	$120 \mathrm{E}+09$	Logan, 1589	Flash photolysis axidative quencking	ck.	90			
		$820 \mathrm{E}+08$	Anhar etal, 1968	y madiolysis	ck	90			
		1200 +08	Evensetat, 2003	Laser photolysis	ck	298 K	$\mathrm{Ea}=(15 \pm 4) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(32+0$ 2) $\mathrm{e} 11 \mathrm{M} .1 \mathrm{~s} \cdot 1$		
		$660 \mathrm{E}+08$				288 K			
		$720 \mathrm{E}+08$				298 K			
		$3.90 \mathrm{E}+08$				308 K			
		$1.10 \mathrm{E}+09$				318 K			
		$1.40 \mathrm{E}+09$				328 K			
CWi-(CiL) 2 COOH	butync acid	$220 \mathrm{E}-09$	Scholes 1967	γ radiolytis	stery state method	20			
$\mathrm{CH} 3 . \mathrm{CH} 2 . \mathrm{CH2} 2 \mathrm{COO}$.	butyrate ion	$2.00 E-09$	Anbar et al, 1956	y radiolysis	CK.	9.0			
$\mathrm{CH3}-(\mathrm{CH} 2) 6 . \mathrm{COOH}$	caprylic adid	$4.80 \mathrm{E}+09$	Scholes 1967	yradiolysis	steay-state method	20			
(H5-(CH2) $7 . \mathrm{COOH}$	Azelsic acid	$5.40 \mathrm{E}+09$	Scholes and Wrilson, 1957	y radiolysis	stegy-state method	20			
(CHD) 2 CHCHLCOOH	3-methyltutyic acid	$1.40 \mathrm{E}+09$	Merz and Waters, 1949	Fenton reaction	CK	1.0			
(CH3) 3 - COOOH	tri-methy-acesie acid	$6.50 \mathrm{E}+08$	Nouser 1094	Pulse radiolysis	CK				
(CH3)-C.COO.	trimethylacetate ion	$650 \mathrm{E}+08$	Buchanan et al, 1976	fenton reaction	steny-state methed	20			
		$1505+09$	Anhar et at, 1956	y madiolysis	stenv-stute method	90			
	2 -mothy.2.memhary.prerpanaic neid	777E +08	Mente 30 a						
CH2.C(CHT) OCHT)-CONH $\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}$	lacte a acal	$430 \mathrm{E}+08$	Adams 196s						
		$5.245-08$	Maxtin et al, 2008	pulse radolysis	cK.		$2 \mathrm{C}, \mathrm{Ea}_{\mathrm{a}}=9.31-0.45 \mathrm{~kJ}$ mole, $\mathrm{pH}=6$		
$\mathrm{CHSCH} 2 \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ HO-CH2-(CHOH) 4 -COOH HOCH2COOH	lastate ion	$7.70 \mathrm{E}+08$			CK		$22.2 \mathrm{C}, \mathrm{E}_{\mathrm{a}}=10.76+0.35 \mathrm{~L} \mathrm{~d}$ mole, $\mathrm{pH}=-3.6$		
	2 2hydrosyturysic adid	$1.30 \mathrm{E}=09$	Mere 1949	Fenton reaction	CK	1.0			
	glucuronic acid	1.30 E -09	Philips 1970	Pulse radiolysis	C.K.				
	glycolic acid	9.40E-08	Scholes 1967	yradiolyzis	steras-state method	20	${ }_{8} \mathrm{~K}_{3}=3.83$		
сносоон	glyorylic acid	3.60 E +08	Livens et al, 2003	Laser plototyys	C.	298 K	$\mathrm{Ea}=(8 \pm 3) \mathrm{kJ} / \mathrm{mol} . \mathrm{A}=(8.1 \pm 0.4) \mathrm{e} 9 \mathrm{M}-1 \mathrm{~s}-1$		
		$3.50 \mathrm{E}+08$				2888			
		$3605-08$				298 K			
		$4205+08$				308 K			
		$4.50 \mathrm{E}+08$				318 K			
		$5.10 \mathrm{E}=08$				328 K			
сносоо.	\#lyasylate	$2.60 \mathrm{E}-09$	Evens etal, 2003	Laser photolysis	CK.	298 K	$\Sigma_{a}=(36 \pm 0) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(6.0 \pm 0.4) \mathrm{p} 15 \mathrm{M}-1 \mathrm{~s}-\mathrm{l}$		
		$1.90 \mathrm{E}+09$				288 K			
		$2.60 \mathrm{E}-09$				298 K			
		$5.005+09$				308K			
		$760 \mathrm{E}+09$				318 K			
		$110 \mathrm{E}+10$				328 K			
СНЗСОСОО	pyruve acis	$120 \mathrm{E}+08$	Ervens et al, 2003	Laser photolysis	cK	298 K			
		$9.00 \mathrm{E}+07$				288 K			
		$1.20 \mathrm{E}+03$				298 K			
		$1.50 \mathrm{E}+03$				308 K			
		$2.10 \mathrm{E}-08$				318 K			
		2.80 E +08				3265			
chicocoo.	pyruvate	$7.00 e^{-08}$	Ervens et al, 2003	Laser photolysis	CK.	298 K	$E a=(19 \pm 4) \mathrm{kJ} / \mathrm{mol}, \mathrm{A}=(1.310 .1) \mathrm{e} 12 \mathrm{M}-1 \mathrm{~s}-\mathrm{l}$		
		$6005+08$				288 K			
		$1.005+08$				298 K			
		$900 \mathrm{E}+08$				308 K			
		$120 \mathrm{E}+00$				318 K			
		$1.50 \mathrm{E}+09$				328 K			
		3.60E +08	Merz and Waters, 1949	Fenton reaction	steay state method	1.0			

Table A-B9: Survey of HO• rate constants with poly-carboxylic acid

Table A-B10: Survey of $\mathrm{HO} \bullet$ rate constants with alkyl halides

Chemcial Formura	Compound	$k_{\text {HO }}$. (M-1 s-1)	references	experimental method	evaluation method	pH	Exp. Solvation free energy (kJ/mol) at 298K	Exp. Solvation free energy (kcal/mol) at 298K
$\mathrm{Cl}-\mathrm{CH} 2-\mathrm{COOH}$	chloroacetic acid	4.30E+07	Adams 1965					
		$2.75 \mathrm{E}+07$	Mao et al, 1991	TiO2 UV	C.K.			
CH3-Cl	monochloromethane	$5.50 \mathrm{E}+07$	Milosavljevic et al, 2005	Pulse radiolysis	C.K.		-2.34	-0.56
C12-CH2	dichloromethane	9.00E +07	Haag and Yao, 1992	Chemical reaction	C.K.	$\begin{gathered} \mathrm{pH}=8.5 \\ \mathrm{~T}=297 \mathrm{~K} \end{gathered}$	-5.69	-1.36
		$9.00 \mathrm{E}+07$	Getoff, 1991	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=8.6 \\ \mathrm{~T}=303 \mathrm{~K} \end{gathered}$		
		$5.80 \mathrm{E}+07$	Emmi et al, 1985	Pulse radiolysis	P.B.K	$\mathrm{pH}=-10$		
		$1.00 \mathrm{E}+08$	Cohen and Benson, 1987					
Br 2 - CH 2	dibromomethane	9.00E+07	Haag and Yao, 1992	Chemical reaction	C.K.	$\begin{aligned} & \mathrm{pH}=8.5 \\ & \mathrm{~T}=297 \mathrm{~K} \end{aligned}$		
		$9.90 \mathrm{E}+07$	Haag and Yao, 1992	Chemical reaction	C.K.	$\begin{gathered} \mathrm{pH}=3 \\ \mathrm{~T}=297 \mathrm{~K} \end{gathered}$		
$\mathrm{BrCl2CH}$	bromodichloromethane	$7.10 \mathrm{E}+07$	Mezyk et al, 2006	Pulse radiolysis	C.K.			
CHBr 2 Cl	chlorodibromomethane	8.30E+07	Mezyk et al, 2006	Pulse radiolysis	C.K.			
CHC13	chloroform	$5.00 \mathrm{E}+07$	Haag and Yao, 1992	Photolysis	C.K.	$\begin{gathered} \mathrm{pH}=2.8 \\ \mathrm{~T}=29.8 \mathrm{~K} \end{gathered}$	-4.48	-1.07
		$7.40 \mathrm{E}+06$	Chutny, 1966	Radiolysis	C.K.			
		9.50E+06	Bednar and Teply, 1960	fenton reaction	C.K.	$\mathrm{pH}=0.4$		
		1.80E+07	Bednar and Teply, 1960	Beta-radiolysis	C.K.	$\mathrm{pH}=0.4$		
		$1.40 \mathrm{E}+07$	Anbar et al, 1966	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$		
12-CH2	diiodomethane	2.10E+09	Mohan and Moorthy, 1990	Pulse radiolysis		$\mathrm{pH}=6.0$		
		$6.30 \mathrm{E}+09$	Mohan and Moorthy, 1990	Pulse radiolysis	PB.K	$\mathrm{pH}=1.5$		
		$6.00 \mathrm{E}+09$			P.B.K	$\mathrm{pH}=3.0$		
BrClCH 2	bromochloromethane	$2.50 \mathrm{E}+09$	Maity et al, 1995	Pulse radiolysis	P.B.	PH <0, acid catalyzed		
CIICH 2	chloroiodomethane	$4.00 \mathrm{E}+09$	Mohan and Mittal, 1992	Pulse radiolysis	T.S.			
CHBr3	tribromomethane	$1.50 \mathrm{E}+08$	Mezyk 2006					
		$1.00 \mathrm{E}+08$	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{ClCH} 2-\mathrm{CH} 2 \mathrm{Br}$	1-bromo-2-chloroethane	4.50E+09	Maity et al, 1995	Pulse radiolysis	PB.K.	$\mathrm{PH}<0$, acid catalyzed		
CH3-CH2Br	bromoethane	1.30E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{BrCH} 2-\mathrm{CH} 2 \mathrm{Br}$	$\begin{aligned} & \text { 1,2-dibromoethane } \\ & \text { (1,2-DBE) } \end{aligned}$	$2.60 \mathrm{E}+08$	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
		$2.10 \mathrm{E}+08$	Lat et al, 1988	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{Br} 2 \mathrm{CH}-\mathrm{CHBr} 2$	1,1,2,-2tetrabromoethane	$2.20 \mathrm{E}+08$	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
CH3-CHC12	1,1-dichloroethane (1,1-DCE)	$1.30 \mathrm{E}+08$	Lat et al, 1988	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
		$1.30 \mathrm{E}+08$	Milosavijevic et al, 2005	Pulse radiolysis	C.K.			
$\mathrm{CH} 2 \mathrm{Cl}-\mathrm{CH} 2 \mathrm{Cl}$	1,2-dichloroethane (1,2-DCE)	$7.90 \mathrm{E}+08$	Getoff 1990	Pulse radiolysis	C.K.	$\mathrm{pH}=-6.5$		
		$2.00 \mathrm{E}+08$	Lat et al, 1988	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
		$2.20 \mathrm{E}+08$	Milosavijevic et al, 2005	Pulse radiolysis	C.K.			
$\mathrm{ClCH} 2-\mathrm{CHCl} 2$	$\begin{aligned} & \text { 1,1.2-trichloroethane } \\ & (1,1,2-\mathrm{TCE}) \end{aligned}$	$1.10 \mathrm{E}+08$	Lat et al, 1988	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	-8.16	-1.95
		$3.00 \mathrm{E}+08$	Haag and Yao, 1992	Photolysis	C.K.	$\begin{aligned} & \mathrm{pH}=2.8 \\ & \mathrm{~T}=297 \mathrm{~K} \end{aligned}$		
		$3.00 \mathrm{E}+08$	Milosavljevic et al, 2005	Pulse radiolysis	C.K.			
CC13-CH3	1,1,1-trichloroethane (1,1,1-TCE)	$1.00 \mathrm{E}+08$	Getoff 1989	Photolysis	C.K.	$\mathrm{pH}=6.7$	-1.05	-0.25
		$4.00 \mathrm{E}+07$	Lat et al, 1988	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{Cl3C}_{-} \mathrm{CH} 2 \mathrm{Cl}$	1,1,1-2-tetrachloroethane $1,1,1,2-$ TetCE	1.80E+07	Mao et al., 1991	TiO2/UV	C.K.		-4.81	-1.15
		$1.00 \mathrm{E}+07$	Milosavljevic et al, 2005	Pulse radiolysis	C.K.			
CHC12-CHC12	1,1,2,2-tetrachloroethane $(1,1,2,2-$-etCE $)$	2.50E+08	Milosavljevic et al, 2005	Pulse radiolysis	C.K.			
$\mathrm{Cl3C-CHC12}$	pentachloroethane (PCE)	$1.00 \mathrm{E}+07$	Mao et al., 1991	TiO2UV	C.K.			
CC13-CHO		3.10E+09	Ross 1977					
CF3-CHC12	2,2-dichloro-1,1,1-trifluoroethane	$1.30 \mathrm{E}+07$	Lal 1988					
$\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{CH} 2-\mathrm{Br}$	1-bromopropane	1.70E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{CH}_{3} \mathrm{CH} 2 \mathrm{CH} 2-\mathrm{Cl}$	1-chloropropane	$2.50 \mathrm{E}+09$	Getoff 1991	Pulse radiolysis	C. .	$\mathrm{pH}=7.5-8.5$	-1.13	-0.27
CHC1-CHC1-CH2Br	1,2-dichloro-3-bromopropane	7.30E+08	Haag and Yao, 1992	Photolysis	C.K.	$\begin{aligned} & \mathrm{pH}=2.8 \\ & \mathrm{~T}=297 \mathrm{~K} \end{aligned}$		
CH2C1-CHC1-CH3	1,2-dichloropropane	$2.00 \mathrm{E}+00$	Haag and Yao, 1992	Photolysis	C.K.	$\begin{gathered} \mathrm{pH}=2.8 \\ \mathrm{~T}=297 \mathrm{~K} \end{gathered}$		
$\mathrm{CH} 2(\mathrm{Cl})-\mathrm{CH} 2-\mathrm{CH} 2(\mathrm{Br})$	1-bromo-3-chloropropane	$2.00 \mathrm{E}+09$	Maity et al, 1995	Pulse radiolysis	PB.K.	$\mathrm{PH}<0$, acid catalyzed		
(CH 3) 3 - $\mathrm{C}-\mathrm{Br}$	2-methyl-2-bromopropane	$2.20 \mathrm{E}+08$	Lal and Mahal, 1992	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$		
$\mathrm{Cl}^{-\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{CH} 2-\mathrm{I}}$	1-chloro---iodo-propane	4.70E+09	Mohan and Mittal, 1992	Pulse radiolysis	T.S.			
$\mathrm{CH} 2 \mathrm{Br}-\mathrm{CH} 2-\mathrm{CH} 2 \mathrm{Br}$	1,3-dibromopropane	4.10E+09	Mohan 1993					

Table A-B11: Survey of $\mathrm{HO} \cdot$ rate constants with nitro compounds

chemcial formura	compound	$k_{\text {HO }}$ ($\left.\mathrm{M}-1 \mathrm{~s}-1\right)$	references	experimental method	evaluation method	pH		Exp. Solvation free energy ($\mathrm{kJ} / \mathrm{mol}$) 298 K	Exp. Solvation free energy ($\mathrm{kcal} / \mathrm{mol}$) 298K
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{NO} 2$	1-nitropropane	$2.50 \mathrm{E}+08$	Bors et al., 1993	Pulse radiolysis	C.K.		$k_{\text {semence }}=1.3 \mathrm{E} 10$	-13.98	-3.34
(CH3)2-CH-NO2	2 -nitropropane	8.00E+07	Bors et al., 1993	Pulse radiolysis	C.K.		$k_{\text {remence }}=1.3 \mathrm{E} 10$	-13.15	-3.14
CH2CNO2	chloronitromethane	$1.94 \mathrm{E}+08$	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=293 \mathrm{~K} \end{aligned}$			
CHC12NO2	dichloronitromethane	5.12E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=293 \mathrm{~K} \end{gathered}$			
CH2BrNO2	bromonitromethane	8.36E+07	Cole et al., 2006	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=293 \mathrm{~K} \end{aligned}$			
CHBr2NO2	dibromonitromethane	$4.75 \mathrm{E}+08$	Mezyk et al, 2006	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=293 \mathrm{~K} \end{aligned}$			
CHBrCLNO2	bromochloronitromethane	$4.20 \mathrm{E}+08$	Mezyk et al., 2006	Pulse radiolysis	C.K.	N.R.			
C13C-NO2	chloropicrim	$4.97 \mathrm{E}+07$	Cole et al., 2006	Pulse radiolysis	C.K.				
CH2-NO2-	aci-Nitromethane anion	8.50E+09	Asmus and Taub, 1968	Pulse radiolysis	P.B.K.	10.5			

Table A-B12: Survey of HO• rate constants with nitrile

chemcial formura	compound	$k_{\text {HO }} \cdot(\mathrm{M}-1 \mathrm{~s}-1)$	references	experimental method	evaluation method	pH	Exp. Solvation free energy ($\mathrm{kJ} / \mathrm{mol}$) 298K	Exp. Solvation free energy (kcal/mol) 298K
CH3-CN	acetonitrile	$2.20 \mathrm{E}+07$	Neta 1975	Pulse radiolysis	D.M.	3.5		
$\mathrm{CN}-\mathrm{CN}$	cyanogen	$<1.0 \mathrm{E} 7$	Draganic et al., 1971	Pulse radiolysis	T.S.			
CH3-CH2-CN	propionitrile	$9.30 \mathrm{E}+07$	Draganic et al., 1973	γ radiolysis	C.K.		-16.12	-3.85
$\mathrm{NC}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CN}$	succino nitrile	$3.00 \mathrm{E}+07$	Draganic et al., 1973	γ radiolysis	C.K.			
CCl 3 CN	trichloroacetonitrile	$3.90 \mathrm{E}+07$						
$\mathrm{H} 2 \mathrm{~N}-\mathrm{CN}$	cyanamide	$8.70 \mathrm{E}+06$	Draganic et al., 1979	γ radiolysis	C.K.			
H-CN	hydrogen cyanide	$6.00 \mathrm{E}+07$	Buechler et al., 1976	Pulse radiolysis	P.B.K.	3.5		

Table A-B13: Survey of $\mathrm{HO} \bullet$ rate constants with amine

Table A-B14: Survey of HO• rate constants with NDMA and related compounds

chemcial formura	compound	$k_{\text {HO }}$ ($\left.\mathrm{M}-1 \mathrm{~s}-1\right)$	references	experimental method	evaluation method	pH
(CH3)2-N-NO	N -nitrosodimethylamine (NDMA)	4.30E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=294 \mathrm{~K} \end{gathered}$
		$4.50 \mathrm{E}+08$	Lee et al., 2007	O3/H2O2	C.K.	$\begin{aligned} & \mathrm{pH}= \\ & 294 \mathrm{~K} \end{aligned}$
(CH3-CH2)2-N-NO	N-nitrosodiethylamine	$6.99 \mathrm{E}+08$	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=294 \mathrm{~K} \end{gathered}$
(CH3-CH2-CH2)2-N-NO	N-nitrosodipropylamine	$2.30 \mathrm{E}+09$	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=292 \mathrm{~K} \end{aligned}$
($\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 2) 2$-N-NO	N -nitrosodibutylamine	4.71E+09	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=292 \mathrm{~K} \end{gathered}$
$(\mathrm{CH} 3-\mathrm{CH} 2)(\mathrm{CH} 3)-\mathrm{N}-\mathrm{NO}$	N -nitrosomethylethylamine	4.95E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=294 \mathrm{~K} \end{aligned}$
$(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 2)(\mathrm{CH} 3-\mathrm{CH} 2)-\mathrm{N}-\mathrm{NO}$	N-nitrosoethylbutylamine	$3.10 \mathrm{E}+09$	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=292 \mathrm{~K} \end{gathered}$
	N-nitrosomorpholine	$1.75 \mathrm{E}+09$	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=292 \mathrm{~K} \end{aligned}$
	N-nitrosopyrrolidine	$1.75 \mathrm{E}+09$	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=292 \mathrm{~K} \end{aligned}$
	N-nitrosopiperidine	$2.98 \mathrm{E}+09$	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=292 \mathrm{~K} \end{gathered}$
	N -nitrosohexamethyleneimine	4.35E+09	Landsman et al., 2007	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=292 \mathrm{~K} \end{aligned}$
(CH3)2-N-NO2	dimethylnitramine	$5.44 \mathrm{E}+08$	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=294 \mathrm{~K} \end{gathered}$
(CH 3$)(\mathrm{CH} 3 \mathrm{CH} 2)-\mathrm{N}-\mathrm{NO} 2$	methyl ethyl nitramine	$7.60 \mathrm{E}+08$	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=294 \mathrm{~K} \end{gathered}$
(CH3-CH2)2-N-NO2	diethyl nitramine	8.67E +08	Mezyk et al., 2006	Pulse radiolysis	C.K.	$\begin{aligned} & \mathrm{pH}=7.0 \\ & \mathrm{~T}=294 \mathrm{~K} \end{aligned}$

Table A-B15: Survey of $\mathrm{HO} \bullet$ rate constants with amide

chemcial formura	compound	$k_{\text {HO }}$ (M-1 s-1)	references	experimental method	evaluation method	pH	
H2N-CN	cyanamide	8.70E+06	Draganic et al., 1978	γ radiolysis	C.K.		$k_{\text {reference }}=1.9 \mathrm{Eg}$
CH3-CO-NH2	acetamide	$1.90 \mathrm{E}+08$	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
CH3-CO-NH-C-(CH3)3	N-tert-butyl-acetamide	$1.10 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
CH3-CO-N-(CH3)2	N, N-dimethyl acetamide	$3.50 \mathrm{E}+09$	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
H-CO-N-(CH3)2	N, N-dimethyl formamide	$1.70 \mathrm{E}+09$	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
(CH3)3-C-CO-N-(CH3)2	N, N-dimethyl pivalamide	$3.90 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$
H2N-CH2-CO-NH2	2-aminoacetamide	$2.80 \mathrm{E}+09$	Rao and Hayon, 1975	Pulse radiolysis	P.B.K.	10	
HO-CH2-CO-NH2	glycolamide	$1.10 \mathrm{E}+09$	Bell et al, 1975	Pulse radiolysis	C.K.	8.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{HO}-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CO}-\mathrm{NH} 2$	2-hydroxypropionamide	$1.30 \mathrm{E}+09$	Bell et al, 1975	Pulse radiolysis	C.K.	4.5	$k_{\text {reference }}=1.3 \mathrm{E} 9$
$(\mathrm{CH} 3) 2$-CH-CO-NH2	2-methylpropionamide	$1.60 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{CH} 3-\mathrm{CO}-\mathrm{NH}-\mathrm{CH} 3$	N -methylacetamide	$1.60 \mathrm{E}+09$	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
H-CO-NH-CH3	N -methyl-formamide	$1.20 \mathrm{E}+09$	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$(\mathrm{CH} 3) 2$-CH-CO-NH-CH3	N-butylformamide	$1.90 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
(CH3)3-C-CO-NH-CH3	N-methyl-pivalamide	$2.40 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CO}-\mathrm{NH}-\mathrm{CH} 3$	N-methyl-propionamide	$1.40 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{C} 2 \mathrm{H} 5-\mathrm{CO}-\mathrm{NH} 2$	propionamide	$7.00 \mathrm{E}+08$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
(CH3)3-CO-NH2	trimethylacetamide	$1.50 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{H} 2 \mathrm{~N}-\mathrm{CH} 2-\mathrm{CO}-\mathrm{NH} 2$	glycinamide	$2.80 \mathrm{E}+09$	Rao and Hayon, 1975	Pulse radiolysis	P.B.K.	10	
(CH3)2-CH-CO-NH2	isobutyramide	$1.60 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$
$(\mathrm{CH} 3) 2$-CH-CO-NH-CH3	N-methylisobutyramide	$1.90 \mathrm{E}+09$	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$

Table A-B16: Survey of HO• rate constants with sulphide

chemcial formura	compound	$k_{\text {HO }}$. (M-1 s-1)	references	experimental method	evaluation method	pH		exp. solvation energy, $\mathrm{kJ} / \mathrm{mol}$	exp. solvation energy, $\mathrm{kcal} / \mathrm{mol}$
H3C-S-CH3	dimethyl sulfide	$1.90 \mathrm{E}+10$	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.			-6.45	-1.54
H3C-S-S-CH3	di-methyl-di-sulfides	$1.70 \mathrm{E}+10$	Bonifacic et al., 1975	Pulse radiolysis	$\begin{aligned} & \text { P.B.K. } \\ & \text { R.T. } \end{aligned}$	-4.0		-7.66	-1.83
H3C-CH2-S-CH2-CH3	di-ethyl-sulfides	$1.40 \mathrm{E}+10$	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.			-5.99	-1.43
H3C-CH2-S-S-CH2-CH3	di-ethyl-di-sulfides	$1.40 \mathrm{E}+10$	Bonifacic et al, 1975	Pulse radiolysis	$\begin{aligned} & \text { P.B.K. } \\ & \text { R.T. } \end{aligned}$	-4.0		-6.82	-1.63
$(\mathrm{CH} 3) 2$-CH-S-S-CH-(CH3)2	di-ethyl-methyl-di-sulfides	$2.00 \mathrm{E}+10$	Bonifacic et al., 1975	Pulse radiolysis	PB.K.	-4.0			
(CH3)3-C-S-S-C-(CH3)3	di-tert-butyl-sulfides	$6.50 \mathrm{E}+09$	Bonifacic et al., 1975	Pulse radiolysis	$\begin{aligned} & \text { P.B.K. } \\ & \text { R.T. } \end{aligned}$	-4.0			
$\mathrm{CH} 3-\mathrm{S}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}$	2-methylthio-ethanol	$7.90 \mathrm{E}+09$	Schoeneich and Bobrowski, 1993	Pulse radiolysis	PB.K.	$\mathrm{T}=298 \mathrm{~K}$			
H3C-S-CH2-CH2-CHO	methional	8.20E+09	Bors et al., 1976	Pulse radiolysis	C.K.				
HO-CH2-CH2-S-CH2-CH2-OH	2,2-thiodiethanol	$1.40 \mathrm{E}+10$	Mohan and Mittal, 1991	Pulse radiolysis	P.B.K.	6.0			
		$8.10 \mathrm{E}+09$	Schoeneich and Bobrowski, 1993	Pulse radiolysis	P.B.K.	$\mathrm{T}=298 \mathrm{~K}$			
		$2.00 \mathrm{E}+10$	Mohan and Mittal, 1991	Pulse radiolysis	C.K.	6.0	$k_{\text {refence }}=1.1 \mathrm{E} 10$		
HO-CH2CH2CH2-S-CH2CH2CH2-OH	3,3'-thiodiethanol	$1.40 \mathrm{E}+10$	Mohan and Mittal, 1991			6.0			
	3,3'-thiodipropanol	$1.40 \mathrm{E}+10$	Mohan and Mittal, 1991	Pulse radiolysis	P.B.K.	$\begin{aligned} & \mathrm{pH}=6.0 \\ & \mathrm{~T}=296 \mathrm{~K} \end{aligned}$			
HOOC-CH2-S-CH2-COOH	thiodiacetic acid	$6.00 \mathrm{E}+09$	Adams et al., 1965						
$\mathrm{S}=\mathrm{C}=\mathrm{S}$	carbon disulfides	$8.00 \mathrm{E}+09$	Roebke et al., 1973	Pulse radiolysis	C.K.	7.6	$k_{\text {referance }}=1.1 \mathrm{E} 10$		

Table A-B17: Survey of HO• rate constants with sulfoxide

chemcial formura	compound	$k_{\text {HO }}$ (M-1 s-1)	references	experimental method	evaluation method	pH	
CH3-SO-CH3	di-methyl-sulfoxide	$6.50 \mathrm{E}+09$	Milne 1989	Flash photolysis	C.K.	4.0-5.0	
		$7.00 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	C.D.	$\mathrm{pH}=2.0$ R.T.	
		$5.80 \mathrm{E}+09$	Reuvers et al., 1973	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$
		$7.00 \mathrm{E}+09$	Meissner et al., 1967	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{SO}-\mathrm{CH} 2-\mathrm{CH} 3$	di-ethyl-sulfoxide	$6.50 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
$\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{SO}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 3$	di-propyl-sulfoxide	$6.30 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
$(\mathrm{CH} 3) 2 \mathrm{CH}-\mathrm{SO}-\mathrm{CH}(\mathrm{CH} 3)^{2}$	di(1-methyl-ethyl)sulfoxide	$6.80 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
(CH3-CH2-CH2-CH2)2-SO	di-butyl-sulfoxide	$8.00 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
(CH3)3-C-SO-C-(CH3)3	di-tert-butyl-sulfoxide	$5.30 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
CH3-SO-CH2-S-CH3	methyl methyl thiomethyl sulfoxide	$4.80 \mathrm{E}+09$	Sumiyoshi 1982	Pulse radiolysis	P.B.K.		
HO-CH2CH2-SO-CH2CH2-OH	di(2-hydroxyethyl) sulfoxide	$5.30 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
$(\mathrm{CH} 3)^{2}-\mathrm{CH}-\mathrm{SO}-\mathrm{CH}-(\mathrm{CH} 3)^{2}$	diisopropyl sulfoxide	$6.80 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	
$\mathrm{C} 4 \mathrm{H8OS}$	tetramethylene sulfoxides	$7.00 \mathrm{E}+09$	Veltwisch et al., 1980	Pulse radiolysis	D.K.	$\begin{gathered} \mathrm{pH}=2.0 \\ \text { R.T. } \end{gathered}$	

Table A-B18: Survey of HO• rate constants with thiol

chemcial formura	compound	$k_{\text {HO}} \cdot(\mathrm{M}-1 \mathrm{~s}-1)$	references	experimental method	evaluation method	pH		
HS-CH2-CH2-OH	mercaptoethanol	$6.80 \mathrm{E}+09$	Jayson et al., 1971	Pulse radiolysis	C.K.	6.5	$k_{\text {reference }}=1.0 \mathrm{E} 10$	
$-\mathrm{S}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}$	2-hydroxyethylsulfide ion	$4.00 \mathrm{E}+09$	Karmann et al., 1969	Pulse radiolysis	P.B.K.	11		
HS-CH2-COOH	mercaptoacetic acid	$1.20 \mathrm{E}+09$	Merz and Waters, 1949	Fenton reaction	C.K.	1	$k_{\text {referense }}=4.3 \mathrm{ES}$	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{SH})-\mathrm{COO}-$	2-mercaptopropionate ion	$1.70 \mathrm{E}+10$	Hoffman and Hayon, 1973	Pulse radiolysis	R.M.	7.2	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$\mathrm{pKa}=4,10.7$
		$1.60 \mathrm{E}+10$			R.M.	10.8		
HS-CH2-CH2-COOH	3-mercaptopropionate ion	$3.00 \mathrm{E}+10$	Hoffman and Hayon, 1973	Pulse radiolysis	R.M.	6	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$\mathrm{pKa}=4.3,10.3$
		$2.10 \mathrm{E}+10$				10.7		
HS-CH2-COOCH3	methyl thioglycolate	$2.10 \mathrm{E}+10$	Hoffman 1973	Pulse radiolysis	C.K.	5.1	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$\mathrm{pKa}=7.8$
		$1.80 \mathrm{E}+10$				10.6		
HS-CH2-CH(OH)-CH(OH)-CH2-SH	dithiothreitol	$1.50 \mathrm{E}+10$	Akhlaq and von Sonntag, 1987	Pulse radiolysis	P.B.K.	4		
	glutatione	$2.30 \mathrm{E}+10$	Misik et al., 1993	photolysis	C.K.	6.8	$k_{\text {rearence }}=4.3 \mathrm{E} 9$	
		$9.00 \mathrm{E}+09$	Liphard et al., 1990	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=8.0 \\ \mathrm{~T}=291 \mathrm{~K} \end{gathered}$	$k_{\text {reference }}=5.2 \mathrm{E} 9$	
		$1.30 \mathrm{E}+10$	Eriksen and Fransson, 1988			7.8	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$\mathrm{pKa}=2.5,3.7,9.2,9.5$
		$4.00 \mathrm{E}+10$				10.6		
		$1.30 \mathrm{E}+10$	Quintiliani et al., 1977	Pulse radiolysis	C.K.	5.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$	pH 8 and 9.2
		$1.40 \mathrm{E}+10$	Adams et al., 1965	Pulse radiolysis	C.K.	1	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$\mathrm{pKa}=2.12,3.53,8.66,9.62$

Table A-B19: Survey of HO• rate constants with urea

chemcial formura	compound	$k_{\text {HO}}$ ($\left.\mathrm{M}-1 \mathrm{~s}-1\right)$	references	experimental method	evaluation method	pH	
H2N-CS-NH2	thiourea	$1.20 \mathrm{E}+10$	Wang et al, 1999	pulse radiolysis	B.D.K		
H2N-CO-NH2	urea	$7.90 \mathrm{E}+05$	Masuda et al., 1980	γ radiolysis	C.K.		$k_{\text {eference }}=1.2 \mathrm{E} 10$
(CH3) $2 \mathrm{~N}-\mathrm{CS}-\mathrm{N}(\mathrm{CH} 3)^{2}$	tetramethyl thiourea	8.00E+09	Wang et al., 1999	pulse radiolysis	B.D.K		
CH3-NH-CS-NH-CH3	1,3-dimethyl thiourea	1.20E+09	Fessenden 1981	pulse radiolysis	P.B.K.		
$\mathrm{CH} 3-\mathrm{NH}-\mathrm{CO}-\mathrm{NH}-\mathrm{CH} 3$	1,3-dimethylurea	2.60E+09	Fessenden 1981	pulse radiolysis	C.K.		$k_{\text {remence }}=1.9 \mathrm{E} 9$
$\mathrm{CH} 3-\mathrm{NH}-\mathrm{CO}-\mathrm{NH} 2$	methylurea	2.00E+09	Miller and Cornwell, 1998	chemical reaction	C.K.		
(CH3)2-N-CO-N-(CH3)2	tetramethyl urea	5.20E+09	Liphard et al., 1990	pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=8.0 \\ \mathrm{~T}=291 \mathrm{~K} \\ \hline \end{gathered}$	$k_{\text {refames }}=1.1 \mathrm{E} 10$

Table A-B20: Survey of $\mathrm{HO} \bullet$ rate constants with phosphate-containing compounds

chemcial formura	compound	$k_{\text {HO }}$. (M-1 s-1)	references	experimental method	evaluation method	pH
$\mathrm{O} \quad \mathrm{CH}_{3}$	dimethyl methylphosphonate (DMMP)	$2.00 \mathrm{E}+08$	Aguila et al., 2001	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ 298 \mathrm{~K} \end{gathered}$
	Diethyl methylphosphonate (DEMP)	$6.00 \mathrm{E}+08$	Aguila et al., 2001	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ 298 \mathrm{~K} \end{gathered}$
	trimethyl phosphate	$1.20 \mathrm{E}+08$	von Sonntag et al., 1972	Pulse radiolysis	C.K.	
	triethyl phosphate	$2.90 \mathrm{E}+09$	Greenstock and Shierman, 1975	gamma-radiolysis	C.K.	$\mathrm{pH}=-7.0$
	tributyl phosphate	$1.00 \mathrm{E}+10$	Clay and Witort, 1974	gamma-radiolysis	C.K.	$\mathrm{pH}=1.2$

Table A-B21: Survey of HO• rate constants with unsaturated alkene

chemcial formura	compound	$k_{\text {HO}}$. (M-1 s-1)	references	experimental method	evaluation method	pH		$\begin{gathered} \mathrm{kHO} \text { gas } \\ (\mathrm{cm} 3 / \text { molecule-sec }) \end{gathered}$
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{OH}$	allyl alcohol	$5.90 \mathrm{E}+09$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {rearence }}=1.1 \mathrm{E} 10$	$2.59 \mathrm{E}-11$
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{CN}$	allyl cyanide	$6.90 \mathrm{E}+09$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {rearence }}=1.1 \mathrm{E} 10$	
$\mathrm{CH} 3 \mathrm{CH}=\mathrm{CHCHO}$	crotonaldehyde	5.80E+09	Lilie 1970	Pulse radiolysis	C.K.		$k_{\text {reatence }}=1.1 \mathrm{E} 10$	$3.60 \mathrm{E}-11$
$\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{CH}=\mathrm{CH} 2$	1-butene	$7.00 \mathrm{E}+09$	Thomas 1967	Pulse radiolysis	C.K.		$k_{\text {rearence }}=1.1 \mathrm{E} 10$	$3.14 \mathrm{E}-11$
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOCH} 3$	1-butene-3-one	$8.50 \mathrm{E}+09$	Lilie 1970	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	
		$8.50 \mathrm{E}+08$	Kumar et al., 1990	Pulse radiolysis	C.K.	6.8		
Cis $\mathrm{HOOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$	maleic acid	$6.00 \mathrm{E}+09$	Cabelli 1985	Pulse radiolysis	P.B.K.	$\begin{gathered} 4.0-10.5 \\ 298 \mathrm{~K} \end{gathered}$		
Trans $\mathrm{HOOC}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$	fumaric acid	$6.00 \mathrm{E}+09$	Cabelli 1985	Pulse radiolysis	P.B.K.	$\begin{gathered} 4.0-10.5 \\ 298 \mathrm{~K} \end{gathered}$	$\mathrm{pKa}=3.03,4.44$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCN}$	acrilonitrile	$5.30 \mathrm{E}+09$	Kumar 1988	Pulse radiolysis	C.K.	-7.0	$k_{\text {rearence }}=1.1 \mathrm{E} 10$	1.99E-11
		$5.20 \mathrm{E}+09$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {rearence }}=1.1 \mathrm{E} 10$	
		$2.80 \mathrm{E}+09$	Buxton et al., 1979	Pulse radiolysis	C.K.	10.9	$k_{\text {refenence }}=3.9 \mathrm{E} 8$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCHO}$	acrolein	$7.00 \mathrm{E}+09$	Lilie 1970	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	$1.99 \mathrm{E}-11$
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCONH} 2$	acrylamide	$5.90 \mathrm{E}+09$	Buxton et al., 1988				average of 4 values	
		$5.80 \mathrm{E}+09$	Kumar et al., 1988	Pulse radiolysis	C.K.	7.0	$k_{\text {refence }}=1.1 \mathrm{E} 10$	
		$4.70 \mathrm{E}+09$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {retanence }}=1.1 \mathrm{E} 10$	
		$5.30 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	C.K.		$k_{\text {refenence }}=1.0 \mathrm{E} 10$	
		$6.80 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	P.B.K.			
		$6.60 \mathrm{E}+09$	Chambers et al., 1970	Pulse radiolysis	C.K.	-12.0	$k_{\text {refence }}=3.9 \mathrm{ES}$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CH}-\mathrm{OH}$	vinyl alcohol	$1.50 \mathrm{E}+08$	Ulanski, 1994	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCOOH}$	acrylic acid	$1.50 \mathrm{E}+09$	Walling 1973	Fenton reaction	C.K.	1.0	$k_{\text {refence }}=9.7 \mathrm{ES}$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH}=\mathrm{CH} 2$	butadiene	$7.00 \mathrm{E}+09$	Thomas 1967	Pulse radiolysis	C.K.	298 K	$k_{\text {rearence }}=1.1 \mathrm{E} 10$	6.66E-11
trans $\mathrm{ClCH}=\mathrm{CHCl}$	trans 1,2-dichloroethylene	$7.30 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	P.B.K.	-6.5		
		$7.30 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	C.K.	-6.5	$k_{\text {refence }}=1.1 \mathrm{E} 10$	
$\mathrm{ClCH}=\mathrm{CHC1}$	dichloroethylene	$3.80 \mathrm{E}+09$	Getoff 1991	Pulse radiolysis	C.K.	8.6	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$1.09 \mathrm{E}-11$
		$5.00 \mathrm{E}+09$	Koester and Asmus, 1971			-6.5		
		$4.40 \mathrm{E}+09$	Koester and Asmus, 1971			-6.5		
$\mathrm{NCN}=\mathrm{C}(\mathrm{NH} 2)^{2}$	dicyandiamide		Draganic et al., 1979	γ radiolysis	C.K.	5	$k_{\text {reference }}=3.9 \mathrm{EP}$	
$\mathrm{H} 3 \mathrm{C}-\mathrm{C}=\mathrm{CH}-\mathrm{HC}=\mathrm{CH}-\mathrm{CH} 2 \mathrm{OH}$	2,4-hexadien-1-ol	$9.80 \mathrm{E}+09$	Simic 1973	Pulse radiolysis	P.B.K.	7.0		
$\mathrm{CH} 2=\mathrm{CHCOOCH} 2 \mathrm{CH} 2 \mathrm{OH}$	2 -hydroxyethyl acrylate	$1.10 \mathrm{E}+10$	Safrany 1993	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	
$(\mathrm{CH} 3) 2 \mathrm{C}=\mathrm{CH} 2$	isobutylene	$5.40 \mathrm{E}+09$	Thomas 1967	Pulse radiolysis	C.K.	298 K	$k_{\text {reference }}=1.1 \mathrm{E} 10$	$5.14 \mathrm{E}-11$
$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3) \mathrm{CN}$	methacrylonitrile	$1.20 \mathrm{E}+10$	Kumar et al., 1988	Pulse radiolysis	C.K.	-7.0	$k_{\text {refence }}=1.1 \mathrm{E} 10$	2.60E-11
		$1.10 \mathrm{E}+10$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {reference }}=1.1 \mathrm{E} 10$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3) \mathrm{COOCH} 3$	methyl methacrylate	$1.10 \mathrm{E}+10$	Kumar 1988	Pulse radiolysis	C.K.	-7.0	$k_{\text {refence }}=1.1 \mathrm{E} 10$	
		$1.20 \mathrm{E}+10$	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text {refance }}=1.1 \mathrm{E} 10$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}=\mathrm{CH} 2$	1,4-pentadien-3-ol	$1.00 \mathrm{E}+10$	Simic 1973	Pulse radiolysis	P.B.K.	7.0		
$\mathrm{CH} 3 \mathrm{CH}=\mathrm{CH} 2$	propylene	$7.00 \mathrm{E}+09$	Thomas 1967	Pulse radiolysis	C.K.			2.63E-11
$\mathrm{ClCH}=\mathrm{CCl2}$	trichloroethylene	$2.90 \mathrm{E}+09$	Getoff 1991	Pulse radiolysis	C.K.	8.6	$k_{\text {refence }}=1.1 \mathrm{E} 10$	2.36E-12
		$3.30 \mathrm{E}+09$	Getoff 1989	Pulse radiolysis	C.K.		$k_{\text {refence }}=1.1 \mathrm{E} 10$	
		$4.00 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	P.B.K.			
		$4.30 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	C.K.		$k_{\text {refrence }}=1.1 \mathrm{E} 10$	
$\mathrm{CL2} 2 \mathrm{C}=\mathrm{CCl2}$	tetrachloroethylene	$2.00 \mathrm{E}+09$	Getoff 1991	Pulse radiolysis	C.K.	8.5	$k_{\text {reference }}=1.1 \mathrm{E} 10$	1.67E-13
		$4.90 \mathrm{E}+08$	Getoff 1990	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	
		$2.80 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	C.K.	-6.5	$k_{\text {refrence }}=1.1 \mathrm{E} 10$	
		$2.30 \mathrm{E}+09$	Koester and Asmus, 1971	Pulse radiolysis	P.B.K.	-6.5		
$\mathrm{H} 2 \mathrm{C}=\mathrm{CHCl}$	vinyl chloride	$1.20 \mathrm{E}+10$	Koester 1971	Pulse radiolysis	C.K.	-6.5	$k_{\text {refence }}=1.1 \mathrm{E} 10$	6.96E-12
$\mathrm{H} 2 \mathrm{C}=\mathrm{CCl} 2$	vinylidine chloride	$6.80 \mathrm{E}+09$	Koester 1971	Pulse radiolysis	C.K.	-6.5	$k_{\text {refence }}=1.1 \mathrm{E} 10$	
$\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH} 3)-\mathrm{CO}-\mathrm{NH} 2$	methyl acrylamide	$1.30 \mathrm{E}+10$	Kumar et al., 1988	Pulse radiolysis	C.K.	-7.0	$k_{\text {refance }}=1.1 \mathrm{E} 10$	
	crocetin	$2.30 \mathrm{E}+10$	Bors et al., 1982	Pulse radiolysis	D.K.	5.9		
$(\mathrm{H} 2 \mathrm{C}=\mathrm{CH}) 2 \mathrm{SO} 2$	vinyl sulfone	$4.10 \mathrm{E}+09$	Kumar et al 1990	Pulse radiolysis	C.K.	7.0		
		$4.00 \mathrm{E}+09$	Kumar et al 1990	Pulse radiolysis	P.B.K.	6.8		
$\mathrm{H} 2 \mathrm{C}=\mathrm{CH} 2$	ethylene	$4.40 \mathrm{E}+09$	Thomas 1967	Pulse radiolysis	C.K.		$k_{\text {refence }}=1.1 \mathrm{E} 10$	8.52E-12
		$1.70 \mathrm{E}+09$	Cullis et al 1967	Pulse radiolysis	C.K.		$k_{\text {reference }}=1.1 \mathrm{E} 10$	
$\mathrm{NCN}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}$	dcyandiamide	$7.20 \mathrm{E}+06$	Draganic et al., 1979	γ radiolysis	C.K.	5.0	$k_{\text {refence }}=3.2 \mathrm{E} 9$	
	2,5-dimethyl-3-hexyne-2,5-diol	$3.30 \mathrm{E}+09$	Walling 1973	Fenton reaction	C.K.	1.0	$k_{\text {reference }}=9.7 \mathrm{ES}$	

Table A-B22: Survey of $\mathrm{HO} \bullet$ rate constants with benzene and benzene derivatives

chemcial formura	compound	$k_{\text {HO }}$. (M-1 s-1)	references	experimental method	evaluation method	pH	kHO gas
C6H6	benzene	$7.60 \mathrm{E}+09$					$1.23 \mathrm{E}-12$
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 3$	toluene	$5.10 \mathrm{E}+09$	Roder et al, 1990	Pulse radiolysis	P.B.K.		$5.96 \mathrm{E}-12$
		$3.00 \mathrm{E}+09$	Dorfman et al., 1964	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.0$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{CH} 3$	ethylbenzene	$7.50 \mathrm{E}+09$	Sehested and Holcman, 1979	Pulse radiolysis		$\mathrm{pH}=7.0$	7.10E-12
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{OH}$	phenol	$6.60 \mathrm{E}+09$	Field et al, 1982	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	2.63E-11
		$1.40 \mathrm{E}+10$	Land and Ebert, 1967	Pulse radiolysis	P.B.K.	$\mathrm{pH}=-7.6$	
		$1.80 \mathrm{E}+10$	Adames et al., 1965	Pulse radiolysis	C.K.	$\mathrm{pH}=6.7$	
C6H5-F	fluorobenzene	$5.70 \mathrm{E}+09$	Mohan and Mittal, 1995	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	$6.90 \mathrm{E}-13$
		$1.00 \mathrm{E}+10$	Koester and Asmus, 1973	Pulse radiolysis	C.K.		
$\mathrm{C} 6 \mathrm{H5Cl}$	chlorobenzene	$5.60 \mathrm{E}+09$	Ashton et al., 1995	Pulse radiolysis	P.B.K.	$\mathrm{T}=293 \mathrm{~K}$	7.70E-13
		$4.30 \mathrm{E}+09$	Kochany and Bolton, 1992	Photolysis	C.K.	$\mathrm{pH}=3.5,7.0$	
		$4.50 \mathrm{E}+09$	Shevchuk et al., 1969	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
		$6.50 \mathrm{E}+09$	Matthews and Sangster, 1965	γ-radiolysis	C.K.	$\mathrm{pH}=10.7$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{Br}$	bromobenezene	$5.20 \mathrm{E}+09$	Mohan and Mittal, 1995	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	7.70E-13
		$7.40 \mathrm{E}+09$	Mohan and Mittal, 1995	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	
		$1.00 \mathrm{E}+10$	Mohan and Mittal, 1995	Pulse radiolysis	P.B.K.	pH <0	
		$8.90 \mathrm{E}+09$	Mohan and Mittal, 1995	Pulse radiolysis	P.B.K.	pH <0	
		$4.40 \mathrm{E}+09$	Merga et al., 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
		$4.90 \mathrm{E}+09$	Kochany and Bolton, 1992	Photolysis	C.K.	$\mathrm{pH}=3.5$	
		4.80E +09	Kochany and Bolton, 1992	Photolysis	C.K.	$\mathrm{pH}=7.0$	
C6H5-I	iodobenzene	$5.70 \mathrm{E}+09$	Kochany and Bolton, 1992	Photolysis	C.K.	$\mathrm{pH}=3.5$	1.10E-12
		$5.30 \mathrm{E}+09$	Kochany and Bolton, 1992	Photolysis	C.K.	$\mathrm{pH}=7.0$	
		3.10E+09	Mohan and Moorthy, 1989	Pulse radiolysis	C.K.		
		$5.00 \mathrm{E}+09$	Shevchuk et al, 1969	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
C6H5-CN	benzonitrile	$3.90 \mathrm{E}+09$	Chutny and Swallow, 1970	Pulse radiolysis	C.K.		3.30E-13
		$4.90 \mathrm{E}+09$	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NO} 2$	nitrobenzene	$3.90 \mathrm{E}+09$	Buxton et al., 1988			selected values	$1.40 \mathrm{E}-13$
		$4.00 \mathrm{E}+09$	Ashton et al., 1995	Pulse radiolysis	P.B.K.		
		$3.20 \mathrm{E}+09$	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
		$4.70 \mathrm{E}+09$	Asmus et al., 1967	Pulse radiolysis	P.B.K.		
		$3.50 \mathrm{E}+09$	Asmus et al., 1967	Pulse radiolysis	P.B.K.		
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NH} 2$	aniline	$1.70 \mathrm{E}+10$					
C6H5-CHO	benzaldehyde	$4.40 \mathrm{E}+09$	Shevchuk et al, 1969	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	$1.29 \mathrm{E}-11$
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{COOH}$	benzoic acid	$1.80 \mathrm{E}+09$	Ashton et al., 1995	Pulse radiolysis	P.B.K.	$\mathrm{T}=293 \mathrm{~K}$	
		4.30E +09	Wander et al., 1968	Pulse radiolysis	PB.K.	pH<-3	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{COCH} 3$	acetophenone	$6.40 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	P.B.K.		$2.74 \mathrm{E}-12$
		$5.90 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	P.B.K.		
		$6.50 \mathrm{E}+09$	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
C6H5-NO	nitrosobenzene	$1.80 \mathrm{E}+10$	Asmus et al, 1966	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CONH} 2$	benzamide	4.60E +09	Anbar et al., 1966	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
		$2.90 \mathrm{E}+09$	Merz and Waters, 1949	Fenton reaction	C.K.	$\mathrm{pH}=1.0$	
C6H5-SOCH3	methyl phenyl sulfoxide	$9.70 \mathrm{E}+09$	Veltwish et al., 1980	Pulse radiolysis			
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{CH} 3)^{2}$	cumene	$7.50 \mathrm{E}+09$	Sehested and Holcman, 1979	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	$6.50 \mathrm{E}-12$
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{OH}$	benzylalcohol	$8.40 \mathrm{E}+09$	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	$2.29 \mathrm{E}-11$
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NH}-\mathrm{CO}-\mathrm{CH} 3$	acetanilide	$5.20 \mathrm{E}+09$	Anbar et al., 1966	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
C6H5-SO2NH2	benzensulfonamide	2.80E +09	Phillips et al., 1973	γ-radiolysis	C.K.		
		$2.90 \mathrm{E}+09$	Anbar et al., 1966	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
C6H5-SO3H	benzenesulfonic acid	2.10E+09	Merz and Waters, 1949	Fenton reaction	C.K.	$\mathrm{pH}=1.0$	
C6H5-S-CH3	thioanisole	$3.50 \mathrm{E}+09$	Mohan and Mittal, 1997	Pulse radiolysis	P.B.K.		
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{NH}-\mathrm{OH}$	phenyl hydroxylamine	1.50E +10	Wigger et al., 1967	Pulse radiolysis	P.B.K.		
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{SO}-\mathrm{C} 2 \mathrm{H} 5$	Ethyl phenyl sulfoxide	$8.40 \mathrm{E}+09$	Veltwish et al., 1980	Pulse radiolysis			
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{SO}-\mathrm{CH}(\mathrm{CH} 3)^{2}$	isopropyl phyenyl sulfoxide	$1.00 \mathrm{E}+10$	Veltwish et al., 1980	Pulse radiolysis			
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{C}(\mathrm{CH} 3) 2 \mathrm{OH}$	2-methyl-4-phenyl-2-butanol	$5.90 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CHOHCH}(\mathrm{CH} 3) 2$	2-methyl-1-phenyl-1-propanol	$9.50 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{OH}) \mathrm{C}(\mathrm{CH} 3) 3$	2,2-dimethyl-1-phenyl-1-propanol	$9.90 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CHOHCH} 3$	phenylethanol	$1.10 \mathrm{E}+10$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{OCH} 3) \mathrm{CH}(\mathrm{CH} 3) 2$	1-methoxy-2-methyl-1-phenylpropane	$7.40 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH}(\mathrm{OH})(\mathrm{CH} 2-\mathrm{CH} 3)$	1-phenyl-1-propanol	$1.00 \mathrm{E}+10$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}$	1-phenyl-2-propanol	$2.10 \mathrm{E}+10$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
		5.80E +09	Reuvers et al., 1973	Pulse radiolysis	C.K.		
		$7.00 \mathrm{E}+09$	Reuvers et al., 1973	Pulse radiolysis	C.K.		
$\mathrm{C} 2 \mathrm{H} 5 \mathrm{CH}-\mathrm{C} 6 \mathrm{H} 5-\mathrm{OH}$	2-phenyl-2-propanol	$4.60 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
$\mathrm{C} 6 \mathrm{H} 5-\mathrm{CH} 2-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	1-phenyl-3-butanol	$2.00 \mathrm{E}+10$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
C6H5-O-CH3	anisol	$5.40 \mathrm{E}+09$	ONeill et al., 1975	Pulse radiolysis	PB.K.	$\mathrm{pH}=6.5$	$1.73 \mathrm{E}-11$
(C6H5)2-CO	benzophenone	$9.00 \mathrm{E}+09$	Brede et al, 1975	Pulse radiolysis	P.B.K.		
		$8.70 \mathrm{E}+09$	Land 1968	Pulse radiolysis	P.B.K.		
$(\mathrm{C} 6 \mathrm{H} 5) 2$ - NH	diphenylamine	$1.00 \mathrm{E}+10$	Schmidt et al., 1985	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.9$	$1.94 \mathrm{E}-10$
		$1.30 \mathrm{E}+10$	Shevchuk et al., 1969	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
$(\mathrm{C} 6 \mathrm{H} 5) 2$-SO	diphenyl sulfoxide	$6.30 \mathrm{E}+09$	Veltwish et al., 1980	Pulse radiolysis			
(C6H5)2-S	diphenylsulfides	$1.30 \mathrm{E}+10$	Engman et al., 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
$-\mathrm{O}-\mathrm{COOH}$	phenoxyacetic acid	$1.00 \mathrm{E}+10$	Zona et al., 2002	Pulse radiolysis	P.B.K	$\mathrm{T}=295 \mathrm{~K}$	
$\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{C} 6 \mathrm{H} 5$	1-phenyl-1-propanol	$1.00 \mathrm{E}+10$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	

2	HO-C6H4-CH3	o-cresol	1.10E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	4.20E-11
	HO-C6H4-CH3	p-cresol	1.20E +10	Feitelson and Hayon, 1973	Pulse radiolysis	C.K.	$\mathrm{pH}=5.5$	4.70E-11
	H3C-C6H4-CH3	o-xylene	$6.70 \mathrm{E}+09$					
	H3C-C6H4-CH3	m-xylene	$7.50 \mathrm{E}+09$					
	H3C-C6H4-CH3	p-xylene	$7.00 \mathrm{E}+09$					
	$\mathrm{C} 6 \mathrm{H} 4-\mathrm{Cl} 2$	1,2-dichlorobenzene	2.50E+09	Merga et al, 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	4.20E-13
			$3.90 \mathrm{E}+09$	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=3.5$	
			4.00E+09	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=7.0$	
	C6H4-C12	1,3-dichlorobenzene	5.70E+09	Merga et al, 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	7.20E-13
			5.80E+09	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=3.5$	
			5.70E+09	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=7.0$	
	C6H4-C12	1,4-dichlorobenzene	5.30E+09	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=3.5$	3.20E-13
			5.40E+09	Kochany and Bolton 1992	Photolysis	C.K.	$\mathrm{pH}=7.0$	
	C 6 H 4 -(OH) 2	1,2-benzenediol	1.10E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	1.04E-10
	$1,3-\mathrm{C} 6 \mathrm{H} 4(\mathrm{OH})^{2}$	resorcinol	$1.20 \mathrm{E}+10$	Saveleva et al, 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
	H0-C6H4-Cl	2-chlorophenol	$1.20 \mathrm{E}+10$	Getoff and Solar, 1986	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.5-7.7$	
	H0-C6H4-C1	3-chlorophenol	$7.20 \mathrm{E}+09$	Savel'eva et al., 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
	H0-C6H4-Cl	4-chlorophenol	9.30E+09	Satafford et al., 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.0$	
	$\mathrm{H} 3 \mathrm{C}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{OH}$	2-methyl phenol	1.10E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	4.20E-11
	$\mathrm{H} 3 \mathrm{C}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{OH}$	4-methyl phenol	1.20E +10	Feitelson and Hayon, 1973	Pulse radiolysis	C.K.	$\mathrm{pH}=5.5$	4.70E-11
	HO-C6H4-O-CH3	2,3-methoxyphenol	$2.00 \mathrm{E}+10$	ONeil and Steenken, 1977	Pulse radiolysis	C.K.	$\mathrm{pH}=6.7$	
	HO-C6H4-O-CH3	3,5-methoxyphenol	$3.20 \mathrm{E}+10$	ONeil and Steenken, 1977	Pulse radiolysis	C.K.	$\mathrm{pH}=6.7$	
	HO-C6H4-O-CH3	2,6-methoxyphenol	$2.60 \mathrm{E}+10$	ONeil and Steenken, 1977	Pulse radiolysis	C.K.	$\mathrm{pH}=6.7$	
	$\mathrm{H5C2} 2 \mathrm{C} 6 \mathrm{H} 4-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3$	2-p-1-(p-ethylphenyl)ethanol	1.30E +10	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
	HO-C6H4-NO2	4-nitrophenol	$3.80 \mathrm{E}+09$	Cercek and Ebert, 1968	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
	$4-\mathrm{CH} 3-\mathrm{C} 6 \mathrm{H} 4-\mathrm{CN}$	4-tolunitrile	1.20E +10	Holcman and Sehested, 1979	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$	
	$1,4-\mathrm{C} 6 \mathrm{H} 4(\mathrm{CN})^{2}$	1,4-dicyanobenzene	$7.80 \mathrm{E}+08$	Robinson and Schulte-Frohlinde, 1973	Pulse radiolysis	C.K.		
	4-F-C6H4-CN	p -fluorobenzonitrile	3.50E+09	Klever and Schulte-Frohlinde, 1976	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=7.0 \\ \mathrm{~T}=292 \mathrm{~K} \end{gathered}$	
	$4-\mathrm{Br}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{OH}$	1-(p-bromophenyl)ethanol	$6.10 \mathrm{E}+09$	Snook and Hamilton, 1974	Fenton reaction		$\mathrm{pH}=-1.8$	
	(CH3) 3 - $\mathrm{C}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{OH}$	tert-butylphenol	1.90E +10	Saveleva et al., 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
	$1,2-\mathrm{C} 6 \mathrm{H} 4(\mathrm{OH})^{2}$	1,2-catechol	1.10E+10	Saveleva et al, 1972	γ-radiolysis	C.K.	$\mathrm{pH}=9.0$	
	C6H4-F2	o-difluorobenzene	$7.50 \mathrm{E}+09$	Koester and Asmus, 1973	Pulse radiolysis	C.K.		
	C6H4-F2	p-difluorobenzene	$1.00 \mathrm{E}+10$	Koester and Asmus, 1973	Pulse radiolysis	C.K.		
	$\mathrm{C} 6 \mathrm{H} 4-(\mathrm{OCH} 3) 2$	1,2-dimethoxybenzene	$5.20 \mathrm{E}+09$	ONeill et al, 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.5$	
	C 6 H 4 -(OCH 3$)^{2}$	1,3-dimethoxybenzene	$7.20 \mathrm{E}+09$	ONeill et al., 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.5$	
	$\mathrm{C} 6 \mathrm{H} 4-(\mathrm{OCH} 3)^{2}$	1,4-dimethoxybenzene	$7.00 \mathrm{E}+09$	ONeill et al., 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.5$	
	$4-\mathrm{O} 2 \mathrm{~N}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{NH} 2$	p -nitroaniline	1.40E+10	van der Linde, 1977	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=-6 \\ \mathrm{~T}=295 \mathrm{~K} \end{gathered}$	
	$\mathrm{CH} 3-\mathrm{C} 6 \mathrm{H} 4-\mathrm{CN}$	p-tolunitrile	1.20E +10					
	$4 . \mathrm{Cl}-\mathrm{C} 6 \mathrm{H} 4 \mathrm{NO} 2$	1-chloro-4-nitrobenzene	1.30E+09	Guittonneau et al, 1990	Photolysis	C.K.	$\mathrm{pH}=7.5$	
	$4-\mathrm{O} 2 \mathrm{~N}-\mathrm{C} 6 \mathrm{H} 4-\mathrm{COCH} 3$	4 -nitroacetophenone	$3.30 \mathrm{E}+09$	Whillans 1977	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.5$	
			$2.80 \mathrm{E}+09$	Michaels et al., 1976	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.6$	
	$4-\mathrm{O} 2 \mathrm{~N}-\mathrm{C} 6 \mathrm{H} 4 \mathrm{NH} 2$	4-nitroaniline	$1.40 \mathrm{E}+10$	van der Linde, 1977	Pulse radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=-6 \\ \mathrm{~T}=295 \mathrm{~K} \end{gathered}$	
3	(HO) $2-\mathrm{C} 6 \mathrm{H} 3-\mathrm{Cl}$	4-chlorocatecohol	$7.00 \mathrm{E}+09$					
	$\mathrm{C} 6 \mathrm{H} 3-(\mathrm{OH}) 3$	phloroglucinol	$1.00 \mathrm{E}+10$	Wang et al., 1994	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.8$	
		1,2,3-trimethyl benzene	$7.00 \mathrm{E}+09$					
		1,2,4-trimethyl benzene	6.20E+09					
		1,3,5-trimethyl benzene (mesitylene)	$6.40 \mathrm{E}+09$					
	3,4-(HO)2-C6H3-CHO	dihydroxybenzaldehyde	8.30E+09	Bors et al, 1979	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	
	(HO$)^{2} 2 \mathrm{C} 6 \mathrm{H} 3-\mathrm{COCH} 3$	2,4-dihydroxyacetophenone	$3.00 \mathrm{E}+10$	Bors et al., 1984	Pulse radiolysis	C.K.		
	(HO$)^{2} 2 \mathrm{C} 6 \mathrm{H} 3-\mathrm{COCH} 3$	2,5-dihydroxyacetophenone	$8.00 \mathrm{E}+09$	Bors et al., 1984	Pulse radiolysis	C.K.		
	(HO$)^{2}-\mathrm{C} 6 \mathrm{H} 3-\mathrm{COCH} 3$	3,4-dihydroxyacetophenone	$1.00 \mathrm{E}+10$	Bors et al., 1984	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	
	(NO2) 2 - $66 \mathrm{H} 3-\mathrm{OCH} 3$	3,5-dinitroanisole	$4.00 \mathrm{E}+09$	Tamminga et al., 1979	Pulse radiolysis	P.B.K.		
	C 6 H 3 -(OCH3) 3	1,2,3-trimethoxybenzene	$7.00 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=-7.0$	
	$\mathrm{C} 6 \mathrm{H} 3-(\mathrm{OCH} 3) 3$	1,2,4-trimethoxybenzene	$6.20 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	PB.K.	$\mathrm{pH}=-7.0$	
	$\mathrm{C} 6 \mathrm{H} 3-(\mathrm{OCH} 3)^{3}$	1,3,5-trimethoxybenzene	8.10E+09					
	H0-C6H4-CH3O	2,3-dimethoxyphenol	$2.00 \mathrm{E}+10$					
	H0-C6H4-CH3O	2,4-dimethoxyphenol	$2.60 \mathrm{E}+10$					
	HO-C6H4-CH3O	3,5-dimethoxyphenol	$2.00 \mathrm{E}+10$					
	-F, -F, -F	1,3,5-trifluorobenzene	4.10E+09					
	-F,-F,-F	1,2,3-trifluorobenzene	3.70E+09					
	-F, -F,-F	1,2,4-trifluorobenzene	3.90E+09					
	-C1, -Cl, -OH	2,4-dichlrophenol	$7.10 \mathrm{E}+09$	Zona et al., 2002	Pulse radiolysis	P.B.K	$\mathrm{T}=295 \mathrm{~K}$	
	-OH, $-\mathrm{OH},-\mathrm{OH}$	1,2,4-trihydroxybenzene	8.60E+09	Oturan et al., 2000	Electron-fenton			
	$-\mathrm{OH},-\mathrm{OH},-\mathrm{C}(\mathrm{CH} 3)^{3}$	tert-butyl hydroquinone	$6.30 \mathrm{E}+09$	Dohrmann and Bergmann 1995	Pulse radiolysis	C.K.	$\mathrm{JH}=6.8, \mathrm{~T}=295$	
4	$\mathrm{C} 6 \mathrm{H} 2(\mathrm{CH} 3) 4$	1,2,3,4-tetramethylbenzen	$7.20 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=-7.0$	
	$\mathrm{C6H} 2(\mathrm{CH} 3) 4$	1,2,3,5-tetramethylbenzene	$7.10 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	PB.K.	$\mathrm{pH}=-7.0$	
	$\mathrm{C} 6 \mathrm{H} 2(\mathrm{CH} 3) 4$	1,2,4,5-tetramethylbenzene	$7.10 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=-7.0$	
	- $\mathrm{Cl}_{1},-\mathrm{Cl},-\mathrm{Cl},-\mathrm{OH}$	2,4,5-trichlorophenol	1.20E +10	Draper et al., 1989	Pulse radiolysis	P.B.K	$\mathrm{pH}=3.0$	
	- $\mathrm{Cl}_{2},-\mathrm{Cl},-\mathrm{O}-\mathrm{COOH}$	2,4-dichlorophenoxyacetic acid	$6.60 \mathrm{E}+09$	Zona et al., 2002	Pulse radiolysis	P.B.K	$\mathrm{T}=295 \mathrm{~K}$	
	1,2,4,5-Cl, OH, OH, Cl	2,5-dichlorohydroquinone	$2.10 \mathrm{E}+10$	Al-Suhyban and Hughes, 1988	Gamma-radiolysis	C.K.	$\mathrm{pH}=-0$	
			$2.50 \mathrm{E}+10$	A1-Suhyban and Hughes, 1988	Gamma-radiolysis	C.K.	$\mathrm{pH}=-0$	
			1.10E +10	Al-Suhyban and Hughes, 1988	Gamma-radiolysis	C.K.	$\mathrm{pH}=-0$	
5		pentafluorobenzene	$7.00 \mathrm{E}+09$	Koester and Asmus, 1973	Pulse radiolysis	C.K.		
		pentamethylbenzene	$7.50 \mathrm{E}+09$	Sehested et al, 1975	Pulse radiolysis	C.K.	$\mathrm{pH}=-7$	
6	-F, -F, -F, -F, -OH, -OH	tetrafluorohydroquinone	3.10E+09	Tripathi and Schuler 1983	Pulse radiolysis	P.B.K	$\mathrm{pH}=-10.5$	
		hexafluorobenzene	1.40E+09	Shoute and Mittal, 1993	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$	
			$3.00 \mathrm{E}+09$	Koester and Asmus, 1973	Pulse radiolysis	C.K.		
		hexamethylbenzene	$7.20 \mathrm{E}+09$	Sehested et al., 1975	Pulse radiolysis	p.b.K	$\mathrm{pH}=-7.0$	
		pentafluoroiodobenzene	1.20E+09	Mohan and Mittal 1995	Pulse radiolysis	P.B.K.		
	F, F, F, F, F, -COCH3	pentafluoroacetophenone (PFA)	1.50E+09					
	F, F, F, F, F, CHO	pentafluorobenzaldehyde	$2.00 \mathrm{E}+09$					
	F, F, F, F, F, - COOH	pentafluorobenzoic acid	1.10E+09					
	F, F, F, F, F-NH2	pentafluoroaniline	$9.60 \mathrm{E}+09$					
	F, F, F, F, F, -OH	pentafluorophenol	9.50E+09					

Table A-B23: Survey of $\mathrm{HO} \cdot$ rate constants with pyridine and pyridine derivatives

chemcial formura	compound	HO. (M-1 s-	references	experimental method	evaluation method	pH
	pyridine	$3.00 \mathrm{E}+09$	Solar et al., 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=10$
		$4.50 \mathrm{E}+09$	Cohen and Meyerstein, 1976	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.9$
		$1.80 \mathrm{E}+09$	Simic and Ebert, 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$3.00 \mathrm{E}+09$	Cercek and Ebert, 1967	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	2-methyl pyridine	$2.50 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	3-methyl pyridine	$2.40 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
		$6.00 \mathrm{E}+09$	Solar et al., 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=10$
	2,4-dimethyl pyridine	$3.10 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2,6-dimethyl pyridine	$7.30 \mathrm{E}+09$	Solar et al., 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=10$
		$3.00 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	3,5-dimethyl pyridine	$8.00 \mathrm{E}+09$	Solar et al., 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=10$
	2,4,6-trimethylpyridine	$2.50 \mathrm{E}+09$	Zakatova et al., 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=6.5$
		$6.50 \mathrm{E}+09$	Solar et al., 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=10$
-NH2	2-pyridine amine	$8.40 \mathrm{E}+09$	Shevchuk et al., 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
-NH2	4 -pyridine amine	$5.00 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2-bromopyridine	$2.40 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	3-bromopyridine	$1.10 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2-chloropyridine	$1.80 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	4-chloropyridine	$3.10 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	3-cyanopyridine	$7.50 \mathrm{E}+08$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	3-hydroxy pyridine	$8.90 \mathrm{E}+09$	Neik 1991			
	3-pyridinol	$5.40 \mathrm{E}+09$	Schevchuck 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	4-pyridinol	$1.10 \mathrm{E}+10$	Naik and Morthy 1993	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.8$
	4-pyridinecarboxyamide	$1.60 \mathrm{E}+09$	Cohen and Meyerstein 1976	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.9$
- COOH	nicotinamide 3-pyridinenicotineamide	$1.40 \mathrm{E}+09$	Cohen and Meyerstein 1976	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.9$
		$1.50 \mathrm{E}+09$				
	nicotinic acid (3-pyridinecarboxylic acid)	$2.20 \mathrm{E}+07$	Simic and Ebert, 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
		$2.60 \mathrm{E}+08$	Simic and Ebert, 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.1$
	4-pyridinecarboxylic acid	$6.00 \mathrm{E}+07$	Solar 1991			
	2 -pyridine carboxylic acid	$2.00 \mathrm{E}+08$	Dey et al., 1992	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.8$
	4,4'-bipyridine	$5.30 \mathrm{E}+09$	Simic 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.3$
	2,2'-bipyridine	$6.20 \mathrm{E}+09$	Simic and Ebert, 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.3$
	3,5-pyridinedicarboxylic acid	$1.00 \mathrm{E}+08$	Solar et al., 1991			
	2,6-pyridinedicarboxylic acid	$5.00 \mathrm{E}+08$	Solar et al., 1991			
	4-ethyl-5-hydroxy-2-methylpyridine	$1.40 \mathrm{E}+09$	Zakatova et al., 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=6.5$
	pyridine-N-oxide	$3.00 \mathrm{E}+09$	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	3-methylpyridine-N-oxide	$4.20 \mathrm{E}+09$	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	4-methylpyridine-N-oxide	$2.80 \mathrm{E}+09$	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	picrolam (4-Amino-3,5,6-trichloro-2-pyridinecarboxylic acid)	$3.40 \mathrm{E}+09$	Haag and Yao, 1992	Fenton reaction	C.K.	$\begin{aligned} \mathrm{pH} & =2.1-3.7 \\ \mathrm{~T} & =297 \mathrm{~K} \end{aligned}$
	4-ethyl-5-hydroxy-2-methylpyridine	$1.40 \mathrm{E}+09$	Zakatova 1969			
	2,4,6-trimethyl-3-hydroxypyridine	$2.50 \mathrm{E}+09$	Zakatova et al., 1969	Gamma-radiolysis	C.K.	$\mathrm{pH}=6.5$
	2-pyridone	$1.10 \mathrm{E}+10$	Naik and Moorthy, 1991	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.8$
		$6.50 \mathrm{E}+09$	Steenken and ONeill, 1979	Pulse radiolysis	C.K.	$\mathrm{pH}=6.7$
	4-pyridone	$5.30 \mathrm{E}+09$	Steenken and ONeill, 1979	Pulse radiolysis	C.K.	$\mathrm{pH}=6-7$
	pyridoxine 3,4-pyridinedimethanol, 5-hydroxy-6-methyl	4.30E+09	Moorthy and Hayon 1975	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.6$
		$6.30 \mathrm{E}+09$				$\mathrm{pH}=7.2$
		$7.40 \mathrm{E}+09$				$\mathrm{pH}=10.5$
	pyrimidine	$1.60 \mathrm{E}+08$	Masuda et al., 1975	gamma radiolysis	C.K.	$\begin{gathered} \mathrm{pH}=6-7 \\ \mathrm{~T}=290 \end{gathered}$
	Alfa-(2-pyridyl)-tert-butyl nitrone	$9.60 \mathrm{E}+09$	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
	Alfa-(3-pyridyl)-tert-butyl nitrone	$4.60 \mathrm{E}+09$	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
	Alfa-(4-pyridyl)-tert-butyl nitrone	8.30E+09	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
	a-(2-Pyridyl 1-oxide)-N-tert-butylnitrone	$3.20 \mathrm{E}+09$	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone	4.80E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	a-(4-Pyridyl 1-oxide)-N-tert-butylnitrone	$3.50 \mathrm{E}+09$	Neta et al., 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$

Table A-B24: Survey of HO• rate constants with cyclo-compounds
$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & \begin{array}{l}\text { experimental } \\ \text { method }\end{array} & \begin{array}{l}\text { evaluation } \\ \text { compound }\end{array} & \text { references }\end{array}\right)$

Table A-B25: Survey of HO• rate constants with furan and related compounds

chemcial formura	compound	$k_{\text {HO. }}$ (M-1 s-1)	references	experimental method	evaluation method	pH
	furan	$3.90 \mathrm{E}+09$	Lilie 1971	Pulse radiolysis	C.K.	
	2-methyl furan	$1.90 \mathrm{E}+10$	Savel'eva et al., 1973	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2-furfuryl alcohol	$1.50 \mathrm{E}+10$	Saveleva 1973			
	2-furaldehyde	$7.80 \mathrm{E}+09$	Savel'eva et al., 1973	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2-acetyl furan	$4.50 \mathrm{E}+09$	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	2-furancarboxamide	$5.50 \mathrm{E}+09$	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	phenylfuran	$1.60 \mathrm{E}+10$	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$
	5-phenylfurfural	$5.90 \mathrm{E}+09$	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	$\mathrm{pH}=9.0$

Table A-B26: Survey of HO• rate constants with indole and indole derivatives

chemcial formura	compound	$k_{\text {HO }}(\mathrm{M}-1 \mathrm{~s}-1)$	references	experimental method	evaluation method	pH
	indole	$3.20 \mathrm{E}+10$	Iddon et al., 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
		$1.37 \mathrm{E}+10$	Roberts et al., 1998	photolysis	C.K.	pH 7.0
	1,2-dimethylindole	$1.00 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	1,3-dimethylindole	$1.10 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	2,3-dimethylindole	$1.30 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	1-methylindole	$1.50 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
		$1.20 \mathrm{E}+10$	Solar et al., 1991	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7-10$
	2-methylindole	$3.40 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	3-methylindole indole-3-acetic acid	$3.30 \mathrm{E}+10$ $6.50 \mathrm{E}+09$	Iddon 1971 Shetiva et al., 1972	Pulse radiolysis Pulse radiolysis	$\begin{gathered} \text { P.B.K. } \\ \text { C.K. } \end{gathered}$	$\mathrm{pH}=9.0$
	indole-3-propionic acid	8.50E+09	Shetiya et al., 1972	Pulse radiolysis	C.K.	
	5-methylindole	$1.70 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	5-nitroindole	$1.00 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	5-chloroindole	$2.00 \mathrm{E}+10$	Iddon 1971	Gamma radiolysis	C.K.	$\mathrm{pH}=9.0$
	5-aminoindole	$3.30 \mathrm{E}+10$	Iddon et al., 1971	Gamma radiolysis	C.K.	$\mathrm{pH}=9.0$
	5-bromoindole	$1.60 \mathrm{E}+10$	Iddon et al., 1971	Gamma radiolysis	C.K.	$\mathrm{pH}=9.0$
	5-cyanoindole	$1.10 \mathrm{E}+10$	Iddon et al., 1971	Gamma radiolysis	C.K.	$\mathrm{pH}=9.0$
	5-hydroxyindole	$1.70 \mathrm{E}+10$	Iddon et al., 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
		$1.67 \mathrm{E}+10$	Roberts et al., 1998	photolysis	C.K.	pH 7.0
	5-methoxy indole	$1.50 \mathrm{E}+10$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
		$1.39 \mathrm{E}+10$	Roberts et al., 1998	photolysis	C.K.	pH 7.0
	Indole-5-acetic acid	$7.90 \mathrm{E}+09$	Iddon 1971	Pulse radiolysis	P.B.K.	$\mathrm{pH}=9.0$
	2-(dimethylaminomethyl)-indole (gramine)	$3.00 \mathrm{E}+10$	Lee et al., 2007	Gamma radiolysis	C.K.	$\mathrm{pH}=8,9,10$
	Melatonin	$1.32 \pm 0.08 \mathrm{e} 10$	Roberts et al., 1998	photolysis	C.K.	$\mathrm{pH}=7.0$
		2.7 ± 0.3 e 10	Matuszak et al 1996	Fenton	ESR	

	Tryptophan	$1.25 \mathrm{E}+10$	Roberts et al, 1998	photolysis	C.K.	$\mathrm{pH}=7.0$
		$1.30 \mathrm{E}+10$	Buxton et al, 1988			average 3 values
	6-chloromelatonin	$0.82 \pm 0.06 \mathrm{el} 10$	Roberts et al., 1998	photolysis	C.K.	$\mathrm{pH}=7.0$
		$1.95 \pm 0.1 \mathrm{e} 10$	Matuszak et al 1996	Fenton	ESR	
	6-hydroxy-melatonin	$1.1 \pm 0.3 \mathrm{el0}$	Matuszak et al 1996	Fenton	ESR	
	5-methoxytryptamine	$2.3 \pm 0.3 \mathrm{el0}$	Matuszak et al 1996	Fenton	ESR	
	5-hydroxytryptamine	$1.7 \pm 0.3 \mathrm{e} 10$	Matuszak et al 1996	Fenton	ESR	

Table A-B27: Survey of HO• rate constants with uracil

chemcial formura	compound	$k_{\text {HO }}$ (M-1 s-1)	references	experimental method	evaluation method	pH
	Uracil	$5.70 \mathrm{E}+09$	Buxton et al., 1988	selected and recommended values	average of 7 values	
		$6.00 \mathrm{E}+09$	Chapman et al., 1973	Pulse radiolysis	P.B.K.	
		$6.50 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$4.80 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$
		$4.70 \mathrm{E}+09$	Willson et al., 1971	Pulse radiolysis	C.K.	
		$7.50 \mathrm{E}+09$	Scholes et al., 1965	Pulse radiolysis	C.K.	$\mathrm{pH}=-2$
		$8.70 \mathrm{E}+09$				$\mathrm{pH}=-5$
		$5.20 \mathrm{E}+09$				$\mathrm{pH}=-7.4$
	5-azauracil	$7.00 \mathrm{E}+09$	Rosenthal et al., 1983	Pulse radiolysis	C.K.	$\mathrm{pH}=8.0$
	6-azauracil	$4.50 \mathrm{E}+09$	Rosenthal et al., 1983	Pulse radiolysis	C.K.	$\mathrm{pH}=8.0$
	5-bromouracil	$5.20 \mathrm{E}+09$	Myint et al., 1987	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$4.00 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$3.60 \mathrm{E}+09$	Zimbrick et al., 1969	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$

	5-chlorouracil	$5.50 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		5.80E +09				$\mathrm{pH}=11.0$
		$5.20 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	5-fluorouracil	$5.20 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$5.50 \mathrm{E}+09$	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$6.00 \mathrm{E}+09$				$\mathrm{pH}=11.0$
	dihydro-6-methyluracil	$1.30 \mathrm{E}+09$	Barszcz and Fielden, 1974	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$
		$1.00 \mathrm{E}+09$	Barszcz and Fielden, 1974	Pulse radiolysis	C.K.	$\mathrm{pH}=7.0$
	5-nitro-6-methyluracil	$5.30 \mathrm{E}+09$	Neta and Greenstock, 1973	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.9$
	5-nitrouracil	$5.40 \mathrm{E}+09$	Neta and Greenstock, 1973	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.9$
		$7.40 \mathrm{E}+09$	Neta and Greenstock, 1973	Pulse radiolysis	D.K.	$\mathrm{pH}=5.9$
	thymine	$6.40 \mathrm{E}+09$	Buxton et al., 1988	selected values		
	6-azathymine	$2.80 \mathrm{E}+09$	Rosenthal et al., 1983	Pulse radiolysis	C.K.	$\mathrm{pH}=8.0$
	maleic hydrazide	$2.90 \mathrm{E}+09$	Eriksen et al., 1983	Pulse radiolysis	P.B.K.	$\mathrm{pH}=3.5$
	isouramil	$5.00 \mathrm{E}+09$	Chevion and Ilan, 1980	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.3-8.0$
	cytosine	6.30E+09	ssung and von Sonntag, 19	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$6.80 \mathrm{E}+09$	Michaels and Hunt, 1973	Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
		$6.20 \mathrm{E}+09$	Theard et al., 1970	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5.8$
		$7.50 \mathrm{E}+09$	Scholes et al., 1965	Pulse radiolysis	C.K.	$\mathrm{pH}=-5$
		4.90E +09			C.K.	$\mathrm{pH}=-7.5$
	5-methylcytosine	$\begin{aligned} & 6.00 \mathrm{E}+09 \\ & 3.60 \mathrm{E}+09 \end{aligned}$	ssung and von Sonntag, 19 Eriksen et al., 1983	Pulse radiolysis Pulse radiolysis	P.B.K.	$\mathrm{pH}=7.0$
	6-azacytosine	4.50E +09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	$\mathrm{pH}=8.0$
	5-azacytosine	2.10E+09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	$\mathrm{pH}=8.0$
	N -ethylmaleimide	$9.00 \mathrm{E}+09$	Hayon and Simic, 1972	Pulse radiolysis	P.B.K.	$\mathrm{pH}=6.0$
	6-methyl uracil	$5.70 \mathrm{E}+09$	gannadham and Steenken, is	Pulse radiolysis	P.B.K.	$\mathrm{pH}=5-6$

Table A-B28: Survey of HO• rate constants with imidazole

Table A-B29: Survey of HO• rate constants with thiophene
$\left.\begin{array}{c|c|c|c|c|}\hline \text { compound } & & & \begin{array}{c}\text { experimental } \\ \text { method }\end{array} & \begin{array}{c}\text { evaluation } \\ \text { method }\end{array} \\ \hline & & & & \\ \text { references }\end{array}\right)$

Table A-B30: Survey of HO• rate constants with triazine

	1,3,5-triazine	$3.40 \mathrm{E}+09$	Joseph et al., 2000			
	2,4,6-trimethoxy-1,3,5-triazine	$2.06 \mathrm{E}+08$	Joseph et al., 2000			
	dioxohexahydrotriazine	$1.61 \mathrm{E}+09$	Joseph et al., 2000			
	simetone	4.70E+09	De Laat et al 1994	chemical re: $\mathrm{O}_{3} / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5$	$\mathrm{T}=295 \mathrm{~K}$
	ametryne	$2.60 \mathrm{E}+10$	De Laat et al 1994	chemical re: $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5$	$\mathrm{T}=295 \mathrm{~K}$
	simetryne	$2.60 \mathrm{E}+10$	De Laat et al 1994	chemical re: $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5$	$\mathrm{T}=295 \mathrm{~K}$
	terbutazine	$2.80 \mathrm{E}+09$	De Laat et al 1994	chemical re: $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5$	$\mathrm{T}=295 \mathrm{~K}$
	cyanazine	$1.90 \mathrm{E}+09$	De Laat et al 1994	chemical re: $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5$	$\mathrm{T}=295 \mathrm{~K}$
2-chloro-4,6-diamino-s-triazine		$5.00 \mathrm{E}+07$	De Laat et al., 1994	chemical re: $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$	$\mathrm{pH}=7.5-8$	$\mathrm{T}=293 \mathrm{~K}$

-The end of $\overline{\mathrm{HO}} \cdot$ rate constant survey

Literature Cited

Adams, G.E.; Boag, J.W.; Michael, B.D. Reactions of the hydroxyl radical. part 2. determination of absolute rate constants. Trans. Faraday Soc. 1965, 61, 1417-1424.

Aguer, J.P.; Richard, C. Toxicol. Environ. Chem. 1993, 39, 217-227.
Aguila, A.; O'Shea, K.E.; Tobien, T.; Asmus, K-D. Reactions of hydroxyl radical with dimethyl methylphosphonate and diethyl methylphosphonate. A fundamental mechanistic study. J. Phys. Chem. A. 2001, 105, 7834-7839.

Akhlaq, M.S.; von Sonntag, C. Z. Naturforsch., C, Biosci. 1987, 42C, 134-140.
Al-Suhybani, A.A.; Hughes, G. Arab Gulf J. Sci. Res. 1988, A 6, 85-103.

Anbar, M.; Meyerstein, D.; Neta, P. Reactivity of aliphatic compounds towards hydroxyl radicals. J. Chem. Soc. (B) 1966, 745-747.

Anbar, M.; Neta, P. J. Chem. Soc. Pt. A, 1967, 834-837.
Aruoma, O.I.; Laughton, M.J.; Halliwell, B. Biochem. J. 1989, 264, 863-869.
Ashton, L.; Buxton, G.V.; Stuart, C.R. Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. J. Chem. Soc. Faraday. Trans. 1995, 91(11), 1631-1633.

Asmus, K.-D.; Taub, I.A. Spectrum and kinetics of the hydroxynitromethane anion radical in pulse-irradiated alkaline nitromethane solutions. J. Phys. Chem. 1966, 72(10), 3382-3387.

Barszcz, D.; Fielden, E.M.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1974, 25, 539-553.

Baxendale, J.H.; Khan, A.A. Int. J. Radiat. Phys. Chem. 1969, 1, 11-24.
Bednar, J.; Teply, J. Collect. Czech. Chem. Commun. 1960, 25, 842-851.
Bell, J.A.; Grunwald, E.; Hayon, E. Kinetics of deprotonation of organic free radicals in water. Reaction of HOCHCOO2-, HOCHCONH2, and HOCCH3CONH2 with various bases. J. Am. Chem. Soc. 1975, 97(11), 2995-3000.

Benitez, F.J.; Real, F.J.; Acero, J.L.; Garcia, C.; Llanos, E.M. Kinetics of phenylurea herbicides oxidation by Fenton and photo-Fenton processes. J. Chem. Technol. Biotechnol. 2007, 82, 65-73.

Bonifačić, M.; Möckel, H.; Bahnemann, D.; Asmus, K-D. Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. J. Chem. Soc. Perkin I. 1975, 675-685.

Borggaard, O.K. Acta Chem. Scand. 1972, 26, 3393-3394.
Bors, W.; Michel, C.; Dalke, C.; Stettmaier, K.; Saran, M.; Andrae, U. Radical intermediates during the oxidation of nitropropanes. The formation of NO2 from 2nitropropane, its reactivity with nucleosides, and implications for the genotoxicity of 2nitropropane. Chem. Res. Toxicol. 1993, 6, 302-309.

Bors, W.; Lengfelder, E.; Saran, M.; Fuchs, C.; Michel, C. Biochem. Biophys. Res. Commun. 1976, 70, 81-87.

Bors, W.; Saran, M.; Michel, C. Pulse-radiolytic investigations of catechols and catecholamines. 4. 3,4-dihydroxybenzaldehyde and 3,4-dihydroxyacetophenone. J. Phys. Chem. 1979, 83(24), 3084-3088.

Bors, W.; Saran, M.; Michel, C. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1982, 41, 493-501.

Bors, W.; Michel, C.; Erben-Russ, M.; Kreileder, B.; Tait, D.; Saran, M.
Oxygen Radicals Chem. Biol., W. Bors, M. Saran and D. Tait (eds.), de Gruyter, Berlin, Fed. Rep. Germany, Pub. 1984, p.95-9.

Breccia, A.; Busi, F.; Gattavecchia, E. Tamba, M. Radiat. Environ. Biophys. 1990, 29, 153-160.

Brede, O.; Helmstreit, W.; Mehnert, R. Z. Phys. Chem. (Leipzig), 1975, 256, 513-521.
Buechler, Hch.; Buehler, R.E.; Cooper, R. J. Phys. Chem. 1976, 80, 1549-1553.

Buxton, G.V. Trans. Faraday Soc. 1970, 66, 1656-1660.
Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $(\cdot \mathrm{OH} / \bullet \mathrm{O}-)$ in aqueous solution. J. Phys. Chem. Ref. Data. 1988, 17 (2) 513-795.

Cabelli, D.E.; Bielski, B.H.J. Z. Naturforsch., B, Anorg. Chem., Org. Chem. 1985, 40B, 1731-1737.

Cercek, B.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1687-1698.
Cercek, B.; Ebert, M. Adv. Chem. Ser. 1968, 81, 210-221.
Chambers, K.W.; Collinson, E.; Dainton, F.S. Trans. Faraday Soc. 1970, 66, 142-162.

Chevion, M.; Ilan, Y.A. DOE/EV/03221-63, 1980, 16p.
Chin, M.; Wine, P.H. Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp and D.G. Crosby (eds.), CRC Press, Inc., Boca Raton, FL, 1994, p.85-96

Ching, T.-L.; Haenen, G.R.M.M.; Bast, A. Cimetidine and other H2 receptor antagonists as powerful hydroxyl radical scavengers. Chem.-Biol. Interact. 1993, 86, 119-127.

Chutny, B. Collect. Czech. Chem. Commun. 1966, 31, 358-361.
Chutny, B.; Swallow, A.J. Trans. Faraday Soc. 1970, 66, 2847-2854.
Clay, P.G.; Witort, M. Radiochem. Radioanal. Lett. 1974, 19, 101-107.

Cohen, N.; Benson, S.W. Empirical correlations for rate coefficients for reactions of OH with haloalkanes. J. Phys. Chem. 1987, 91, 171-175.

Cohen, H.; Meyerstein, D. J. Chem. Soc., Dalton Trans. 1976, 1976-1979.
Cole, S.K.; Cooper, W.J.; Fox, R.; Gardinali, P.R.; Mezyk, S.P.; Mincher, B.J.; O’Shea, K.E. Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (Chloropcrin). Environ. Sci. Technol. 2007, 41, 863-869.

Cullis, C.F.; Francis, J.M.; Raef, Y.; Swallow, A.J. Proc. R. Soc. London, Ser. A, 1967, 300, 443-454.

Czauderna, M.; Wagner-Czauderna, E. J. Radioanal Nucl. Chem. 1984, 81, 283-289.
De laat, J.; Chramosta, N.; Rore, M.; Suty, H.; Pouillot, M. Rate constants for reaction of hydroxyl radicals with some degradation by-products of atrazine by O 3 or $\mathrm{O} 3 / \mathrm{H} 2 \mathrm{O} 2$. Environ. Technol. 1994, 15, 419-428.

Dey, G.R.; Naik, D.B.; Kishore, K.; Moorthy, P.N. J. Radioanal. Nucl. Chem. 1992, 163, 391-400.

Dorfman, L.M.; Taub, I.A.; Harter, D.A. Rate constants for the reaction of the hydroxyl radical with aromatic molecules. J. Chem. Phys. 1964, 41, 2954-2955

Dohrmann, J.K.; Bergmann, B. J. Phys. Chem. 1995, 99, 1218-1227.
Draganic, I.G.; Draganic, Z.D.; Holroyd, R.A. Pulse radiolysis of aqueous cyanogens solution. J. Phys. Chem. 1971, 75(5), 608-612.

Draganic, I.; Draganic, Z.; Petkovic, Lj.; Nikolic, A. The radiation chemistry of aqueous solutions of simple RCN compounds. J. Am. Chem. Soc. 1973, 95(22), 7193-7199.

Draganic, Z.D.; Draganic, I.G.; Jovanovic, S.V. Radiat. Res. 1978, 75, 508-518.
Draganic, Z.D.; Draganic, I.G.; Sehested, K. Radiation chemistry of aqueous solutions of dicyandamide. J. Phys. Chem. 1979, 83(2), 220-224.

Draper, R.B.; Fox, M.A.; Pelizzetti, E.; Serpone, N. Pulse radiolysis of 2,4,5trichlorophenol: Formation, kinetics, and properties of hydroxytrichlorocyclohexadienyl, trichlorophenoxyl, and dihydroxytrichlorocyclohexadienyl radicals. J. Phys. Chem. 1989, 93, 1938-1944.

Eibenberger, J. Pulse radiolytic investigations concerning the formation and the oxidation of organic radicals in aqueous solution. 1980, Ph.D. Thesis. Vienna University, Austria.

Elliot, A.J.; McCracken, D.R. Effect of temperature on O•- reactions and equilibria: A pulse radiolysis study. Radiat.Phys.Chem. 1989, 33(1), 69-74.

Elliot, A.J.; McCracken, D.R.; Buxton, G.V.; Wood, N.D. J. Chem. Soc., Faraday Trans. 1990, 86, 1539-1547.

Elliot, A.J.; Simsons, A.S. Radiat. Phys. Chem. 1984, 24, 229-231.
Emmi, S.S.; Beggiato, G.; Casalbore-Miceli, G.; Fuochi, P.G. J. Radioanal. Nucl. Chem., Lett. 1985, 93, 189-197.

Engman, L.; Lind, J.; Merényi, G. Redox properties of diaryl chalcogenides and their oxides. J. Phys. Chem. 1994, 98, 3174-3182.

Eriksen, T.; Henglein, A.; Stockhausen, K. J. Chem. Soc., Faraday Trans. 1. 1973, 69, 337-345.

Eriksen, T.; Lind, J.; Merenyi, G.J. Chem. Soc., Faraday Trans. 1983, 1 79, 1503-1511.
Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. Phys. Chem. Chem. Phys., 2003, 5, 1811-1824.

Feitelson, J.; Hayon, E. Electron ejection and electron capture by phenolic compounds. J. Phys. Chem. 1973, 77(1), 10-15.

Field, R.J.; Raghavan, N.V.; Brummer, J.G. A pulse radiolysis investigation of the reactions of $\mathrm{BrO} 2 \cdot$ with $\mathrm{Fe}(\mathrm{CN}) 64-\mathrm{Mn}(\mathrm{II})$, phenoxide ion, and phenol. J. Phys. Chem. 1982, 86, 2443-2449.

Fisher, M.M.; Hamill, W.H. Electronic processes in pulse-irradiated aqueous and alcoholic systems. J. Phys. Chem. 77, 171-177 (1973)

George, C.; Rousse, D.; Perraudin, E.; Strekowski, R. A new approach for studying aqueous phase OH kinetics: Application of Teflon waveguides. Phys. Chem. Chem. Phys. 2003, 5, 1562-1569.

Getoff, N.; Schwoerer, F. Int. J. Radiat. Phys. Chem. 1970, 2, 81-89.
Simic, M.; Neta, P.; Hayon, E. Int. J. Radiat. Phys. Chem. 1971, 3, 309-320.
Getoff, N.; Schwörer, F.; Markovic, V.M.; Sehested, K.; Nielsen, S.O. Pulse radiolysis of oxalic acid and oxylates. J. Phys. Chem. 1971, 75(6), 749-755.

Getoff, N.; Schwoerer, F. Int. J. Radiat. Phys. Chem. 1973, 5, 101-111.

Getoff, N. Advancements of radiation induced degradation of pollutants in drinking and waste water. Appl.Radiat.Isot. 1989, 40(7), 585-594.

Getoff, N. Section 5.2. solid and liquid waste treatment. Decomposition of biological resistant pollutants in water by irradiation. Radiat. Phys. Chem. 1990, 35(1-3), 432-439.

Getoff, N. Radiation- and photoinduced degradation of pollutants in water. A comparative study. Radiat. Phys. Chem. 1991, 37(5/6), 673-680.

Gilbert, B.C.; Norman, R.O.C.; Sealy, R.C. J. Chem. Soc., Perkin Trans. 2. 1974, 14351441.

Gligorovski, S.; Herrmann, H. Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 4118-4126.

Greenstock, C.L.; Shierman, E. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1975, 28, 1-11.

Greenstock, C.L.; Dunlop, I. Pulse radiolysis studies of nitrofurans. Radiation chemistry of nifuroxime. J. Phys. Chem. 1973, 77(15), 1834-1838.

Guittonneau, S.; de Laat, J.; Dore, M.; Duguet, J.P.; Suty, H. Environ. Technol. 1990, 11, 57-70.

Haag, W.R.; Yao, C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005-1013.

Heckel, E.; Henglein, A.; Beck, G. Ber. Bunsenges. Phys. Chem. 1966, 70, 149-154.
Hickel, B. Absorption spectra and kinetics of methyl and ethyl radicals in water. J.Phys.Chem. 1975, 79(11), 1054-1059.

Hissung, A.; von Sonntag, C.Z. Naturforsch., Teil B, 1978, 33B, 321-328.
Hoffman, M.Z.; Hyon, E. Pulse radiolysis study of sulfhydryl compounds in aqueous solution. J. Phys. Chem. 1973, 77(8), 990-996.

Iddon, B.; Phillips, G.O.; Robbins, K.E. Radiation chemistry of aqueous solutions of indole and its derivatives. J.Chem. Soc. (B). 1971, 1887-1892.

Jayson, G.G.; Stirling, D.A.; Swallow, A.J. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1971, 19, 143-156.

Joseph, J.M.; Jacob, T.A.; Manoj, V.M.; Arvindakumar, C.T. Oxidative degradation of triazine derivatives in aqueous medium: A radiation and photochemical study. J. Agric. Food Chem. 2000, 48, 3704-3709.

Karmann, W.; Granzow, A.; Meissner, G.; Henglein, A. Int. J. Radiat. Phys. Chem. 1969, 1, 395-405.

Kesavan, P.C.; Powers, E.L.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1985, 48, 223-233.

Klever, H.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 1976, 80, 1259-1265.
Kochany, J.; Bolton, J.R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of $\cdot \mathrm{OH}$ radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of H2O2. Environ. Sci. Technol. 1992, 26, 262-265.

Koester, R.; Asmus, K.-D. Z. Naturforsch. Teil B, 1971, 26, 1108-1116.
Kraljic, I. The Chemistry of Ionization and Excitation, Johnson, G.R.A. and Scholes, G. (eds.), Taylor and Francis Ltd, London, 1967, p.303-9.

Kumar, M.; Rao, M.H.; Moorthy, P.N. J. Macromol. Sci., Chem. 1990, A27, 299-308.
Kumar, M.; Rao, M.H.; Moorthy, P.N.; Rao, K.N. Radiat. Eff. Express 1, 1988, 167-173.
Lal and Mahal, 1992 Medical Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo and T. Yoshikawa (eds.), Elsevier, Amsterdam, The Netherlands, 1989, Vol. 1, p.425-32

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Int. J. Radiat. Biol. 1988, 54, 773785.

Land, E.J.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1181-1190.
Land, E.J. Proc. R. Soc. London, Ser. A, 1968, 305, 457-471.

Landsman, N.A.; Swancutt, K.L.; Bradford, C.N.; Cox, C.R.; Kiddle, J.J.; Mezyk, S.P. Free radical chemistry of advanced oxidation processes removal of nitrosamines in water. Environ. Sci. Technol. 2007, 41, 5818-5823.

Lati, J.; Meyerstein, D. Trivalent nickel. II. A pulse radiolytic study of the formation and decomposition of the ethylenediamine and glycine complexes in aqueous solution. Inorganic. Chem. 1972, 11(10), 2397-2401.

Lee, C.; Schmidt, C.; Yoon, J.; von Gunten, U. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environ. Sci. Technol. 2007, 41, 2056-2063.

Lilie, J.; Beck, G.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1968, 72, 529-533.
Lilie, J.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1970, 74, 388-393.
Lilie, J. Z. Naturforsch. Teil B. 1971, 26, 197-202
Logan, S.R. J. Chem. Soc., Perkin Trans. 2, 1989, 751-754.
Maity, D.K.; Mohan, H.; Chattopadhyay, S.; Mittal, J. P. Formation, stability, and reactivity of radical cations of 1-bromo-n-chloroalkanes in aqueous solution: A pulse radiolysis study. J. Phys. Chem. 1995, 99, 12195-12203.

Mao, Y.; Schöneich, C.; Asmus, K-D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on TiO 2 surfaces en Route to mineralization. A combined photocatalytic and radiation chemical study. J. Phys. Chem. 1991, 95, 10080-10089.

Maruthamuthu, P. Makromol. Chem., Rapid Commun. 1980, 1, 23-25.
Massaut, B.; Tilquin, B.; Hickel, B. Bull. Soc. Chim. Belg. 1988, 97, 1031-1036.
Masuda, T.; Minemura, A.; Yamauchi, K.; Kondo, M. J. Radiat. Res. 1980, 21, 149-156.
Masuda, T.; Shinohara, H.; Kondo, M. J. Radiat. Res. 1975, 16, 153-161.
Matheson, M.S.; Mamou, A.; Silverman, J.; Rabani, J. Reaction of hydroxyl radicals with polyethylene oxide in aqueous solution. J. Phys. Chem. 1973, 77, 2420-2424.

Matheson, M.S.; Silverman, A.M.J.; Rabani, J. Reaction of hydroxyl radicals with polyethylene oxide in aqueous solution. J. Phys. Chem. 1973, 77(20), 2420-2424.

Matsushige, T.; Koltzenburg, G.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 1975, 79, 657-661.

Mattews, R.W.; Sangster, D.F. Measurement by benzoate radiolytic decarboxylation of relative rate constants for hydroxyl radical reactions. J. Phys. Chem. 1965, 69, 19381946.

Matuszak, Z.; Reszka, K.J.; Chignell, C.F. Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radical Biology \&

Medicine. 1997, 23(3), 367-372.
Mazellier, P.; Leroy, E.; De laat, J.; Legube, B. Degradation of carbendazim by UV/H2O2 investigated by kinetic modeling. Environ. Chem. Lett. 2003, 1, 68-72.

Merga, G.; Rao, B.S.M.; Mohan, H.; Mittal, J. P. Reactions of OH and SO4•- with some halobenzenes and halotoluenes: A radiation chemical study. J. Phys. Chem. 1994, 98, 9158-9164.

Merz, J.H.; Waters, W.A. A Electronic transfer reactions. The mechanism of oxidation of alcohols with fenton's reagent. 1949, 179-188.

Mezyk, S.P.; Helgeson, T.; Cole, S.K.; Cooper, W.J.; Fox, R.V.; Gardinali, P.R.; Mincher, B.J. Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. J. Phys. Chem. A. 2006, 110, 2176-2180.

Mezyk, S.P.; Ewing, D.B.; Kiddle, J.J.; Madden, K.P. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water. J. Phys. Chem. A, 2006, 110, 4732-4737.

Mezyk, S.P.; Cooper, W.J.; Bartels, D.M.; O’Shea, K.E.; Wu, T. Radiation chemistry of alternative fuel oxygenates: Substituted ethers. J. Phys. Chem. A. 2001, 105, 3521-3526.

Mezyk, S.P.; Jones, J.; Cooper, W.J.; Tobien, T.; Nickelsen, M.G.; Adams, J.W.; O’Shea, K.E.; Bartels, D.M.; Wishart, J.F.; Tornatore, P.M.; Newman, K.S.; Gregoire, K.;

Weidman, D.J. Environ. Sci. \& Technol. 2004, 38, 3994-4001.
Mezyk, S.P. Rate constant and activation energy determination for reaction of e-(aq) and -OH with 2-butanone and propanal. Can. J. Chem. 1994, 72, 1116-1119.

Michaels, H.B.; Rasburn, E.J.; Hunt, J.W. Radiat. Res. 1976, 65, 250-267.
Michaels, H.B.; Hunt, J.W. Radiat. Res. 1973, 56, 57-70.
Michael, B.D.; Hart, E.J. J. Phys. Chem. 1970, 74, 2878-2884.
Miller, J.S.; Cornwell, D.G. The role of cryoprotective agents as hydroxyl radical scavengers. Cryoobiology. 1978, 15, 585-588.

Milne, P.J. Ph.D., Thesis, Univ. Miami, Coral Gables, FL, 1989, 265p.
Milosavljevic, B.H.; LaVerne, J.A. Pulse radiolysis of aqueous thiocyanate solution. J. Phys. Chem. A. 2005, 109, 165-168.

Mohan, H.; Mittal, J.P. Structure-reactivity studies on the nature of transients formed on reaction of OH radicals with chloroiodoalkanes in aqueous solution. J. Chem. Soc. Perkin. Trans. 2. 1992, 1731-1736.

Mohan, H.; Mittal, J.P. Radiat. Phys. Chem. 1991, 38, 45-50.

Mohan, H.; Mittal, J. Formation and reactivity of the radical cation of bromobenzene in aqueous solution: A pulse radiolysis study. J. Phys. Chem. 1995, 99, 6519-6524.

Mohan, H.; Moorthy, P.N. Formation of radical cations of polyiodomethanes: A pulse radiolysis study. J. Chem. Soc. Perkin. Trans. 2. 1990, 277-282.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, atructure-activity relationships and atmospheric implications. Atmosph. Environ. 2005, 39, 7667-7688.

Moore, J.S.; Kemsley, K.G.; Davies, J.V.; Phillips, G.O. Radiation Biology and Chemistry. Research Developments, H.E. Edwards, S. Navaratnam, B.J. Parsons and G.O. Phillips (eds.), Elsevier, New York, 1979, p.99-113 (1979).

Moorthy, P.N.; Hayon, E. One-electron redox reactions of water-soluble vitamins. III. Pyridoxine and pyridoxal phosphate (Vitamin B6). J. Am. Chem. Soc. 1975, 97(8), 20482052.

Motohashi, N.; Saito, Y. Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate. Chem. Pharm. Bull. 1993, 41, 18421845.

Myint, P.; Deeble, D.J.; Beaumont, P.C.; Blake, S.M.; Phillips, G.O. Biochim. Biophys. Acta, 1987, 925, 194-202.

Naik, D.B.; Moorthy, P.N. Radiat. Phys. Chem. 1993, 41, 817-824.
Naik, D.B.; Moorthy, P.N. Proc. Indian Acad. Sci., Chem. Sci. 1991, 103, 667-675.
Neta, P.; Dorfman, L.M. Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Radiat. Chem. 1968, 222-230.

Neta, P.; Greenstock, C.L. Radiat. Res. 1973, 54, 35-48.
Nauser, T.; Buehler, R.E. J. Chem. Soc., Faraday Trans. 1994, 90, 3651-3656.
O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D. J. Phys. Chem. 1975, 79, 2773-2779.
Onstein, P.; Stefan, M.I.; Bolton, J.R. Competition kinetics method for the determination of rate constants for the reaction of hydroxyl radicals with organic pollutants using the $\mathrm{UV} / \mathrm{H} 2 \mathrm{O} 2$ advanced oxidation technology: The rate constants for the tert-butyl formate ester and 2,4-dinitrophenol. J. AOT. 1999, 4, 231-236.

Park, H-R.; Getoff, N. Radiolysis of aqueous ethanol in the presence of CO. Z. Naturforsch., A, Phys. Sci. 1992. 47A, 985-991.

Pasquier, C.; Pierce, B.; Willson, R.L. Medical Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo and T. Yoshikawa (eds.), Elsevier, Amsterdam, The Netherlands, 1989, Vol. 1, p.425-32

Patterson, L.K.; Bansal, K.M. J. Phys. Chem. 1972, 76, 2392-2399.
Poskrebyshev, G.A.; Huie, R.E.; Neta, P. Radiolysis reactions of monochloramine in aqueous solutions. J. Phys. Chem. A. 2003, 107, 7423-7428.

Powers, E.L.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1986, 50, 983-993.
Rao, P.S.; Hayon, E. Reaction of hydroxyl radicals with oligopeptides in aqueous solutions. A pulse radiolysis study. J. Phys. Chem. 1975, 79(2), 109-115.

Rao, P.S.; Simic, M.; Hayon, E. J. Phys. Chem. 1975, 79, 1260-1263.
Reuvers, A.P.; Greenstock, C.L.; Borsa, J.; Chapman, J.D. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1973, 24, 533-536.

Roberts, J.E.; Hu, D-N.; Wishart, J.F. Pulse radiolysis studies of melatonin and chloromelatonin. J. Photochem. Photobiology B. Biology 42, 1998, 125-132. Robinson, E.A.; Schulte-Frohlinde, D. J. Chem. Soc., Faraday Trans. 1, 1973, 69, 707718.

Roder, M.; Wojnarovits, L.; Foldiak, G. Radiat. Phys. Chem. 1990, 36, 175-176. Rosenthal, I.; Riesz, P.; Faraggi, M. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1983, 44, 463-468.

Ross, F.; Ross, A.B. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical an their radical ions. NSRDS-NBS 59,

Rudakov, E.S.; Volkova, L.K.; Tret'yakov, V.P. React. Kinet. Catal. Lett. 1981, 16, 333337.

Santamaria, J.; Pasquier, C.; Ferradini, C.; Pucheault, J.Radiat. Res. 1984, 97, 452-461.
Saunders, B.B.; Gorse, Jr. R.A. Reactions of diethylhydroxylamine with radiolytically produced radicals in aqueous solutions. J. Phys. Chem. 1979, 83(13), 1696-1701.

Saunders, B.B.; Kaufman, P.C.; Matheson, M.S. Reactions of thiophene with radiolytically produced radicals. 1. The hydroxyl radical. J. Phys. Chem. 1978, 82(2), 142-150.

Savel'eva, O.S.; Shevchuk, L.G.; Vysotskaya, N.A. J. Org. Chem. USSR, 1972, 8, 283286.

Savel'eva, O.S.; Shevchuk, L.G.; Vysotskaya, N.A. J. Org. Chem. USSR, 1973, 9, 759761.

Schöneich, C.; Bobrowski, K. Intramolecular hydrogen transfer as the key step in the dissociation of hydroxyl radical adducts of (Alkylthio)ethanol derivatives. J. Am. Chem. Soc. 1993, 115, 6538-6547.

Scholes, G.; Willson, R.L. Trans. Faraday Soc. 1967, 63, 2983-2993.
Schuchmann, M.N.; von Sonntag, C. Hydroxyl radical-induced oxidation of diisopropyl ether in oxygenated aqueous solution. A product and pulse radiolysis study. Z. Naturforsch. 1987, 42b, 495-502.

Schuchmann, M.N.; von Sonntag, C. J. The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution. Am. Chem. Soc. 1988, 110, 56985701.

Schmidt, K.H.; Bromberg, A.; Meisel, D. Oxidation of diphenylamine by OH radicals and excitation of the diphenylamino and OH adduct radicals. J. Phys. Chem. 1985, 89. 4352-4357.

Sehested, K.; Holcman, J. Reactions of the radical cations of methylated benzene derivatives in aqueous solution. J. Phys. Chem. 1978, 82(6), 651-653.

Sehested, K.; Holcman, J. Nukleonika 1979, 24, 941-950.
Sehested, K.; Cortitzen, H.; Christense, H.C.; Hart, E.J. Rates of reaction of O-, OH, and H with methylated benzenes in aqueous solution. Optical spectra of radicals. 1975, 79(4), 310-315.

Shemer, H.; Sharpless, C.M.; Elovitz, M.S.; Linden, K.G. Relative rate constants of contaminant candidate list pesticides with hydroxyl radicals. Environ. Sci. Technol. 2006, 40, 4460-4466.

Shevchuk, L.G.; Zhikharev, V.S.; Vysotskaya, N.A. J. Org. Chem. USSR, 1969, 5, 16061608.

Schoeneshoefer, M. Z. Naturforsch. Teil B, 1971, 26, 1120-1124.
Simic, M.; Ebert, M. Int. J. Radiat. Phys. Chem. 1971, 3, 259-272.
Simic, M.; Neta, P.; Hayon, E. Int. J. Radiat. Phys. Chem. 1971, 3, 309-320.

Simic, M.; Hayon, E. Intermediates produced from the one-electron oxidation and reduction of hydroxylamines. Acid-base properties of the amino, hydroxyamino, and methoxyamino radicals. J. Am. Chem. Soc. 1971, 93(23), 5982-5986.

Snook, M.E.; Hamilton, G.A. Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and fenton's reagent. J.A.C.S. 1974, 96(3), 860869.

Soeylemez, T.; Schuler, R.H. J. Phys. Chem. 1974, 78, 1052-1062.
Solar, S.; Getoff, N. Oxidation of tryptophan and N-methylindole by N3, Br2- and (SCN)2- radicals in light and heavy-water solutions: A pulse radiolysis study. J. Phys. Chem. 1991, 95, 3639-3643.

Sridhar, R.; Beaumont, P.C.; Powers, E.L. Oxygen Radicals Chem. Biol., W. Bors, M.
Saran and D. Tait (eds.), de Gruyter, Berlin, Fed. Rep. Germany, Pub. 1984, p.101-7
Steenken, S.; O'Neill, P. J. Phys. Chem. 1979, 83, 2407-2412.
Stevens, G.C.; Clarke, R.M.; Hart, E. Radiolysis of aqueous methane solutions. J.Phys.Chem. 1972, 76(25), 3863-3867.

Sumiyoshi, T.; Miura, N.; Aikawa, M.; Katayama, M. Bull. Chem. Soc. Jpn. 1982, 55, 2347-2351.

Tamminga, J.J.; van den Ende, C.A.M.; Warman, J.M.; Hummel, A. Recl. Trav. Chim. Pays-Bas, 1979, 98, 305-315.

Tanaka, M.; Sakuma, H.; Kohanawa, O.; Fukaya, S.; Katayama, M. Bull. Chem. Soc. Jpn. 1984, 57, 3403-3407.

Thomas, J.K. Trans. Faraday Soc. 1965, 61, 702-707.
Thomas, J.K. Pulse radiolysis of aqueous solutions of methyl iodide and methyl bromide. The reactions of iodine atoms and methyl radicals in water. J. Phys. Chem. 1967, 71(6), 1919-1925.

Tripathi, G.N.R.; Schuler, R.H. J. Phys. Chem. 1983, 87, 3101-3105.
Ulanski, P.; Bothe, E.; Rosiak, J.M.; von Sonntag, C. Macromol. Chem. Phys. 1994, 195, 1443-1461.

Ulanski, P.; von Sonntag, C. The OH radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate. Perkin transaction, 1994.

Veltwisch, D.; Janata, E.; Asmus, K-D. Primary processes in the reaction of $\mathrm{OH} \bullet$-radicals with sulphoxides. J.C.S. Perkin II. 1980, 146-153.
van der Linde, H.J. Radiat. Phys. Chem. 1977, 10, 199-206.
von Sonntag, C.; Ansorge, G.; Sugimori, A.; Omori, T.; Koltzenburg, G.; SchulteFrohlinde, D.
Z. Naturforsch. Teil B, 1972, 27, 471-472.

Vysotskaya, N.A.; Shevchuk, L.G.; Gavrilova, S.P.; Badovskaya, L.A.; Kul'nevich, V.G. J. Org. Chem. USSR, 1983, 19, 1352-1354.

Walling, C.; El-Taliawi, G.M. Fenton's reagent. II. Reactions of carbonyl compounds and α, β-unsaturated acids. J. Am. Chem. Soc. 1973, 95(3), 844-847.

Walling, C.; El-Taliawi, G.M.; Johnson, R.A. Fenton's reagent. IV. Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals. J. Am. Chem. Soc. 1974, 96(1), 133-139.

Wander, R.; Neta, P.; Dorfman, L.M. Pulse radiolysis studies. XII. Kinetics and spectra f the cyclohexadienyl radicals in aqueous benzoic acid solution. J. Phys. Chem. 1968, 72(8), 2946-2949.

Wang, W-f.; Schuchmann, M.N.; Schuchmann, H-P.; Knolle, W.; von Sonntag, J.; von Sonntag, C. Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solution. J. Am. Chem. Soc. 1999, 121, 238-245.

Wang, D.; Gyoergy, I.; Hildenbrand, K.; von Sonntag, C. J. Chem. Soc., Perkin Trans. 2, 1994, 45-55.

Whillans, D.W. Radiat. Phys. Chem. 1977, 10, 335-340.
Wigger, A.; Gruenbein, W.; Henglein, A.; Land, E.J. Z. Naturforsch. Teil B, 1969, 24, 1262-1267.

Willson, R.L.; Greenstock, C.L.; Adams, G.E.; Wageman, R.; Dorfman, L.M. The standardization of hydroxyl radical rate data from radiation chemistry. Int.J.Radiat.Phys.Chem. 1971, 3, 211-220.

Wolfenden, B.S.; Willson, R.L. J. Chem. Soc., Perkin Trans. 2, 1982, 805-812.
Zakatova, N.V.; Minkhadzhiddinova, D.P.; Sharpatyi, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1969, 1520.

Zimbrick, J.D.; Ward, J.F.; Myers, L.S.Jr. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1969, 16, 505-523.

Zona, R.; Solar, S.; Sehested, K.; Holcman, J.; Mezyk, S.P. OH-radical induced oxidation of phenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. Primary radical steps and products. J. Phys. Chem. A. 2002, 106, 6743-6749.

APPENDIX C: FORTRAN 90 PROGRAM SOURCE CODE OF GROUP CONTRIBUTION METHOD IDENTIFIER

! GCM Identifier.f90	
!	
! FUNCTIONS: GCMIdentifier	

PROGRAM GCMIdentifier
IMPLICIT NONE

INTEGER	$::$ I, J, K
INTEGER	$::$ L1, L2, L3, L4, L5, L6
INTEGER	$:: ~ B 1, ~ B 2, ~ B 3, ~ B 4, ~ B 5, ~ B 6 ~$

INTEGER : : P1, P2, P3, P4, P5, P6		
INTEGER	R : F1,F2	: F1,F2
INTEGER	R :	: I1
INTEGER	R : ${ }^{\text {T1 }}$	
REAL	:: NPRIMCH,	: NPRIMCH, NSECNCH, NTERTCH, NALCOL, NCABXL
REAL		: NS, NSS, NSO, NSH, NCN, NNO2, NCONH2, NCONH, NCON, NNH2, NNH, NN, NNCON, NP
REAL	:: NADDALK1	: NADDALK1, NADDALK2,NADDALK3, NADDALK4,NADDALK5, NADDALK6
REAL		: NBENC6H5
REAL	: : BENC6H4, BENC6H40, BENC6H4M, BENC6H4P	
REAL	:: BENC6H3,	BENC6H3, BENC6H3A, BENC6H3B, BENC6H3C
REAL		: BENC6H2,BENC6H2A, BENC6H2B, BENC6H2C, BENC6H, BENC6
REAL	:: PYR1, PYR	: PYR1,PYR2,PYR3, PYR4, PYR5, PYR6
REAL		: FUR1, FUR2
REAL		: IMI
REAL		: : TRZ
REAL, P	PARAMETER	: : NMAXN =100
REAL, P	PARAMETER	:: NMAXFUN = 197
REAL, D	DIMENSION(0:NMAXFUN)	:: z
REAL, D	DIMENSION(0:NMAXFUN)	:: y
REAL, D	DIMENSION(0:NMAXFUN)	:: X1, X2, X3, X4, X5, X6
REAL, D	DIMENSION(0:NMAXFUN)	: : Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14
REAL, D	DIMENSION(0:NMAXFUN)	:: Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10
REAL, D	DIMENSION(0:NMAXFUN)	:: Z11,Z12,Z13,Z14,Z15,Z16, Z17,Z18,Z19,Z20
REAL, D	DIMENSION(0:NMAXFUN)	:: Z21,Z22,Z23,Z24,Z25,Z26,Z27,Z28,Z29,Z30
REAL, D	DIMENSION(0:NMAXFUN)	:: Z31,z32,z33,Z34,Z35,Z36,Z37, z38,Z39,Z40
REAL, D	DIMENSION(0:NMAXFUN)	:: Z41,Z42,Z43,Z44,Z45,Z46,Z47, Z48, Z49, 550
REAL, D	DIMENSION(0:NMAXFUN)	$:: ~ Z 51, Z 52, Z 53, Z 54, \mathrm{Z} 55, \mathrm{z56}, \mathrm{Z57}$
REAL, D	DIMENSION(0:NMAXN)	: : PRATEPRIM, PRATESECN, PRATETERT
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDALK1,PRATEADDALK2,PRATEADDALK3
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDALK4, PRATEADDALK5, PRATEADDALK6
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDBEN1
REAL, D	DIMENSION(0:NMAXN)	: P PRATEADDBEN2
REAL, D	DIMENSION(0:NMAXN)	: : PRATEADDBEN20RTH, PRATEADDBEN2META, PRATEADDBEN2PARA
REAL, D	DIMENSION(0:NMAXN)	: P PRATEADDBEN3
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDBEN3A, PRATEADDBEN3B, PRATEADDBEN3C
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDBEN4
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDBEN4A, PRATEADDBEN4B, PRATEADDBEN4C
REAL, D	DIMENSION(0:NMAXN)	: P PRATEADDBEN5, PRATEADDBEN6
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDPYR1, PRATEADDPYR2,PRATEADDPYR3
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDPYR4, PRATEADDPYR5, PRATEADDPYR6
REAL, D	DIMENSION(0:NMAXN)	:: PRATEADDFUR1, PRATEADDFUR2
REAL, D	DIMENSION(0:NMAXN)	: P PRATEADDIMI1
REAL, D	DIMENSION(0:NMAXN)	: : PRATEADDTRZ1
REAL	:: OVALLRA	, habstrate, AdDALKRATE, GRATEALCOL, GRATECABXL
REAL	:: INTRATE	
REAL	:: GRATES,	GRATESS, GRATESO, GRATESH, GRATECN, GRATENO2, GRATECONH2
REAL	:: GRATECO	,
REAL	:: ADDARMRA	ATE, PRATEADDBEN, PRATEADDPYR, PRATEADDFUR, PRATEADDIMI, PRATEADDTRZ
CHARAC	TER*80	:: fn_output
!**para	ameters**	
$y(1)=$	1.17401	!'-CH2-
$y(2)=$	1.17401	!'-CH<
$y(3)=$	1.17401	! '>C <
$y(4)=$	0.57803	!'-OH
$y(5)=$	$1.17580 \mathrm{E}+08$!k prim
$y(6)=$	$5.10970 \mathrm{E}+08$! k sec
$y(7)=$	$1.99026 \mathrm{E}+09$!k tert
$y(8)=$	$9.99996 \mathrm{E}+07$! k OH
$y(9)=$	1.12000	!'- CH 3
$y(10)=$	0.55103	!'-0- AND -C-O-
$y(11)=$	0.15399	!'-CO
$y(12)=$	0.15399	!' - $\mathrm{CH} 2-\mathrm{CO}-$
$y(13)=$	0.15399	!' - $\mathrm{CH}-\mathrm{CO}-$
$y(14)=$	0.60162	!'-CHO
$y(15)=$	0.04300	!' - COOR
$y(16)=$	0.00000	!'-OCOR
$y(17)=$	0.04300	!'- COOH
$y(18)=$	$7.00463 \mathrm{E}+05$! kCOOH
$y(19)=$	0.00000	!'-F
$y(20)=$	0.20319	!'-Cl
$y(21)=$	0.37668	!'-Br
$y(22)=$	0.10180	!'-CF3
$y(23)=$	0.00000	!'-CF2-
$y(24)=$	0.11225	!'-CCl3
$y(25)=$	2.38950	!'-S
$y(26)=$	2.38950	!'-S-S-
$y(27)=$	$2.36093 \mathrm{E}+09$!'k -S-
$y(28)=$	$3.67296 \mathrm{E}+09$!'k -S-S-
$y(29)=$	0.44480	!'-SO-

$y(30)=$	1.91952E+09	!'k -SO-
$y(31)=$	2.38950	!'-SH-
$y(32)=$	$9.93380 \mathrm{E}+08$! $\mathrm{k}-\mathrm{SH}-$
$y(33)=$	0.00292	!'-CN
$y(34)=$	$5.54903 \mathrm{E}+06$! $\mathrm{k}-\mathrm{CN}$
$y(35)=$	0.00000	!'-NO2
$y(36)=$	$1.32607 \mathrm{E}+08$! k-N02
$y(37)=$	0.15399	!'-CO-NH2
$y(38)=$	0.15399	!'-CO-NH-
$y(39)=$	0.15399	!'-CO-N<
$y(40)=$	$9.98120 \mathrm{E}+07$!k - $\mathrm{CO}-\mathrm{NH} 2$
$y(41)=$	$5.00446 \mathrm{E}+08$! k - $\mathrm{CO}-\mathrm{NH}-$
$y(42)=$	$9.98491 \mathrm{E}+08$! $\mathrm{k}-\mathrm{CO}-\mathrm{N}<$
$y(43)=$	1.62857	!'-NH2
$y(44)=$	$3.99837 \mathrm{E}+09$! k-NH2
$y(45)=$	1.62857	! '-NH
$y(46)=$	1.62857	!'-N<
$y(47)=$	0.01054	!'-N-NO
$y(48)=$	0.17649	!'-N-NO2
$y(49)=$	1.00820E+08	! $\mathrm{k}-\mathrm{NH}-$
$y(50)=$	$3.53248 \mathrm{E}+09$! $\mathrm{k}-\mathrm{N}<$
$y(51)=$	$0.00000 \mathrm{E}+00$! $\mathrm{k}-\mathrm{N}-\mathrm{NO}$
$y(52)=$	0.00000E+00	! $\mathrm{k}-\mathrm{N}-\mathrm{NO} 2$
$y(53)=$	0.10281	! '-P0
$y(54)=$	$2.57962 \mathrm{E}+07$!k PO, PO3
$y(55)=$	1.00000	!'-H
$y(56)=$	0.36000	!'=0
$y(57)=$	0.15399	!->C-CO-
$y(58)=$	3.18576	!-N-CO-
$y(59)=$	0.00004	!-P<-
$y(60)=$	0.86006	!-RS5
$y(61)=$	0.05199	!-RS3
$y(62)=$	0.94498	!-0-second
$y(63)=$	0.00000	!-0-fluorinated
$y(64)=$	0.00000	!-0-C-C-fluorinated
$y(65)=$	0.36708	!-CH2Br
$y(66)=$	0.36708	!-CH2Cl
$y(67)=$	0.36708	!-CHCl2
$y(68)=$	0.36708	!-CHBr2
$y(69)=$	0.36708	!-CHCl-
$y(70)=$	0.00000	!-CH2CN
$y(71)=$	0.00000	!-CH2-NO2
$y(72)=$	0.00000	!-CH-NO2
$y(73)=$	0.00000	!-CH2-0-
$y(74)=$	$9.99990 \mathrm{E}+09$! k $\mathrm{HH}>\mathrm{C}=\mathrm{C}<\mathrm{H}-1$
$y(75)=$	$1.01020 \mathrm{E}+08$! k HH $>\mathrm{C}=\mathrm{C}<\mathrm{H}-2$
$y(76)=$	$9.78771 \mathrm{E}+10$! k $\mathrm{HH}>\mathrm{C}=\mathrm{C}<-1$
$y(77)=$	$3.16106 \mathrm{E}+09$! k HH>C=C <-2
$y(78)=$	3.01102E+10	! $\mathrm{k} \mathrm{H}>\mathrm{C}=\mathrm{C}<\mathrm{H}$ (cis)
$y(79)=$	0.51475	!-CN(uns)
$y(80)=$	0.38893	!-CH2-(uns)
$y(81)=$	0.59969	!-CO-(uns)
$y(82)=$	0.00000	!-OH(uns)
$y(83)=$	0.59969	!-CHO(uns)
$y(84)=$	0.23449	!-COOH(uns)
$y(85)=$	0.23449	!-COOR(uns)
$y(86)=$	0.21000	!-Cl(uns)
$y(87)=$	0.17115	!-CH3(uns)
$y(88)=$	0.59969	!- $\mathrm{CO}-\mathrm{NH} 2$ (uns)
$y(89)=$	1.00000	! >C=C<
$y(90)=$	1.00000	!-C6H5
$y(91)=$	$1.02285 \mathrm{E}+09$! k-C6H5-2,6
$y(92)=$	1.29419E+09	! k-C6H5-3,5
$y(93)=$	$9.14417 \mathrm{E}+08$! k-C6H5-4
$y(94)=$	1.00078	!-CH2-(Ar)
$y(95)=$	1.26917	!-OH(Ar)
$y(96)=$	0.97265	!-F(Ar)
$y(97)=$	0.97811	!-Cl(Ar)
$y(98)=$	0.87842	!-Br(Ar)
$y(99)=$	0.82106	!'-I(Ar)
$y(100)=$	0.41111	!'-CN(Ar)
$y(101)=$	0.40518	!-N02(Ar)
$y(102)=$	0.67178	!-CHO(Ar)
$y(103)=$	0.67967	!-COOH(Ar)
$y(104)=$	0.98129	!-CO-(Ar)
$y(105)=$	0.84219	!-CONH2 (Ar)
$y(106)=$	0.65601	!-SO- (Ar)
$y(107)=$	0.85532	!-NH-CO-(Ar)
$y(108)=$	0.37331	!-S03H (Ar)
$y(109)=$	1.10547	!-NH- (Ar)
$y(110)=$	1.00078	!-CH< (Ar)
$y(111)=$	1.03424	!-0- (Ar)
$y(112)=$	1.00078	!-CH3 (Ar)
$y(113)=$	1.00078	$!>C<(A r)$
$y(114)=$	1.48110	!-NH2 (Ar)
$y(115)=$	$1.78102 \mathrm{E}+09$! k-C6H4 (o-Ar)-3,6
$y(116)=$	$7.05874 \mathrm{E}+08$! k-C6H4 (o-Ar)-4,5
$y(117)=$	$9.88668 \mathrm{E}+08$! k-C6H4 (m-Ar)-2

OPEN(7, file='GCM_INPUT.txt', status='unknown')

```
PRINT*, "*****************************************************************
PRINT*, "H-atom abstraction"
PRINT*, "*******************************************************************
!The effect of functional groups includes alkane, oxygenated, alkyl halides,
!S-, N-, or P-atom containing functional groups.
!Primary C-H bond(s) (kprim*Xi)
    PRINT*, "The number of primary C-H bonds presented in the molecule"
    READ (7,*) NPRIMCH
    IF (NPRIMCH == 0.0) THEN
            PRATEPRIM(NPRIMCH)=0.0
    ELSE IF (NPRIMCH >= 1.) THEN
        PRINT*, "Input group contribution factors of functional groups X of R1 &
                    & from the supplement material Tables"
        DO 10 I=1,NPRIMCH
        READ(7,*) X1(I)
            PRATEPRIM(NPRIMCH)=PRATEPRIM(NPRIMCH )+3*y(5)*X1(I) !kCH3R1
            CONTINUE
    END IF
!Secondary C-H bond(s) (ksec*Xi*Xi)
    PRINT*, "The number of secondary C-H bonds presented in the molecule"
    READ (7,*) NSECNCH
    IF (NSECNCH == 0.0) THEN
            PRATESECN (NSECNCH ) =0.0
    ELSE IF (NSECNCH >= 1.) THEN
        PRINT*, "Input group contribution factors of functional groups X of R1 &
                    & and X of R2 from the supplement material Tables"
            DO 20 J=1,NSECNCH
            READ (7,*) X2(J)
            READ(7,*) X3(J)
            RRATESECN(NSECNCH )=PRATESECN(NSECNCH )+2*y(6)*X2(J)*X3(J) !kCH2R1R2
            CONTINUE
    END IF
!Tertiary C-H bond(s) (ktert*Xi*Xi*Xi)
    PRINT*, "The number of tertiary C-H bonds presented in the molecule"
    READ (7,*) NTERTCH
    IF (NTERTCH == 0.0) THEN
            PRATETERT (NTERTCH ) =0.0
    ELSE IF (NTERTCH >= 1.) THEN
        PRINT*, "Input group contribution factors of functional groups X of R1,R2,and R3 &
                & from the supplement material Tables"
                    DO 30 K=1,NTERTCH
            READ (7, *) X4(K)
            READ (7,*) X5(K)
            PRATETERT(NTERTCH)=PRATETERT(NTERTCH)+y(7)*X4(K)*X5(K)*X6(K) !kCHR1R2R3
            CONTINUE
    END IF
!Group rate constants for alcohol and carboxylic functional group, kR4
    PRINT*, "The number of alcohol functional group presented in the molecule"
    READ(7,*) NALCOL
    GRATEALCOL=NALCOL*y(8) !k-OH
    PRINT*, "The number of carboxylic functional group presented in the molecule"
    READ (7,*) NCABXL
    GRATECABXL=NCABXL*y(18) !k-COOH
    HO* rate constant for H-atom abstraction
    HABSTRATE=PRATEPRIM(NPRIMCH ) +PRATESECN(NSECNCH)+PRATETERT(NTERTCH)+GRATEALCOL+GRATECABXL
!*****************************************************************************************************
!HO radical interaction with S, N, P-atom containing compounds
!*******************************************************************************************
PRINT* "***************************************************************"
PRINT*, "HO radical interaction with S, N, P-atom containing compounds"
PRINT*, "******************************************************************
!Group rate constant for S-atom containing compounds
    PRINT*, "The number of -S-"
    READ (7,*) NS
    GRATES=NS*y(27) !k-S-
    PRINT*, "The number of -S-S-"
    READ(7,*) NSS
    GRATESS=NSS*y(28) !k-S-S-
    PRINT*, "The number of -SO-"
    READ(7,*) NSO
    GRATESO=NSO*y(30) !k-SO-
```

```
    PRINT*, "The number of -SH-"
    READ(7,*) NSH
    GRATESH=NSH*y(32) !k-SH-
!Group rate constant for N-atom containing compounds
    PRINT*, "The number of -CN"
    READ(7,*) NCN
    GRATECN=NCN*y(34) !k-CN
    PRINT*, "The number of -NO2"
    READ(7,*) NNO2
    GRATENO2=NNO2*y(36) !k-NO2
    PRINT*, "The number of -CO-NH2"
    READ(7,*) NCONH2
    GRATECONH2=NCONH2*y(40) ! k-CO-NH2
    PRINT*, "The number of -CO-NH-"
    READ(7,*) NCONH
    GRATECONH=NCONH*y(41) !k-CO-NH-
    PRINT*, "The number of -CO-N<"
    READ (7,*) NCON
    GRATECON=NCON*y(42) !k-CO-N<
    PRINT*, "The number of -NH2"
    READ(7,*) NNH2
    GRATENH2=NNH2*y(44) !k-NH2
    PRINT*, "The number of -NH-"
    READ(7,*) NNH
    GRATENH=NNH*y(49) !k-NH-
    PRINT*, "The number of - N<"
    READ(7,*) NN
    GRATEN=NN*y(50) !k-N<
    PRINT*, "The number of -N-CO-N"
    READ (7,*) NNCON
    GRATENCON=NNCON*y(162) !k-N-CO-N
!Group rate constant for P-atom containing compounds
    PRINT*, "The number of -PO, PO3"
    READ (7'*) NP
    GRATEP=NP*y(54) !k-P<
!k for interaction with S-, N-, or P-atom containing compounds
    INTRATE=GRATES+GRATESS+GRATESO+GRATESH+GRATECN+GRATENO2+GRATECONH2+GRATECONH+GRATECON &
&
!************************************************************************************************
!HO radical addition to alkenes
l***************************************************************************************************
PRINT* "*******************************************************************
PRINT*, "HO radical addition to alkenes"
PRINT*, "****************************************************************
    PRINT*, "Basic structure that includes C=C bond are: &
    &(1)HH>C=C<H, (2) HH>C=C<,(3)H>C=C<H(cis),(4)H>C=C<H(trans),(5)H>C=C<, and (6) >C=C<"
    PRINT*, "The number of basic structure 'HH>C=C<H' presented in the molecule"
    READ (7,*) NADDALK1
        IF (NADDALK1 == 0.0) THEN
            PRATEADDALK1(NADDALK1)=0.0
        ELSE IF (NADDALK1 >= 1.) THEN
            PRINT*, "Input group contribution factor, Y of R1 "
            DO 40 L1=1,NADDALK1
            READ (7,*) Y1(L1)
            PRATEADDALK1(NADDALK1)=PRATEADDALK1(NADDALK1)+(y(74)+y(75))*Y1(L1)
                continuE
        END IF
    PRINT*, "The number of basic structure 'HH>C=C<' presented in the molecule"
    READ(7,*) NADDALK2
        IF (NADDALK2 == 0.0) THEN
            PRATEADDALK2(NADDALK2)=0.0
        ELSE IF (NADDALK2 >= 1.) THEN
            PRINT*, "Input group contribution factors, Y of R1 and R2"
            DO 50 L2=1,NADDALK2
            READ (7,*) Y2(L2)
            READ (7,*) Y3(L2)
                    PRATEADDALK2(NADDALK2)=PRATEADDALK2(NADDALK2)+(y(76)+y(77))*Y2(L2)*Y3(L2)
                CONTINUE
    END IF
```

```
    PRINT*, "The number of basic structure 'H>C=C < H(cis)' presented in the molecule"
    READ(7,*) NADDALK3
        IF (NADDALK3 == 0.0) THEN
            PRATEADDALK3(NADDALK3)=0.0
        ELSE IF (NADDALK3 >= 1.) THEN
            PRINT*, "Input group contribution factors, Y of R1 and R2"
            DO 60 L3=1,NADDALK3
            READ (7,*) Y4(L3)
            READ (7,*) Y5(L3)
                PRATEADDALK3(NADDALK3)=PRATEADDALK3(NADDALK3)+2*y (78)*Y4(L3)*Y5(L3)
                CONTINUE
            END IF
    PRINT*, "The number of basic structure 'H>C=C<H(trans)' presented in the molecule"
    READ(7,*) NADDALK4
        IF (NADDALK4 == 0.0) THEN
        PRATEADDALK4(NADDALK4)=0.0
        ELSE IF (NADDALK4 >= 1.) THEN
            PRINT*, "Input group contribution factors, Y of R1 and R2"
            DO 70 L4=1,NADDALK4
            READ (7,*) Y6(L4)
            READ (7,*) Y7(L4)
                PRATEADDALK4(NADDALK4)=PRATEADDALK4(NADDALK4)+2*y(187)*Y6(L4)*Y7(L4)
            CONTINUE
        END IF
    PRINT*, "The number of basic structure ' }\textrm{H}>\textrm{C}=\textrm{C}<' presented in the molecule"
    READ(7,*) NADDALK5
    IF (NADDALK5 == 0.0) THEN
    PRATEADDALK5(NADDALK5)=0.0
    ELSE IF (NADDALK5 >= 1.) THEN
                PRINT*, "Input group contribution factors, Y of R1, R2, and R3"
                DO 80 L5=1,NADDALK5
            READ (7,*) Y8(L5)
            READ (7,*) Y9(L5)
            READ (7,*) Y10(L5)
                    PRATEADDALK5(NADDALK5 )=PRATEADDALK5 (NADDALK5 )+2* (y (165)+y(166))*Y8(L5 )*Y9(L5)*Y10(L5)
                CONTINUE
    END IF
    PRINT*, "The number of basic structure '>C=C<' presented in the molecule"
    READ(7,*) NADDALK6
    IF (NADDALK6 == 0.0) THEN
    PRATEADDALK6(NADDALK6)=0.0
    ELSE IF (NADDALK6 >= 1.) THEN
            PRINT*, "Input group contribution factors, Y of R1,R2,R3, and R4"
            DO 90 L6=1,NADDALK6
            READ (7,*) Y11(L6)
            READ (7,*) Y12(L6)
            READ (7,*) Y13(L6)
            READ (7,*) Y14(L6)
                PRATEADDALK6(NADDALK6)=PRATEADDALK6(NADDALK6)+y(170)*Y11(L6)*Y12(L6 )*Y13(L6)*Y14(L6)
            CONTINUE
        END IF
    ADDALKRATE=PRATEADDALK1(NADDALK1)&
    & +PRATEADDALK2(NADDALK2) &
    & +PRATEADDALK3(NADDALK3) &
    & +PRATEADDALK4(NADDALK4) &
    & +PRATEADDALK5(NADDALK5) &
    & +PRATEADDALK6(NADDALK6)
!**********************************************************************************************
!HO addition to aromatic compounds
!****************************************************************************************************
PRINT* "****************************************************************
PRINT*, "HO addition to aromatic compounds"
PRINT*,
PRINT*, " "
! Benzene
PRINT*, "The \# of -C6H5 with one functional group"
```


READ (7, *) NBENC6H5

```
IF (NBENC6H5 == 0.0) THEN
PRATEADDBEN1 (NBENC6H5) \(=0.0\)
ELSE IF (NBENC6H5 >= 1.) THEN
PRINT*, "Input group contribution factor, \(Z\) of R1"
D0 100 B1=1, NBENC6H5
READ (7,*) Z1(B1)
PRATEADDBEN1 (NBENC6H5) =PRATEADDBEN1 (NBENC6H5) + \(\left.\mathbf{2}^{*} \mathrm{y}(91)+2^{*} \mathrm{y}(92)+\mathrm{y}(93)\right){ }^{*} \mathrm{Z} 1(\mathrm{~B} 1) \quad\) !k-C6H5
CONTINUE
```

END IF
PRINT*, "The \# of -C6H4 with one functional group at 'ortho-' position"
READ (7, *) BENC6H40
IF (BENC6H40 == 0.0) THEN
PRATEADDBEN2ORTH $($ BENC6H40 $)=0.0$
ELSE IF (BENC6H40 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2" DO 110 B2=1,BENC6H40
$\operatorname{READ}(7, *)$ Z2(B2)
$\operatorname{READ}(7, *)$ Z3(B2)
PRATEADDBEN2ORTH $($ BENC6H40 $)=$ PRATEADDBEN2ORTH $($ BENC6H40 $)+\left(2^{*} y(115)+2^{*} y(116)\right) * Z 2(B 2) * Z 3(B 2)!k-$
C6H4 (or tho)
END IF
PRINT*, "The \# of -C6H4 with one functional group at 'meta-' position"
READ (7, *) BENC6H4M
IF (BENC6H4M == 0.0) THEN
PRATEADDBEN2META(BENC6H4M)=0.0
ELSE IF (BENC6H4M >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
DO 120 B2=1, BENC6H4M
$\operatorname{READ}(7, *) \mathrm{Z4}(\mathrm{~B} 2)$
READ (7,*) Z5(B2)
PRATEADDBEN2META $(B E N C 6 H 4 M)=$ PRATEADDBEN2META (BENC6H4M $)+\left(y(117)+2^{*} y(118)+y(119)\right) * Z 4(B 2) * Z 5(B 2)$
! k-C6H4 (meta)
120
continue
END IF
PRINT*, "The \# of -C6H4 with one functional group at 'para-' position" READ (7, *) BENC6H4P

IF (BENC6H4P $==0.0$) THEN
PRATEADDBEN2PARA (BENC6H4P) $=0.0$
ELSE IF (BENC6H4P >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
DO 130 B2=1, BENC6H4P
$\operatorname{READ}\left(7,{ }^{*}\right)$ Z6(B2)
$\operatorname{READ}(7, *) \quad$ Z7(B2)
PRATEADDBEN2PARA (BENC6H4P) =PRATEADDBEN2PARA (BENC6H4P) + (2*y (120) +2*y (121))*Z6 (B2)*Z7(B2) !k-
C6H4(para)
130

CONTINUE

END IF
PRATEADDBEN2 $($ BENC6H4 $)=$ PRATEADDBEN2ORTH (BENC6H40) +PRATEADDBEN2META (BENC6H4M) +PRATEADDBEN2PARA(BENC6H4P)

PRINT*, "The \# of - C6H3 with one functional group at (1,2,3-Ar) position (called position A)" READ (7, *) BENC6H3A

IF (BENC6H3A == 0.0) THEN
PRATEADDBEN3A (BENC6H3A) $=0.0$
ELSE IF (BENC6H3A >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2 and R3"
DO 140 B3=1, BENC6H3A
$\operatorname{READ}(7, *)$ Z8(B3)
READ (7,*) Z9(B3)
READ(7,*) Z10(B3)
PRATEADDBEN3A (BENC6H3A) =PRATEADDBEN3A (BENC6H3A) $+(2 * y(122)+y(123)) * Z 8(B 3) * Z 9(B 3) * Z 10(B 3) \quad!k-$
C6H3(1, 2,3-Ar)
CONTINUE
END IF
PRINT*, "The \# of - C6H3 with one functional group at (1,2,4-Ar) position (called position B)" READ (7,*) BENC6H3B

IF (BENC6H3B == 0.0) THEN
PRATEADDBEN3B (BENC6H3B) $=0.0$
ELSE IF (BENC6H3B >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2 and R3"
D0 150 B3=1, BENC6H3B
READ (7,*) Z11(B3)
READ (7,*) Z12(B3)
$\operatorname{READ}(7, *)$ Z13(B3)
PRATEADDBEN3B $($ BENC6H3B $)=$ PRATEADDBEN3B $($ BENC6H3B $)+(y(124)+y(125)+y(126)) * Z 11(B 3) * Z 12(B 3) * Z 13(B 3)$
! k-C6H3 (1, 2, 4-Ar)
150 CONTINUE
END IF
PRINT*, "The \# of - C6H3 with one functional group at (1,3,5-Ar) position (called position C)" READ (7,*) BENC6H3C

IF (BENC6H3C == 0.0) THEN
PRATEADDBEN3C (BENC6H3C) $=0.0$
ELSE IF (BENC6H3C >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2 and R3"
DO 160 B3=1, BENC6H3C
$\operatorname{READ}\left(7,{ }^{*}\right)$ Z14(B3)
READ (7,*) Z15(B3)
READ (7,*) Z16(B3)

```
                                    PRATEADDBEN3C(BENC6H3C)=PRATEADDBEN3C(BENC6H3C)+(3*y(127))*Z14(B3)*Z15(B3)*Z16(B3) !k-
C6H3(1,3,5-Ar)
END IF
PRATEADDBEN3(BENC6H3)= PRATEADDBEN3A(BENC6H3A)+PRATEADDBEN3B(BENC6H3B)+PRATEADDBEN3C(BENC6H3C)
PRINT*, "The # of -C6H2 with one functional group at (1,2,3,4-Ar) position (called position A)"
    READ(7,*) BENC6H2A
            IF (BENC6H2A == 0.0) THEN
                PRATEADDBEN4A(BENC6H2A)=0.0
            ELSE IF (BENC6H2A >= 1.) THEN
                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                    DO 170 B4=1,BENC6H2A
                    READ(7,*) Z17(B4)
                    READ(7,*) Z18(B4)
                    READ(7,*) Z19(B4)
                    PRATEADDBEN4A(BENC6H2A)=PRATEADDBEN4A(BENC6H2A)+(2*y(190))*Z17(B4)*Z18(B4)*Z19(B4)*Z20(B4)!k-
C6H2(1, 2,3,4-Ar)
170
                    cONTINUE
            END IF
PRINT*, "The # of -C6H2 with one functional group at (1,2,3,5-Ar) position (called position B)"
    READ(7,*) BENC6H2B
            IF (BENC6H2B == 0.0) THEN
                PRATEADDBEN4B(BENC6H2B)=0.0
            ELSE IF (BENC6H2B >= 1.) THEN
                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                DO 180 B4=1,BENC6H2B
                        READ(7,*) Z21(B4)
                        READ(7,*) Z22(B4)
                READ(7,*) Z23(B4)
                READ(7,*) Z24(B4)
                PRATEADDBEN4B(BENC6H2B)=PRATEADDBEN4B(BENC6H2B)+(2*y(191))*Z21(B4)*Z22(B4)*Z23(B4)*Z24(B4)
!k-C6H2(1, 2,3,5-Ar)
180 (%H2(1,2,3,5-Ar) CONTINUE
    END IF
PRINT*, "The # of -C6H2 with one functional group at (1,2,4,5-Ar) position (called position C)"
        READ(7,*) BENC6H2C
            IF (BENC6H2C == 0.0) THEN
                PRATEADDBEN4C(BENC6H2C)=0.0
            ELSE IF (BENC6H2C >= 1.) THEN
                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                    DO 190 B4=1,BENC6H2C
                        READ(7,*) Z25(B4)
                        READ(7,*) Z26(B4)
                READ(7,*) Z27(B4)
                READ(7,*) Z28(B4)
                PRATEADDBEN4C(BENC6H2C)=PRATEADDBEN4C(BENC6H2C)+(2*y(192))*Z25(B4)*Z26(B4)*Z27(B4)*Z28(B4)
!k-C6H2(1, 2,4,5-Ar)
190 CONTINUE
END IF
PRATEADDBEN4(BENC6H2)=PRATEADDBEN4A(BENC6H2A)+PRATEADDBEN4B(BENC6H2B)+PRATEADDBEN4C(BENC6H2C)
```

```
PRINT*, "The # of -C6H with functional groups at (1,2,3,4,5-Ar) position"
```

PRINT*, "The \# of -C6H with functional groups at (1,2,3,4,5-Ar) position"
READ(7,*) BENC6H
READ(7,*) BENC6H
IF' (BENC6H == 0.0) THEN
IF' (BENC6H == 0.0) THEN
PRATEADDBEN5 (BENC6H)=0.0
PRATEADDBEN5 (BENC6H)=0.0
ELSE IF (BENC6H >= 1.) THEN
ELSE IF (BENC6H >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2,R3,R4 and R5"
PRINT*, "Input group contribution factors, Z of R1,R2,R3,R4 and R5"
DO 200 B5=1,BENC6H
DO 200 B5=1,BENC6H
READ(7,*) Z29(B5)
READ(7,*) Z29(B5)
READ (7,*) Z30(B5)
READ (7,*) Z30(B5)
READ(7,*) Z31(B5)
READ(7,*) Z31(B5)
READ(7,*) Z32(B5
READ(7,*) Z32(B5
READ(7,*) Z33(B5)
READ(7,*) Z33(B5)
PRATEADDBEN5(BENC6H)=PRATEADDBEN5(BENC6H) +y(189)*Z29(B5)*Z30(B5)*Z31(B5)*Z32(B5)*Z33(B5)
PRATEADDBEN5(BENC6H)=PRATEADDBEN5(BENC6H) +y(189)*Z29(B5)*Z30(B5)*Z31(B5)*Z32(B5)*Z33(B5)
! k-C6H(1, 2, 3, 4, 5-Ar)
! k-C6H(1, 2, 3, 4, 5-Ar)
200 CONTINUE
200 CONTINUE
END IF
PRINT*, "The \# of -C6 with functional groups at (1,2,3,4,5,6-Ar) position" $\operatorname{READ}(7, *)$ BENC6
IF (BENC6 $==0.0$) THEN PRATEADDBEN6(BENC6) $=0.0$
ELSE IF (BENC6 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2,R3,R4,R5 and R6"
DO 210 B6=1,BENC6
$\operatorname{READ}(7, *)$ Z34(B6)
READ (7,*) Z35(B6)
READ(7,*) Z36(B6)
READ(7,*) Z37(B6)
READ (7,*) Z38(B6)

```
\(\operatorname{READ}(7, *)\) Z39(B6)
```

PRATEADDBEN6(BENC6)=PRATEADDBEN6(BENC6)+6*y(188)*Z34(B6)*Z35(B6)*Z36(B6)*Z37(B6)*Z38(B6)*Z39(B6)
!k-
C6(1, 2, 3, 4, 5,6-Ar)
210
END IF
PRATEADDBEN= PRATEADDBEN1(NBENC6H5) \&
\& + PRATEADDBEN2(BENC6H4) \&
\& + PRATEADDBEN3(BENC6H3) \&
\& + P PRATEADDBEN4(BENC6H2) \&
\& + + PRATEADDBEN5(BENC6H) \&
Pyridine with functional groups
PRINT*, "The \# of pyridine ring with functional group at (2-pyr) position"
READ (7,*) PYR1
IF'(PYR1 == 0.0) THEN
PRATEADDPYR1(PYR1)=0.0
ELSE IF (PYR1 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1"
D0 220 P1=1,PYR1
READ(7,*) Z40(P1)
PRATEADDPYR1(PYR1)=PRATEADDPYR1(PYR1)+(2*y(131)+2*y(132))*Z40(P1) !k(2-pyr)
CONTINUE
END IF
PRINT*, "The \# of pyridine ring with functional group at (3-pyr) position"
READ (7,*) PYR2
IF (PYR2 == 0.0) THEN
PRATEADDPYR2(PYR2)=0.0
ELSE IF (PYR2 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1"
DO 230 P2=1,PYR2
READ(7,*) Z41(P2)
PRATEADDPYR2 (PYR2)=PRATEADDPYR2(PYR2)+(y(133)+2*y(134)+y(135))*Z41(P2) !k(3-pyr)
CONTINUE
END IF
PRINT*, "The \# of pyridine ring with functional group at (4-pyr) position"
READ(7,*) PYR3
IF (PYR3 == 0.0) THEN
PRATEADDPYR3(PYR3)=0.0
ELSE IF (PYR3 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1"
DO 240 P3=1,PYR3
READ(7,*) Z42(P3)
PRATEADDPYR3(PYR3) =PRATEADDPYR3(PYR3)+(2*y(136)+2*y(137))*Z42(P3) !k(4-pyr)
PRATEADDP
END IF
PRINT*, "The \# of pyridine ring with functional group at (2,6-pyr) position"
READ(7,*) PYR4
IF (PYR4 == 0.0) THEN
PRATEADDPYR4(PYR4)=0.0
ELSE IF (PYR4 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
DO 250 P4=1,PYR4
READ (7,*) Z43(P4)
READ (7,*) Z44(P4)
PRATEADDPYR4(PYR4)=PRATEADDPYR4(PYR4)+(2*y(138)+y(139))*Z43(P4)*Z44(P4) !k(2,6-pyr)
CONTINUE
END IF
PRINT*, "The \# of pyridine ring with functional group at (3,5-pyr) position"
READ (7, *) PYR5
IF' (PYR5 == 0.0) THEN
PRATEADDPYR5 (PYR5)=0.0
ELSE IF (PYR5 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
DO 260 P5=1,PYR5
READ (7,*) Z45(P5)
READ(7,*) Z46(P5)
PRATEADDPYR5(PYR5)=PRATEADDPYR5 (PYR5)+(2*y(140)+y(141))*Z45(P5)*Z46(P5) !k(3,5-pyr)
CONTINUE
END IF
PRINT*, "The \# of pyridine ring with functional group at (2,4,6-pyr) position"
READ(7,*) PYR6
IF (PYR6 == 0.0) THEN
PRATEADDPYR6(PYR6)=0.0
ELSE IF (PYR6 >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1,R2 and R3"
DO 270 P6=1,PYR6
READ(7,*) Z47(P6)
READ(7,*) Z48(P6)
READ(7,*) Z49(P6)

```
```

 PRATEADDPYR6(PYR6)=PRATEADDPYR6(PYR6)+3*y(142)*Z47(P6)*Z48(P6)*Z49(P6) !k(2,4,6-pyr)
 CONTINUE
 END IF
 | PRATEADDPYR $=$ PRATEADDPYR1(PYR1) $+\&$ | |
| :--- | ---: |
| $\&$ | PRATEADDPYR2(PYR2) $+\&$ |
| $\&$ | PRATEADDPYR3(PYR3) $+\&$ |
| $\&$ | PRATEADDPYR4(PYR4) $+\&$ |
| $\&$ | PRATEADDPYR5(PYR5) $+\&$ |
| $\&$ | PRATEADDPYR6(PYR6) |

 furan
 PRINT*, "The # of pyridine ring with functional group at (2-fur) position"
 READ(7,*) FUR1
 IF (FUR1 == 0.0) THEN
 PRATEADDFUR1(FUR1)=0.0
 ELSE IF (FUR1 >= 1.) THEN
 PRINT*, "Input group contribution factors, Z of R1"
 D0 280 F1=1,FUR1
 READ(7,*) Z50(F1)
 PRATEADDFUR1(FUR1)=PRATEADDFUR1(FUR1)+(y(150)+y(151)+y(152))*Z50(F1) !k(2-fur)
 CONTINUE
 END IF
 PRINT*, "The # of pyridine ring with functional group at (5-furfural) position"
 READ(7,*) FUR2
 IF'(FUR2 == 0.0) THEN
 PRATEADDFUR2(FUR2)=0.0
 ELSE IF (FUR2 >= 1.) THEN
 PRINT*, "Input group contribution factors, Z of R1 and R2"
 D0 290 F2=1,FUR2
 READ (7,*) Z51(F2)
 READ(7,*) Z52(F2)
 PRATEADDFUR2(FUR2) =PRATEADDFUR2(FUR2) + (y (156)+y(157))*Z51(F2)*Z52(F2) !k(5-furfural)
 CONTINUE
 END IF
 PRATEADDFUR = PRATEADDFUR1(FUR1) + PRATEADDFUR2(FUR2)
!imidazole
PRINT*, "The \# of imidazole with 2 functional groups at 4,5-positions"
READ(7,*) IMI
IF (IMI == 0.0) THEN
PRATEADDIMI1(IMI)=0.0
ELSE IF (IMI >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
DO 300 I1=1,IMI
READ (7, *) Z53(I1)
READ(7,*) Z54(I1)
PRATEADDIMI1(IMI)= PRATEADDIMI1(IMI)+(2*y(173)+y(174))*Z53(I1)*Z54(I1) !k(imidazole)
END IF
PRATEADDIMI = PRATEADDIMI1(IMI)
!triazine
PRINT*, "The \# of triazine with 3 functional groups at 2,4,6-positions"
READ'(7,*) TRZ
IF'(TRZ == 0.0) THEN
PRATEADDTRZ1(TRZ)=0.0
ELSE IF (TRZ >= 1) THEN
PRINT*, "Input group contribution factors, Z of R1, R2 and R3"
DO 310 T1=1,TRZ
READ (7, *) Z55(T1)
READ(7,*) Z56(T1)
READ(7,*) Z57(T1)
l}\begin{array}{l}{\mathrm{ PRATEADDTRZ1(TRZ)= PRATEADDTRZ1(TRZ)+3*y(180)*Z55(T1)*Z56(T1)*Z57(T1) !k(triazine)}}
{\mathrm{ CONTINUE }}
END IF
PRATEADDTRZ =PRATEADDTRZ1(TRZ)
ADDARMRATE=PRATEADDBEN+PRATEADDPYR+PRATEADDFUR+PRATEADDIMI+PRATEADDTRZ
CLOSE(7)
!**
!Calculate overall reaction rate constant for a given molecule
OVALLRATE=HABSTRATE+INTRATE+ADDALKRATE+ADDARMRATE
OPEN(8, file='output.txt', status='unknown')
WRITE(8,*) "Calculated HO radical reaction rate constant,M-1s-1"
WRITE(8,*) " "

```
```

WRITE(8,*) "Overall rate constant"
WRITE(8,*) OVALLRATE
WRITE(8,*) "
WRITE(8,*) "Partial rate constant for each reaction mechanism"
WRITE(8,*) "H-atom abstraction"
WRITE(8,*) HABSTRATE
WRITE(8,*) "HO radical addition to alkene"
WRITE(8,*) ADDALKRATE
WRITE(8,*) "HO radical addition to aromatic compound"
WRITE(8,*) ADDARMRATE
WRITE(8,*) "HO radical interaction"
WRITE(8,*) INTRATE
CLOSE(8)
END PROGRAM GCMIdentifier

```

\section*{APPENDIX D: ENERGY OF HIGHEST OCCUPIED MOLECULAR}

\section*{ORBITAL AND LOWEST UNOCCUPIED MOLECULAR ORBITAL}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline chemical formula of compound & name of compound & k HO & \(\log \mathrm{k}\) & HOMO & HOMO-SOMO & LUMO \\
\hline CH4 & methane & \(1.20 \mathrm{E}+08\) & 8.08 & -13.30875 & -11.47875 & 4.660697 \\
\hline CH3-CH3 & ethane & \(1.80 \mathrm{E}+09\) & 9.26 & -11.76554 & -9.93554 & 4.116723 \\
\hline CH3 3 CH2-CH3 & propane & \(3.60 \mathrm{E}+09\) & 9.56 & -11.32619 & -9.49619 & 3.920865 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{CH} 3)\)-CH3 & 2-methylpropane & \(4.60 \mathrm{E}+09\) & 9.66 & -11.29054 & -9.46054 & 3.833211 \\
\hline \(\mathrm{CH3}\)-(CH2)2-CH3 & ! butane & \(4.60 \mathrm{E}+09\) & 9.66 & -11.17067 & -9.34067 & 3.828838 \\
\hline \(\mathrm{CH3} 3\) (CH2)3-CH3 & Ipentane & \(5.40 \mathrm{E}+09\) & 9.73 & -11.11003 & -9.28003 & 3.775402 \\
\hline CH3-(CH2)4-CH3 & thexane & \(6.60 \mathrm{E}+09\) & 9.82 & -11.08502 & -9.25502 & 3.737725 \\
\hline \(\mathrm{CH3}_{3}\) (CH2)5-CH3 & ! heptane & \(7.70 \mathrm{E}+09\) & 9.89 & -11.07213 & -9.24213 & 3.681164 \\
\hline CH3-(CH2)6-CH3 & loctane & \(9.10 \mathrm{E}+09\) & 9.96 & -11.06686 & -9.23686 & 3.638226 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3\) & !2-methylbutane & \(5.20 \mathrm{E}+09\) & 9.72 & -11.1809 & -9.3509 & 3.745211 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 2-\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{CH} 3\) & !3-ethylpentane & \(5.90 \mathrm{E}+09\) & 9.77 & -10.99532 & -9.16532 & 3.679372 \\
\hline \(\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3) 2\) - \(\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 3\) & !2,2,4-Trimethylpentane & \(6.10 \mathrm{E}+09\) & 9.79 & -11.02812 & -9.19812 & 3.626539 \\
\hline CH3-OH & methanol & \(9.70 \mathrm{E}+08\) & 8.99 & -11.13453 & -9.30453 & 3.77894 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{OH}\) & !ethanol & \(2.10 \mathrm{E}+09\) & 9.32 & -10.87574 & -9.04574 & 3.564502 \\
\hline \(\mathrm{CH3} 3\) (CH2)2-OH & !1-propanol & \(3.20 \mathrm{E}+09\) & 9.51 & -10.84639 & -9.01639 & 3.48847 \\
\hline CH3-(CH2)3-OH & !1-butanol & \(4.20 \mathrm{E}+09\) & 9.62 & -10.84564 & -9.01564 & 3.426211 \\
\hline (CH3)3-C.OH & !tert-butanol & \(7.00 \mathrm{E}+08\) & 8.85 & -10.99061 & -9.16061 & 3.437299 \\
\hline \(\mathrm{CH3}\)-(CH2)5-OH & !1-hexyanol & \(7.00 \mathrm{E}+09\) & 9.85 & -10.84862 & -9.01862 & 3.369371 \\
\hline \(\mathrm{CH3}\)-(CH2)6-OH & 11-heptanol & \(7.40 \mathrm{E}+09\) & 9.87 & -10.84806 & -9.01806 & 3.352759 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})\) - CH 3 & 12-propanol & \(1.90 \mathrm{E}+09\) & 9.28 & -10.89775 & -9.06775 & 3.491269 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{OH}\) & 12-methyl-1-propanol & \(3.30 \mathrm{E}+09\) & 9.52 & -10.87454 & -9.04454 & 3.455483 \\
\hline \(\mathrm{CH3}-\mathrm{CH} 2-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OH})-\mathrm{CH} 3\) & !2-methyl-2-butanol & \(1.90 \mathrm{E}+09\) & 9.28 & -10.94695 & -9.11695 & 3.453075 \\
\hline CH3-C(CH3)2-CH2-OH & 12,2-dimethyl-1-propanol & \(5.20 \mathrm{E}+09\) & 9.72 & -10.86936 & -9.03936 & 3.439935 \\
\hline \(\mathrm{CH}_{3}-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH} 2-\mathrm{OH}\) & !3-methyl-1-butanol & \(3.80 \mathrm{E}+09\) & 9.58 & -10.82195 & -8.99195 & 3.42855 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 3\) & !2-butanol & \(3.50 \mathrm{E}+09\) & 9.54 & -10.79586 & -8.96586 & 3.505121 \\
\hline \(\mathrm{CH3}-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 3\) & !tert-amyl alcohol & \(1.90 \mathrm{E}+09\) & 9.28 & -10.80912 & -8.97912 & 3.44938 \\
\hline HO-CH2-OH & !dihydroxymethane & \(1.30 \mathrm{E}+09\) & 9.11 & -10.74605 & -8.91605 & 3.001253 \\
\hline H0-CH2-CH2-OH & lethyleneglycol & \(2.40 \mathrm{E}+09\) & 9.38 & -10.82728 & -8.99728 & 3.02301 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})^{2}\) & !1,1-ethanediol & \(1.20 \mathrm{E}+09\) & 9.08 & -11.29653 & -9.46653 & -3.253182 \\
\hline \(\mathrm{CH3}-\mathrm{CH}(\mathrm{OH})\) - \(\mathrm{CH} 2-\mathrm{OH}\) & 11,2-propanediol & \(1.70 \mathrm{E}+09\) & 9.23 & -10.82385 & -8.99385 & 3.179295 \\
\hline HO-(CH2)3-OH & 11,3-propanediol & \(2.50 \mathrm{E}+09\) & 9.40 & -10.91272 & -9.08272 & 3.090769 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{OH}\) & !1,3-butanediol & \(2.20 \mathrm{E}+09\) & 9.34 & -10.94984 & -9.11984 & 3.147903 \\
\hline HO -(CH2)4-OH & !1.4-butanediol & \(3.20 \mathrm{E}+09\) & 9.51 & -10.91242 & -9.08242 & 3.141693 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3\) & 12,3-butanediol & \(1.30 \mathrm{E}+09\) & 9.11 & -10.7055 & -8.8755 & 3.165536 \\
\hline HO-(CH2)5-OH & !1,5-pentanediol & \(3.60 \mathrm{E}+09\) & 9.56 & -10.88223 & -9.05223 & 3.169252 \\
\hline \(\mathrm{CH} 3-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 2-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3\) & 12,4-pentanediol & \(2.30 \mathrm{E}+09\) & 9.36 & -10.89812 & -9.06812 & 3.126363 \\
\hline HO-(CH2)6-OH & !1,6-hexyanediol & \(4.70 \mathrm{E}+09\) & 9.67 & -10.87071 & -9.04071 & 3.194863 \\
\hline HO-CH2-CH(OH)-CH2-OH & ! glycerol & \(2.00 \mathrm{E}+09\) & 9.30 & -10.81248 & -8.98248 & 3.024266 \\
\hline \(\mathrm{CH} 3 \mathrm{CH}(\mathrm{OCH} 3)^{2}\) & !1,1-dimethoxyethane & \(2.20 \mathrm{E}+09\) & 9.34 & -10.70728 & -8.87728 & 2.766965 \\
\hline CH 3 -0-CH3 & !dimethylether & \(1.00 \mathrm{E}+09\) & 9.00 & -10.61215 & -8.78215 & 3.250377 \\
\hline CH3-0-CH2-O-CH3 & !methylene glycol diethyl ether & \(3.20 \mathrm{E}+08\) & 8.51 & -10.38339 & -8.55339 & 2.447473 \\
\hline CH3-CH2-O-CH2-CH3 & ! diethylether & \(2.90 \mathrm{E}+09\) & 9.46 & -10.39318 & -8.56318 & 2.981373 \\
\hline (CH3)2 \(2 \mathrm{HC}-\mathrm{O}-\mathrm{CH}(\mathrm{CH} 3)^{2}\) & !diisopropyl ether & \(2.49 \mathrm{E}+09\) & 9.40 & -10.33819 & -8.50819 & 2.889881 \\
\hline & mtbe & \(1.60 \mathrm{E}+09\) & 9.20 & -10.43097 & -8.60097 & 2.988416 \\
\hline (CH3)3-C-O-CH2-CH3 & !tert-butyl-ethyl-ether & \(1.80 \mathrm{E}+09\) & 9.26 & -10.30765 & -8.47765 & 2.888528 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OCH} \mathrm{H}_{3}\) & Itert-amyl methyl ether & \(2.37 \mathrm{E}+09\) & 9.37 & -10.41498 & -8.58498 & 2.955497 \\
\hline \(\mathrm{CH} 33 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 3^{2}\) & ! diethylene glycol diethyl ether & \(3.20 \mathrm{E}+09\) & 9.51 & -10.41134 & -8.58134 & 2.684676 \\
\hline \(\mathrm{CH} 3 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 2-\mathrm{O}-\mathrm{CH} 2 \mathrm{CH} 3\) & !ethylene glycol diethyl ether & \(2.30 \mathrm{E}+09\) & 9.36 & -10.40904 & -8.57904 & 2.443595 \\
\hline CH3-O-CH2-CH2-O-CH3 & lethylene glycol dimethyl ether & \(1.60 \mathrm{E}+09\) & 9.20 & -10.50665 & -8.67665 & 2.526982 \\
\hline CH 2 (OC2H5) \({ }^{2}\) & !diethoxymethane & \(1.60 \mathrm{E}+09\) & 9.20 & -10.27684 & -8.44684 & 2.340627 \\
\hline \(\mathrm{CH} 2(\mathrm{OCH} 3)^{2}\) & ! dimethoxymethane & \(1.20 \mathrm{E}+09\) & 9.08 & -10.38339 & -8.55339 & 2.447473 \\
\hline CH3-C(CH3)(OCH3) \(\mathrm{CH} 2-\mathrm{OH}\) & !2-methyl-2-methoxy propanol & \(8.40 \mathrm{E}+08\) & 8.92 & -10.29167 & -8.46167 & 3.011841 \\
\hline CH3-O-CH2-CH2-OH & 12-methoxyethanol & \(1.30 \mathrm{E}+09\) & 9.11 & -10.57917 & -8.74917 & 2.720358 \\
\hline C2H5-O-CH2-CH2-OH & !2-ethoxyethanol & \(1.70 \mathrm{E}+09\) & 9.23 & -10.48799 & -8.65799 & 2.643535 \\
\hline HO-CH2-CH2-O-CH2-CH2-OH & !diethylene glycol & \(2.10 \mathrm{E}+09\) & 9.32 & -10.58134 & -8.75134 & 2.384354 \\
\hline CH3-CO-CO-CH3 & 12,3-butanedion & \(2.80 \mathrm{E}+08\) & 8.45 & -10.42726 & -8.59726 & -0.5169114 \\
\hline CH3-CH2-CO-CH3 & !2-butanone & \(8.10 \mathrm{E}+08\) & 8.91 & -10.51649 & -8.68649 & 0.8809061 \\
\hline \(\mathrm{CH} 3-\mathrm{CO}-\mathrm{CH} 3\) & acetone & \(1.10 \mathrm{E}+08\) & 8.04 & -10.66836 & -8.83836 & 0.8443826 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CO}-\mathrm{CH}_{3}\) & 12-pentanone & \(1.90 \mathrm{E}+09\) & 9.28 & -10.53028 & -8.70028 & 0.8842067 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH} 3\) & 13-pentanone & \(1.40 \mathrm{E}+09\) & 9.15 & -10.39733 & -8.56733 & 0.9147174 \\
\hline \(\mathrm{CH} 3-\mathrm{CO}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH} 3\) & 13-hydro-2-butanone & \(2.90 \mathrm{E}+09\) & 9.46 & -10.4004 & -8.5704 & 0.6729621 \\
\hline (CH3)2-CH-CH2-CO-CH3 & !methyl-iso-butyl ketone & \(2.10 \mathrm{E}+09\) & 9.32 & -10.50366 & -8.67366 & 0.8847981 \\
\hline CH3-CO-CH2CH2-CO-CH3 & acetonyl acetone & \(7.60 \mathrm{E}+08\) & 8.88 & -10.55812 & -8.72812 & 0.5975642 \\
\hline HCHO & formaldehyde & \(1.00 \mathrm{E}+09\) & 9.00 & -10.78296 & -8.95296 & 0.7926633 \\
\hline CH3-CHO & lacetaldehyde & \(9.50 \mathrm{E}+08\) & 8.98 & -10.72027 & -8.89027 & 0.8346022 \\
\hline CH3-CH2-CHO & !propionaldehyde & \(2.20 \mathrm{E}+09\) & 9.34 & -10.58833 & -8.75833 & 0.8641795 \\
\hline CH3-CH2-CH2-CHO & ! butyraldehyde & \(3.90 \mathrm{E}+09\) & 9.59 & -10.59022 & -8.76022 & 0.8685883 \\
\hline ( CH 3\()^{2}\)-CH-CHO & isobutyl aldehyde & \(2.90 \mathrm{E}+09\) & 9.46 & -10.4711 & -8.6411 & 0.9016389 \\
\hline \(\mathrm{CH} 3-\mathrm{C}(\mathrm{CH} 3)(\mathrm{OCH} 3)-\mathrm{CHO}\) & 12-methyl-2-methoxy-propanal & \(3.99 \mathrm{E}+09\) & 9.60 & -10.19846 & -8.36846 & 0.751712 \\
\hline H0-C(CH3)2-CHO & thydroxy-iso-butylaldehyde & \(3.00 \mathrm{E}+09\) & 9.48 & -10.51888 & -8.68888 & 0.5663642 \\
\hline \(\mathrm{CH3} 3 \mathrm{CO}-\mathrm{CHO}\) & !methyl glyoxal & \(5.30 \mathrm{E}+08\) & 8.72 & -10.44341 & -8.61341 & -0.5637148 \\
\hline нСООСН2СН3 & ethyl formate & \(3.90 \mathrm{E}+08\) & 8.59 & -11.50189 & -9.67189 & 1.023383 \\
\hline CH3-COO-CH3 & !methyl acetate & \(1.20 \mathrm{E}+08\) & 8.08 & -11.40985 & -9.57985 & 1.099622 \\
\hline \(\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 3\) & !ethyl acetate & \(4.00 \mathrm{E}+08\) & 8.60 & -11.24806 & -9.41806 & 1.148494 \\
\hline \(\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 3\) & !propyl acetate & \(1.40 \mathrm{E}+09\) & 9.15 & -11.18701 & -9.35701 & 1.153689 \\
\hline CH3-CH2-COO-CH3 & Imethyl propionate & \(4.50 \mathrm{E}+08\) & 8.65 & -11.23087 & -9.40087 & 1.145877 \\
\hline \(\mathrm{CH}_{3}-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 2-\mathrm{CH} 3\) & !ethyl propionate & \(8.70 \mathrm{E}+08\) & 8.94 & -11.22122 & -9.39122 & 1.196556 \\
\hline \(\mathrm{CH} 3-\mathrm{COO}-\mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{OH}\) & !2-hydroxyethyl acetate & \(9.10 \mathrm{E}+08\) & 8.96 & -11.04306 & -9.21306 & 1.060454 \\
\hline \(\mathrm{CH} 3 \mathrm{COOCH}(\mathrm{CH} 3) 2\) & lisopropyl acetate & \(4.50 \mathrm{E}+08\) & 8.65 & -11.1843 & -9.3543 & 1.194501 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CH3-COO-(CH2)3-CH3 & In-butylacetate & \(1.80 \mathrm{E}+09\) & 9.26 & -11.17429 & -9.34429 & 1.152853 \\
\hline СН3-(CH2)2-COO-CH3 & methyl butyrate & \(1.70 \mathrm{E}+09\) & 9.23 & -11.24771 & -9.41771 & 1.149702 \\
\hline CH3-(CH2)2-COO-CH2-CH3 & ethyl butyrate & \(1.60 \mathrm{E}+09\) & 9.20 & -11.19034 & -9.36034 & 1.199758 \\
\hline CH3CH2-O-CO-CH2-COO-CH2CH3 & diethyl malonate & \(6.50 \mathrm{E}+08\) & 8.81 & -11.22127 & -9.39127 & 0.7714942 \\
\hline СН3СН2-O-CO-(CH2)2-COO-CH2CH3 & diethylsuccinate & \(7.80 \mathrm{E}+08\) & 8.89 & -11.1582 & -9.3282 & 0.9063339 \\
\hline \(\mathrm{CH} 3-\mathrm{O}-\mathrm{CH} 2-\mathrm{COO}-\mathrm{CH} 3\) & methyl methoxy acetate & \(1.80 \mathrm{E}+09\) & 9.26 & -11.03721 & -9.20721 & 1.063044 \\
\hline H -COOH & formic acid & \(1.30 \mathrm{E}+08\) & 8.11 & -11.81994 & -9.98994 & 0.9572287 \\
\hline \(\mathrm{CH} 3-\mathrm{COOH}\) & acetic acid & \(1.70 \mathrm{E}+07\) & 7.23 & -11.61804 & -9.78804 & 0.9760237 \\
\hline CH3-CH2-COOH & !propionic acid & \(3.20 \mathrm{E}+08\) & 8.51 & -11.43741 & -9.60741 & 1.01772 \\
\hline CH3-(CH2)2-COOH & !butyric acid & \(2.20 \mathrm{E}+09\) & 9.34 & -11.44889 & -9.61889 & 1.024579 \\
\hline \(\mathrm{CH3} 3\) (CH2)6-COOH & caprylic acid & \(4.80 \mathrm{E}+09\) & 9.68 & -11.25724 & -9.42724 & 1.024105 \\
\hline \(\mathrm{CH3} 3\)-(\%2) 7 -COOH & Azelaic acid & \(5.40 \mathrm{E}+09\) & 9.73 & -11.2154 & -9.3854 & 1.023791 \\
\hline (CH3)2 2 CHCH 2 COOH & 13-methylbutyric acid & \(1.40 \mathrm{E}+09\) & 9.15 & -11.41208 & -9.58208 & 1.040318 \\
\hline (CH3)3-C.COOH & !tri-methyl-acetic acid & \(6.50 \mathrm{E}+08\) & 8.81 & -11.23537 & -9.40537 & 1.124628 \\
\hline CH3-C(CH3)(OCH3)-COOH & 12-methyl-2-methoxy-propanoic acid & \(7.73 \mathrm{E}+08\) & 8.89 & -10.63404 & -8.80404 & 0.9379864 \\
\hline HOCH2COOH & !glycolic acid & \(5.40 \mathrm{E}+08\) & 8.73 & -11.65826 & -9.82826 & 0.8873319 \\
\hline СН3-CH(OH)-COOH & llactic acid & \(4.30 \mathrm{E}+08\) & 8.63 & -11.28919 & -9.45919 & 0.7232831 \\
\hline СН3С \(22 \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\) & 12-hydroxybutyric acid & \(1.30 \mathrm{E}+09\) & 9.11 & -11.26127 & -9.43127 & 1.089727 \\
\hline HO-CH2-(CHOH) 4 - COOH & !glucuronic acid & \(1.30 \mathrm{E}+09\) & 9.11 & -10.82001 & -8.99001 & 0.6729594 \\
\hline сносоон & glyoxylic acid & \(5.90 \mathrm{E}+08\) & 8.77 & -11.3587 & -9.5287 & -0.7367213 \\
\hline CH3COCOOH & pyruvic acid & \(1.20 \mathrm{E}+08\) & 8.08 & -11.17299 & -9.34299 & -0.5833086 \\
\hline снз-сосно & pyruvic aldehyde & \(6.49 \mathrm{E}+08\) & 8.81 & -10.44303 & -8.61303 & -0.563917 \\
\hline H0ос.-СН2-COOH & Imalonic acid & \(1.60 \mathrm{E}+07\) & 7.20 & -11.74597 & -9.91597 & -0.5409926 \\
\hline HOOC-(CH2)2-COOH & !succinic acid & \(1.10 \mathrm{E}+08\) & 8.04 & -11.597 & -9.767 & 0.7170363 \\
\hline HOOC-(CH2)3-COOH & !ghtaric acid & 8.30E+08 & 8.92 & -11.55724 & -9.72724 & 0.8186073 \\
\hline HOOC-(CH2) 4 - COOH & !adipic acid & \(2.00 \mathrm{E}+09\) & 9.30 & -11.33201 & -9.50201 & 0.7043018 \\
\hline HOOC-(CH2)6-COOH & !saberic acid & \(4.80 \mathrm{E}+09\) & 9.68 & -11.44787 & -9.61787 & 0.9421537 \\
\hline HoOC-(CH2) 7 - COOH & lazelaic acid & \(5.40 \mathrm{E}+09\) & 9.73 & -11.27873 & -9.44873 & 0.9605793 \\
\hline HOOC-(CH2)s-COOH & !sabacic acid & \(6.40 \mathrm{E}+09\) & 9.81 & -11.24963 & -9.41963 & 0.9912882 \\
\hline HOOC-CH(OH)-CH(OH)-COOH & Itartaric acid & \(7.00 \mathrm{E}+08\) & 8.85 & -11.41339 & -9.58339 & 0.4464404 \\
\hline HOOC-CH2-C(COOH)(OH)-CH2-COOH & !citric acid & \(5.00 \mathrm{E}+07\) & 7.70 & -11.64445 & -9.81445 & 0.3078744 \\
\hline \(\mathrm{HOOC}-\mathrm{CH}(\mathrm{OH})\) - COOH & !tartoronic acid & \(1.70 \mathrm{E}+08\) & 8.23 & -11.81043 & -9.98043 & 0.2966391 \\
\hline HоOС-СН2-CH(OH)-COOH & Imalic acid & 8.20E+08 & 8.91 & -11.53031 & -9.70031 & 0.4883153 \\
\hline Cl - \(\mathrm{CH} 2-\mathrm{COOH}\) & chloroacetic acid & \(4.30 \mathrm{E}+07\) & 7.63 & -11.57351 & -9.74351 & 0.6216664 \\
\hline CH3-C1 & monochloromethane & \(5.50 \mathrm{E}+07\) & 7.74 & -11.33756 & -9.50756 & 1.599236 \\
\hline \(\mathrm{Cl2}_{2} \mathrm{CH} 2\) & dichloromethane & \(5.80 \mathrm{E}+07\) & 7.76 & -11.38951 & -9.55951 & 0.5949168 \\
\hline Br 2 - CH 2 & dibromomethane & \(9.90 \mathrm{E}+07\) & 8.00 & -10.95719 & -9.12719 & -0.05173813 \\
\hline \(\mathrm{BrCl2CH}\) & bromodichloromethane & \(7.10 \mathrm{E}+07\) & 7.85 & -11.47995 & -9.64995 & -0.6316573 \\
\hline CBC - \(\mathrm{CHC1}\) & pentachlrooethane & \(1.00 \mathrm{E}+07\) & 7.00 & -11.86976 & -10.03976 & -0.6803114 \\
\hline CHBr 2 Cl & chlorodibromomethane & 8.30E+07 & 7.92 & -11.16707 & -9.33707 & -0.7282994 \\
\hline CHBr3 & tribromomethane & \(1.50 \mathrm{E}+08\) & 8.18 & -11.07151 & -9.24151 & -0.7477874 \\
\hline \(\mathrm{BrCH}_{2}\) - CH 2 Br & 1,2-dibromoethane & \(2.60 \mathrm{E}+08\) & 8.41 & -11.01309 & -9.18309 & 0.00074076 \\
\hline CH3-CHC12 & 1,1-dichloroethane & \(1.30 \mathrm{E}+08\) & 8.11 & -11.42285 & -9.59285 & 0.5827897 \\
\hline CH2C1-CH2C1 & 1,2-dichloroethane & \(2.00 \mathrm{E}+08\) & 8.30 & -11.41638 & -9.58638 & 0.6849483 \\
\hline \(\mathrm{Br} 2 \mathrm{CH}-\mathrm{CHBr} 2\) & 1,1,2,2-tetrabromoethane & \(2.20 \mathrm{E}+08\) & 8.34 & -10.94151 & -9.11151 & -0.6516382 \\
\hline C3C-CH2C1 & 1,1,1-2-tetrachloroethane & \(1.80 \mathrm{E}+07\) & 7.26 & -11.79226 & -9.96226 & 0.4848345 \\
\hline C1CH2-CHC12 & 1,1-2-trichloroethane & \(1.10 \mathrm{E}+08\) & 8.04 & -11.56405 & -9.73405 & 0.17132 \\
\hline \(\mathrm{CCl3}^{-\mathrm{CH}} 3\) & 1,1,1-trichloroethane & \(1.00 \mathrm{E}+08\) & 8.00 & -11.99181 & -10.16181 & -0.2648686 \\
\hline CH3CH2CH2-C1 & 1-chloropropane & \(2.50 \mathrm{E}+09\) & 9.40 & -11.13376 & -9.30376 & 1.519827 \\
\hline CH2C1-CHCl-CH2Br & 1,2-dichloro-3-bromopropane & \(7.30 \mathrm{E}+08\) & 8.86 & -11.04351 & -9.21351 & 0.2836433 \\
\hline CH 2 Br - CH 2 - CH 2 Br & 1,3-dibromopropane & \(4.10 \mathrm{E}+09\) & 9.61 & -10.88648 & -9.05648 & 0.3616003 \\
\hline CH2C1-CHC1-CH3 & 1,2-dichloropropane & \(4.00 \mathrm{E}+08\) & 8.60 & -11.28917 & -9.45917 & 1.114866 \\
\hline CH3-(CH2)3-C1 & 1-chlorobutane & \(3.40 \mathrm{E}+09\) & 9.53 & -11.13331 & -9.30331 & 1.510461 \\
\hline Br -CH2-CH2-OH & 2-bromoethanol & \(3.50 \mathrm{E}+08\) & 8.54 & -10.8385 & -9.0085 & 0.6344152 \\
\hline C1.CH2-CH2-OH & 2-chloroethanol & \(9.50 \mathrm{E}+08\) & 8.98 & -11.14609 & -9.31609 & 1.293984 \\
\hline \(\mathrm{CCl3}\) - \(\mathrm{CH} 2-\mathrm{OH}\) & 2,2,2-trichloroethanol & \(4.20 \mathrm{E}+08\) & 8.62 & -11.68246 & -9.85246 & -0.2747993 \\
\hline CF3-CH2-OH & 2,2,2-trifluoroethanol & \(2.30 \mathrm{E}+08\) & 8.36 & -12.0465 & -10.2165 & 1.395035 \\
\hline \(\mathrm{CCl3}-\mathrm{CH}(\mathrm{OH})^{2}\) & chloral hydrate & \(3.10 \mathrm{E}+09\) & 9.49 & -11.71673 & -9.88673 & -0.2992691 \\
\hline CF3-CHCliBr & Halothane & 1.30E+07 & 7.11 & -12.26293 & -10.43293 & -0.3346105 \\
\hline \(\mathrm{CHCl}^{3}\) & chloroform & 1.40E+07 & 7.15 & -11.77096 & -9.94096 & -0.3031954 \\
\hline CF3-CHC12 & 2,2-dichloro-1,1,1-trifluoroethane & 1.30E+07 & 7.11 & -12.07176 & -10.24176 & -0.3564039 \\
\hline CHF2--CHCl-CF3 & Isoflurane & \(2.40 \mathrm{E}+07\) & 7.38 & -12.10108 & -10.27108 & -0.2714219 \\
\hline CHF2-O-CF2-CHFC1 & Enflurane & \(9.50 \mathrm{E}+06\) & 6.98 & -12.26368 & -10.43368 & -0.4409282 \\
\hline CH3-O.CF2-CHC12 & Methoxyflurane & \(8.30 \mathrm{E}+07\) & 7.92 & -11.42938 & -9.59938 & -0.0711531 \\
\hline H3C-S-CH3 & dimethyl sulfide & \(1.90 \mathrm{E}+10\) & 10.28 & -8.480959 & -6.650959 & 0.93672 \\
\hline H3C-S-S-CH3 & di-methyl-di-sulfides & 1.70E+10 & 10.23 & -8.187714 & -6.357714 & -1.5168 \\
\hline H3C-CH2-S-CH2-CH3 & di-ethyl-sulfides & \(1.40 \mathrm{E}+10\) & 10.15 & -8.442901 & -6.612901 & 0.8614488 \\
\hline H3C.CH2-S.S-CH2-CH3 & di-ethyl-di-sulfides & \(1.40 \mathrm{E}+10\) & 10.15 & -8.125221 & -6.295221 & -1.456254 \\
\hline (CH3)2-CH-S-S-CH-(CH3)2 & di-ethyl-methyl-di-sulfides & \(2.00 \mathrm{E}+10\) & 10.30 & -8.066539 & -6.236539 & -1.357738 \\
\hline CH 3 -. \(\mathrm{CH} 2 . \mathrm{CH} 2-\mathrm{OH}\) & 2 -methylthio-ethanol & \(7.90 \mathrm{E}+09\) & 9.90 & -8.585316 & -6.755316 & 0.7303413 \\
\hline H3C-S-CH2-CH2-CHO & methional & 8.20E+09 & 9.91 & -8.758738 & -6.928738 & 0.5407815 \\
\hline HO-CH2-CH2-S-CH2-CH2-OH & 2,2'-thiodiethanol & \(2.00 \mathrm{E}+10\) & 10.30 & -8.684018 & -6.854018 & 0.5429511 \\
\hline Ho-CH2CH2CH2-S-CH2CH2CH2-OH & 3,3'-thiodiethanol & \(1.40 \mathrm{E}+10\) & 10.15 & -8.554573 & -6.724573 & 0.6732906 \\
\hline HOOC-CH2-S-CH2-COOH & thiodiacetic acid & \(6.00 \mathrm{E}+09\) & 9.78 & -9.59493 & -7.76493 & -0.6227674 \\
\hline СН3-SO-CH3 & di-methyl-sulfoxide & \(6.50 \mathrm{E}+09\) & 9.81 & -9.53044 & -7.70044 & 0.8079428 \\
\hline CH3-CH2-SO-CH2-CH3 & di-ethyl-sulfoxide & \(6.50 \mathrm{E}+09\) & 9.81 & -9.461343 & -7.631343 & 0.7123829 \\
\hline СH3-CH2-CH2-SO-CH2-CH2-CH3 & di-propyl-sulfoxide & 6.30E+09 & 9.80 & -9.464796 & -7.634796 & 0.7194619 \\
\hline (CH3)2 2 CH-SO-CH(CH3)2 & di(1-methyl-ethyl) sulfoxide & \(6.80 \mathrm{E}+09\) & 9.83 & -9.361073 & -7.531073 & 0.6316707 \\
\hline (CH3)3-C. \(\mathrm{SO}-\mathrm{C}\)-(CH3) \({ }^{\text {a }}\) & di-tert-butyl-sulfoxide & 5.30E+09 & 9.72 & -9.243156 & -7.413156 & 0.4398249 \\
\hline (CH3-CH2-CH2-CH2)2-SO & di-butyl-sulfoxide & \(8.00 \mathrm{E}+09\) & 9.90 & -9.461222 & -7.631222 & 0.7111593 \\
\hline CH3-SO-CH2-S-CH3 & methyl methyl thiomethyl sulfoxide & \(4.80 \mathrm{E}+09\) & 9.68 & -8.76255 & -6.93255 & 0.2166057 \\
\hline HO-CH2CH2-SO-CH2CH2-OH & di(2-hydroxyethyl) sulfoxide & 5.30E+09 & 9.72 & -9.734745 & -7.904745 & 0.4641739 \\
\hline (CH3)2-CH-SO-CH-(CH3) 2 & diisopropyl sulfoxide & \(6.80 \mathrm{E}+09\) & 9.83 & -9.355276 & -7.525276 & 0.6113388 \\
\hline HS-CH2-CH2-OH & mercaptoethanol & \(6.80 \mathrm{E}+09\) & 9.83 & -9.041336 & -7.211336 & 0.6572682 \\
\hline Hs-CH2-COOH & mercaptoactic acid & 1.20E+09 & 9.08 & -9.267602 & -7.437602 & 0.1983789 \\
\hline HS-CH2-COOCH3 & methyl thioglycolate & \(2.10 \mathrm{E}+10\) & 10.32 & -9.195185 & -7.365185 & 0.2886098 \\
\hline HS-CH2-CH(OH)-CH(OH)-CH2-SH & dithiothreitol & \(1.50 \mathrm{E}+10\) & 10.18 & -8.908919 & -7.078919 & 0.4106834 \\
\hline CH3-CN & acetonitrile & \(2.20 \mathrm{E}+07\) & 7.34 & -12.46419 & -10.63419 & 1.66406 \\
\hline CN-CN & cyanogen & \(1.00 \mathrm{E}+07\) & 7.00 & -13.30628 & -11.47628 & -0.2375803 \\
\hline CH3-CH2-CN & propionitrile & 9.30E+07 & 7.97 & -11.99011 & -10.16011 & 1.708873 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{NC}-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CN}\) & succino nitrile & \(3.00 \mathrm{E}+07\) & 7.48 & -12.31428 & -10.48428 & 1.026906 \\
\hline CClicn & trichloroacetonitrile & \(3.90 \mathrm{E}+07\) & 7.59 & -12.533 & -10.703 & -0.9552739 \\
\hline H2N-CN & cyanamide & \(8.70 \mathrm{E}+06\) & 6.94 & -10.79421 & -8.96421 & 1.619838 \\
\hline \(\mathrm{H}-\mathrm{CN}\) & hydrogen cyanide & \(6.00 \mathrm{E}+07\) & 7.78 & -13.67734 & -11.84734 & 1.725668 \\
\hline CH3-CH2-CH2-NO2 & 1 -nitropropane & \(2.50 \mathrm{E}+08\) & & & & \\
\hline (CH3)2-CH-NO2 & 2 -nitropropane & \(8.00 \mathrm{E}+07\) & & & & \\
\hline CH2CNO2 & chloronitromethane & \(1.94 \mathrm{E}+08\) & & & & \\
\hline CHC12NO2 & dichloronitromethane & \(5.12 \mathrm{E}+08\) & & & & \\
\hline CH2BrNO2 & bromonitromethane & \(8.36 \mathrm{E}+07\) & & & & \\
\hline CHBr2NO2 & dibromonitromethane & \(4.75 \mathrm{E}+08\) & & & & \\
\hline CHBrCLNO2 & bromochloronitromethane & \(4.20 \mathrm{E}+08\) & & & & \\
\hline CH3-CO-NH2 & acetamide & \(1.90 \mathrm{E}+08\) & 8.28 & -10.53649 & -8.70649 & 1.531495 \\
\hline HO-CH2-CO-NH2 & glycolamide & \(1.10 \mathrm{E}+09\) & 9.04 & -10.51591 & -8.68591 & 1.455724 \\
\hline Ho-CH(CH3)-CO-NH2 & 2-hydroxypropionamide & \(1.30 \mathrm{E}+09\) & 9.11 & -10.57368 & -8.74368 & 1.365525 \\
\hline (CH3)2-CH-CO-NH2 & 2-methylpropionamide & \(1.60 \mathrm{E}+09\) & 9.20 & -10.47292 & -8.64292 & 1.61425 \\
\hline C2H5-CO-NH2 & propionamide & \(7.00 \mathrm{E}+08\) & 8.85 & -10.493 & -8.663 & 1.577841 \\
\hline (CH3)3-C-CO-NH2 & trimethylacetamide & \(1.50 \mathrm{E}+09\) & 9.18 & -10.45896 & -8.62896 & 1.638468 \\
\hline (CH3)2-CH-CO-NH2 & isobutyramide & \(1.60 \mathrm{E}+09\) & 9.20 & -10.47933 & -8.64933 & 1.60468 \\
\hline \(\mathrm{CH} 3-\mathrm{CO}-\mathrm{NH}-\mathrm{C}-(\mathrm{CH} 3)^{3}\) & N-tert-butyl-acetamide & \(1.10 \mathrm{E}+09\) & 9.04 & -9.884847 & -8.054847 & 1.600515 \\
\hline CH3-CO-NH-CH3 & N -methylacetamide & \(1.60 \mathrm{E}+09\) & 9.20 & -9.912984 & -8.082984 & 1.52948 \\
\hline ( CH 3\()^{2}\)-CH-CO-NH-CH3 & N -butyfformamide & \(1.90 \mathrm{E}+09\) & 9.28 & -9.872602 & -8.042602 & 1.582228 \\
\hline (CH3)3-C-CO-NH-CH3 & N -methyl-pivalamide & \(2.40 \mathrm{E}+09\) & 9.38 & -9.848647 & -8.018647 & 1.652937 \\
\hline CH3-CH2-CO-NH-CH3 & N -methyl-propionamide & \(1.40 \mathrm{E}+09\) & 9.15 & -9.882551 & -8.052551 & 1.576084 \\
\hline (CH3)2-CH-CO-NH-CH3 & N -methylisobutyramide & \(1.90 \mathrm{E}+09\) & 9.28 & -9.878726 & -8.048726 & 1.565597 \\
\hline \(\mathrm{H}-\mathrm{CO}-\mathrm{N}-(\mathrm{CH} 3)^{2}\) & \(\mathrm{N}, \mathrm{N}\)-dimethyl formamide & \(1.70 \mathrm{E}+09\) & 9.23 & -10.07748 & -8.24748 & 1.513837 \\
\hline H-CO-NH-CH3 & N -methyl-formamide & \(1.20 \mathrm{E}+09\) & 9.08 & -10.03077 & -8.20077 & 1.559681 \\
\hline CH3-CO-N-(CH3)2 & \(\mathrm{N}, \mathrm{N}\)-dimethyl acetamide & \(3.50 \mathrm{E}+09\) & 9.54 & -9.494224 & -7.664224 & 1.487585 \\
\hline (CH3)3-C-CO-N-(CH3)2 & \(\mathrm{N}_{2} \mathrm{~N}\)-dimethyl pivalamide & \(3.90 \mathrm{E}+09\) & 9.59 & -9.429583 & -7.599583 & 1.598679 \\
\hline H2N-CH2-CO-NH2 & 2 -aminoacetamide & \(2.80 \mathrm{E}+09\) & 9.45 & -10.27474 & -8.44474 & 1.551645 \\
\hline CH 3 - NH 2 & methyl amine & \(5.70 \mathrm{E}+09\) & 9.76 & -9.752981 & -7.922981 & 3.811647 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{NH} 2\) & ethyl amine & \(6.40 \mathrm{E}+09\) & 9.81 & -9.686995 & -7.856995 & 3.65019 \\
\hline CH3-(CH2)3-NH2 & N -butyl amine & \(8.20 \mathrm{E}+09\) & 9.91 & -9.691511 & -7.861511 & 3.527124 \\
\hline CH3-CH2-CH2-NH2 & propyl amine & \(7.30 \mathrm{E}+09\) & 9.86 & -9.688557 & -7.858557 & 3.586944 \\
\hline H2N-CH2-CH2-NH2 & ethylenediamine & \(5.50 \mathrm{E}+09\) & 9.74 & -9.748913 & -7.918913 & 3.280833 \\
\hline (CH3)3-C-NH2 & tert-butyl amine & \(6.00 \mathrm{E}+09\) & 9.78 & -9.835228 & -8.005228 & 3.530262 \\
\hline \(\mathrm{CH} 3-(\mathrm{CH} 2) 4\) - NH 2 & N -amyl amine & \(7.00 \mathrm{E}+09\) & 9.85 & -9.693243 & -7.863243 & 3.490922 \\
\hline CH 3 -(CH2) 5 -NH2 & Hexylamine & \(1.30 \mathrm{E}+10\) & 10.11 & -9.692966 & -7.862966 & 3.464632 \\
\hline CH3-(CH2)7-NH2 & N -octylamine & \(1.46 \mathrm{E}+10\) & 10.16 & -9.692657 & -7.862657 & 3.432262 \\
\hline (CH3)2-CH-NH2 & iso-propyl amine & \(1.30 \mathrm{E}+10\) & 10.11 & -9.842072 & -8.012072 & 3.619046 \\
\hline CH3-O-NH2 & O-methyl hydroxy amine & \(1.40 \mathrm{E}+10\) & 10.15 & -10.53077 & -8.70077 & 2.763594 \\
\hline CH3-NH-CH3 & dimethylamine & \(8.90 \mathrm{E}+09\) & 9.95 & -9.387733 & -7.557733 & 3.479749 \\
\hline CH3-(CH2)3-NH-(CH2)3-CH3 & dibutyl amine & \(1.80 \mathrm{E}+10\) & 10.26 & -9.289158 & -7.459158 & 3.121498 \\
\hline HOOC-CH2-NH-CH2-COOH & Iminodiacetic acid & \(4.90 \mathrm{E}+07\) & 7.69 & -10.31659 & -8.48659 & 0.5947785 \\
\hline \((\mathrm{C} 2 \mathrm{HS}) 2\) - N -OH & \(\mathrm{N}, \mathrm{N}\)-diethyl hydroxyl amine & \(1.30 \mathrm{E}+09\) & 9.11 & -9.712082 & -7.882082 & 2.628267 \\
\hline \((\mathrm{CH} 3(\mathrm{CH2} 2) 3\) )3-N & tributyl amine & \(1.70 \mathrm{E}+10\) & 10.23 & -8.953861 & -7.123861 & 2.807584 \\
\hline (C2H5)3-N & triethyl amine & \(1.00 \mathrm{E}+10\) & 10.00 & -8.957604 & -7.127604 & 2.879667 \\
\hline (CH3)3-N & trimethyl amine & \(1.30 \mathrm{E}+10\) & 10.11 & -9.122827 & -7.292827 & 3.192113 \\
\hline ( \(\mathrm{HO}-\mathrm{CH} 2-\mathrm{CH} 2) 3\) - N & triethanolamine & \(8.00 \mathrm{E}+09\) & 9.90 & -9.283858 & -7.453858 & 2.262806 \\
\hline (CH2COOH)3-N & Nitrilotriacetic acid & \(2.10 \mathrm{E}+09\) & 9.32 & -10.20437 & -8.37437 & 0.384091 \\
\hline ( \(\mathrm{HOCH2CH2} 3\) 3-N & Nitrilotriethanol & \(8.00 \mathrm{E}+09\) & 9.90 & -9.276757 & -7.446757 & 2.266425 \\
\hline \((\mathrm{CH} 3) 2\)-N-NH2 & 1,1-dimethyl hydrazine & \(1.60 \mathrm{E}+10\) & 10.20 & -9.472585 & -7.642585 & 2.755817 \\
\hline (HO-CH2) 3 C - NH 2 & 2-amino-2-propane-1,3-diol & \(1.50 \mathrm{E}+09\) & 9.18 & -10.04871 & -8.21871 & 2.835901 \\
\hline (CH3)2-N-NO & N -nitrosodimethylamine & \(4.30 \mathrm{E}+08\) & 8.63 & -10.0307 & -8.2007 & 0.8459922 \\
\hline CH3-CH2-N(CH3)-N=0 & methylethylnitrosamine & \(4.95 \mathrm{E}+08\) & 8.69 & -9.960921 & -8.130921 & 0.9187226 \\
\hline \(\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{N}(\mathrm{N}=0)-\mathrm{CH} 2-\mathrm{CH} 3\) & diethylnitrosamine & \(6.99 \mathrm{E}+08\) & 8.84 & -9.868942 & -8.038942 & 1.004807 \\
\hline \((\mathrm{CH} 3) 2\)-N-NO2 & dimethylnitramine & \(5.44 \mathrm{E}+08\) & & & & \\
\hline (CH3-CH2)2-N-NO2 & diethyl nitramine & \(8.67 \mathrm{E}+08\) & & & & \\
\hline (CH3)(CH3CH2)-N-NO2 & methyl ethyl nitramine & \(7.60 \mathrm{E}+08\) & & & & \\
\hline (CH3)(CH3-O-) 2 -P \(=0\) & dimethyl methylphosphonate (DMMP) & \(2.00 \mathrm{E}+08\) & 8.30 & -11.41011 & -9.58011 & 1.029427 \\
\hline ( \(\mathrm{CH}_{3}\) ( \(\mathrm{CH3CH}^{(2)}\) (CH3CH2O)-PO & Diethyl methylphosphonate (DEMP) & \(6.00 \mathrm{E}+08\) & 8.78 & -10.9066 & -9.0766 & 1.6096 \\
\hline PO4-(CH3)3 & trimethyl phosphate & \(1.20 \mathrm{E}+08\) & 8.08 & -11.73312 & -9.90312 & 0.503187 \\
\hline PO4-(CH2-CH3)3 & triethyl phosphate & \(2.90 \mathrm{E}+09\) & 9.46 & -11.39699 & -9.56699 & 0.6473161 \\
\hline PO4 \(-(\mathrm{CH2} 2 \mathrm{CH} 2-\mathrm{CH} 3) 3\) & tributyl phosphate & \(1.00 \mathrm{E}+10\) & 10.00 & -11.28924 & -9.45924 & 0.6307454 \\
\hline & cycloheptane & \(7.70 \mathrm{E}+09\) & & & 1.83 & \\
\hline & cycloheptanol & \(1.70 \mathrm{E}+09\) & & & 1.83 & \\
\hline & cyclohexane & \(6.10 \mathrm{E}+09\) & & & 1.83 & \\
\hline & cyclopentane & \(4.50 \mathrm{E}+09\) & & & 1.83 & \\
\hline & tetrahydrofuran & \(4.00 \mathrm{E}+09\) & & & 1.83 & \\
\hline & 1,4-dioxane & \(3.10 \mathrm{E}+09\) & & & 1.83 & \\
\hline & 1,4-dithiane & \(1.80 \mathrm{E}+10\) & & & 1.83 & \\
\hline & 1,3,5-trioxane & \(1.50 \mathrm{E}+09\) & & & 1.83 & \\
\hline & tetramethylene sulfoxide & \(7.00 \mathrm{E}+09\) & & & 1.83 & \\
\hline & 2-methyl-1,3-dioxalane & \(3.50 \mathrm{E}+09\) & & & 1.83 & \\
\hline & 1,3-dioxolane & \(4.00 \mathrm{E}+09\) & & & 1.83 & \\
\hline & ethylene oxide & \(6.80 \mathrm{E}+07\) & & & 1.83 & \\
\hline & 1,2-epoxybutane & \(7.80 \mathrm{E}+08\) & & & 1.83 & \\
\hline & 1,2-epoxypropane & \(2.50 \mathrm{E}+08\) & & & 1.83 & \\
\hline & 2,3-epoxypropanol & \(4.70 \mathrm{E}+08\) & & & 1.83 & \\
\hline \(\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{OH}\) & allyl alcohol & \(5.90 \mathrm{E}+09\) & 9.77 & -10.04281 & -8.21281 & 1.21865 \\
\hline \(\mathrm{H2C}=\mathrm{CHCH} 2 \mathrm{CH} 3\) & 1-butene & \(7.00 \mathrm{E}+09\) & 9.85 & -9.925002 & -8.095002 & 1.369879 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline H2C=CHCOCH3 & 1-butene-3-one & 8.50E+09 & 9.93 & -10.64627 & -8.81627 & -0.06871939 \\
\hline \(\mathrm{H} 2 \mathrm{C}=\mathrm{CHCONH} 2\) & acrylamide & \(5.90 \mathrm{E}+09\) & 9.77 & -10.55344 & -8.72344 & 0.1649501 \\
\hline H2C=CHCHO & acrolein & \(7.00 \mathrm{E}+09\) & 9.85 & -10.69461 & -8.86461 & -0.138328 \\
\hline H2C=CHCOOH & acrylic acid & \(1.50 \mathrm{E}+09\) & 9.18 & -11.172 & -9.342 & -0.1215594 \\
\hline H2C=CHCOOCH2CH2OH & 2-hydroxyethyl acrylate & \(1.10 \mathrm{E}+10\) & 10.04 & -11.02822 & -9.19822 & -0.06259909 \\
\hline \(\mathrm{H2C=CHC1}\) & vinyl chloride & 1.20E+10 & 10.08 & -10.20941 & -8.37941 & 0.8561512 \\
\hline \(\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH} 2 \mathrm{CN}\) & allyl cyanide & \(6.90 \mathrm{E}+09\) & 9.84 & -10.50379 & -8.67379 & 0.824497 \\
\hline H2C=CHCN & acrionitrile & 5.30E+09 & 9.72 & -10.8575 & -9.0275 & 0.04998269 \\
\hline \(\mathrm{H} 2 \mathrm{C}=\mathrm{CHCH}\) & propylene & \(7.00 \mathrm{E}+09\) & 9.85 & -9.982217 & -8.152217 & 1.351431 \\
\hline H2C=CC12 & vinylidine chloride & \(6.80 \mathrm{E}+09\) & 9.83 & -10.18964 & -8.35964 & 0.3793356 \\
\hline H2C=C(CH3)-CO-NH2 & methyl acrylamide & \(1.30 \mathrm{E}+10\) & 10.11 & -10.42105 & -8.59105 & 0.1893389 \\
\hline H2C=C(CH3) COOCH 3 & methyl methacrylate & \(1.10 \mathrm{E}+10\) & 10.04 & -10.36607 & -8.53607 & \(-0.03770118\) \\
\hline \((\mathrm{CH} 3) 2 \mathrm{C}=\mathrm{CH} 2\) & isobutylene & \(5.40 \mathrm{E}+09\) & 9.73 & -9.594924 & -7.764924 & 1.277581 \\
\hline \(\mathrm{H} 2 \mathrm{C}=\mathrm{C}(\mathrm{CH}) \mathrm{CN}\) & methacylonitrile & 1.20E+10 & & & & \\
\hline H2C=C(CH3) \(\mathrm{COOCH3}\) & methyl methacrylate & \(1.10 \mathrm{E}+10\) & & & & \\
\hline \(\mathrm{CH3CH}=\mathrm{CHCHO}\) & crotonaldehyde & \(5.80 \mathrm{E}+09\) & 9.76 & -10.44213 & -8.61213 & -0.141633 \\
\hline HOOC.CH=CH-COOH (cis) & maleic acid & \(6.00 \mathrm{E}+09\) & & & & \\
\hline \(\mathrm{ClCH}=\mathrm{CHCl}\) (cis) & dichloroethylene & \(3.80 \mathrm{E}+09\) & & & & \\
\hline HOOC-CH-CH-COOH (trans) & fumaric acid & \(6.00 \mathrm{E}+09\) & 9.78 & -11.6333 & -9.8033 & -1.204368 \\
\hline \(\mathrm{ClCH}=\mathrm{CHCl}\) (trans) & dichloroethylene & \(4.40 \mathrm{E}+09\) & 9.64 & -10.01435 & -8.18435 & 0.3390446 \\
\hline \(\mathrm{C12}=\mathrm{CCL12}\) & tetrachloroethylene & \(2.00 \mathrm{E}+09\) & 9.30 & -9.899768 & -8.069768 & -0.4371864 \\
\hline & 1,4-cyclohexadiene & \(7.70 \mathrm{E}+09\) & & & & \\
\hline & cyclopentene & \(7.00 \mathrm{E}+09\) & & & & \\
\hline & cyclohexene & \(8.80 \mathrm{E}+09\) & & & & \\
\hline & trichloroethene & \(2.90 \mathrm{E}+09\) & 9.46 & -9.955593 & -8.125593 & -0.06103172 \\
\hline & etheylene & \(4.40 \mathrm{E}+09\) & 9.64 & -10.55205 & -8.72205 & 1.438299 \\
\hline & Uracil & \(5.70 \mathrm{E}+09\) & 9.76 & -9.971515 & -8.141515 & -0.3183682 \\
\hline & 5 -azauracil & \(7.00 \mathrm{E}+09\) & 9.85 & -11.05554 & -9.22554 & -0.5902089 \\
\hline & 6 -azauracil & \(4.50 \mathrm{E}+09\) & 9.65 & -10.55661 & -8.72661 & -0.6103272 \\
\hline & 5 -bromouracil & \(4.00 \mathrm{E}+09\) & 9.60 & -9.806242 & -7.976242 & -0.6673521 \\
\hline & 5-chlorouracil & \(5.50 \mathrm{E}+09\) & 9.74 & -9.756308 & -7.926308 & -0.601387 \\
\hline & 5-fluorouracil & \(5.20 \mathrm{E}+09\) & 9.72 & -9.81127 & -7.98127 & -0.6562816 \\
\hline & dihydro-6-methyluracil & 1.30E+09 & 9.11 & -10.52412 & -8.69412 & 0.4678679 \\
\hline & 5 -nitro-6-methyluracil & 5.30E+09 & & & & \\
\hline & 5 -nitrouracil & \(5.40 \mathrm{E}+09\) & & & & \\
\hline & thymine & \(6.40 \mathrm{E}+09\) & 9.81 & -9.607611 & -7.777611 & -0.2941526 \\
\hline & 6 -azathymine & \(2.80 \mathrm{E}+09\) & 9.45 & -10.17861 & -8.34861 & -0.5449313 \\
\hline & maleic hydrazide & \(2.90 \mathrm{E}+09\) & 9.46 & -9.948973 & -8.118973 & -1.067842 \\
\hline & isouramil & \(5.00 \mathrm{E}+09\) & 9.70 & -8.735811 & -6.905811 & \(-0.07312837\) \\
\hline & cytosine & \(6.30 \mathrm{E}+09\) & 9.80 & -9.383221 & -7.553221 & \(-0.09800104\) \\
\hline & 5 -methylcytosine & \(6.00 \mathrm{E}+09\) & 9.78 & -9.156627 & -7.326627 & \(-0.07697516\) \\
\hline & 6 -azacytosine & \(4.50 \mathrm{E}+09\) & 9.65 & -9.936148 & -8.106148 & -0.4477363 \\
\hline & 5 -azacytosine & \(2.10 \mathrm{E}+09\) & 9.32 & -9.973156 & -8.143156 & \(-0.09400064\) \\
\hline & N -ethylmaleimide & \(9.00 \mathrm{E}+09\) & 9.95 & -10.52536 & -8.69536 & -1.103325 \\
\hline & 6 -methyl uracil & \(5.70 \mathrm{E}+09\) & & & & \\
\hline C6H5-CH2CH3 & ethylbenzene & \(7.50 \mathrm{E}+09\) & 9.88 & -9.363271 & -7.533271 & 0.5302613 \\
\hline C 6 H -OH & phenol & \(6.60 \mathrm{E}+09\) & 9.82 & -9.115282 & -7.285282 & 0.3974596 \\
\hline C6HS-F & fluorobenzene & \(5.70 \mathrm{E}+09\) & 9.76 & -9.545124 & -7.715124 & 0.1636994 \\
\hline C6H5C1 & chlorobenzene & \(4.30 \mathrm{E}+09\) & 9.63 & -9.560975 & -7.730975 & 0.1546716 \\
\hline \(\mathrm{C}_{6} \mathrm{H} 5\) - Br & bromobenezene & \(4.80 \mathrm{E}+09\) & 9.68 & -9.601476 & -7.771476 & 0.05965194 \\
\hline C6H5-I & iodobenzene & \(5.30 \mathrm{E}+09\) & 9.72 & -9.647136 & -7.817136 & 0.06134555 \\
\hline C6H5-CN & benzonitrile & \(3.90 \mathrm{E}+09\) & 9.59 & -10.02129 & -8.19129 & -0.3946016 \\
\hline C6H5-NO2 & nitrobenzene & \(3.90 \mathrm{E}+09\) & & & & \\
\hline C6H5-CHO & benzaldehyde & \(4.40 \mathrm{E}+09\) & 9.64 & -10.00277 & -8.17277 & -0.4348125 \\
\hline C6H5-COOH & benzoic acid & \(4.30 \mathrm{E}+09\) & 9.63 & -10.08448 & -8.25448 & -0.4684967 \\
\hline C6H5-COCH3 & acetophenone & \(6.40 \mathrm{E}+09\) & 9.81 & -9.936084 & -8.106084 & -0.361914 \\
\hline C6H5-CONH2 & benzamide & \(4.60 \mathrm{E}+09\) & 9.66 & -9.942663 & -8.112663 & -0.2145394 \\
\hline C6HS-SOCH3 & methyl phenyl sulfoxide & \(9.70 \mathrm{E}+09\) & 9.99 & -9.260956 & -7.430956 & -0.1992762 \\
\hline C6H5-CH2OH & benzylalcohol & \(8.40 \mathrm{E}+09\) & 9.92 & -9.382318 & -7.552318 & 0.4754084 \\
\hline C6H5-NH-CO-CH3 & acetanilide & \(5.20 \mathrm{E}+09\) & 9.72 & -8.765536 & -6.935536 & 0.3259316 \\
\hline C6H-SO3H & benzenesulfonic acid & \(2.10 \mathrm{E}+09\) & 9.32 & -10.42274 & -8.59274 & -0.8968664 \\
\hline C6H5-NH-OH & phenyl hydroxylamine & \(1.50 \mathrm{E}+10\) & 10.18 & -8.098616 & -6.268616 & 0.7375505 \\
\hline C6H5-CH2CH2-C(CH3)2-OH & 2-methyl-4-phenyl-2-butanol & \(5.90 \mathrm{E}+09\) & 9.77 & -9.287429 & -7.457429 & 0.5829438 \\
\hline C6H5-CHOHCH(CH3)2 & 2-methyl-1-phenyl-1-propanol & \(9.50 \mathrm{E}+09\) & 9.98 & -9.383857 & -7.553857 & 0.5120207 \\
\hline С6Н5-СНоНСН3 & phenylethanol & \(1.10 \mathrm{E}+10\) & 10.04 & -9.387175 & -7.557175 & 0.5058496 \\
\hline C6H5-CH(OH)(CH2-CH3) & 1-phenyl-1-propanol & \(1.00 \mathrm{E}+10\) & 10.00 & -9.455846 & -7.625846 & 0.4862124 \\
\hline C6H5-CH2-CH2-OH & 1-phenyl-2-propanol & \(2.10 \mathrm{E}+10\) & 10.32 & -9.473491 & -7.643491 & 0.4123215 \\
\hline C6H5-0-CH3 & anisol & \(5.40 \mathrm{E}+09\) & 9.73 & -9.004682 & -7.174682 & 0.4837376 \\
\hline --. COOH & phenoxyacetic acid & \(1.00 \mathrm{E}+10\) & 10.00 & -9.617941 & -7.787941 & 0.0243417 \\
\hline (C6H5)2-CO & benzophenone & 9.00E+09 & 9.95 & -9.84922 & -8.01922 & -0.6259145 \\
\hline ( 66 H 522 NH & diphenylamine & \(1.00 \mathrm{E}+10\) & 10.00 & -8.042634 & -6.212634 & 0.1528785 \\
\hline ( C 6 H )2-SO & diphenyl sulfoxide & 6.30E+09 & 9.80 & -9.223753 & -7.393753 & -0.2421511 \\
\hline C6H5-CH3 & toluene & 5.10E+09 & 9.71 & -9.330592 & -7.500592 & 0.520049 \\
\hline C6H5-NH2 & aniline & \(1.70 \mathrm{E}+10\) & 10.23 & -8.21347 & -6.38347 & 0.7582679 \\
\hline H3C.C6H4-CH3 & o-xylene & \(6.70 \mathrm{E}+09\) & 9.83 & -9.168906 & -7.338906 & 0.5253025 \\
\hline H3C-C6H4-CH3 & m -xylene & \(7.50 \mathrm{E}+09\) & 9.88 & -9.190805 & -7.360805 & 0.5293261 \\
\hline \(\mathrm{H}_{3} \mathrm{C}\) C6 \(64-\mathrm{CH} 3\) & p -xylene & \(7.00 \mathrm{E}+09\) & 9.85 & -9.061137 & -7.231137 & 0.4863504 \\
\hline C6H4-C12 & 1,2-dichlorobenzene & \(4.00 \mathrm{E}+09\) & 9.60 & -9.601684 & -7.771684 & -0.1421155 \\
\hline C6H4-C12 & 1,3-dichlorobenzene & \(5.70 \mathrm{E}+09\) & 9.76 & -9.681361 & -7.851361 & -0.1582009 \\
\hline C6\%4-C12 & 1,4-dichlorobenzene & \(5.40 \mathrm{E}+09\) & 9.73 & -9.524891 & -7.694891 & -0.2155087 \\
\hline C6H4(OCH3)2 & 1,2-dimethoxybenzene & 5.20E+09 & 9.72 & -8.629187 & -6.799187 & 0.4657356 \\
\hline C6H4()(OCH3)2 & 1,3-dimethoxybenzene & \(7.20 \mathrm{E}+09\) & 9.86 & -8.865617 & -7.035617 & 0.4848553 \\
\hline C6H4-(ОСН3)2 & 1,4-dimethoxybenzene & \(7.00 \mathrm{E}+09\) & 9.85 & -8.551408 & -6.721408 & 0.3840715 \\
\hline (CH3)3-C.C6H4-OH & tert-butylphenol & \(1.90 \mathrm{E}+10\) & 10.28 & -8.894211 & -7.064211 & 0.47087 \\
\hline \(\mathrm{CN}, \mathrm{CN}\) & 1,4-dicyanobenzene & \(7.80 \mathrm{E}+08\) & 8.89 & -10.342550 & -8.51255 & -1.166878 \\
\hline F, F & o-difluorobenzene & \(7.50 \mathrm{E}+09\) & 9.88 & -9.632658 & -7.802658 & -0.1913946 \\
\hline F, F & p -difluorobenzene & \(1.00 \mathrm{E}+10\) & 10.00 & -9.490196 & -7.660196 & -0.2138308 \\
\hline -CH3, -CH3, - CH 3 & 1,2,3-trimethyl benzene & \(7.00 \mathrm{E}+09\) & 9.85 & -9.135165 & -7.305165 & 0.5717542 \\
\hline & 1,2,4-trimethyl benzene & \(6.20 \mathrm{E}+09\) & 9.79 & -8.964077 & -7.134077 & 0.5046272 \\
\hline & 1,3,5-trimethyl benzene (mesitylene) & \(6.40 \mathrm{E}+09\) & 9.81 & -9.1668 & -7.3368 & 0.5768769 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline - \(\mathrm{OCH3}\), - \(\mathrm{OCH3}\), -ОСН3 & 1,2,3-trimethoxybenzene & \(7.00 \mathrm{E}+09\) & 9.85 & -8.57087 & -6.74087 & 0.5082324 \\
\hline & 1,2,4-trimethoxybenzene & \(6.20 \mathrm{E}+09\) & 9.79 & -8.390726 & -6.560726 & 0.4095613 \\
\hline & 1,3,5-trimethoxybenzene & \(8.10 \mathrm{E}+09\) & 9.91 & -8.96364 & -7.13364 & 0.539712 \\
\hline --ㅇ, -OH, -OH & 1,2,4-trihydroxybenzene & \(8.60 \mathrm{E}+09\) & 9.93 & -8.685031 & -6.855031 & 0.1685672 \\
\hline -OH, - \(\mathrm{OH}, \mathrm{C}(\mathrm{CH} 3)^{3}\) & tert-butyl hydroquinone & \(6.30 \mathrm{E}+09\) & 9.80 & -8.623081 & -6.793081 & 0.2502026 \\
\hline -C1. \(\mathrm{Cl}_{2}\) - OH & 2,4-dichlrophenol & \(7.10 \mathrm{E}+09\) & 9.85 & -9.230422 & -7.400422 & -0.1966052 \\
\hline --C1, -Cl, --. COOH & 2,4-dichlorophenoxyacetic acid & \(6.60 \mathrm{E}+09\) & 9.82 & -9.627147 & -7.797147 & -0.550822 \\
\hline -F, F, -F & 1,3,5-trifluorobenzene & \(4.10 \mathrm{E}+09\) & 9.61 & -10.07859 & -8.24859 & -0.4993107 \\
\hline -F, F, -F & 1,2,3-trifluorobenzene & \(3.70 \mathrm{E}+09\) & 9.57 & -9.935002 & -8.105002 & -0.5078655 \\
\hline -F, -F, -F & 1,2,4-trifluorobenzene & \(3.90 \mathrm{E}+09\) & 9.59 & -9.673085 & -7.843085 & -0.5498641 \\
\hline -- \(\mathrm{OH}, \mathrm{OH}, \mathrm{OH}\) & phloroglucinol & \(1.00 \mathrm{E}+10\) & 10.00 & -9.235044 & -7.405044 & 0.3088495 \\
\hline & 1,2,3,4-tetramethylbenzene & \(7.20 \mathrm{E}+09\) & 9.86 & -8.902376 & -7.072376 & 0.5368509 \\
\hline & 1,2,3,4-tetrafluorobenzene & \(8.00 \mathrm{E}+09\) & 9.90 & -9.940006 & -8.110006 & -0.8556418 \\
\hline & 1,2,3,5-tetramethylbenzene & \(7.10 \mathrm{E}+09\) & 9.85 & -8.910298 & -7.080298 & 0.5395229 \\
\hline & 1,2,4,5-tetramethylbenzene & \(7.00 \mathrm{E}+09\) & 9.85 & -8.819628 & -6.989628 & 0.5005955 \\
\hline & 1,2,4,5-tetramethoxybenzene & \(7.00 \mathrm{E}+09\) & 9.85 & -8.115336 & -6.285336 & 0.3806553 \\
\hline -C1, -Cl - \(\mathrm{Cl}_{1}\) - OH & 2,4,5-trichlorophenol & 1.20E+10 & 10.08 & -9.322358 & -7.492358 & -0.5108725 \\
\hline 1,2,4, 5 Cl, of, OH, Cl & 2,5-dichlorohydroquinone & \(2.10 \mathrm{E}+10\) & 10.32 & -8.982342 & -7.152342 & -0.4068606 \\
\hline & pentafluorobenzene & \(7.00 \mathrm{E}+09\) & 9.85 & -10.06738 & -8.23738 & -1.183294 \\
\hline & pentamethylbenzene & \(7.50 \mathrm{E}+09\) & 9.88 & -8.787662 & -6.957662 & 0.542161 \\
\hline F, F, F, F, F, -COCH3 & pentafluoroacetophenone (PFA) & \(1.50 \mathrm{E}+09\) & 9.18 & -10.20297 & -8.37297 & -1.681022 \\
\hline F, F, F, F, F, CHO & pentafluorobenzaldehyde & \(2.00 \mathrm{E}+09\) & 9.30 & -10.28462 & -8.45462 & 1.775973 \\
\hline F, F, FF, F, -COOH & pentafluorobenzoic acid & \(1.10 \mathrm{E}+09\) & 9.04 & -10.31038 & -8.48038 & -1.830766 \\
\hline F, F, F, F.F-NH2 & pentafluoroaniline & \(9.60 \mathrm{E}+09\) & 9.98 & -9.102796 & -7.272796 & -0.9412494 \\
\hline F.F.F.F.F.-OH & pentafluorophenol & 9.50E+09 & 9.98 & -9.939639 & -8.109639 & -1.2963 \\
\hline & pentafluoroiodobenzene & \(1.20 \mathrm{E}+09\) & 9.08 & -10.2148 & -8.3848 & -1.469127 \\
\hline & hexafluorobenzene & \(1.40 \mathrm{E}+09\) & 9.15 & -10.37 & -8.53846 & -1.479236 \\
\hline & hexamethylbenzene & \(7.20 \mathrm{E}+09\) & 9.86 & -8.750388 & -6.920388 & 0.5751311 \\
\hline -F, -F, -F, -F, -OH, -OH & tetrafluorohydroquinone & \(3.10 \mathrm{E}+09\) & 9.49 & -9.549725 & -7.719725 & -1.13147 \\
\hline -CH3 & 2-methyl pyridine & \(2.50 \mathrm{E}+09\) & 9.40 & -9.628386 & -7.798386 & 0.1505354 \\
\hline - CH 3 & 3 -methyl pyridine & \(2.40 \mathrm{E}+09\) & 9.38 & -9.638089 & -7.808089 & 0.133376 \\
\hline - \(\mathrm{H}_{2}\) & 2 -pyridine amine & \(8.40 \mathrm{E}+09\) & 9.92 & -8.570785 & -6.740785 & 0.4871594 \\
\hline - H 2 & 4 -pyridine amine & \(5.00 \mathrm{E}+09\) & 9.70 & -8.903617 & -7.073617 & 0.4037449 \\
\hline - Br & 2 -bromopyridine & \(2.40 \mathrm{E}+09\) & 9.38 & -9.892888 & -8.062888 & -0.303153 \\
\hline \(-\mathrm{Br}\) & 3-bromopyridine & 1.10E+09 & 9.04 & -9.874868 & -8.044868 & -0.3221716 \\
\hline -C1 & 2 -chloropyridine & \(1.80 \mathrm{E}+09\) & 9.26 & -9.879027 & -8.049027 & -0.2294526 \\
\hline -c1 & 4-chloropyridine & \(3.10 \mathrm{E}+09\) & 9.49 & -10.22018 & -8.39018 & -0.1355081 \\
\hline -CN & 3 -cyanopyridine & \(7.50 \mathrm{E}+08\) & & & & \\
\hline - OH & 2 -pyridone & \(6.50 \mathrm{E}+09\) & 9.81 & -9.435832 & -7.605832 & 0.1213861 \\
\hline -OH & 3 -pyridinol & \(5.40 \mathrm{E}+09\) & 9.73 & -9.452283 & -7.622283 & 0.02146091 \\
\hline -OH & 4 -pyridinol & 1.10E+10 & 10.04 & -9.949773 & -8.119773 & 0.01668134 \\
\hline - COOH & 2 -pyridine carboxylic acid & \(2.60 \mathrm{E}+07\) & 7.41 & -10.38682 & -8.55682 & -0.7652425 \\
\hline - COOH & 3 -pyridinecarboxylic acid & \(2.20 \mathrm{E}+07\) & 7.34 & -10.41877 & -8.58877 & -0.820963 \\
\hline - COOH & 4 -pyridinecarboxylic acid & \(6.00 \mathrm{E}+07\) & 7.78 & -10.32512 & -8.49512 & -0.7771906 \\
\hline -pyr & 4,4'-bipyridine & \(5.30 \mathrm{E}+09\) & 9.72 & -9.923306 & -8.093306 & -0.7677598 \\
\hline -pry & 2,2'-bipyridine & \(6.20 \mathrm{E}+09\) & 9.79 & -9.186643 & -7.356643 & -0.5373726 \\
\hline -CONH2 & 4-pyridinecarboxyamide & \(1.60 \mathrm{E}+09\) & 9.20 & -10.22076 & -8.39076 & -0.5112579 \\
\hline -CONH2 & 3 -pyridinecarboxyamide & \(1.40 \mathrm{E}+09\) & 9.15 & -10.28491 & -8.45491 & -0.5768472 \\
\hline & 2,6-dimethyl pyridine & \(3.00 \mathrm{E}+09\) & 9.48 & -9.394721 & -7.564721 & 0.1760146 \\
\hline & 3,5-dimethyl pyridine & \(8.00 \mathrm{E}+09\) & 9.90 & -9.435932 & -7.605932 & 0.1378607 \\
\hline & 2,4,6-trimethylpyridine & \(2.50 \mathrm{E}+09\) & 9.40 & -9.357427 & -7.527427 & 0.2376713 \\
\hline & furan & \(3.90 \mathrm{E}+09\) & 9.59 & -9.317534 & -7.487534 & 0.7230756 \\
\hline & 2-methyl furan & \(1.90 \mathrm{E}+10\) & 10.28 & -9.007906 & -7.177906 & 0.7199911 \\
\hline & 2 -furfuryl alcohol & \(1.50 \mathrm{E}+10\) & 10.18 & -9.174876 & -7.344876 & 0.6181119 \\
\hline & 2-furaldehyde & \(7.80 \mathrm{E}+09\) & 9.89 & -9.735093 & -7.905093 & -0.4559993 \\
\hline & 2 -acetyl furan & \(4.50 \mathrm{E}+09\) & 9.65 & -9.664335 & -7.834335 & -0.3647549 \\
\hline & 2 -furancarboxamide & \(5.50 \mathrm{E}+09\) & 9.74 & -9.674635 & -7.844635 & -0.1558389 \\
\hline & phenyfiuran & \(1.60 \mathrm{E}+10\) & 10.20 & -8.600646 & -6.770646 & -0.2524168 \\
\hline & 5-phenylfurfural & \(5.90 \mathrm{E}+09\) & 9.77 & -8.954058 & -7.124058 & -0.8471305 \\
\hline & furoin & \(1.30 \mathrm{E}+10\) & 10.11 & -9.411239 & -7.581239 & -0.6307386 \\
\hline & 5-hydroxymethyffurfuryl & \(5.80 \mathrm{E}+09\) & 9.76 & -9.119494 & -7.289494 & -0.385334 \\
\hline & 5-methylfurfural & \(7.20 \mathrm{E}+09\) & 9.86 & -9.245028 & -7.415028 & -0.5071848 \\
\hline & 5-bromofurfural & \(3.90 \mathrm{E}+09\) & 9.59 & -9.726897 & -7.896897 & -0.7652646 \\
\hline & nitrofuraldehyde & \(5.50 \mathrm{E}+09\) & & & & \\
\hline & nitrofuroic acid & \(5.30 \mathrm{E}+09\) & & & & \\
\hline & nifuroxime & \(1.00 \mathrm{E}+10\) & & & & \\
\hline & nitrofurazone & \(1.06 \mathrm{E}+10\) & & & & \\
\hline & furamazone & \(1.03 \mathrm{E}+10\) & & & & \\
\hline & furadantin & \(9.30 \mathrm{E}+09\) & & & & \\
\hline & tetrahydrofuran & \(4.00 \mathrm{E}+09\) & 9.60 & -10.20846 & -8.37846 & 3.116479 \\
\hline & indole & \(3.20 \mathrm{E}+10\) & 10.51 & -8.403031 & -6.573031 & 0.3000424 \\
\hline & & 1.37E+10 & & & & \\
\hline & 1,2-dimethylindole & \(1.00 \mathrm{E}+10\) & & & & \\
\hline & 1,3-dimethylindole & \(1.10 \mathrm{E}+10\) & & & & \\
\hline & 2,3-dimethylindole & 1.30E+10 & 10.11 & -8.121906 & -6.291906 & 0.3036284 \\
\hline & 1-methylindole & \(1.50 \mathrm{E}+10\) & 10.18 & -8.30021 & -6.47021 & 0.3248031 \\
\hline & & \(1.20 \mathrm{E}+10\) & & & & \\
\hline & 2-methylindole & \(3.40 \mathrm{E}+10\) & 10.53 & -8.274981 & -6.444981 & 0.2980896 \\
\hline & 3 -methylindole & \(3.30 \mathrm{E}+10\) & 10.52 & -8.238073 & -6.408073 & 0.3067786 \\
\hline & indole-3-acetic acid & \(6.50 \mathrm{E}+09\) & 9.81 & -8.843916 & -7.013916 & -0.1644274 \\
\hline & indole-3-propionic acid & \(8.50 \mathrm{E}+09\) & 9.93 & -8.529186 & -6.699186 & 0.0819269 \\
\hline & 5 -methylindole & \(1.70 \mathrm{E}+10\) & 10.23 & -8.347065 & -6.517065 & 0.325323 \\
\hline & 5 -nitroindole & \(1.00 \mathrm{E}+10\) & & & & \\
\hline & 5-chloroindole & \(2.00 \mathrm{E}+10\) & 10.30 & -8.612524 & -6.782524 & 0.041292 \\
\hline & 5 -aminoindole & \(3.30 \mathrm{E}+10\) & 10.52 & -7.651357 & -5.821357 & 0.4400067 \\
\hline & 5 -bromoindole & \(1.60 \mathrm{E}+10\) & 10.20 & -8.654009 & -6.824009 & 0.02258883 \\
\hline & 5 -cyanoindole & \(1.10 \mathrm{E}+10\) & 10.04 & -8.847144 & -7.017144 & -0.2170322 \\
\hline & 5 -hydroxyindole & \(1.70 \mathrm{E}+10\) & 10.23 & -8.301017 & -6.471017 & 0.1543591 \\
\hline & 5 -methoxy indole & \(1.50 \mathrm{E}+10\) & 10.18 & -8.218704 & -6.388704 & 0.2132235 \\
\hline & Indole-5-acetic acid & \(7.90 \mathrm{E}+09\) & 9.90 & -8.803644 & -6.973644 & -0.2380285 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 2-(dimethylaminomethyl)-indole (gramine) & \(3.00 \mathrm{E}+10\) & 10.48 & -8.288119 & -6.458119 & 0.2996526 \\
\hline & Melatonin & \(1.32 \mathrm{E}+10\) & 10.12 & -8.383657 & -6.553657 & -0.02848179 \\
\hline & Tryptophan & \(1.25 \mathrm{E}+10\) & 10.10 & -8.469387 & -6.639387 & 0.1268472 \\
\hline & 6-chloromelatonin & \(8.20 \mathrm{E}+09\) & 9.91 & -8.748535 & -6.918535 & -0.3210769 \\
\hline & 6-hydroxy-melatonin & \(1.10 \mathrm{E}+10\) & 10.04 & -8.474654 & -6.644654 & -0.07347865 \\
\hline & 5-methoxytryptamine & \(2.30 \mathrm{E}+10\) & 10.36 & -8.175366 & -6.345366 & 0.1698762 \\
\hline & 5-hydroxytryptamine & \(1.70 \mathrm{E}+10\) & 10.23 & -8.252984 & -6.422984 & 0.113479 \\
\hline & indoline & \(3.80 \mathrm{E}+10\) & 10.58 & -8.012069 & -6.182069 & 0.6960114 \\
\hline & imidazole & \(3.90 \mathrm{E}+09\) & 9.59 & -9.159063 & -7.329063 & 0.9772351 \\
\hline & 1-methyl imidazole & \(8.10 \mathrm{E}+09\) & 9.91 & -9.068705 & -7.238705 & 0.9551286 \\
\hline & xanthine & \(5.20 \mathrm{E}+09\) & 9.72 & -9.335711 & -7.505711 & -0.5102662 \\
\hline & theophilline & \(6.30 \mathrm{E}+09\) & 9.80 & -9.065549 & -7.235549 & -0.3744477 \\
\hline & theobromine & \(5.80 \mathrm{E}+09\) & 9.76 & -9.017918 & -7.187918 & -0.4077799 \\
\hline & 1-hypoxanthine & \(6.50 \mathrm{E}+09\) & 9.81 & -9.499949 & -7.669949 & -0.6002567 \\
\hline & isoguanine & \(1.20 \mathrm{E}+10\) & 10.08 & -8.931677 & -7.101677 & -0.4709503 \\
\hline & guanine & \(9.20 \mathrm{E}+09\) & 9.96 & -8.599816 & -6.769816 & -0.1587732 \\
\hline & caffeine & \(6.90 \mathrm{E}+09\) & 9.84 & -8.946396 & -7.116396 & -0.3416989 \\
\hline & allopurinol & \(7.00 \mathrm{E}+08\) & 8.85 & -9.623034 & -7.793034 & -0.5682302 \\
\hline & purine & \(3.00 \mathrm{E}+08\) & 8.48 & -9.641496 & -7.811496 & -0.566691 \\
\hline & 6 -methyl purine & \(4.60 \mathrm{E}+08\) & 8.66 & -9.579273 & -7.749273 & -0.5272966 \\
\hline & 6 -methoxy purine & \(2.00 \mathrm{E}+09\) & 9.30 & -9.537105 & -7.707105 & -0.503417 \\
\hline & 2 -aminopurine & \(3.00 \mathrm{E}+09\) & 9.48 & -8.430102 & -6.600102 & 0.2551631 \\
\hline & adenine & \(5.80 \mathrm{E}+09\) & 9.76 & -8.665549 & -6.835549 & -0.5752795 \\
\hline & \(\mathrm{N}, \mathrm{N}\)-dimethyladenine & \(7.10 \mathrm{E}+09\) & & & & \\
\hline & 2-mercaptopurine & \(4.40 \mathrm{E}+09\) & 9.64 & -8.669272 & -6.839272 & -1.05871 \\
\hline & 6 -mercaptopurine & \(7.00 \mathrm{E}+09\) & 9.85 & -8.826919 & -6.996919 & -1.121564 \\
\hline & carbendazim & \(2.20 \mathrm{E}+09\) & 9.34 & -8.719607 & -6.889607 & -0.1053538 \\
\hline & thiophene & \(8.20 \mathrm{E}+09\) & 9.91 & -9.217519 & -7.387519 & 0.2388409 \\
\hline & 2,5-dimethylthiophene & \(7.20 \mathrm{E}+09\) & 9.86 & -8.960532 & -7.130532 & 0.192614 \\
\hline & 2-methylthiophene & \(3.20 \mathrm{E}+09\) & 9.51 & -9.167394 & -7.337394 & 0.2153039 \\
\hline & 3-methylthiophene & \(3.20 \mathrm{E}+09\) & 9.51 & -8.960335 & -7.130335 & 0.2716238 \\
\hline & 2,2'-bithiophene & \(1.60 \mathrm{E}+10\) & 10.20 & -8.582865 & -6.752865 & -0.5731946 \\
\hline & 2-iodo-3,5-dinitrothiophene & \(2.10 \mathrm{E}+09\) & & & & \\
\hline & 3-nitro-2-(4-nitrophenoxy)thiophene & \(1.30 \mathrm{E}+09\) & & & & \\
\hline & tetrahydrothiophene & \(1.40 \mathrm{E}+10\) & & & & \\
\hline & atrazine & \(2.00 \mathrm{E}+09\) & 9.30 & -9.4324 & -7.6024 & 0.02653915 \\
\hline & cyanuric acid & \(2.00 \mathrm{E}+07\) & 7.30 & -11.16566 & -9.33566 & -0.5236035 \\
\hline & simazine & \(2.10 \mathrm{E}+09\) & 9.32 & -9.322888 & -7.492888 & 0.1204403 \\
\hline & prometone & \(2.50 \mathrm{E}+09\) & 9.40 & -9.356476 & -7.526476 & 0.3281624 \\
\hline & 1,3,5-triazine & \(3.40 \mathrm{E}+09\) & 9.53 & -11.31689 & -9.48689 & -0.5514946 \\
\hline & 2,4,6-trimethoxy-1,3,5-triazine & \(2.06 \mathrm{E}+08\) & 8.31 & -10.63024 & -8.80024 & -0.1619785 \\
\hline & dioxohexahydrotriazine & \(1.61 \mathrm{E}+09\) & 9.21 & -10.3639 & -8.5339 & 0.5279263 \\
\hline & simetone & \(4.70 \mathrm{E}+09\) & 9.67 & -9.172058 & -7.342058 & 0.5188141 \\
\hline & ametryne & \(2.60 \mathrm{E}+10\) & 10.41 & -8.658154 & -6.828154 & 0.193481 \\
\hline & simetryne & \(2.60 \mathrm{E}+10\) & 10.41 & -8.596725 & -6.766725 & 0.3103282 \\
\hline & terbutazine & \(2.80 \mathrm{E}+09\) & 9.45 & -9.291797 & -7.461797 & 0.1537872 \\
\hline & cyanazine & \(1.90 \mathrm{E}+09\) & 9.28 & -9.554059 & -7.724059 & -0.1189912 \\
\hline & 2-chloro-4,6-diamino-s-triazine & \(5.00 \mathrm{E}+07\) & 7.70 & -9.729335 & -7.899335 & -0.01503109 \\
\hline
\end{tabular}

\section*{APPENDIX E: QUANTUM MECHANICALLY OPTIMIZED}

\section*{STRUCTURES IN THE GASEOUS AND AQUEOUS PHASES FOR \\ NEUTRAL COMPOUNDS}

The structure on the left is optimized geometry of molecules and radicals in the gaseous phase using G1, G2 and G3 methods (i.e., geometry optimization is conducted with MP2(Full)/6-31G(d). The optimized geometry includes numbers and labels of each atom as well as atomic charges that were obtained from Mulliken's charge distribution (charges were shown in the parentheses). The Z-matrix is also given for the gaseous phase optimizes structure. The vector indicates direction of the dipole moment. The structure on the right is optimized geometry that is used for calculating free energy of solvation.


\section*{\(\mathrm{CH}_{4}\)}

120.0000000 -120.0000000

\section*{\(\mathrm{CH}_{4}\) in CPCM}



\section*{TS \(\mathrm{CH}_{4}-\mathrm{HO} \bullet\) in CPCM}

\begin{tabular}{llll} 
NB & NC & \multicolumn{1}{l}{ Bond Angle Dihedral } \\
& & \multicolumn{1}{l}{1.0879907} & \\
2 & & 1.0875847112 .3822663 & \\
3 & 2 & 2.4923043 & 10.9002896 \\
4 & 3 & 1.0876671107 .9830162 & -115.9528627 \\
4 & 3 & 1.22039325 .5259278 & 170.58371159 \\
1 & 3 & 0.985548193 .3845049 & 20.390555
\end{tabular}

\(\mathrm{C}_{2} \mathrm{H}_{6}\) in CPCM

\begin{tabular}{lllllllll}
6 & No & 6 & H & 5 & 1 & 2 & 1.0927988111 .1716097 & 180.0000000 \\
7 & No & 7 & H & 5 & 1 & 2 & 1.0927989111 .1716064 & -60.0000058 \\
8 & No & 8 & H & 5 & 1 & 2 & 1.0927989111 .1716064 & 60.0000058
\end{tabular}

C2H6-HO•(TS)


C2H6-HO• (TS) in CPCM

\begin{tabular}{lllll} 
Row & \begin{tabular}{l} 
Highlight \\
Bond \\
No
\end{tabular} & \begin{tabular}{l} 
Tag \\
Angle \\
1
\end{tabular} & \begin{tabular}{l} 
Symbol \\
Dihedral \\
C
\end{tabular} & NB
\end{tabular}\(\quad\) NC

\section*{Propane (C3H8)}


Propane (C3H8) in CPCM

\begin{tabular}{|c|c|c|c|c|c|}
\hline Highlight & Tag & Symbol & NA & NB & \multirow[t]{2}{*}{NC} \\
\hline Bond & Angle & \multicolumn{2}{|l|}{Dihedral} & & \\
\hline No & 1 & \multicolumn{2}{|l|}{C} & & \\
\hline No & 2 & H & \multicolumn{3}{|l|}{1} \\
\hline \multicolumn{6}{|l|}{1.0937473} \\
\hline No & 3 & H & 1 & \multicolumn{2}{|l|}{2} \\
\hline \multicolumn{6}{|l|}{1.0943707107 .9190969} \\
\hline No & 4 & H & 1 & 2 & \multirow[t]{2}{*}{3} \\
\hline 1.0943707 & 107.919 & 969 & 116. & & \\
\hline No & 5 & C & 1 & 2 & \multirow[t]{2}{*}{3} \\
\hline 1.5245619 & 111.54 & 765 & -121 & 477 & \\
\hline No & 6 & H & 5 & 1 & \multirow[t]{2}{*}{2} \\
\hline 1.0958923 & 109.487 & 306 & \multicolumn{2}{|l|}{-58.1158106} & \\
\hline 2 & 1.09589 & 3109.48743 & & \multicolumn{2}{|l|}{58.1158106} \\
\hline 2 & 1.52456 & 112.35957 & & \multicolumn{2}{|l|}{180.0000000} \\
\hline 1 & 1.0943 & 110.78702 & & \multicolumn{2}{|l|}{59.7559666} \\
\hline 1 & 1.09374 & 3111.54417 & & \multicolumn{2}{|l|}{180.0000000} \\
\hline 1 & 1.0943 & 7110.78702 & & \multicolumn{2}{|l|}{-59.7559666} \\
\hline
\end{tabular}


C3H8-HOradical TS1 in CPCM




C3H8-HOradical TS2 Staggered in CPCM


C3H8-HOradical TS3 Eclipsed


C4H10 -Anti Staggered

\begin{tabular}{lllllll}
3 & No & 3 & C & 2 & 1 & \\
4 & No & 4 & C & 3 & 2 & 1 \\
5 & No & 5 & H & 1 & 2 & 3 \\
6 & No & 6 & H & 1 & 2 & 3 \\
7 & No & 7 & H & 1 & 2 & 3 \\
8 & No & 8 & H & 2 & 1 & 3 \\
9 & No & 9 & H & 2 & 1 & 3 \\
10 & No & 10 & H & 3 & 2 & 1 \\
11 & No & 11 & H & 3 & 2 & 1 \\
12 & No & 12 & H & 4 & 3 & 2 \\
13 & No & 13 & H & 4 & 3 & 2 \\
14 & No & 14 & H & 4 & 3 & 2
\end{tabular}
1.5340227113 .3152872
1.5321572113 .3152872
1.0963616111 .4699916 1.0973113111 .1566451 1.0973127111 .1563104 1.0997736109 .4617689 1.0997730109 .4626456 1.0997738109 .1506682 1.0997736109 .1503755 1.0963616111 .4699917 1.0973123111 .1563656 1.0973122111 .1565532
179.9897384
179.9922033
-59.8714373
59.8562027
122.0840238
-122.0849654 57.7319241
-57.7519577 179.9929895 59.8568402 -59.8707356

\section*{C4H10 -Gauche staggered dihedral angle \(=60\) degrees}

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & C & 1 & & \\
3 & No & 3 & C & 1 & 2 & \\
4 & No & 4 & C & 2 & 1 & 3 \\
5 & No & 5 & H & 1 & 3 & 2 \\
6 & No & 6 & H & 1 & 3 & 2 \\
7 & No & 7 & H & 2 & 1 & 3 \\
8 & No & 8 & H & 2 & 1 & 3 \\
9 & No & 9 & H & 3 & 1 & 2 \\
10 & No & 10 & H & 3 & 1 & 2 \\
11 & No & 11 & H & 3 & 1 & 2 \\
12 & No & 12 & H & 4 & 2 & 1 \\
13 & No & 13 & H & 4 & 2 & 1 \\
14 & No & 14 & H & 4 & 2 & 1
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral & \\
& \\
1.5379280 & \\
1.5334313 & 114.3669905 \\
1.5334313 & 114.3669905 \\
1.0987111 & 108.8644577 \\
1.0998727 & 109.4242987 \\
1.0998727 & 109.0825461 \\
1.0987111 & 108.6859982 \\
1.0976039 & 110.9970755 \\
1.0959628 & 111.9223309 \\
1.0963244 & 111.0736279 \\
1.0963244 & 111.0736279 \\
1.0976040 & 110.9971056 \\
1.0959628 & 111.9223309
\end{tabular}

C4H10 - Gauche staggered dihedral angle = 300 degrees

\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.5379307 & \\
1.5334312 & 114.3675327 \\
1.5334312 & 114.3675327 \\
1.0987106 & 108.8645205 \\
1.0998727 & 109.4241333 \\
1.0987110 & 108.6857893 \\
1.0998727 & 109.0824772
\end{tabular}
\begin{tabular}{lllllllll}
9 & No & 9 & H & 3 & 1 & 2 & 1.0976037110 .9968063 & -57.7119838 \\
10 & No & 10 & H & 3 & 1 & 2 & 1.0963243111 .0740412 & -177.4453703 \\
11 & No & 11 & H & 3 & 1 & 2 & 1.0959625111 .9226271 & 62.5018985 \\
12 & No & 12 & H & 4 & 2 & 1 & 1.0963243111 .0740412 & -177.4453703 \\
13 & No & 13 & H & 4 & 2 & 1 & 1.095962511 .9226271 & 62.5018985 \\
14 & No & 14 & H & 4 & 2 & 1 & 1.0976037110 .9968063 & -57.7119838
\end{tabular}

\section*{C4H10-HO radical TS1 Anti staggered dihedral angle \(=180\) degrees}


C4H10-HO radical TS2 Anti staggered dihedral angle \(\mathbf{= 1 8 0}\) degrees


C5H12 - Anti Staggered

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & H & 1 & & & 1.0941147 & \\
3 & No & 3 & H & 1 & 2 & & 1.0941147107 .7270407 & \\
4 & No & 4 & H & 1 & 2 & 3 & 1.0936558107 .8641759 & 116.1928710 \\
5 & No & 5 & C & 1 & 4 & 2 & 1.5247509111 .5347065 & -121.9483950 \\
6 & No & 6 & H & 5 & 1 & 4 & 1.0969419109 .6239889 & -58.1490982 \\
7 & No & 7 & H & 5 & 1 & 4 & 1.0969419109 .6239889 & 58.1490982 \\
8 & No & 8 & C & 5 & 1 & 4 & 1.5250730112 .8138762 & 180.0000000 \\
9 & No & 9 & H & 8 & 5 & 1 & 1.0983327109 .2500797 & 57.8959964 \\
10 & No & 10 & H & 8 & 5 & 1 & 1.0983327109 .2500797 & -57.8959964 \\
11 & No & 11 & C & 8 & 5 & 1 & 1.5250730113 .3827266 & 180.0000000 \\
12 & No & 12 & H & 11 & 8 & 5 & 1.0969419109 .1446217 & 57.8790304 \\
13 & No & 13 & H & 11 & 8 & 5 & 1.0969419109 .1446217 & -57.8790304 \\
14 & No & 14 & C & 11 & 8 & 5 & 1.5247509112 .8138762 & 180.0000000 \\
15 & No & 15 & H & 14 & 11 & 8 & 1.0941147110 .8476816 & 59.7907381 \\
16 & No & 16 & H & 14 & 11 & 8 & 1.0936558111 .5347065 & 180.0000000 \\
17 & No & 17 & H & 14 & 11 & 8 & 1.0941147110 .8476816 & -59.7907381
\end{tabular}

C5H12-HO radical TS2

\begin{tabular}{llllllll}
18 & No 18 & H & 16 & 13 & 3 & 1.0934021111 .3674358 & -179.9955998 \\
& 2.4313360 & 1.0195990 & 5.4521300 & & & \\
19 & No 19 & H 16 & 13 & 1.0942427111 .0069678 & -59.7900784 \\
& 2.7348660 & -0.4786300 & 4.5632300 & &
\end{tabular}

C5H12-HO radical TS2


CH 3 OH


CH3OH - HO radical TS1

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & H & 1 & \\
3 & No & 3 & H & 1 & 2 \\
4 & No & 4 & H & 1 & 3 \\
5 & No & 5 & O & 1 & 3 \\
6 & No & 6 & H & 5 & 1 \\
7 & No & 7 & O & 1 & 5 \\
8 & No & 8 & H & 7 & 1
\end{tabular}
1.2038477
1.0884908107 .2998703
1.0947782111 .9656768
1.3997471108 .3019882
0.9717456107 .5303200
2.477511196 .8954253
0.978919687 .9839098
\(-114.3114758\)
\(-126.9658518\)
177.1109864
-63.7284073
\(-41.7137783\)

CH3CH2OH

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle Di & Dihedral \\
\hline 1 & No & 1 & C & & & & & & \\
\hline 2 & No & 2 & H & 1 & & & 1.0917693 & & \\
\hline 3 & No & 3 & H & 1 & 2 & & 1.0917693 & 108.4336302 & \\
\hline 4 & No & 4 & H & 1 & 2 & 3 & 1.0933220 & 108.8317448 & 118.2399256 \\
\hline 5 & No & 5 & C & 1 & 2 & 3 & 1.5118586 & 109.9733025 & -120.2807483 \\
\hline 6 & No & 6 & H & 5 & 1 & 2 & 1.0991518 & 110.2207610 & -179.6193158 \\
\hline 7 & No & 7 & H & 5 & 1 & 2 & 1.0991518 & 110.2207610 & -61.0358765 \\
\hline 8 & No & 8 & O & 5 & 1 & 2 & 1.4275846 & 107.0229441 & 59.6724039 \\
\hline 9 & No & 9 & H & 8 & 5 & 1 & 0.9711288 & 107.7063937 & 180.0000000 \\
\hline
\end{tabular}
\(\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{OH}-\mathrm{HO}\) radical TS1


C2H5OH - HO radical TS2

\begin{tabular}{lllllllll}
9 & No & 9 & H & 1 & 2 & 7 & 1.1951128108 .7925255 & 12.9107047 \\
10 & No & 10 & O & 1 & 2 & 7 & 1.4083560109 .0732246 & -105.4350453 \\
11 & No & 11 & H & 10 & 1 & 2 & 0.9726559107 .7340914 & -175.3957615
\end{tabular}

CH3CH(OH)CH3

\(\mathrm{CH} 3 \mathrm{CH}(\mathrm{OH}) \mathrm{CH} 3-\mathrm{HO}\) radical TS1



\section*{CH 3 CH 2 CH 2 OH}

116.0310913
\(-121.9516110\) -59.0706892 59.0706892 180.0000000 \(-59.0153234\) 59.0153234 180.0000000 180.0000000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline &  &  &  & & & &  &  & & \\
\hline Row & Highlight & & Symbol & NA & NB & NC & Bond & Angle D & & \\
\hline 1 & No & 1 & C & & & & & & & \\
\hline 2 & No & 2 & C & 1 & & & 1.5127 & & & \\
\hline 3 & No & 3 & H & 1 & 2 & & 1.0924 & 113.4737611 & & \\
\hline 4 & No & 4 & H & 1 & 2 & 3 & 1.0911 & 114.1637085 & & 127.6346597 \\
\hline 5 & No & 5 & H & 2 & 1 & 4 & 1.0936 & 110.4552188 & & -52.6738246 \\
\hline 6 & No & 6 & H & 2 & 1 & 4 & 1.0968 & 109.7768999 & & 65.0767062 \\
\hline 7 & No & 7 & O & 1 & 2 & 5 & 2.5067 & 106.3480969 & & 68.9677462 \\
\hline 8 & No & 8 & H & 7 & 1 & 2 & 0.9786 & 94.5458576 & & 127.5502869 \\
\hline 9 & No & 9 & H & 1 & 2 & 7 & 1.2082 & 107.2891869 & & -6.5514013 \\
\hline 10 & No & 10 & C & 2 & 1 & 7 & 1.5152 & 112.4437913 & & -52.4266629 \\
\hline 11 & No & 11 & H & 10 & 2 & 1 & 1.1011 & 109.7615563 & & -56.9659973 \\
\hline 12 & No & 12 & H & 10 & 2 & 1 & 1.0968 & 109.3800430 & & 61.2018196 \\
\hline 13 & No & 13 & O & 10 & 2 & 1 & 1.4266 & 107.0574951 & & -177.5348809 \\
\hline 14 & No & 14 & H & 13 & 10 & 2 & 0.9711 & 107.6555344 & & -174.0480329 \\
\hline
\end{tabular}
\(\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{CH} 2 \mathrm{OH}-\mathrm{HO}\) radical TS2


\section*{CH3CH2CH2OH- HO radical TS3}


\section*{HOCH2OH}


\section*{HOCH2OH - HO radical TS}


HOCH2COOH


HOCH2COOH HO radical TS1 CIS


HOCH2COOH HO radical TS2 TRANS


Bond Angle Dihedral
1.0951105
1.2094779106 .0140503
2.4783639118 .5865102
0.980618885 .1626498 2.4096351110 .6528951
1.215219530 .7622863
1.3545339124 .0395531
0.9800054105 .6796663
1.3956714110 .5775747 0.9728860107 .7205115
-137.6542236
\(-175.2084566\)
-12.1375357
-117.0609105
\(-52.9631031\)
179.8624238
0.4798498
5.4493437
-176.5790685
125.3040287

\section*{HOCH2COOH HO radical TS3 TRANS}


Bond Angle Dihedral
1.2072233
1.3334878154 .8166096 0.980308696 .2210473 2.4204299106 .3446544
32.3837369 100.3798600 -99.0276128 1.212311530 .1537344 177.2556052 -1.6291804
-16.4653433
-178.5759779
127.7223199
(CH3)3COH

\begin{tabular}{lll} 
NC & Bond Angle Dihedral \\
& \\
& 1.5240164 \\
& 1.0928655 & 109.8394691 \\
3 & 1.0941526 & 111.3375715 \\
3 & 1.0959763 & 110.5082670 \\
3 & 1.5184442 & 111.0063412 \\
2 & 1.0928013 & 109.8924893 \\
2 & 1.0928013 & 109.8924893 \\
2 & 1.0934961 & 110.7924333 \\
2 & 1.5240164 & 111.0063412 \\
6 & 1.0928655 & 109.8394691 \\
6 & 1.0959763 & 110.5082670 \\
6 & 1.0941526 & 111.3375715 \\
10 & 1.4380370 & 104.4870544 \\
6 & 0.9738932 & 106.9316679
\end{tabular}
120.6753134
-119.4825216 -58.3020152 58.3923256 177.5651625 -62.0212560 124.0425119 58.3020152 177.7845368 \(-62.3732982\) 117.9787440 180.0000000


\section*{\(\mathrm{CH}(\mathrm{CH} 3)(\mathrm{OH})^{2}\)}

\begin{tabular}{|c|c|c|c|c|}
\hline NB & NC & Bond & Angle Di & Dihedral \\
\hline & & 1.509 & & \\
\hline 1 & & 1.4252 & 112.1695092 & \\
\hline 1 & 3 & 1.399 & 107.3932665 & 116.9415979 \\
\hline 2 & 4 & 1.0932 & 110.5392698 & 179.9503068 \\
\hline 2 & 4 & 1.0910 & 108.2569900 & 60.2806661 \\
\hline 2 & 4 & 1.0920 & 110.4499256 & -59.4908537 \\
\hline 1 & 4 & 1.104 & 110.8364731 & 121.1517750 \\
\hline 2 & 1 & 0.972 & 107.8936482 & -77.6711664 \\
\hline 2 & 1 & 0.973 & 106.2686278 & -169.2478189 \\
\hline
\end{tabular}

\section*{CH(CH3)(OH)2 - HO radical TS1}


CH(CH3)(OH)2 - HO radical TS2


\section*{HCHO}

180.0000000

\section*{HCHO - HO radical TS}


CH3CHO

119.6212762
121.0638792
179.9886512
\(-0.0136633\)

\section*{CH3CHO - HO radical TS1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline &  &  & & &  &  & & \\
\hline Row & Highlight Tag & Symbol & NA & NB & NC & Bond & Angle Dih & \\
\hline 1 & No 1 & C & & & & & & \\
\hline 2 & No 2 & H & 1 & & & 1.0921 & & \\
\hline 3 & No 3 & H & 1 & 2 & & 1.0921 & 110.7358071 & \\
\hline 4 & No 4 & H & 1 & 2 & 3 & 1.2505 & 106.5940369 & 115.5585872 \\
\hline 5 & No 5 & O & 1 & 2 & 3 & 2.4366 & 111.5088477 & 124.7884456 \\
\hline 6 & No 6 & H & 5 & 1 & 2 & 0.9819 & 87.6365699 & 117.8300549 \\
\hline 7 & No 7 & O & 1 & 5 & 6 & 2.4120 & 73.0182122 & 0.0062510 \\
\hline 8 & No 8 & C & 7 & 1 & 5 & 1.2242 & 30.6766591 & 179.9928383 \\
\hline 9 & No 9 & H & 8 & 7 & 1 & 1.1070 & 119.8299023 & 179.9979513 \\
\hline
\end{tabular}

CH3CHO - HO radical TS2

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & H & 1 & & & 1.0935787 & \\
3 & No & 3 & H & 1 & 2 & & 1.0896056 & 110.3219881 & \\
4 & No & 4 & H & 1 & 3 & 2 & 1.0935838 & 110.3173060 & -117.7034927 \\
5 & No & 5 & C & 1 & 3 & 4 & 1.4990048 & 109.5788890 & -121.1452959 \\
6 & No & 6 & C & 5 & 1 & 3 & 1.5218312117 .1138262 & -179.9739652 \\
7 & No & 7 & H & 6 & 5 & 1 & 1.1059837 & 114.1577589 & -179.9994603 \\
8 & No & 8 & O & 5 & 1 & 6 & 1.2281004 & 125.1263403 & -179.9967228 \\
9 & No & 9 & O & 6 & 5 & 1 & 1.2230842122 .6896867 & 0.0003627
\end{tabular}

CH3COCHO-HOradical TS1


\section*{CH3COCHO-HOradical TS2}

\begin{tabular}{lllllllll}
3 & No & 3 & H & 1 & 2 & & 1.0882820114 .5100852 & \\
4 & No & 4 & H & 1 & 3 & 2 & 1.2537801105 .5063179 & -115.8996371 \\
5 & No & 5 & C & 1 & 3 & 2 & 1.5013281112 .4912609 & 131.5785438 \\
6 & No & 6 & C & 5 & 1 & 3 & 1.5661333115 .4564998 & 179.4036012 \\
7 & No & 7 & H & 6 & 5 & 1 & 1.1082900112 .2560061 & 177.8631111 \\
8 & No & 8 & O & 5 & 1 & 6 & 1.1880689126 .5462975 & 179.6266902 \\
9 & No & 9 & O & 6 & 5 & 1 & 1.2020879123 .7022434 & -0.9869822 \\
10 & No & 10 & O & 1 & 5 & 8 & 2.418387192 .6442261 & -119.7637367 \\
11 & No & 11 & H & 10 & 1 & 5 & 0.981085092 .1264387 & -78.9423099
\end{tabular}

CH3COCHO-HOradical TS3


CH3COCHO-HOradical TS4

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond Angle \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & H & 1 & & & 1.0937243 & \\
3 & No & 3 & H & 1 & 2 & & 1.0894837110 .3545182 \\
4 & No & 4 & H & 1 & 3 & 2 & 1.0932174 & 110.7141446
\end{tabular}
\begin{tabular}{llllllllll}
5 & No & 5 & C & 1 & 3 & 2 & 1.4996733109 .4360733 & 120.6197257 \\
6 & No & 6 & C & 5 & 1 & 3 & 1.5643106115 .0908868 & 177.4129540 \\
7 & No & 7 & H & 6 & 5 & 1 & 1.2150091111 .1312403 & 174.4726842 \\
8 & No & 8 & O & 5 & 1 & 6 & 1.2116475126 .6913929 & -179.8178451 \\
9 & No & 9 & O & 6 & 5 & 1 & 1.1893590124 .7990155 & -2.7108374 \\
10 & No & 10 & O & 6 & 5 & 1 & 2.4677087116 .3428064 & 157.8012160 \\
11 & No & 11 & H & 10 & 6 & 5 & 0.980039490 .1968317 & -166.2043528
\end{tabular}

\section*{CHOCOOHTS1}

-25.1066722
154.9377726
176.7152248
0.7303834
152.1300853
-29.9711572

CHOCOOH2 TS

177.7697924
-176.0976115
-155.8183066
-1.8079368
-1.5809055
179.4826963

CHOCOOH3 TS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 8 H &  &  & & &  &  &  & & \\
\hline Row & Highlight Tag & Symbol & NA & NB & NC & Bond & Angle & dral & \\
\hline 1 & No 1 & C & & & & & & & \\
\hline 2 & No 2 & O & 1 & & & 1.1808 & & & \\
\hline 3 & No 3 & C & 1 & 2 & & 1.5445 & 125.4834757 & & \\
\hline 4 & No 4 & O & 3 & 1 & 2 & 1.2159 & 121.4665208 & & -161.3685960 \\
\hline 5 & No 5 & H & 1 & 2 & 3 & 1.22600 & 124.7448414 & & -173.5999176 \\
\hline 6 & No 6 & O & 1 & 2 & 3 & 2.4132 & 128.2546172 & & -150.9368612 \\
\hline 7 & No 7 & O & 3 & 1 & 2 & 1.3361 & 111.8841065 & & 18.7612097 \\
\hline 8 & No 8 & H & 7 & 3 & 1 & 0.9816 & 106.9371032 & & 179.8471544 \\
\hline 9 & No 9 & H & 6 & 1 & 2 & 0.9812 & 90.6434389 & & 157.4748845 \\
\hline
\end{tabular}

CH3OCH3


\section*{CH3OCH3 - HO radical TS1}


CH3COCH3


\section*{CH3COCH3-HO radical TS}


\section*{CH3COCOCH3}


Bond Angle Dihedral
1.5011788
1.2284470124 .1940116
\(1.5336417116 .6291839 \quad-179.9991151\)
\(1.0898314109 .3195266 \quad 0.0029425\)
\(1.0932219110 .0366937 \quad-121.3744199\)
\(1.0932231110 .0358886 \quad 121.3793921\)
\(1.5011788116 .6291839 \quad 180.0000000\)
\(1.0932231110 .0358886 \quad 58.6197231\)
\(1.0898314109 .3195266 \quad 179.9961727\) \(1.0932219110 .0366937-58.6264649\)
1.2284470119 .1768045

\section*{CH3COCOCH3 HO radical TS}
\begin{tabular}{lllll} 
Row & Highlight & Tag & Symbol & NA \\
1 & No & 1 & C & \\
2 & No & 2 & C & 1 \\
3 & No & 3 & O & 2 \\
4 & No & 4 & C & 2 \\
5 & No & 5 & H & 1 \\
6 & No & 6 & H & 1 \\
7 & No & 7 & H & 1 \\
8 & No & 8 & C & 4 \\
9 & No & 9 & H & 8 \\
10 & No & 10 & H & 8 \\
11 & No & 11 & H & 8 \\
12 & No & 12 & O & 4 \\
13 & No & 13 & O & 1 \\
14 & No & 14 & H & 13
\end{tabular}


\section*{HCOOH}


\section*{HCOOH - HO radical TS1}


CH 3 COOH

\begin{tabular}{lllll} 
Row & Highlight & Tag & Symbol & NA \\
1 & No & 1 & C & \\
2 & No & 2 & H & 1
\end{tabular}
\begin{tabular}{lll} 
NB & NC & Bond Angle Dihedral \\
& & \\
& & 1.0884592 \\
2 & & 1.0922158 \\
2 & 3 & 1.0922145 \\
\hline
\end{tabular}
118.6718828
-120.6631144
-179.9955921
-179.9967961
-179.9993039

\section*{CH3COOH - HO radical TS}

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & C & 1 & & \\
3 & No & 3 & O & 2 & 1 & \\
4 & No & 4 & O & 2 & 1 & 3 \\
5 & No & 5 & H & 1 & 2 & 3 \\
6 & No & 6 & H & 1 & 2 & 3 \\
7 & No & 7 & H & 1 & 2 & 3 \\
8 & No & 8 & H & 4 & 2 & 1 \\
9 & No & 9 & O & 1 & 2 & 3 \\
10 & No & 10 & H & 9 & 1 & 2
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.4894306 & \\
1.2143774 & 126.5124009 \\
1.3664787 & 110.7191133 \\
1.0891367 & 112.9517672 \\
1.2374797 & 106.7555954 \\
1.0871782 & 112.0116014 \\
0.9796669 & 105.7384773 \\
2.4525945 & -179.7006338 \\
0.9798345 & 88.6812344 \\
& 122.3053690 \\
& 6.39049756 \\
& 179.6398951 \\
& 129.1151106 \\
&
\end{tabular}

CH3CH2COOH

\begin{tabular}{lllll} 
Row & Highlight & Tag & Symbol & NA \\
1 & No & 1 & C & \\
2 & No & 2 & C & 1 \\
3 & No & 3 & C & 2 \\
4 & No & 4 & O & 3 \\
5 & No & 5 & O & 3 \\
6 & No & 6 & H & 1 \\
7 & No & 7 & H & 1 \\
8 & No & 8 & H & 1 \\
9 & No & 9 & H & 2 \\
10 & No & 10 & H & 2 \\
11 & No & 11 & H & 5
\end{tabular}

Bond Angle Dihedral
1.5293694
1.5033478112 .1105703
1.2178407126 .4197012
1.3624786111 .2231393
1.0924303110 .2318374
1.0908435110 .7830822
1.0929111110 .7412847
1.0949355109 .9043388
1.0914486111 .4092628 0.9793973105 .4011527
119.0565305
-60.4358735
-178.1820138 61.6328208
-58.7043642
-120.1281290
119.8860049
179.3696902

\section*{CH3CH2COOH HO radical TS1}

CH3CH2COOH HO radical TS2


Bond Angle

Dihedral
1.5171245
1.4952908112 .6808579
1.2220241124 .7223594
1.3528961112 .3943039
1.0914859110 .3071137
1.0945599110 .6033196
1.0916212110 .1474372
1.0909794114 .1834008
75.2281025
-102.6897673
\(-174.3513811\)
65.6989357
-54.5733381
-129.3860029
\begin{tabular}{lllllll}
10 & No & 10 & H & 2 & 1 & 3 \\
11 & No & 11 & H & 5 & 3 & 2 \\
12 & No & 12 & O & 2 & 1 & 3 \\
13 & No & 13 & H & 12 & 2 & 1
\end{tabular}
1.2276152106 .6955486 0.9807815105 .9572461 2.4471972102 .9113785 0.981554386 .6440291
113.8350890 178.4546518 102.6802720 -92.4010817

ноОССН2СООН


Bond Angle Dihedral
1.0927516
1.0932098108 .5593005
2.422347386 .0211361
2.430031490 .3966950
1.215540430 .2599641
1.215028530 .3650339
1.3554494123 .7261605 0.9798487105 .8342807 1.3547549123 .8663076 0.9795981105 .9332817
127.9006381 \(-116.3383840\) 163.2247692 87.3474994 -178.9385506 0.4134014 -179.7831706 3.1983458

ноОССН2СООН HOradical TS

0.9276214 -147.9819511 118.7624380 154.8372467 -123.9838432 43.0603078 179.6722539 -2.0519639 178.4996519 \(-0.2354131\)

\section*{CH3COCOOHTS1}


CH3COCOOHTS2

\(-175.6181400\) 4.0827766 \(-67.4088433\) 179.3143385 47.5542323 178.6845448 1.1626251 -61.9569114 77.1649028

\section*{CH3COOCH3}

-180.0000000
-120.8656378 120.8790459 0.0056337 179.9979556 60.4163792 -179.9844068 \(-60.3844166\)

CH3COOCH3 - HO radical TS1


\section*{CH3COOCH3 - HO radical TS2}


\section*{HCOOCH2CH3}

\begin{tabular}{|c|c|c|c|c|}
\hline NB & NC & Bond & Angle Di & Dihedral \\
\hline & & 1.10506 & & \\
\hline 2 & & 1.20876 & 123.8441364 & \\
\hline 3 & 2 & 1.3518 & 122.7612858 & -179.9985757 \\
\hline 1 & 3 & 1.4451 & 115.6276743 & -179.9931114 \\
\hline 4 & 1 & 1.095 & 109.4744929 & -59.4510993 \\
\hline 4 & 1 & 1.0954 & 109.4730020 & 59.5222408 \\
\hline 4 & 1 & 1.5097 & 106.7494065 & -179.9646086 \\
\hline 5 & 4 & 1.0913 & 110.2529297 & 59.9620530 \\
\hline 5 & 4 & 1.0931 & 110.0993417 & -179.9984530 \\
\hline 5 & 4 & 1.0913 & 110.2530732 & -59.9591154 \\
\hline
\end{tabular}

HCOOCH2CH3 HO radical TS1


HCOOCH2CH3 HO radical TS2


CH2CICOOH

\begin{tabular}{ll} 
NB & NC \\
& \\
1 & \\
1 & 3 \\
2 & 3 \\
2 & 3 \\
2 & 1 \\
2 & 3
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.5094908 & \\
1.2161251 & 124.5068589 \\
1.3512828 & 111.4196727 \\
1.0908101 & 109.9215359
\end{tabular}

CH2CICOOH HO radical TS1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline &  &  &  & & & &  & \\
\hline Row & Highlight Tag & Symbol & NA & NB & NC & Bond & Angle & \\
\hline 1 & No 1 & C & & & & & & \\
\hline 2 & No 2 & C & 1 & & & 1.5012 & & \\
\hline 3 & No 3 & O & 2 & 1 & & 1.21383 & 124.4672956 & \\
\hline 4 & No 4 & O & 2 & 1 & 3 & 1.3555 & 111.3497999 & -177.9006199 \\
\hline 5 & No 5 & H & 1 & 2 & 3 & 1.22477 & 106.0978940 & 116.2959797 \\
\hline 6 & No 6 & H & 1 & 2 & 3 & 1.0884 & 110.7067620 & 1.5758338 \\
\hline 7 & No 7 & H & 4 & 2 & 1 & 0.9799 & 106.1052436 & 179.3284970 \\
\hline 8 & No 8 & O & 1 & 2 & 3 & 2.4565 & 96.4733473 & 120.0241796 \\
\hline 9 & No 9 & H & 8 & 1 & 2 & 0.9804 & 90.3147225 & 52.1394805 \\
\hline 10 & No 10 & Cl & 1 & 2 & 3 & 1.7496 & 114.3105537 & -125.2313749 \\
\hline
\end{tabular}

\section*{CH3Cl}

\(\mathrm{CH} 3 \mathrm{Cl}-\mathrm{HO}\) radical TS



CH2Cl2 - HO radical TS


\section*{CHCl3}

120.0000136 -120.0000136

CHCl3 - HO radical TS


\section*{CH3CH2CI}
\begin{tabular}{lllllll}
5 & No & 5 & C & 1 & 2 & 4 \\
6 & No & 6 & H & 5 & 1 & 2 \\
7 & No & 7 & H & 5 & 1 & 2 \\
8 & No & 8 & Cl & 5 & 1 & 2
\end{tabular}
1.5142665110 .8805834
1.0898889111 .4966144
1.0898889111 .4966144
1.7884778111 .3615489
121.9808439 -179.4768387 58.9138472 -60.2814958

\section*{CH3CH2CI - HO radical TS1}

\begin{tabular}{ll} 
Bond Angle Dihedral & \\
\\
1.5032899 & \\
1.0896395 & 113.8753135 \\
1.0917653 & 112.0153383 \\
1.0899236 & 111.1001021 \\
1.0918229 & 111.3672397 \\
2.4669892 & 99.8996084 \\
0.9794829 & 92.8822734 \\
1.2250699 & 108.3895233
\end{tabular}

CH3CH2CI - HO radical TS2

Bond Angle Dihedral
1.5049328
1.0901565114 .5197724
1.0909805110 .6289370 1.0928555109 .2691819
1.0933084110 .714998 2.4962237105 .4874952 0.979277894 .6454734 1.2065970107 .2838764 1.7663821113 .4053603
175.7387864 56.1917135 -63.6118216 54.6166151
-119.7317749
5.0402959
-113.2349317


CH3CHCl2 - HO radical TS1


CH3CHCl2 - HO radical TS2


\section*{CH2CICH2CI - boat}


\section*{CH2CICH2CI - HO radical TS (Trans)}


CH2CICHCl2


\section*{CH2CICHCl2 HOradical TS1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline &  &  & & & &  &  & \\
\hline Row & Highlight Tag & Symbol & NA & NB & NC & Bond & Angle D & \\
\hline 1 & No 1 & & & & & & & \\
\hline 2 & No 2 & C & 1 & & & 1.5109 & & \\
\hline 3 & No 3 & H & 1 & 2 & & 1.0903 & 111.2077299 & \\
\hline 4 & No 4 & H & 2 & 1 & 3 & 1.0903 & 110.6840951 & -70.5592840 \\
\hline 5 & No 5 & O & 1 & 2 & 4 & 2.4762 & 104.5799625 & 173.9350415 \\
\hline 6 & No 6 & H & 5 & 1 & 2 & 0.9800 & 96.0821947 & -40.3888306 \\
\hline 7 & No 7 & H & 1 & 2 & 5 & 1.2277 & 109.1528235 & 1.0311048 \\
\hline 8 & No 8 & Cl & 2 & 1 & 5 & 1.7710 & 108.7896241 & -67.9924207 \\
\hline 9 & No 9 & Cl & 1 & 2 & 5 & 1.7478 & 113.1937528 & -119.5318075 \\
\hline 10 & No 10 & Cl & 2 & 1 & 5 & 1.7744 & 111.6648240 & 55.1499028 \\
\hline
\end{tabular}

CH2CICHCl2 HO radical TS2



CH2CICH2Cl (Cis)

120.1042807 -173.6858870 \(-52.7826806\) -52.7826231 66.2098964

\section*{CH2CICH2CI - HO radical (trans) TS1}


\section*{CH2CICH2CI - HO radical (cis) TS1}


\section*{CH3CCl3}


\section*{CH3CCl3 - HO radical TS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \[
6 \mathrm{H}(0.423)
\] &  & & & &  &  & \\
\hline Row & Highlight Tag & Symbol & NA & NB & NC & Bond & Angle D & \\
\hline 1 & No 1 & C & & & & & & \\
\hline 2 & No 2 & C & 1 & & & 1.5024 & & \\
\hline 3 & No 3 & H & 1 & 2 & & 1.0888 & 112.0342601 & \\
\hline 4 & No 4 & H & 1 & 2 & 3 & 1.08987 & 111.8816660 & 127.6150424 \\
\hline 5 & No 5 & O & 1 & 2 & 4 & 2.47102 & 107.2773068 & 119.8874851 \\
\hline 6 & No 6 & H & 1 & 2 & 5 & 1.2360 & 108.9726029 & -5.2873635 \\
\hline 7 & No 7 & Cl & 2 & 1 & 5 & 1.7824 & 109.8150769 & -56.0299808 \\
\hline 8 & No 8 & Cl & 2 & 1 & 5 & 1.77117 & 110.2745857 & 64.6367054 \\
\hline 9 & No 9 & H & 5 & 1 & 2 & 0.9794 & 95.2478020 & 44.3930191 \\
\hline 10 & No 10 & Cl & 2 & 1 & 5 & 1.7815 & 108.9671773 & -175.2002589 \\
\hline
\end{tabular}

CH 3 Br

\(\mathrm{CH} 3 \mathrm{Br}-\mathrm{HO}\) radical TS

\(\left.\begin{array}{ll}\text { Bond Angle Dihedral } \\ & \\ 1.5335867 & \\ 1.0913822 & 107.6846724 \\ 1.0973225 & 107.1480734 \\ 1.7734588 & 108.1316605 \\ 1.4018894 & 112.8179634 \\ 0.9734488 & 107.9948965\end{array}\right)\)

\section*{Cl3CCH2OH HO radical TS}

-127.4725164
13.8384514
11.9549261
-68.7275897
-108.8461149 75.2486606 -57.9027964 62.4748744

F3CCH2OH

\(-116.8412035\) \(-121.5794106\) 179.9981277 \(-60.6537225\) 180.0000000 60.6534961

F3CCH2OH HO radical TS


F3CCHCl2

-59.1598382
180.0000000 59.1598382 62.0994997 -62.0994997

F3CCHCl2 HO radical


\title{
APPENDIX F: OPTIMIZED MOLECULAR STRUCTURES FOR IONIZED COMPOUNDS
}

All molecular and radical structures were optimized at B3LYP/6-31G(d) with the SMD solvation model.

HO•



\begin{tabular}{llllllllll} 
vacuo \\
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & O & & & & & \\
2 & No & 2 & H & 1 & & & 0.9618832 & \\
3 & No & 3 & H & 1 & 2 & & 0.9618832 & 103.7261688 \\
& & & & & & & & & \\
Water & & & & & & & & \\
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & O & & & & & \\
2 & No & 2 & H & 1 & & & 0.9640429 & \\
4 & No & 3 & H & 1 & 2 & & 0.9640429 & 102.9177762
\end{tabular}

\section*{HCOO-}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond Angle & Dihedral & \\
1 & No & 1 & C & & & & & & \\
2 & No & 2 & O & 1 & & & 1.2550634 & \\
3 & No & 3 & O & 1 & 2 & & 1.2550634 & 128.1753288 & \\
4 & No & 4 & H & 1 & 2 & 3 & 1.1242020 & 115.9123356 & 180.0000000
\end{tabular}

Complex with HO radical

\begin{tabular}{lll} 
Row & Highlight & Tag \\
1 & No & 1 \\
2 & No & 2 \\
3 & No & 3 \\
4 & No & 4 \\
5 & No & 5 \\
6 & No & 6
\end{tabular}
\begin{tabular}{llll} 
Symbol & NA & NB & NC \\
C & & & \\
O & 1 & & \\
O & 1 & 2 & \\
H & 1 & 3 & 2 \\
O & 2 & 1 & 3 \\
H & 5 & 2 & 1
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
& \\
1.2585671 & \\
1.2426905 & 129.3906941 \\
1.1386801 & 116.3282890
\end{tabular}\(\quad-179.9919976\)

TS with HO radical

\begin{tabular}{lllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond Angle \\
1 & No & 1 & C & & & & \\
2 & No & 2 & O & 1 & & & 1.2581365 \\
3 & No & 3 & O & 1 & 2 & & 1.2427858129 .4619970 \\
4 & No & 4 & H & 1 & 3 & 2 & 1.1389483116 .2965404 \\
5 & No & 5 & O & 2 & 1 & 3 & 2.698638880 .7398273 \\
6 & No & 6 & H & 5 & 2 & 1 & 0.991998918 .2605580
\end{tabular}

\section*{CH3COO-}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Vacuo} \\
\hline Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle D & \\
\hline 1 & No & 1 & C & & & & & & \\
\hline 2 & No & 2 & C & 1 & & & 1.5775575 & & \\
\hline 3 & No & 3 & O & 2 & 1 & & 1.2509454 & 114.9722656 & \\
\hline 4 & No & 4 & O & 2 & 1 & 3 & 1.2509454 & 114.9722656 & 178.4757704 \\
\hline 5 & No & 5 & H & 1 & 2 & 3 & 1.0999228 & 109.4005594 & -89.2378852 \\
\hline 6 & No & 6 & H & 1 & 2 & 3 & 1.0968652 & 111.4835090 & 152.3856557 \\
\hline 7 & No & 7 & H & 1 & 2 & 3 & 1.0968652 & 111.4835090 & 29.1385738 \\
\hline \multicolumn{10}{|l|}{water} \\
\hline Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & \\
\hline 1 & No & 1 & C & & & & & & \\
\hline 2 & No & 2 & C & 1 & & & 1.5381280 & & \\
\hline 3 & No & 3 & O & 2 & 1 & & 1.2615947 & 117.0329928 & \\
\hline 4 & No & 4 & O & 2 & 1 & 3 & 1.2615947 & 117.0329928 & 178.4478910 \\
\hline 5 & No & 5 & H & 1 & 2 & 3 & 1.0971857 & 108.9690579 & -89.2239455 \\
\hline 6 & No & 6 & H & 1 & 2 & 3 & 1.0936022 & 111.4545713 & 152.2491371 \\
\hline 7 & No & 7 & H & 1 & 2 & 3 & 1.0936022 & 111.4545713 & 29.3029719 \\
\hline
\end{tabular}

\section*{TS with HO radical}


\begin{tabular}{llllllllll}
9 & No & 9 & \(H\) & 8 & 1 & 2 & 0.983807476 .1624308 & 2.7390343
\end{tabular}

\section*{Complex with HO radical}


\section*{СНЗСН2COO-}


\section*{TS1 with HO radical}

NC


1
1
3
3
3
3
3
3
2
\begin{tabular}{ll} 
Bond Angle Dihedral & \\
& \\
1.5166227 & \\
1.5437957 & 115.4912876 \\
1.2528578 & 117.5361363 \\
1.2710693 & 117.6775527 \\
1.0935773 & 113.4921807 \\
1.2104353 & 109.1054363 \\
1.0933971 & 114.1845714 \\
1.0979495 & 109.2974250 \\
1.0963933 & 109.5286654 \\
2.5177083 & 99.7147303 \\
0.9969321 & 80.0397309
\end{tabular}

\section*{TS2 with HO radical}



HOOCCH2COO-

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & H & 1 & & \\
3 & No & 3 & H & 1 & 2 & \\
4 & No & 4 & O & 1 & 2 & 3 \\
5 & No & 5 & O & 1 & 4 & 2 \\
6 & No & 6 & C & 5 & 1 & 4 \\
7 & No & 7 & C & 4 & 1 & 6 \\
8 & No & 8 & O & 6 & 5 & 1 \\
9 & No & 9 & H & 8 & 6 & 5 \\
10 & No & 10 & O & 7 & 4 & 1
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
& \\
1.0919131 & \\
1.0928234 & 108.7089955 \\
2.3866726 & 92.4339024 \\
2.4160556 & 134.5926824 \\
1.2157487 & 30.2405367 \\
1.2520942 & 36.3396028 \\
1.3513626 & 121.9441766 \\
0.9714622 & 107.6302017 \\
1.2560180 & 127.6934860
\end{tabular}

\section*{TS with HO radical}

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & H & 1 & & \\
3 & No & 3 & H & 1 & 2 & \\
4 & No & 4 & O & 1 & 2 & 3 \\
5 & No & 5 & H & 4 & 1 & 2 \\
6 & No & 6 & O & 1 & 4 & 5 \\
7 & No & 7 & O & 1 & 6 & 4 \\
8 & No & 8 & C & 7 & 1 & 6 \\
9 & No & 9 & C & 6 & 1 & 8 \\
10 & No & 10 & O & 8 & 7 & 1 \\
11 & No & 11 & H & 10 & 8 & 7 \\
12 & No & 12 & O & 9 & 6 & 1
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral & \\
& \\
1.0924433 & \\
1.1598393 & 106.9172807 \\
2.6056028 & 107.1033397 \\
0.9736023 & 88.5209567 \\
2.3951069 & 96.4033201 \\
2.4132763 & 143.4134275 \\
1.2135524 & 30.3655586 \\
1.2470365 & 35.2638777 \\
1.3489363 & 122.5314779 \\
0.9716740 & 108.0603792 \\
1.2565433 & 128.3537788
\end{tabular}

\section*{-OOC(CH2)2COO-}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & & \\
2 & No & 2 & C & 1 & & & 1.5425311 & \\
3 & No & 3 & O & 2 & 1 & & 1.2627867117 .6455338 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2622101117 .0252997 & -178.6035986 \\
5 & No & 5 & H & 1 & 2 & 4 & 1.0952041108 .7235034 & 19.9613289 \\
6 & No & 6 & H & 1 & 2 & 4 & 1.0978928107 .3670860 & -94.4287553 \\
7 & No & 7 & C & 1 & 2 & 4 & 1.5281905114 .6586359 & 144.9565202 \\
8 & No & 8 & H & 7 & 1 & 2 & 1.0979207108 .5378356 & 50.1312946 \\
9 & No & 9 & H & 7 & 1 & 2 & 1.0961668110 .8698372 & -65.4150279 \\
10 & No & 10 & C & 7 & 1 & 2 & 1.5427915115 .9885491 & 170.7340996 \\
11 & No & 11 & O & 10 & 7 & 1 & 1.2626856116 .2697926 & 157.9210145 \\
12 & No & 12 & O & 10 & 7 & 1 & 1.2619949118 .2483009 & -23.7391386
\end{tabular}

\section*{TS with HO radical}

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & C & 1 & \\
3 & No & 3 & O & 2 & 1 \\
4 & No & 4 & O & 2 & 1 \\
5 & No & 5 & H & 1 & 2 \\
6 & No & 6 & H & 1 & 2 \\
7 & No & 7 & O & 1 & 2 \\
8 & No & 8 & H & 7 & 1 \\
9 & No & 9 & C & 1 & 2 \\
10 & No & 10 & H & 9 & 1 \\
11 & No & 11 & H & 9 & 1 \\
12 & No & 12 & C & 9 & 1 \\
13 & No & 13 & O & 12 & 9 \\
14 & No & 14 & O & 12 & 9
\end{tabular}
\begin{tabular}{llll} 
NC & Bond Angle Dihedral \\
& & \\
& 1.5354765 & & \\
& 1.2559343 & 115.2447347 & \\
3 & 1.2650251 & 118.6768659 & 178.9744781 \\
3 & 1.1756462 & 106.8664621 & 168.2561618 \\
3 & 1.0943640 & 111.1538695 & 53.6392821 \\
3 & 2.5665761 & 93.6729949 & 173.5863438 \\
2 & 0.9873967 & 73.6645127 & 5.7890455 \\
3 & 1.5210262 & 113.7176105 & -72.1890023 \\
2 & 1.0998748 & 108.1093495 & 57.7285740 \\
2 & 1.0945251 & 110.6759695 & -58.8970925 \\
2 & 1.5465868 & 114.4938551 & 176.7422645 \\
1 & 1.2596336 & 116.6579626 & 144.0981760 \\
1 & 1.2602205 & 117.1407214 & -37.4032980
\end{tabular}

\section*{СНЗСОСОО-}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & O & 1 & & & 1.2549675 & \\
3 & No & 3 & C & 1 & 2 & & 1.5659240 & 115.6765700 & \\
4 & No & 4 & O & 3 & 1 & 2 & 1.2182862 & 120.2943832 & 179.8498092 \\
5 & No & 5 & C & 3 & 1 & 2 & 1.5053558117 .1659645 & -0.1475589 \\
6 & No & 6 & H & 5 & 3 & 1 & 1.0949808 & 109.6755998 & -58.1420397 \\
7 & No & 7 & H & 5 & 3 & 1 & 1.0915551110 .8515249 & -179.9706614 \\
8 & No & 8 & H & 5 & 3 & 1 & 1.0950132109 .6594646 & 58.2217870 \\
9 & No & 9 & O & 1 & 2 & 3 & 1.2518151128 .3911953 & 179.9850526
\end{tabular}

\section*{TS1 with HO radical}


TS2 with HO radical

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & O & 1 & & \\
3 & No & 3 & C & 1 & 2 & \\
4 & No & 4 & O & 3 & 1 & 2 \\
5 & No & 5 & C & 3 & 1 & 2 \\
6 & No & 6 & O & 1 & 2 & 3 \\
7 & No & 7 & H & 5 & 3 & 1 \\
8 & No & 8 & H & 5 & 3 & 1 \\
9 & No & 9 & H & 5 & 3 & 1 \\
10 & No & 10 & O & 5 & 3 & 1 \\
11 & No & 11 & H & 10 & 5 & 3
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
& \\
1.2525088 & \\
1.5737290 & 115.1331492 \\
1.2165636 & 120.7245743 \\
1.4978901 & 116.1862529 \\
1.2471084 & 129.4615356 \\
1.0931580 & 112.7548152 \\
1.2185471 & 106.7306339 \\
1.0931799 & 112.7585742
\end{tabular}

\section*{TS3 with HO radical}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & O & 1 & & & 1.2537626 & & \\
3 & No & 3 & C & 1 & 2 & & 1.5627193114 .4422475 & \\
4 & No & 4 & O & 3 & 1 & 2 & 1.2161745121 .1235365 & 156.9921080 \\
5 & No & 5 & C & 3 & 1 & 2 & 1.5013119116 .8554745 & -21.5094253 \\
6 & No & 6 & H & 5 & 3 & 1 & 1.0907082111 .9955452 & -172.8853233 \\
7 & No & 7 & H & 5 & 3 & 1 & 1.1605194107 .1617455 & 68.0693831 \\
8 & No & 8 & H & 5 & 3 & 1 & 1.0926504112 .2486185 & -45.8874473 \\
9 & No & 9 & O & 1 & 2 & 3 & 1.2485253129 .3895235 & 178.7962420 \\
10 & No & 10 & O & 5 & 3 & 1 & 2.5937781119 .9332147 & 74.0447129 \\
11 & No & 11 & H & 10 & 5 & 3 & 0.973344791 .1625811 & 94.9216081
\end{tabular}

\section*{CH2ClCOO-}



\section*{Complex with HO radical}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5414481 & \\
3 & No & 3 & O & 2 & 1 & & 1.2713132 & 112.2881324 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2399959 & 121.2039058 & 179.2547634 \\
5 & No & 5 & H & 1 & 2 & 4 & 1.0889505 & 110.2480352 & -125.4327657 \\
6 & No & 6 & H & 1 & 2 & 4 & 1.0904509 & 109.5615779 & 115.0135448 \\
7 & No & 7 & O & 3 & 2 & 1 & 2.6443644 & 119.5129659 & -8.5129590 \\
8 & No & 8 & H & 7 & 3 & 2 & 1.0119314 & 0.961063373 .9283606 \\
9 & No & 9 & Cl & 1 & 2 & 4 & 1.8152501115 .0492819 & -4.8096037
\end{tabular}

\section*{TS with HO radical}

Vacuo


Water

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5490139 & \\
3 & No & 3 & O & 2 & 1 & & 1.2609953112 .6846406 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2431340 & 118.8323252 & 178.0069770 \\
5 & No & 5 & H & 1 & 2 & 4 & 1.1879932105 .7592796 & -139.7647843 \\
6 & No & 6 & H & 1 & 2 & 4 & 1.0910173112 .0041811 & 105.4224276 \\
7 & No & 7 & O & 1 & 2 & 4 & 2.5049616 & 95.2910834 & -151.1827970 \\
8 & No & 8 & H & 7 & 1 & 2 & 0.983025676 .4723383 & -20.7009990 \\
9 & No & 9 & Cl & 1 & 2 & 4 & 1.7853926117 .1338791 & -20.3040185
\end{tabular}

\section*{C-centered radical}

\begin{tabular}{llllllllll} 
Vacuo & & & & & & & & NC \\
Row & Highlight & Tag & Symbol & NA & NB & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2 & No & 2 & C & 1 & & & 1.540000 & & \\
\hline 3 & No & 3 & O & 2 & 1 & & 1.2583 & 120.0000084 & \\
\hline 4 & No & 4 & O & 2 & 1 & 3 & 1.2583 & 120.0000084 & 180.0000000 \\
\hline 5 & No & 5 & Cl & 1 & 2 & 3 & 1.760000 & 119.9999953 & -90.0000000 \\
\hline 6 & No & 6 & H & 1 & 2 & 3 & 1.0699 & 120.0000049 & 90.0000000 \\
\hline Water & & & & & & \multirow{3}{*}{NC} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Bond Angle Dihedral}} \\
\hline Row & Highlight & Tag & Symbol & NA & NB & & & & \\
\hline 1 & No & 1 & C & & & & \multicolumn{2}{|l|}{} & \\
\hline 2 & No & 2 & H & 1 & & & 1.0826 & & \\
\hline 3 & No & 3 & C & 1 & 2 & & 1.4843 & 123.1430277 & \\
\hline 4 & No & 4 & O & 3 & 1 & 2 & 1.2665 & 113.1923429 & -0.0147631 \\
\hline 5 & No & 5 & O & 3 & 1 & 4 & 1.2578 & 119.3869355 & -179.9926978 \\
\hline 6 & No & 6 & Cl & 1 & 3 & 5 & 1.7274 & 122.3809700 & 0.0142807 \\
\hline
\end{tabular}

\section*{CHCl2COO-}

\begin{tabular}{lllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC \\
1 & No & 1 & C & & & \\
2 & No & 2 & C & 1 & & \\
3 & No & 3 & O & 2 & 1 & \\
4 & No & 4 & O & 2 & 1 & 3 \\
5 & No & 5 & H & 1 & 2 & 3 \\
6 & No & 6 & Cl & 1 & 2 & 3 \\
7 & No & 7 & Cl & 1 & 2 & 3
\end{tabular}
\begin{tabular}{ll} 
Bond Angle Dihedral \\
& \\
1.5656471 & \\
1.2448135 & 117.6529044 \\
1.2512878 & 112.6135584 \\
1.0851345 & 112.0201207 \\
1.8033894 & 113.1960861
\end{tabular}

\section*{CF2HCOO-}

\begin{tabular}{lllllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & & \\
2 & No & 2 & C & 1 & & & 1.5517666 & & \\
3 & No & 3 & O & 2 & 1 & & 1.2516483115 .4457044 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2516483115 .4457044 & -177.2798390 \\
5 & No & 5 & H & 1 & 2 & 3 & 1.0971657111 .5641672 & 88.6399195 \\
6 & No & 6 & F & 1 & 2 & 3 & 1.3652214 & 111.0385490 & -150.7604380 \\
7 & No & 7 & F & 1 & 2 & 3 & 1.3652214 & 111.0385490 & -31.9597230
\end{tabular}

\section*{TS with HO radical}

\begin{tabular}{lllll} 
Row & Highlight & Tag & Symbol & NA \\
1 & No & 1 & C & \\
2 & No & 2 & C & 1 \\
3 & No & 3 & O & 2 \\
4 & No & 4 & O & 2 \\
5 & No & 5 & H & 1 \\
6 & No & 6 & O & 1 \\
7 & No & 7 & H & 6 \\
8 & No & 8 & F & 1 \\
9 & No & 9 & F & 1
\end{tabular}
NB

1
1
2
2
1
2
2
\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.5703663 & \\
1.2434208 & 114.7702453 \\
1.2522968 & 115.0198139 \\
1.1742339 & 108.4531101
\end{tabular}

\section*{Complex with HO radical}

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & C & 1 & \\
3 & No & 3 & O & 2 & 1 \\
4 & No & 4 & O & 2 & 1 \\
5 & No & 5 & H & 1 & 2 \\
6 & No & 6 & O & 4 & 2 \\
7 & No & 7 & H & 6 & 4 \\
8 & No & 8 & F & 1 & 2 \\
9 & No & 9 & F & 1 & 2
\end{tabular}
\begin{tabular}{llll} 
NC & Bond Angle Dihedral \\
& & \\
& 1.5500215 & & \\
& 1.2427695 & 117.0621110 & -177.5279988 \\
3 & 1.2624901 & 115.1010379 & 99.3519928 \\
3 & 1.0964875 & 111.5536537 & -5.3657013 \\
1 & 2.6708772 & 127.7171888 & -140.3601527 \\
2 & 1.0052466 & 4.7642940 & -9.4321344 \\
3 & 1.3662393 & 110.4091153 & -21.8150262
\end{tabular}

\section*{CHBr2COO-}

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & C & 1 & \\
3 & No & 3 & O & 2 & 1 \\
4 & No & 4 & O & 2 & 1 \\
5 & No & 5 & H & 1 & 2 \\
6 & No & 6 & Br & 1 & 2 \\
7 & No & 7 & Br & 1 & 2
\end{tabular}
NC


3
3
3
3
\begin{tabular}{ll} 
Bond Angle Dihedral & \\
& \\
1.5628049 & \\
1.2429244 & 118.1488796 \\
1.2540700 & 112.3045276 \\
1.0846822 & 112.0850574 \\
1.9710809 & 110.8798414 \\
1.9697655 & 111.5409224
\end{tabular}

TS with HO radical


Complex with HO radical

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5573584 & \\
3 & No & 3 & O & 2 & 1 & & 1.2355314 & 119.2034666 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2653863 & 112.8572086 & 179.1001393 \\
5 & No & 5 & H & 1 & 2 & 3 & 1.0844485 & 112.3427260 & 160.1417410 \\
6 & No & 6 & O & 4 & 2 & 1 & 2.6544761 & 120.7398695 & 2.2710869 \\
7 & No & 7 & H & 6 & 4 & 2 & 1.0086689 & \(1.2625004-170.1657539\) \\
8 & No & 8 & Br & 1 & 2 & 3 & 1.9728431108 .3871553 & -84.4551998 \\
9 & No & 9 & Br & 1 & 2 & 3 & 1.9563724 & 113.3814880 & 39.6135639
\end{tabular}

\section*{Cl3CCOO-}

\begin{tabular}{lll}
3 & No & 3 \\
4 & No & 4 \\
5 & No & 5 \\
6 & No & 6 \\
7 & No & 7
\end{tabular}

\section*{TS with HO radical}

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & C & 1 & \\
3 & No & 3 & O & 2 & 1 \\
4 & No & 4 & O & 2 & 1 \\
5 & No & 5 & O & 1 & 2 \\
6 & No & 6 & H & 5 & 1 \\
7 & No & 7 & Cl & 1 & 2 \\
8 & No & 8 & Cl & 5 & 1 \\
9 & No & 9 & Cl & 1 & 2
\end{tabular}
\begin{tabular}{llll} 
NC & Bond Angle Dihedral \\
& & \\
& \begin{tabular}{llll} 
& 1.5951577 & & \\
& 1.2383651 & 113.7955073 & -179.9905400 \\
3 & 1.2384431 & 113.8390222 & 87.8847622 \\
3 & 4.1484445 & 98.6945749 & -75.3987414 \\
2 & 0.9703815 & 96.8868790 & -21.5463998 \\
3 & 1.7422407 & 116.9932103 & -159.2518383
\end{tabular} \\
2 & 1.9221380 & 3.5851927 & 54.2978442 \\
3 & 1.7419665 & 116.9522388 &
\end{tabular}

\section*{Complex with HO radical}

\begin{tabular}{llllll} 
Row & Highlight & Tag & Symbol & NA & NB \\
1 & No & 1 & C & & \\
2 & No & 2 & C & 1 & \\
3 & No & 3 & O & 2 & 1 \\
4 & No & 4 & O & 2 & 1 \\
5 & No & 5 & O & 4 & 2 \\
6 & No & 6 & H & 5 & 4 \\
7 & No & 7 & Cl & 1 & 2 \\
8 & No & 8 & Cl & 1 & 2 \\
9 & No & 9 & Cl & 1 & 2
\end{tabular}
NC


3
1
2
3
3
3
\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.6014530 & \\
1.2323167 & 116.1979169 \\
1.2507084 & 113.8881331
\end{tabular}

Br3CCOO-

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.6093380 & \\
3 & No & 3 & O & 2 & 1 & & 1.2397784 & 114.3439929 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2397784 & 114.3439929 & 178.0177619 \\
5 & No & 5 & Br & 1 & 2 & 3 & 1.9666868 & 112.7295554 & 152.1996410 \\
6 & No & 6 & Br & 1 & 2 & 3 & 1.9858430 & 106.2631754 & -89.0088809 \\
7 & No & 7 & Br & 1 & 2 & 3 & 1.9666868 & 112.7295554 & 29.7825971
\end{tabular}

\section*{TS with HO radical}

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & & \\
2 & No & 2 & C & 1 & & & 1.5878183 & \\
3 & No & 3 & O & 2 & 1 & & 1.2407005 & 114.4002643 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2403319 & 114.1281171 & -179.1745253 \\
5 & No & 5 & O & 1 & 2 & 4 & 4.2939175 & 96.7103908 & -81.8046552 \\
6 & No & 6 & H & 5 & 1 & 2 & 0.969659097 .2549790 & -12.5775321 \\
7 & No & 7 & Br & 1 & 2 & 4 & 1.9195969115 .9370431 & 27.0408122 \\
8 & No & 8 & Br & 1 & 2 & 4 & 1.9223453116 .4974291 & 161.6079055 \\
9 & No & 9 & Br & 5 & 1 & 2 & 2.0298329 & \(9.4131163-124.6074093\)
\end{tabular}

With explicit water molecules CH3COO-HO radical with \(\mathbf{H 2 O}\)


\section*{CH3COO-HO radical with 2 H 2 O}

\begin{tabular}{ll} 
NC & Bond Angle Dihedral \\
& \multicolumn{1}{l}{} \\
& 1.5284823 \\
& 1.2616253 \\
3 & 117.2950031 \\
3 & 1.2616285 \\
11758407 & 106.3521210 \\
3 & 2.7002049 \\
99.5746892 \\
2 & 0.9761757 \\
\hline
\end{tabular}
-178.6133261
-157.2877667
-161.4390055
-3.2964981
87.6443150
-81.3959709
43.2533692
108.6079219
-38.6536063
\begin{tabular}{ll} 
Bond Angle Dihedral \\
& \\
1.5256830 & \\
1.2511343 & 115.4972265 \\
1.2684329 & 118.3686942 \\
1.1927183 & 107.9165597 \\
2.5446747 & 96.2629490 \\
0.9813051 & 77.4841644 \\
1.0939441 & 111.7135185 \\
2.1360446 & 82.7531439 \\
2.8485567 & 105.2651192 \\
0.9752104 & 13.1699577 \\
1.0921768 & 113.5579843
\end{tabular}

\section*{}
178.6902178
-89.2752632 \(-89.2868748\) 0.0821367 155.2544585 -77.1203951 -38.9050104 147.6737411 38.7077413
\begin{tabular}{lllllllll}
13 & No & 13 & H & 12 & 3 & 2 & 0.966553098 .2562453 & 17.4590543 \\
14 & No & 14 & H & 12 & 3 & 2 & 0.97995264 .4917050 & -148.1018470 \\
15 & No & 15 & H & 1 & 2 & 3 & 1.0914219113 .2583334 & 26.1861669
\end{tabular}

CH3COO-HO radical with \(\mathbf{3 H 2 O}\)


Transition state 1 for CH2CICOO-HOradical with one explicit water molecule

\begin{tabular}{lllllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & & \\
2 & No & 2 & C & 1 & & & 1.5475214 & & \\
3 & No & 3 & O & 2 & 1 & & 1.2394262119 .6604251 & -179.1603558 \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2662344 & 112.4695166 & -12.2709455 \\
5 & No & 5 & Cl & 1 & 2 & 3 & 1.7847655 & 117.0041526 & -131.5537679 \\
6 & No & 6 & H & 1 & 2 & 3 & 1.1671555 & 106.3018382 &
\end{tabular}
\begin{tabular}{lllllllll}
7 & No & 7 & O & 1 & 2 & 3 & 2.565372197 .3405346 & -142.7348999 \\
8 & No & 8 & H & 7 & 1 & 2 & 0.977740781 .2305794 & -12.0994126 \\
9 & No & 9 & H & 1 & 2 & 3 & 1.0905617111 .7744333 & 113.7182258 \\
10 & No & 10 & H & 7 & 1 & 2 & 2.237527280 .4390501 & -89.0916997 \\
11 & No & 11 & O & 4 & 2 & 1 & 2.8078004113 .9790319 & 26.6889318 \\
12 & No & 12 & H & 11 & 4 & 2 & 0.97810678 .8540233 & 113.3866772
\end{tabular}

Transition state 2 for \(\mathbf{C H} 2 \mathrm{ClCOO}-\mathrm{HO}\) Odical with one explicit water molecule



\begin{tabular}{lllllllll}
3 & No & 3 & O & 2 & 1 & & 1.2493552119 .5303303 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2547724111 .6770602 & 176.9400648 \\
5 & No & 5 & Cl & 1 & 2 & 3 & 1.7850288117 .4462625 & 8.1600013 \\
6 & No & 6 & H & 1 & 2 & 3 & 1.1579584103 .6678494 & -109.4297928 \\
7 & No & 7 & O & 1 & 2 & 3 & 2.596045489 .3710907 & -116.0678121 \\
8 & No & 8 & H & 7 & 1 & 2 & 0.978260979 .2705642 & -35.5873799 \\
9 & No & 9 & H & 1 & 2 & 3 & 1.0895021112 .9224309 & 135.6605467 \\
10 & No & 10 & O & 7 & 1 & 2 & 2.961269577 .2891756 & 61.9191818 \\
11 & No & 11 & H & 10 & 7 & 1 & 0.97168449 .5829623 & 170.8963245 \\
12 & No & 12 & H & 10 & 7 & 1 & 0.970162393 .4118652 & -27.0721677
\end{tabular}

Transition state for CH2CICOO-HOradical with 2 explicit water molecules


Transition state for CH2CICOO-HOradical with 3 explicit water molecules


\begin{tabular}{ll} 
Bond Angle Dihedral \\
\\
1.5738602 & \\
1.2329102 & 117.1487275 \\
1.2600957 & 113.8965177 \\
1.1487936 & 110.3835453 \\
2.6537247 & 111.2951866 \\
0.9961434 & 92.5053179 \\
2.7298588 & 125.6262031
\end{tabular}

\section*{Transition state for CHCl2COO-HOradical with 3 explicit water molecules}

\begin{tabular}{llllllllll}
16 & No & 16 & H & 14 & 11 & 3 & 0.9775488 & 100.8903790 & -79.0176867 \\
17 & No & 17 & Cl & 1 & 2 & 3 & 1.7800488 & 114.8915409 & -14.0969196 \\
18 & No & 18 & Cl & 1 & 2 & 3 & 1.7919684110 .2009991 & 111.8913762
\end{tabular}

Transition state for CHF2COO-HOradical with 1 explicit water molecule


Transition state for CHF2COO-HOradical with 2 explicit water molecules

\begin{tabular}{llllllllll}
15 & No & 15 & F & 1 & 2 & 3 & 1.3528506 & 111.7997300 & 147.3858421
\end{tabular}

Transition state for CHF2COO-HOradical with 3 explicit water molecules


Transition state for CHBr2COO-HOradical with 1 explicit water molecule


Transition state for CHBr2COO-HOradical with 2 explicit water molecules

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5676855 & \\
3 & No & 3 & O & 2 & 1 & & 1.2328917 & 116.8259793 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2619394 & 114.5948417 & -178.9275149 \\
5 & No & 5 & H & 1 & 2 & 3 & 1.1502382112 .7342725 & -158.8391709 \\
6 & No & 6 & O & 1 & 2 & 3 & 2.6530793 & 113.7769692 & -160.2686938 \\
7 & No & 7 & H & 6 & 1 & 2 & 0.9952563 & 94.4678075 & -48.4277862 \\
8 & No & 8 & O & 4 & 2 & 1 & 2.7237660 & 126.4701656 & 16.6763389 \\
9 & No & 9 & H & 8 & 4 & 2 & 0.964526108 .1884450 & 68.0574228 \\
10 & No & 10 & H & 8 & 4 & 2 & 0.9850763 & 5.2155320118 .7692401 \\
11 & No & 11 & Br & 1 & 2 & 3 & 1.9445629113 .7508683 & -41.1284608 \\
12 & No & 12 & Br & 1 & 2 & 3 & 1.9552528 & 109.2011230 & 84.8753175 \\
13 & No & 13 & O & 6 & 1 & 2 & 2.893035782 .1617630 & 33.5188541 \\
14 & No & 14 & H & 13 & 6 & 1 & 0.972228813 .9727013 & 137.6925370 \\
15 & No & 15 & H & 13 & 6 & 1 & 0.9702470 & 87.0363322 & -39.6242768
\end{tabular}

Transition state1 for \(\mathbf{C H} 3 \mathbf{C H} 2 \mathrm{COO}-\mathrm{HO}\) Odical with 1 explicit water molecule

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5161956 & & \\
3 & No & 3 & C & 2 & 1 & & 1.5419552116 .0113458 & \\
4 & No & 4 & O & 3 & 2 & 1 & 1.2484262117 .7894069 & 140.5228400 \\
5 & No & 5 & O & 3 & 2 & 1 & 1.2776584117 .7025702 & -41.3875402 \\
6 & No & 6 & H & 1 & 2 & 3 & 1.0936057113 .4007946 & 177.7418255 \\
7 & No & 7 & H & 1 & 2 & 3 & 1.1998513109 .5744643 & 62.6034603 \\
8 & No & 8 & H & 1 & 2 & 3 & 1.0924220114 .2015281 & -53.4069699 \\
9 & No & 9 & H & 2 & 1 & 3 & 1.0980921109 .5845201 & -121.7679093 \\
10 & No & 10 & H & 2 & 1 & 3 & 1.0966319109 .3829709 & 122.1008843 \\
11 & No & 11 & O & 1 & 2 & 3 & 2.5367571101 .7824641 & 54.9953543 \\
12 & No & 12 & H & 11 & 1 & 2 & 0.995929179 .8752313 & -29.6919381 \\
13 & No & 13 & O & 5 & 3 & 2 & 2.8523876116 .1159227 & 72.3321718 \\
14 & No & 14 & H & 13 & 5 & 3 & 0.972683619 .1138954 & 81.1067351 \\
15 & No & 15 & H & 13 & 5 & 3 & 0.970464380 .4939451 & -104.1723589
\end{tabular}

\section*{Transition state1 for CH3CH2COO-HOradical with 2 explicit water molecules}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Row & Highlight & Tag & Symbol & NA & \multirow[t]{2}{*}{NB} & \multirow[t]{2}{*}{NC} & Bond & \multirow[t]{2}{*}{Angle D} & Dihedral \\
\hline 1 & No & 1 & C & & & & & & \\
\hline 2 & No & 2 & C & 1 & & & 1.515 & & \\
\hline 3 & No & 3 & C & 2 & 1 & & 1.5401 & 115.9378143 & \\
\hline 4 & No & 4 & O & 3 & 2 & 1 & 1.2463 & 117.9760965 & 142.1826350 \\
\hline 5 & No & 5 & O & 3 & 2 & 1 & 1.2817 & 117.7755810 & -39.7765113 \\
\hline 6 & No & 6 & H & 1 & 2 & 3 & 1.0934 & 113.4071773 & 177.8494823 \\
\hline 7 & No & 7 & H & 1 & 2 & 3 & 1.1932 & 109.3636180 & 62.7501031 \\
\hline 8 & No & 8 & H & 1 & 2 & 3 & 1.0923 & 114.3571952 & -53.0211468 \\
\hline 9 & No & 9 & H & 2 & 1 & 3 & 1.0974 & 109.1239824 & -121.0831645 \\
\hline 10 & No & 10 & H & 2 & 1 & 3 & 1.0963 & 109.5674754 & 122.3802148 \\
\hline 11 & No & 11 & O & 1 & 2 & 3 & 2.5482 & 99.9989250 & 56.0806240 \\
\hline 12 & No & 12 & H & 11 & 1 & 2 & 1.0025 & 78.8122006 & -36.5122571 \\
\hline 13 & No & 13 & O & 5 & 3 & 2 & 2.8316 & 113.9992677 & 73.4832523 \\
\hline 14 & No & 14 & H & 13 & 5 & 3 & 0.9750 & 11.9857719 & 80.1568161 \\
\hline 15 & No & 15 & H & 13 & 5 & 3 & 0.9658 & 88.9577453 & -107.1123328 \\
\hline 16 & No & 16 & O & 11 & 1 & 2 & 2.8355 & 88.9127911 & 49.5874091 \\
\hline 17 & No & 17 & H & 16 & 11 & 1 & 0.9775 & 6.492514811 & \\
\hline 18 & No & 18 & H & 16 & 11 & 1 & 0.9642 & 96.6744665 & -90.9545877 \\
\hline
\end{tabular}

Transition state1 for CH3CH2COO-HOradical with 3 explicit water molecules

\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5151388 & & \\
3 & No & 3 & C & 2 & 1 & & 1.5397022115 .8953841 & \\
4 & No & 4 & O & 3 & 2 & 1 & 1.2450139117 .9575284 & 147.4455633 \\
5 & No & 5 & O & 3 & 2 & 1 & 1.2830629117 .8481454 & -34.3273257 \\
6 & No & 6 & H & 1 & 2 & 3 & 1.0935035113 .6171371 & 178.5837961 \\
7 & No & 7 & H & 1 & 2 & 3 & 1.1867594108 .8789736 & 63.6902677 \\
8 & No & 8 & H & 1 & 2 & 3 & 1.0922795114 .1235532 & -52.0170520 \\
9 & No & 9 & H & 2 & 1 & 3 & 1.0972606109 .4404077 & -121.1904544
\end{tabular}
\begin{tabular}{lllllllll}
10 & No & 10 & H & 2 & 1 & 3 & 1.0964681109 .6582576 & 122.2139267 \\
11 & No & 11 & O & 1 & 2 & 3 & 2.555051799 .4902912 & 54.6033644 \\
12 & No & 12 & H & 11 & 1 & 2 & 1.011743776 .9629381 & -40.8968101 \\
13 & No & 13 & O & 5 & 3 & 2 & 2.8556698107 .0437002 & 82.1716198 \\
14 & No & 14 & H & 13 & 5 & 3 & 0.97383286 .5616991108 .8046512 \\
15 & No & 15 & H & 13 & 5 & 3 & 0.975979498 .5634578 & -122.7997255 \\
16 & No & 16 & O & 11 & 1 & 2 & 2.859600991 .3530513 & 43.2598946 \\
17 & No & 17 & H & 16 & 11 & 1 & 0.97518347 .8079223111 .5192471 \\
18 & No & 18 & H & 16 & 11 & 1 & 0.964371795 .1242427 & -88.9864337 \\
19 & No & 19 & H & 11 & 1 & 2 & 1.825141595 .2622905 & -139.8458228 \\
20 & No & 20 & O & 11 & 1 & 2 & 2.798780393 .5145566 & -137.3283753 \\
21 & No & 21 & H & 20 & 11 & 1 & 0.9649038104 .5263213 & 152.9035296
\end{tabular}

Transition state 2 for \(\mathbf{C H} 3 \mathrm{CH} 2 \mathrm{COO}-\mathrm{HO}\) adical with 1 explicit water molecule
\begin{tabular}{llllllllll} 
Row & Highlight & Tag & Symbol & NA & NB & NC & Bond & Angle & Dihedral \\
1 & No & 1 & C & & & & & \\
2 & No & 2 & C & 1 & & & 1.5360063 & \\
3 & No & 3 & O & 2 & 1 & & 1.2507980 & 115.7236329 & \\
4 & No & 4 & O & 2 & 1 & 3 & 1.2704258 & 118.1376642 & 178.2063005 \\
5 & No & 5 & H & 1 & 2 & 3 & 1.1592884106 .1558848 & 162.3558136 \\
6 & No & 6 & O & 1 & 2 & 3 & 2.585431795 .3481837 & 174.1470925 \\
7 & No & 7 & H & 6 & 1 & 2 & 0.986132873 .6757158 & 14.4119272 \\
8 & No & 8 & H & 1 & 2 & 3 & 1.0952489110 .9802732 & 47.6694472 \\
9 & No & 9 & H & 6 & 1 & 2 & 2.075852792 .0974285 & -61.2083400 \\
10 & No & 10 & O & 4 & 2 & 1 & 2.8901206103 .8995565 & 68.7445390 \\
11 & No & 11 & H & 10 & 4 & 2 & 0.971724818 .6363205 & 106.7567706 \\
12 & No & 12 & C & 1 & 2 & 3 & 1.5228095112 .8785766 & -78.5126554 \\
13 & No & 13 & H & 12 & 1 & 2 & 1.0959715110 .0300786 & 62.1024359 \\
14 & No & 14 & H & 12 & 1 & 2 & 1.0939352111 .3431520 & -178.4074633 \\
15 & No & 15 & H & 12 & 1 & 2 & 1.0944824111 .1120410 & -57.4505512
\end{tabular}

Transition state 2 for CH3CH2COO-HOradical with 2 explicit water molecules

\begin{tabular}{lllllllll}
8 & No & 8 & H & 1 & 2 & 3 & 1.0946082109 .8635020 & 136.1495370 \\
9 & No & 9 & H & 6 & 1 & 2 & 2.656180176 .1739683 & -93.8656420 \\
10 & No & 10 & O & 4 & 2 & 1 & 2.7465573117 .1150079 & 6.3198230 \\
11 & No & 11 & H & 10 & 4 & 2 & 0.98452572 .9211698103 .7438848 \\
12 & No & 12 & O & 3 & 2 & 1 & 2.956030689 .8769034 & 71.5975066 \\
13 & No & 13 & H & 12 & 3 & 2 & 0.971174090 .7212322 & 5.4297266 \\
14 & No & 14 & H & 12 & 3 & 2 & 0.971468711 .6508992 & 178.6363737 \\
15 & No & 15 & C & 1 & 2 & 3 & 1.5175608117 .0358267 & 5.4799765 \\
16 & No & 16 & H & 15 & 1 & 2 & 1.0942844110 .9618346 & -178.7923996 \\
17 & No & 17 & H & 15 & 1 & 2 & 1.0929000111 .0263127 & -57.9909450 \\
18 & No & 18 & H & 15 & 1 & 2 & 1.0962590110 .5026579 & 61.7112233
\end{tabular}

\section*{Transition state 2 for CH3CH2COO-HOradical with 3 explicit water molecules}


\section*{APPENDIX G: DEVELOPMENT OF ADOX2 \({ }^{\text {TM }}\) FOR OZONE AND OZONE/HYDRPGEN PEROXIDE ADVANCED OXIDATION PROCESS SIMULATION SOFTWARE}

This appendix addresses the background knowledge and software manual for Adox \(2{ }^{\mathrm{TM}}\) for ozone and ozone/hydrogen peroxide process simulation software. This software enables one to simulate reaction kinetics during ozonation and ozone/hydrogen peroxide processes. This also includes several options for mitigating bromate formation.

\section*{Introduction to Bromate and THMs Formation Software during Ozonation and \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) Advanced Oxidation Process.}

Ozonation has been widely used as a disinfectant to inactivate microorganisms for potable water. Ozonation was in part replaced chlorine, chloramines or chlorine dioxide at the pre-oxidation and main-oxidation stages in many cities around the world, including Los Angeles, Barcelona, Singapore, Paris, and Zurich. Because a molecular ozone is such a strong oxidant in the aqueous phase \(\left(\mathrm{E}^{0}=2.07 \mathrm{~V}\right)\), ozone has shown its superior ability against inactivate microorganisms (e.g. Cryptosporidium, Giardia lamblia cysts, E. Coli, Poliovirus and Rotavirus) to chlorine, chloramines and chlorine dioxide. In addition, ozonation does not form trihalomethanes (THMs) which is regulated under the current drinking water standard. It is well-known fact that ozonation produces biodegradable dissolved organic compounds (BDOC), and therefore, it is common practice to implement ozonation along with the subsequent biological treatment (e.g. GAC and BAC). When the aqueous ozone is degraded at higher \(\mathrm{pH}(>7.5)\), more strong oxidant \(\left(\mathrm{HO}\right.\) radical) (i.e. \(\mathrm{E}^{0}=2.59 \mathrm{~V}\) (aqueous)) is produced. The HO radical is also
formed by the reactions of ozone with natural organic matter (NOM). Therefore, ozonation works as one of Advanced Oxidation Processes (AOPs) and is expected to oxidize refractor trace organic compounds. Although ozonation hardly achieves a mineralization of toxic organic compounds, it is possible to degrade organic compounds into carbon dioxide, water, and minerals when used with hydrogen peroxide \(\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\) and ultraviolet (UV). As a consequent, ozonation and/or ozone based AOPs (i.e. \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\), \(\mathrm{O}_{3} / \mathrm{UV}, \mathrm{O}_{3} / \mathrm{UV} / \mathrm{H}_{2} \mathrm{O}_{2}\) ) are attractive and promising technologies.

When bromide ion \(\left(\mathrm{Br}^{-}\right)\)is presented in the source waters, ozonation forms bromate ion \(\left(\mathrm{BrO}_{3}{ }^{-}\right)\)which is regulated under the current drinking water standard (U.S., Japan, and WHO, \(<10 \mu \mathrm{~g} / \mathrm{L}\) ). As a result, many studies have exploited the strategies to reduce formation of \(\mathrm{BrO}_{3}{ }^{-}\)kinetically (e.g. pH depression, \(\mathrm{NH}_{3}\) addition, \(\mathrm{Cl}_{2}-\mathrm{NH}_{3}\) process ) or remove \(\mathrm{BrO}_{3}{ }^{-}\)physically after ozonation (e.g. BAC, GAC, membrane-filtration). In engineering point of view, it would be ideal to control the formation of \(\mathrm{BrO}_{3}{ }^{-}\)kinetically without installing an additional treatment process. Designing inexpensive ozonation and/or \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) processes to control the \(\mathrm{BrO}_{3}{ }^{-}\)formation for commercial applications requires the determination of important design and operational variables. Carefully controlled laboratory and/or pilot plant studies can be used to design bromate mitigation processes. However, these studies can be time consuming and expensive if they are not properly planned. A complementary approach is taking advantage of the predictive capabilities of mathematical models that can effectively simulate the dynamics of ozonation and \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) system.

According to Peyton (1990), AOPs can be mathematically modeled at several different levels, depending on the amount of known kinetic information, computer
resources available and motivation for the application. Compared to other types of mathematical models, a kinetic model gives the most information and provides the best check of the model against actual laboratory data, because all defined or proposed reactions in the system are considered and the rate equations are written for all the main species in solution.

In the last decades, several models are developed to describe the kinetics of \(\mathrm{O}_{3}\) degrdation and \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) AOP combined with a bromate formation model. These kinetic modes were able to predict concentration of some contaminants as a function of time in different strategies of bromate mitigation. Although most of models that have been developed can be applied to laboratory scale reactors with different levels of success, their widespread application is limited for one or more of the following reasons: i) invoking pseudo-steady state assumption to simplify the governmental equations with the expense of losing accuracy and ii) constant pH though several important equilibrium reactions (e.g. \(\mathrm{OBr}-/ \mathrm{HOBr}, \mathrm{HO}_{2}^{-} / \mathrm{H}_{2} \mathrm{O}_{2}\) ) significantly affect the bromate formation.

AdOx \({ }^{\text {TM }}\) was developed to aid design engineers in the design of AOPs. Compared to most of the previous models, \(\mathrm{AdOx}^{\mathrm{TM}}\) does not invoke the pseudo-steady-state and constant pH assumptions and thus provides a more accurate simulation of real systems. AdOx \({ }^{\mathrm{TM}}\) includes the following capabilities:
(1) \(\mathrm{AdOx}^{\mathrm{TM}}\) provides a comprehensive understanding of the impact of key design and operational variables on process performance.
(2) \(\mathrm{AdOx}^{\mathrm{TM}}\) can dynamically simulate parent organic compound destruction and \(\mathrm{O}_{3}\) (and/or \(\mathrm{H}_{2} \mathrm{O}_{2}\) ) consumption in both completely mixed batch reactors, completely
mixed flow reactors in series and plug flow reactors. (Steady state solutions are also provided.)
(3) \(\mathrm{AdOx}^{\mathrm{TM}}\) can analyze dye study results to determine the number of tanks that are required in the tanks in series model to simulate non-ideal mixing in the photochemical reactor.
(4) \(\mathrm{AdOx}^{\mathrm{TM}}\) includes all identified and reasonably proposed chemical reactions with regard to the degradation of parent organic compounds so it is the most comprehensive model to date.
(5) \(\mathrm{AdOx}^{\mathrm{TM}}\) can simulate the destruction of all of the target compounds whose reaction mechanism and corresponding rate constants are known.

The \(\mathrm{AdOx}^{\mathrm{TM}}\) software is designed for the Microsoft Windows \({ }^{\mathrm{TM}}\) environment with a graphical user interface (GUI) in order to maximize user-friendliness. Making use of the Microsoft Windows interface, with its built-in file and hardware control features, frees the engineer from concerns over printer drivers and other "machine" issues and allows you to give more attention to the computational algorithms. The GUI consists of a frontend shell written in Visual Basic \({ }^{\text {TM }}\) that calls FORTRAN subroutines to perform the calculations.

This manual presents a description of the \(\mathrm{AdOx}^{\mathrm{TM}}\) software capabilities including theoretical development, model descriptions and sample calculations where applicable. The manual also presents a description of the windows in the software and an example problem in order to aid the user.

References to specific commercial product, processes, or services by trademark, manufacturer, or otherwise does not necessarily constitute or imply
endorsement/recommendation by the authors or the respective organizations under which the software was developed.

\section*{Description of the Models}

\section*{Ozonation and \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) Model Combined with Bromate Formation Model (Background)}

An original kinetic model of bromate formation was developed by von Gunten and Hoigné (1994) using a non-linear differential equation solver, LARKIN, based on the experimental studies (Haag and Hoigné, 1983). Since then, a von Gunten’s group has developed a kinetic model of bromate formation using ACUCHEM software by including different reaction mechanisms, such as bromate formation in ozone-based AOPs (von Gunten and Oliveras, 1998), bromate minimization using pH depression and \(\mathrm{NH}_{3}\) addition (Pinkernell and von Gunten, 2001), bromate control with the chlorine-ammonia process (2004). Other kinetic model combining ozone decomposition with bromate formation was developed by Westerhoff (1998; 1994).

Although most of models that have been developed can be applied to laboratory scale reactors with different levels of success, their widespread application is limited for one or more of the following reasons: i) invoking pseudo-steady state assumption to simplify the governmental equations with the expense of losing accuracy and ii) constant pH though several important equilibrium reactions (e.g. \(\mathrm{OBr}-/ \mathrm{HOBr}, \mathrm{HO}_{2}{ }^{-} / \mathrm{H}_{2} \mathrm{O}_{2}\) ) significantly affect the bromate formation. For example, Mariñas's group has developed a software with which cryptosporidium parvum oocyst inactivation and bromate formation are simultaneously predicted (Kim et al., 2007). This software includes the hydrodynamics in each chamber of the ozone contactor and implements the steady-state
governing equations for the concentrations of dissolved ozone, fast ozone demand (i.e. a portion of water constituents that consume dissolved ozone at a relatively fast rate during the initial phase of ozonation), gas-phase ozone, viable microorganisms, and bromate.

However, this software does not invoke either i) or ii).

\section*{Elementary Reactions}

Table A-G1 summarizes all elementary reactions implemented in this model with the reaction rate constants reported in the literature.

Table A-G1: Elementary reactions
\begin{tabular}{|c|c|c|c|}
\hline & Elementary reaction & Rate constant & References \\
\hline 1 & \(\mathrm{O}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{HO}_{2} \bullet+\bullet \mathrm{O}_{2}^{-}\) & \(k_{1}=70 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin and Hoigné, 1982 \\
\hline 2 & \(\mathrm{O}_{3}+\bullet \mathrm{O}_{2}{ }^{-} \rightarrow \bullet \mathrm{O}_{3}{ }^{-}+\mathrm{O}_{2}\) & \(k_{2}=1.6 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bühler et al., 1984 \\
\hline 3 & \(\mathrm{HO}_{3} \bullet \rightarrow \mathrm{HO} \bullet+\mathrm{O}_{2}\) & \(k_{3}=1.1 \times 10^{5} \mathrm{~s}^{-1}\) & Bühler et al., 1984 \\
\hline 4 & \(\mathrm{O}_{3}+\mathrm{HO}_{2}{ }^{-} \rightarrow \mathrm{HO} \bullet+\bullet \mathrm{O}_{2}{ }^{-}\) & \(k_{4}=2.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin and Hoigné, 1982 \\
\hline 5 & \(\mathrm{HO} \bullet+\mathrm{HO} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}\) & \(k_{5}=5.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 6 & \(\mathrm{HO} \bullet+\bullet \mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{OH}^{-}+\mathrm{O}_{2}\) & \(k_{6}=1.0 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 7 & \(\mathrm{HO} \bullet+\mathrm{HO}_{3} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}\) & \(k_{7}=5.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 8 & \(\mathrm{HO}_{3} \bullet+\mathrm{HO}_{3} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{O}_{2}\) & \(k_{8}=5.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 9 & \(\mathrm{HO}_{3} \bullet+\bullet \mathrm{O}_{2}^{-} \rightarrow \mathrm{OH}^{-}+2 \mathrm{O}_{2}\) & \(k_{9}=1.0 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 10 & \(\mathrm{O}_{3}+\mathrm{HO} \bullet \rightarrow \mathrm{HO}_{2} \bullet+\mathrm{O}_{2}\) & \(k_{10}=2.6 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Staehelin et al., 1984 \\
\hline 11 & \(\mathrm{HO} \bullet+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HO}_{2} \bullet+\mathrm{H}_{2} \mathrm{O}\) & \(k_{11}=2.7 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Buxton et al., 1988 \\
\hline 12 & \(\mathrm{HO} \bullet+\mathrm{HO}_{2}^{-} \rightarrow \bullet \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}\) & \(k_{12}=7.5 \times 10^{9} M^{-1} s^{-1}\) & Christensen et al., 1982 \\
\hline 13 & \(\mathrm{HO}_{2} \bullet+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HO} \bullet+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\) & \(k_{13}=3 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Koppenol et al., 1978 \\
\hline 14 & \(\bullet \mathrm{O}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HO}_{2} \bullet+\mathrm{O}_{2}+\mathrm{OH}^{-}\) & \(k_{14}=0.13 M^{-1} \mathrm{~s}^{-1}\) & Judith et al., 1979 \\
\hline 15 & \(\mathrm{HO} \bullet+\mathrm{HO}_{2} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\) & \(k_{15}=6.6 \times 10^{9} \mathrm{M}^{-1} \mathrm{~S}^{-1}\) & Sehested et al., 1968 \\
\hline 16 & \(\mathrm{HO}_{2} \bullet+\mathrm{HO}_{2} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}\) & \(k_{16}=8.3 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bielski et al., 1985 \\
\hline 17 & \(\mathrm{HO}_{2} \bullet+\bullet \mathrm{O}_{2}^{-} \rightarrow \mathrm{HO}_{2}^{-}+\mathrm{O}_{2}\) & \(k_{17}=9.7 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bielski et al., 1985 \\
\hline 18 & \(\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\) & \(k_{18}=0.0065 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Neta et al., 1988 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 19 & \(\mathrm{HO} \bullet+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{CO}_{3} \bullet-+\mathrm{H}_{2} \mathrm{O}\) & \(k_{19}=8.5 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Buxton et al., 1988 \\
\hline 20 & \(\mathrm{HO} \bullet+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{CO}_{3} \bullet{ }^{-}+\mathrm{OH}^{-}\) & \(k_{20}=3.9 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Buxton et al., 1988 \\
\hline 21 & \(\mathrm{HO} \bullet+\mathrm{NOM} \rightarrow\) & \(k_{21}=1.9 \times 10^{4}(\mathrm{mg} / \mathrm{L})^{-1} s^{-1}\) & Westerhoff et al., 2007 \\
\hline 22 & \(\mathrm{CO}_{3} \bullet^{-}+\mathrm{CO}_{3} \bullet-\rightarrow \mathrm{CO}_{2}+\mathrm{CO}_{4}{ }^{2-}\) & \(k_{22}=2.0 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Westerhoff et al., 1997 \\
\hline 23 & \(\mathrm{CO}_{3} \bullet\) - \(+\bullet \mathrm{O}_{2}{ }^{-} \rightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{O}_{2}\) & \(k_{23}=6.5 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Holcman et al., 1982 \\
\hline 24 & \(\mathrm{CO}_{3} \bullet-+\bullet \mathrm{O}_{3}{ }^{-} \rightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{O}_{3}\) & \(k_{24}=6.0 \times 10^{7} M^{-1} s^{-1}\) & Buxton and Elliot, 1986 \\
\hline 25 & \(\mathrm{CO}_{3} \bullet+\mathrm{HO} \bullet \rightarrow \mathrm{CO}_{2}+\mathrm{HO}_{2}^{-}\) & \(k_{25}=3.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Westerhoff et al., 1997 \\
\hline 26 & \(\mathrm{CO}_{3} \bullet-+\mathrm{HO}_{2}^{-} \rightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{HO}_{2} \bullet\) & \(k_{26}=5.6 \times 10^{7} M^{-1} s^{-1}\) & Crapski et al., 1999 \\
\hline 27 & \(\mathrm{CO}_{3} \bullet\) - \(+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{HO}_{2} \bullet\) & \(k_{27}=8.0 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Crapski et al., 1999 \\
\hline 28 & \(\mathrm{O}_{3} \bullet^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{HO}_{3} \bullet\) & \(k_{28}=2.1 \times 10^{8} M^{-1} s^{-1}\) & Bühler et al., 1984 \\
\hline 29 & \(\mathrm{HPO}_{4}{ }^{2-}+\mathrm{HO}_{3} \bullet \rightarrow \mathrm{O}_{3} \bullet-+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\) & \(k_{29}=2.0 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bühler et al., 1984 \\
\hline 30 & \(\mathrm{HPO}_{4}{ }^{2-}+\mathrm{HO} \bullet \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4} \bullet^{-}\) & \(k_{30}=1.5 \times 10^{5} \mathrm{M}^{-1} \mathrm{~S}^{-1}\) & Maruhamuthu and Neta, 1978 \\
\hline 31 & \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HO} \bullet \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{PO}_{4} \bullet-\) & \(k_{31}=2.0 \times 10^{4} \mathrm{M}^{-1} \mathrm{~S}^{-1}\) & Maruhamuthu and Neta, 1978 \\
\hline 32 & \(\mathrm{O}_{3}+\mathrm{Br}^{-} \rightarrow \mathrm{OBr}^{-}+\mathrm{O}_{2}\) & \(k_{32}=160 M^{-1} s^{-1}\) & Sehested et al., 1984 \\
\hline 33 & \(\mathrm{O}_{3}+\mathrm{OBr}^{-} \rightarrow \mathrm{Br}^{-}+2 \mathrm{O}_{2}\) & \(k_{33}=330 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sehested et al., 1984 \\
\hline 34 & \(\mathrm{O}_{3}+\mathrm{OBr}^{-} \rightarrow \mathrm{BrO}_{2}^{-}+\mathrm{O}_{2}\) & \(k_{34}=100 M^{-1} s^{-1}\) & Sehested et al., 1984 \\
\hline 35 & \(\mathrm{O}_{3}+\mathrm{HOBr} \rightarrow \mathrm{BrO}_{2}{ }^{-}+\mathrm{O}_{2}+\mathrm{H}^{+}\) & \(k_{35}=0.013 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Haag and Hoigné, 1983 \\
\hline 36 & \(\mathrm{O}_{3}+\mathrm{BrO}_{2}^{-} \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{O}_{2}\) & \(k_{36}=5.7 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sehested et al., 1984 \\
\hline 37 & \(\mathrm{O}_{3}+\mathrm{Br} \bullet \rightarrow \mathrm{BrO} \bullet+\mathrm{O}_{2}\) & \(k_{37}=1.5 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & von Gunten and Oliveras, 1998 \\
\hline 38 & \(\mathrm{HO} \bullet+\mathrm{HOBr} \rightarrow \mathrm{BrO} \bullet+\mathrm{H}_{2} \mathrm{O}\) & \(k_{38}=2.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Nicoson et al., 2002 \\
\hline 39 & \(\mathrm{HO} \bullet+\mathrm{OBr}^{-} \rightarrow \mathrm{BrO} \bullet+\mathrm{OH}^{-}\) & \(k_{39}=4.2 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sidgwick, 1952 \\
\hline 40 & \(\mathrm{BrO} \bullet+\mathrm{BrO} \bullet+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BrO}_{2}^{-}+\mathrm{OB}\) & \(2 \mathrm{H}^{+} k_{40}=5.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sidgwick, 1952 \\
\hline 41 & \(\mathrm{Br}_{3}^{-} \rightarrow \mathrm{Br}_{2}+\mathrm{Br}^{-}\) & \(k_{41}=8.3 \times 10^{8} \mathrm{~s}^{-1}\) & Mamou et al., 1977 \\
\hline 42 & \(\mathrm{Br}_{2}+\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{3}^{-}\) & \(k_{42}=1.0 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Mamou et al., 1977 \\
\hline 43 & \(\mathrm{Br}_{2}{ }^{-}+\mathrm{Br}_{2}^{\bullet-} \rightarrow \mathrm{Br}_{3}^{-}+\mathrm{Br}^{-}\) & \(k_{43}=2.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Kläning and Wolff, 1985 \\
\hline 44 & \(\mathrm{OBr}^{-}+\mathrm{Br} \bullet \rightarrow \mathrm{BrO} \bullet+\mathrm{Br}^{-}\) & \(k_{44}=4.1 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Nicoson et al., 2002 \\
\hline 45 & \(\mathrm{BrO}_{2}^{-}+\mathrm{HO} \bullet \rightarrow \mathrm{BrO}_{2} \bullet+\mathrm{OH}^{-}\) & \(k_{45}=1.9 \times 10^{9} \mathrm{M}^{-1} \mathrm{~S}^{-1}\) & von Gunten and Oliveras, 1997 \\
\hline 46 & \(\mathrm{BrO}_{2} \bullet+\mathrm{BrO}_{2} \bullet \rightarrow \mathrm{Br}_{2} \mathrm{O}_{4}\) & \(k_{46}=1.4 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Amichai and Treinin, 1970 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 47 & \(\mathrm{Br}_{2} \mathrm{O}_{4} \rightarrow \mathrm{BrO}_{2} \bullet+\mathrm{BrO}_{2} \bullet\) & \(k_{47}=7.0 \times 10^{7} \mathrm{~s}^{-1}\) & Amichai and Treinin, 1970 \\
\hline 48 & \(\mathrm{Br}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \rightarrow \mathrm{BrO}_{2}^{-}+\mathrm{BrO}_{3}^{-}+\mathrm{H}^{+}\) & \(k_{48}=7.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sidwick, 1952 \\
\hline 49 & \(\mathrm{BrO}_{2} \bullet+\mathrm{HO} \bullet \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{H}^{+}\) & \(k_{49}=2.0 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Amichai and Treinin, 1970 \\
\hline 50 & \(\mathrm{BrO} \bullet+\mathrm{BrO}_{2}{ }^{-} \rightarrow \mathrm{OBr}^{-}+\mathrm{BrO}_{2} \bullet\) & \(k_{50}=4.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Schwarz and Bielski, 1986 \\
\hline 51 & \(\mathrm{Br}_{2}{ }^{\bullet}+\mathrm{BrO}_{2}{ }^{-} \rightarrow \mathrm{OBr}^{-}+\mathrm{BrO} \bullet+\mathrm{Br}^{-}\) & \(k_{51}=8.7 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sidwick, 1952 \\
\hline 52 & \(\mathrm{Br} \bullet+\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}^{\bullet-}\) & \(k_{52}=1.0 \times 10^{10} \mathrm{M}^{-1} s^{-1}\) & Haag and Hoigné, 1983 \\
\hline 53 & \(\mathrm{Br}_{2}^{\bullet-} \rightarrow \mathrm{Br} \bullet+\mathrm{Br}^{-}\) & \(k_{53}=1.0 \times 10^{5} \mathrm{~s}^{-1}\) & Haag and Hoigné, 1983 \\
\hline 54 & \(\mathrm{HO} \bullet+\mathrm{Br}^{-} \rightarrow \mathrm{BrOH}^{\bullet-}\) & \(k_{54}=1.1 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Haag and Hoigné, 1983 \\
\hline 55 & \(\mathrm{BrOH}^{\bullet-} \rightarrow \mathrm{HO} \bullet+\mathrm{Br}^{-}\) & \(k_{55}=3.3 \times 10^{7} M^{-1} s^{-1}\) & Haag and Hoigné, 1983 \\
\hline 56 & \(\mathrm{OBr}^{-}+\mathrm{CO}_{3} \bullet-\rightarrow \mathrm{BrO} \bullet+\mathrm{CO}_{3}{ }^{2-}\) & \(k_{56}=4.3 \times 10^{7} M^{-1} s^{-1}\) & Sidwick, 1952 \\
\hline 57 & \(\mathrm{BrO}_{2}{ }^{-}+\mathrm{CO}_{3} \bullet-\rightarrow \mathrm{BrO}_{2} \bullet+\mathrm{CO}_{3}{ }^{2-}\) & \(k_{57}=1.1 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Sidwick, 1952 \\
\hline 58 & \(\mathrm{HOBr}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{H}^{+}\) & \(k_{58}=7.0 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & von Gunten and Oliveras, 1997 \\
\hline 59 & \(\mathrm{OBr}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\) & \(k_{59}=1.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & von Gunten and Oliveras, 1997 \\
\hline 60 & \(\mathrm{HOBr}+\mathrm{HO}_{2}^{-} \rightarrow \mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\) & \(k_{60}=7.6 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Buxton and Dainton, 1968 \\
\hline 61 & \(\mathrm{HO}_{2} \bullet+\mathrm{Br}_{3}^{-} \rightarrow \mathrm{Br}_{2}^{-}+\mathrm{H}^{+}+\mathrm{Br}^{-}+\mathrm{O}_{2}\) & \(k_{61}=10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bielski et al., 1985 \\
\hline 62 & \(\bullet \mathrm{O}_{2}{ }^{-}+\mathrm{Br}_{3}^{-} \rightarrow \mathrm{Br}_{2}^{-}+\mathrm{Br}^{-}+\mathrm{O}_{2}\) & \(k_{62}=3.8 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Bielski et al., 1985 \\
\hline 63 & \(\mathrm{BrOH}^{\bullet-}+\mathrm{H}^{+} \rightarrow \mathrm{Br} \bullet+\mathrm{H}_{2} \mathrm{O}\) & \(k_{63}=4.4 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Haag and Hoigné, 1983 \\
\hline 64 & \(\mathrm{HO}_{2} \bullet+\mathrm{Br}_{2} \rightarrow \mathrm{Br}+\mathrm{Br}^{-}+\mathrm{O}_{2}+\mathrm{H}^{+}\) & \(k_{64}=1.1 \times 10^{8} \mathrm{M}^{-1} s^{-1}\) & Bielski et al., 1985 \\
\hline 65 & \(\bullet \mathrm{O}_{2}{ }^{-}+\mathrm{HOBr} \rightarrow \mathrm{Br} \bullet+\mathrm{OH}^{-}+\mathrm{O}_{2}\) & \(k_{65}=3.5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Beckwith et al., 1996 \\
\hline 66 & \(\mathrm{BrOH}^{\bullet-} \rightarrow \mathrm{Br} \bullet+\mathrm{OH}^{-}\) & \(k_{66}=4.2 \times 10^{6} M^{-1} s^{-1}\) & Haag and Hoigné, 1983 \\
\hline 67 & \(\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOBr}+\mathrm{H}^{+}+\mathrm{Br}^{-}\) & \(k_{67}=97 \mathrm{~s}^{-1}\) & Neta et al., 1988 \\
\hline 68 & \(\mathrm{HOBr}+\mathrm{H}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}\) & \(k_{68}=1.6 \times 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Neta et al., 1988 \\
\hline 69 & \(\mathrm{BrOH}^{\bullet-}+\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}^{\bullet-}+\mathrm{OH}^{-}\) & \(k_{69}=2.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Zahavi and Rabani, 1972 \\
\hline 70 & \(\mathrm{HOBr}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\) & \(k_{70}=7.5 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Wajon and Morris, 1982 \\
\hline 71 & \(\mathrm{OBr}^{-}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2} \mathrm{Br}+\mathrm{OH}^{-}\) & \(k_{71}=7.6 \times 10^{4} M^{-1} s^{-1}\) & Wajon and Morris, 1982 \\
\hline 72 & \(\mathrm{OH}^{-}+\mathrm{NH}_{2} \mathrm{Br} \rightarrow \mathrm{NH}_{3}+\mathrm{OBr}^{-}\) & \(k_{72}=7.5 \times 10^{6} M^{-1} s^{-1}\) & Pinkernell and von Gunten, 2001 \\
\hline 73 & \(2 \mathrm{NH}_{2} \mathrm{Br} \rightarrow \mathrm{NHBr}_{2}+\mathrm{NH}_{3}\) & \(k_{73}=250 \mathrm{~s}^{-1}\) & Pinkernell and von Gunten, 2001 \\
\hline 74 & \(\mathrm{NHBr}_{2}+\mathrm{NH}_{3} \rightarrow 2 \mathrm{NH}_{2} \mathrm{Br}\) & \(k_{74}=100 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Pinkernell and von Gunten, 2001 \\
\hline 75 & \(\mathrm{HOCl}+\mathrm{Br}^{-} \rightarrow \mathrm{HOBr}+\mathrm{Cl}^{-}\) & \(k_{75}=1550 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Kumar and Margerum, 1987 \\
\hline 76 & \(\mathrm{OCl}^{-}+\mathrm{Br}^{-} \rightarrow \mathrm{OBr}^{-}+\mathrm{Cl}^{-}\) & \(k_{76}=0.001 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Kumar and Margerum, 1987 \\
\hline 77 & \(\mathrm{NH}_{2} \mathrm{Br}+3 \mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{Br}^{-}+3 \mathrm{O}_{2}+2 \mathrm{H}^{+}\) & \(k_{77}=40 \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Haag et al., 1984 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 78 & \(\mathrm{HOCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}\) & \(k_{78}=4.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Morris and Issac, 1983 \\
\hline 79 & \(\mathrm{NH}_{2} \mathrm{Cl}+\mathrm{Br}^{-} \rightarrow \mathrm{NH}_{2} \mathrm{Br}+\mathrm{Cl}^{-}\) & \(k_{79}=0.014 M^{-1} s^{-1}\) & Trofe et al., 1980 \\
\hline 80 & \(\mathrm{Br} \bullet+\mathrm{OH}^{-} \rightarrow \mathrm{BrOH}^{\bullet-}\) & \(k_{80}=1.3 \times 10^{10} M^{-1} s^{-1}\) & Nicoson et al., 2002 \\
\hline 81 & \(\mathrm{Br} \bullet+\mathrm{NOM} \rightarrow \mathrm{Br}^{-}\) & \(k_{81}=8.3 \times 10^{4} M^{-1} s^{-1}\) & Pinkernell and von Gunten, 2001 \\
\hline 82 & \(\mathrm{NH}_{2} \mathrm{Br}+\mathrm{NOM} \rightarrow\) & \(k_{82}=0.0017 M^{-1} s^{-1}\) & Assumed \\
\hline 83 & \(\mathrm{HOCl}+\mathrm{NOM} \rightarrow\) & \(k_{83}=0.0004 M^{-1} s^{-1}\) & Westerhoff et al., 2004 \\
\hline 84 & \(\mathrm{HOBr}+\mathrm{NOM} \rightarrow\) & \(k_{84}=0.011 M^{-1} s^{-1}\) & Westerhoff et al., 2004 \\
\hline 85 & \(\mathrm{HO} \bullet+\mathrm{NH}_{2} \mathrm{Cl} \rightarrow\) & \(k_{85}=5.0 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) & Johnson et al., 2002 \\
\hline & & & \\
\hline & \(\mathrm{HO}_{2} \bullet \leftrightarrow \mathrm{O}_{2} \bullet+\mathrm{H}^{+}\) & \(p K_{a}=4.8\) & Staehelin and Hoigné, 1982 \\
\hline & \(\mathrm{HO}_{3} \bullet \leftrightarrow \bullet \mathrm{O}_{3}{ }^{-}+\mathrm{H}^{+}\) & \(p K_{a}=8.2\) & Bühler et al., 1984 \\
\hline & \(\mathrm{H}_{2} \mathrm{O}_{2} \leftrightarrow \mathrm{HO}_{2}^{-}+\mathrm{H}^{+}\) & \(p K_{a}=11.6\) & Staehelin and Hoigné, 1982 \\
\hline & \(\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}\) & \(p K_{a}=6.38\) & Stumm and Morgan, 1996. \\
\hline & \(\mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}\) & \(p K_{a}=10.3\) & Stumm and Morgan, 1996. \\
\hline & \(\mathrm{H}_{3} \mathrm{PO}_{4} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}\) & \(p K_{a}=2.1\) & Stumm and Morgan, 1996. \\
\hline & \(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+}\) & \(p K_{a}=7.2\) & Stumm and Morgan, 1996. \\
\hline & \(\mathrm{NH}_{4}^{+} \leftrightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}\) & \(p K_{a}=9.3\) & \\
\hline & \(\mathrm{HOCl} \leftrightarrow \mathrm{OCl}^{-}+\mathrm{H}^{+}\) & \(p K_{a}=7.5\) & \\
\hline & \(\mathrm{HOBr} \leftrightarrow \mathrm{OBr}^{-}+\mathrm{H}^{+}\) & \(p K_{a}=8.8\) & Haag and Hoigné, 1983; von Gunten and Hoigné, 1994 \\
\hline 86 & \([\mathrm{TTHMs}]=\left[\mathrm{Cl}_{2}\right]\left\{\mathrm{A}_{\text {TTHM }}(1-\exp (-k t)\}\right.\) & see Equation.XX & Sohn et al., 2004 \\
\hline
\end{tabular}

\section*{The Mechanisms of Aqueous Ozone Decomposition and \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) Process for Bromate Formation}

Chemical reactions for mechanistic representation of ozone decomposition and bromate formation consist of four categories of reactions: i) reactions responsible for ozone self-decomposition and corresponding production of secondary oxidants such as HO radical, ii) \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) process as one of AOPs, iii) reactions leading to the formation of bromate from bromide, and iv) reactions involving carbonate and phosphate species. In the presence of natural organic matter (NOM), additional reactions involving NOM need to be considered in each category.

\section*{Ozone Self-Decomposition}

The elementary reactions of ozone decomposition were extensively studied in 1970s and 1980s using the technique of pulse radiolysis (one group Hert \& one group from Steahelin Buhler Hoigne). There are mainly two representative models to formulate the ozone decomposition, such as SBH model (Staehelin and Hoigné) and TFG model (Tomiyasu et al., 1985). The SBH model is established based on the experiments conducted in the solutions from weak acid to weak base, whereas the TFG model was from the experiments in the base solutions.

Figures A-G1 and A-G2 show the overview of SBH and TFG model. Figures include the elementary reactions used in each SBH and TFG model. In the both model, ozone initially reacts with hydroxyl ion, producing either hydroxyl peroxyl radical or hydrogen peroxide ion, respectively. Hydrogen peroxide ion is in equilibrium with super oxide anion at \(p K_{a}=4.8\). In the solutions from neutral to base, the superoxide anion is dominant, which produces an ozonide radical in both the SBH and the TFG model. The ozonide radical further produces HO radical. In the SBH model, an \(\mathrm{O}_{3} \mathrm{OH}\) radical is produced by the reaction of ozone with hydroxyl radical. The \(\mathrm{O}_{3} \mathrm{OH}\) radical reacts with hydroxyl proxyl radical, reproducing ozone. In the TFG model, the ozonide radical reacts with hydroxyl radical, reproducing ozone. In both the SBH and the TFG model, as a total, three moles of ozone produce two moles of hydroxyl radical through the radical chain reactions \(\left(3 \mathrm{O}_{3}+\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow 2 \mathrm{HO} \bullet+4 \mathrm{O}_{2}\right)\).

\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{O}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{HO}_{2} \cdot+\cdot \mathrm{O}_{2}{ }^{-}\) & 70 & \(k_{1}\) & Staehelin and Hoigné, 1982 \\
\hline \(\mathrm{HO}_{2} \cdot \leftrightarrow \cdot \mathrm{O}_{2}{ }^{+} \mathrm{H}^{+}\) & \(p K_{a}=4.8\) & & Staehelin and Hoigné, 1982 \\
\hline \(\mathrm{HO}_{2}{ }^{-}+\mathrm{O}_{3} \rightarrow \mathrm{HO} \cdot+\mathrm{O}_{2} \cdot{ }^{-}+\mathrm{O}_{2}\) & \(2.2 \times 10^{6}\) & \(k_{2}\) & Staehelin and Hoigné, 1982 \\
\hline \(\mathrm{O}_{3}+\cdot \mathrm{O}_{2}{ }^{-} \rightarrow \cdot \mathrm{O}_{3}{ }^{-}+\mathrm{O}_{2}\) & \(1.6 \times 10^{9}\) & \(k_{3}\) & Bühler et al., 1984 \\
\hline - \(\mathrm{O}_{3}{ }^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{HO}_{3}\). & \(p K_{a}=8.2\) & & Bühler et al., 1984 \\
\hline \(\mathrm{HO}_{3} \cdot \rightarrow \mathrm{HO} \cdot+\mathrm{O}_{2}\) & \(1.1 \times 10^{5}\) & \(k_{4}\) & Bühler et al., 1984 \\
\hline - \(\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{3} \mathrm{OH}\) - & \(2.0 \times 10^{9}\) & \(k_{5}\) & Staehelin et al., 1984 \\
\hline - \(\mathrm{OH}+\cdot \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}\) & \(5.0 \times 10^{9}\) & \(k_{6}\) & Staehelin et al., 1984 \\
\hline - \(\mathrm{OH}+\cdot \mathrm{O}_{2}^{-} \rightarrow \mathrm{OH}^{-}+\mathrm{O}_{2}\) & \(1 \times 10^{10}\) & \(k_{7}\) & Staehelin et al., 1984 \\
\hline - \(\mathrm{OH}+\mathrm{HO}_{3} \cdot \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}\) & \(5.0 \times 10^{9}\) & \(k_{8}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{HO}_{3} \cdot+\mathrm{HO}_{3} \cdot \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{O}_{2}\) & \(5.0 \times 10^{9}\) & \(k_{9}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{HO}_{3} \cdot+\cdot \mathrm{O}_{2}{ }^{-} \mathrm{OH}+2 \mathrm{O}_{2}\) & \(1 \times 10^{10}\) & \(k_{10}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot \rightarrow \mathrm{HO}_{2} \cdot+\mathrm{O}_{2}\) & \(2.8 \times 10^{4}\) & \(k_{11}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot+\mathrm{O}_{3} \mathrm{OH} \cdot \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{O}_{3}\) & \(5.0 \times 10^{9}\) & \(k_{12}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot+\mathrm{HO}_{3} \cdot \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3}+\mathrm{O}_{2}\) & \(5.0 \times 10^{9}\) & \(k_{13}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot+\mathrm{HO} \cdot \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3}\) & \(5.0 \times 10^{9}\) & \(k_{14}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot+\mathrm{HO}_{2} \cdot \rightarrow \mathrm{O}_{3}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}\) & \(1 \times 10^{10}\) & \(k_{15}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{O}_{3} \mathrm{OH} \cdot+\cdot \mathrm{O}_{2}{ }^{-} \mathrm{OH}+\mathrm{O}_{3}+\mathrm{O}_{2}\) & \(1 \times 10^{10}\) & \(k_{16}\) & Staehelin et al., 1984 \\
\hline \(\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{HO}_{2}{ }^{-}+\mathrm{H}^{+}\) & \(p K_{a}=11\). & & Staehelin and Hoigné, 1982 \\
\hline
\end{tabular}

Figure A-G1: Ozone decomposition reaction scheme and elementary reactions of SBH model

\begin{tabular}{cccl}
\(\mathrm{O}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{HO}_{2}{ }^{-}+\mathrm{O}_{2}\) & 40 & \(k\), & Tomiyasu et al., 1985 \\
\(\mathrm{HO}_{2}{ }^{-}+\mathrm{O}_{3} \rightarrow \mathrm{O}_{3}{ }^{-} \cdot+\mathrm{HO}_{2} \cdot\) & \(2.2 \times 10^{6}\) & \(k 2\) & Tomiyasu et al., 1985 \\
\(\mathrm{HO}_{2} \cdot\) & \(\cdot \cdot \mathrm{O}_{2}{ }^{-}+\mathrm{H}^{+}\) & \(p K=4.8\) & \\
\(\mathrm{O}_{3}+\cdot \mathrm{O}_{2}{ }^{-}=\cdot \mathrm{O}_{3}{ }^{-}+\mathrm{O}_{2}\) & \(1.6 \times 10^{9}\) & \(k 3\) & Tomiyasu et al., 1985 \\
\(\cdot \mathrm{O}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HO} \cdot+\mathrm{O}_{2}+\mathrm{OH}^{-}\) & \(20-30\) & \(k 4\) & Tomiyasu et al., 1985 \\
\(\cdot \mathrm{O}_{3}{ }^{-}+\mathrm{HO} \rightarrow \cdot \mathrm{O}_{2}{ }^{-}+\mathrm{HO}_{2} \cdot\) & \(6.0 \times 10^{9}\) & \(k 5\) & Tomiyasu et al., 1985 \\
\(\cdot \mathrm{O}_{3}{ }^{-}+\mathrm{HO} \cdot \rightarrow \mathrm{O}_{3}+\mathrm{OH}_{-}\) & \(2.5 \times 10^{9}\) & \(k 6\) & Tomiyasu et al., 1985 \\
\(\mathrm{O}_{3}+\mathrm{HO} \cdot \rightarrow \mathrm{HO}_{2} \cdot+\mathrm{O}_{2}\) & \(3.0 \times 10^{9}\) & \(k 7\) & Tomiyasu et al., 1985 \\
\(\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{HO}_{2}{ }^{-}+\mathrm{H}^{+}\) & \(p K=11.65\) & & Tomiyasu et al., 1985
\end{tabular}

Figure A-G2: Ozone decomposition scheme and elementary reactions of TFG model.

Figure A-G3 demonstrates the scheme of ozone decomposition in this model.
Figure A-G3 also includes the scheme of species that are involved in \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) process (detailed explanation of \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) AOP will be given in the subsequent session).


Figure A-G3: Ozone decomposition scheme

In the presence of NOM, \(\mathrm{O}_{3}\) directly reacts with NOM to produce low levels of HO radical (initiation reaction) via the following reaction:
\(\mathrm{O} 3+\mathrm{NOM} \rightarrow \mathrm{HO} \cdot+\) byproducts
The HO radical that may be produced from the reaction above may also be quenched by the reaction with NOM as shown below:
\(\mathrm{HO} \cdot+\mathrm{NOM} \rightarrow\) byproducts
The quenching of HO radical with NOM is usually more important than quenching by bicarbonate and carbonate (discussed later) or metal species. Therefore, in this model, only quenching reaction is implemented (21). In fact, moieties of NOM react with HO• to form carbon centered radical which subsequently reacts with aqueous oxygen to produce peroxyl radical. The peroxyl radical eventually end up with super oxide anion radical \(\bullet \mathrm{O}_{2}{ }^{-}\)or hydroperoxyl radical \(\mathrm{HO}_{2} \bullet\) by uni- or bi-molecular reactions. This process is called "promotion reaction" (Staehelin and Hoigné, 1985). The detailed reaction scheme is demonstrated in Figure A-G4. The extent of initiation, promotion, and
scavenging reactions depends on the types of NOM. Due to the complex and ambiguity of NOM structure, this model only consider the scavenging reaction of \(\mathrm{HO} \cdot\) with NOM.


Figure A-G4: Ozone decomposition reaction scheme in the presence of initiators, promoters, and scavengers.

\section*{\(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}\) model}

In the presence of hydrogen peroxide \(\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\), hydroperoxide ion \(\left(\mathrm{HO}_{2}{ }^{-}\right)\), a disprotonated form of \(\mathrm{H}_{2} \mathrm{O}_{2}\), reacts with \(\mathrm{O}_{3}\) to produce \(\mathrm{HO} \cdot\) (i.e. initiation reaction) (Staehelin and Hoigné, 1982). The pKa of hydrogen peroxide is 11.65. Consequently, hydroperoxide ion is dominant at around neutral pH , which produces HO radical in the reaction with ozone (4). However, it should be noted that hydrogen peroxide or hydrogen peroxide ion also reacts with HO radical, producing hydrogen peroxide radical (11 and 12). Therefore, excess dose of hydrogen peroxide is detrimental to production of HO radical.

\section*{Bromate Formation Mechanisms}

When ozone is used as an oxidant, bromate ion \(\left(\mathrm{BrO}_{3}{ }^{-}\right)\)is formed from the oxidation of bromide ion \(\left(\mathrm{Br}^{-}\right)\)through a combination of ozone and HO radical reactions. Because bromine \((\mathrm{Br})\) is transformed into 6 oxidation states \(\left(\mathrm{Br}^{-}\right.\)(oxidation state; -I\(), \mathrm{Br} \bullet\)
(0), \(\left.\mathrm{HOBr}(+\mathrm{I}), \mathrm{OBr}^{-}(+\mathrm{I}), \mathrm{BrO} \cdot(+\mathrm{II}), \mathrm{BrO}_{2}^{-}(+\mathrm{III}), \mathrm{BrO}_{3}^{-}(+\mathrm{V})\right)\), the whole reaction contributing to the formation of bromate ion is extremely complicated. The past extensive studies have revealed the general reaction pathway for the formation of bromate ion (shown in Figure A-G5).


Figure A-G5. Bromate formation scheme via ozone and HO radical

Three major pathways have been identified for the formation of bromate ion, including
i) \(\quad \mathrm{Br} \xrightarrow{\mathrm{O}_{3}} \mathrm{OBr} / \mathrm{HOBr} \xrightarrow{\mathrm{O}_{3}} \mathrm{BrO}_{3}^{-}\)
ii) \(\quad \mathrm{OBr}^{-} / \mathrm{HOBr} \xrightarrow{\mathrm{HO}} \mathrm{BrO} \cdot \xrightarrow{\mathrm{O}_{3}} \mathrm{BrO}_{2} \xrightarrow{\mathrm{O}_{3}} \mathrm{BrO}_{3}^{-}\)
iii) \(\quad \mathrm{Br}^{-} \xrightarrow{\mathrm{HO}} \mathrm{Br} \cdot \xrightarrow{\mathrm{O}_{3}} \mathrm{BrO} \cdot \xrightarrow{\mathrm{O}_{3}} \mathrm{BrO}_{2}{ }^{-\mathrm{O}_{3}} \mathrm{BrO}_{3}^{-}\)

Because the equilibrium constant between hypobromite \(\left(\mathrm{OBr}^{-}\right)\)and hypobromous acid \((\mathrm{HOBr})\) is \(8.8, \mathrm{HOBr}\) is dominant for the typical drinking water treatment conditions (i.e.
\(\mathrm{pH}=6.5-8.0) . \mathrm{OBr}^{-}\)undergoes two reactions with \(\mathrm{O}_{3}:\) i) attack of \(\mathrm{O}_{3}\) on the oxygen atom to produce \(\mathrm{OOBr}^{-}\)and eventually \(\mathrm{Br}^{-}(33)\) and ii) attack of \(\mathrm{O}_{3}\) on the bromine atom to produce \(\mathrm{BrO}_{2}^{-}\)(34). The reported reaction rate constants of (33) and (34) indicate that one-fourth of \(\mathrm{OBr}^{-}\)is oxidized by \(\mathrm{O}_{3}\) leading to \(\mathrm{BrO}_{2}{ }^{-}\)and eventually \(\mathrm{BrO}_{3}{ }^{-}\)(von Gunten, 2003) (pathway i). Although HOBr undergoes the oxidation by \(\mathrm{O}_{3}\), the reaction rate constant for HOBr is approximately 5 magnitudes of order smaller than that for \(\mathrm{OBr}^{-}\). As a result, lowering pH is one of the strategies to reduce the \(\mathrm{BrO}_{3}{ }^{-}\). The detailed discussion on the bromate mitigation will be given in the subsequent session. The \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) is oxidized by HO radical to produce \(\mathrm{BrO} \cdot(38\) and 39\()\). \(\mathrm{The} \mathrm{BrO} \cdot\) disproportionates to bromite ion \(\left(\mathrm{BrO}_{2}^{-}\right)\)and eventually to \(\mathrm{BrO}_{3}{ }^{-}\)(pathway ii). The Br - is oxidized by HO radical to produce a bromine radical \((\mathrm{Br} \bullet)\), which subsequently reacts with \(\mathrm{O}_{3}\) to produce \(\mathrm{BrO} \cdot(\) pathway iii). The \(\mathrm{Br} \bullet\) also undergoes the several reactions that radical species involved and eventually produces \(\mathrm{OBr}^{-} / \mathrm{HOBr}(41,42,52,53,64,65,67)\).

It is important to notice that \(\mathrm{BrO}_{3}{ }^{-}\)is not produced without O 3 . This is ensured by the fact that the \(\mathrm{BrO} \bullet\) is only formed from \(\mathrm{Br} \bullet\) in the presence of \(\mathrm{O}_{3}\). Furthermore, the \(\mathrm{BrO}_{2}\) - is only oxidized by \(\mathrm{O}_{3}\) to produce \(\mathrm{BrO}_{3}{ }^{-}\). As a consequent, where HO radical is the only oxidant (e.g. UV/ \(\mathrm{H}_{2} \mathrm{O}_{2}\) process, gamma-irradiation), the \(\mathrm{BrO} \cdot\) does not play any roles. In this manner, the \(\mathrm{Br} \cdot\) only reacts with Br - to produce \(\mathrm{OBr}^{-} / \mathrm{HOBr}\), which is the decisive intermediate, \(\mathrm{BrO} \cdot\).

Because the reaction pathway of the formation of \(\mathrm{BrO}_{3}{ }^{-}\)is not linear, it is not intuitive to predict the formation of \(\mathrm{BrO}_{3}{ }^{-}\). Nevertheless, the known elementary reactions enable us to estimate the fraction of \(\mathrm{Br}^{-}\)and \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) oxidized by \(\mathrm{O}_{3}\) and HO radical, respectively, with use of the ratio of HO radical to \(\mathrm{O}_{3}\). It is straight-forward to examine
the fraction for the pH -independent Br -. The equation for the oxidation of \(\mathrm{Br}^{-}\)can be expressed as below:
\(\frac{d\left[\mathrm{Br}^{-}\right]}{d t}=-k_{32}\left[\mathrm{O}_{3}\right]\left[\mathrm{Br}^{-}\right]-k_{54}[\mathrm{HO} \bullet]\left[\mathrm{Br}^{-}\right]\)
By using the ratio, \(R_{c}=\left[\mathrm{HO}^{\bullet}\right] /\left[\mathrm{O}_{3}\right]\), the fraction of \(\mathrm{Br}^{-}\)reacting with \(\mathrm{O}_{3}\) and \(\mathrm{HO}^{\bullet}\), \(f_{\mathrm{HO} \cdot \text { of } \mathrm{Br}}\) and \(f_{\mathrm{O}_{3} \text { of } \mathrm{Br}^{r}}\), can be written as below, respectively,:
\[
f_{\mathrm{HO} \cdot \text { of } \mathrm{Br}}=\frac{k_{54} R_{c}}{k_{32}+k_{54} R_{c}}
\]
\[
f_{\mathrm{O}_{3} \text { of Br }}=\frac{k_{32}}{k_{32}+k_{54} R_{c}}
\]

Figure A-G6 represents the fraction of \(\mathrm{Br}^{-}\)reaction with \(\mathrm{O}_{3}\) and \(\mathrm{HO} \cdot\) as a function of \(\mathrm{Rc}\left(=[\mathrm{HO} \cdot] /\left[\mathrm{O}_{3}\right]\right)\), respectively, calculated from the equations above. It is observed that only for higher \(\mathrm{Rc}>10^{-7}\), a relatively larger amount of \(\mathrm{HO} \bullet\) oxidizes \(\mathrm{Br}^{-}\). In the range of typical drinking water treatment (i.e. \(\mathrm{Rc} \approx 10^{-8}\) ), most part of Br - is oxidized by \(\mathrm{O}_{3}\).


Figure A-G6: Fraction of Br - reaction with O 3 and \(\mathrm{HO} \cdot\) as a function of \(\mathrm{Rc}(=\) [ \(\mathrm{HO} \cdot] /[\mathrm{O} 3]\) )

For the case of the pH -dependent \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) species \((\mathrm{pKa}=8.8)\), the fraction of \(\mathrm{OBr}-/ \mathrm{HOBr}\) reacting with \(\mathrm{O}_{3}\) and \(\mathrm{HO} \cdot\) dramatically changes with pH and the Rc (Figure 7). At lower \(\mathrm{pH}(<7.0)\), almost entire oxidation of \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) takes place by HO radical (i.e. HOBr is major oxidized species). At the neutral pH , approximately \(80 \%\) of \(\mathrm{OBr}^{-}\) \(/ \mathrm{HOBr}\) is oxidized by HO radical when the typical drinking water treatment Rc value is applied. As increase of pH (i.e. increase the fraction OBr ), \(\mathrm{O}_{3}\) contributes more to the oxidation of \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) at the lower Rc. Although there is significant difference in reactivity of \(\mathrm{O}_{3}\) and HO radical with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) (i.e. magnitude of 7 for \(\mathrm{OBr}^{-}\)(33 and 39) and of 11 for \(\mathrm{HOBr}(35\) and 38\()\) ), increase of pH considerably leads to the larger fraction of \(\mathrm{O}_{3}\) reacting with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\). Equation below represents the fraction of HO radical reacting with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) as an example.
\(f_{\mathrm{HO} . \text { of OBr-HOBr }}=\)



Figure A-G7: Fraction of HO radical and \(\mathrm{O}_{3}\) reacting with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) as a function of Rc \(\left(=[\mathrm{HO} \cdot] /\left[\mathrm{O}_{3}\right]\right)\)

The investigations in the fraction of \(\mathrm{HO} \cdot\) and \(\mathrm{O}_{3}\) reacting with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) reveals that those ratios significantly depend on the Rc ratios. In the initial reaction phase of ozonation (i.e. higher \(\mathrm{Rc} \approx 10^{-7}\) ), \(\mathrm{Br}^{-}\)is oxidized by HO radical to produce \(\mathrm{Br} \bullet\). At around neutral \(\mathrm{pH}, \mathrm{OBr}^{-} / \mathrm{HOBr}\) undergoes further oxidation from HO radical to produce \(\mathrm{BrO} \cdot\) and eventually to \(\mathrm{BrO}_{3}{ }^{-}\). At the secondary phase of ozonation \(\left(\mathrm{Rc} \approx 10^{-8}-10^{-9}\right), \mathrm{Br}^{-}\)is significantly oxidized by \(\mathrm{O}_{3}\) to produce \(\mathrm{OBr}^{-} / \mathrm{HOBr}\). The HO radical oxidizes OBr \(/ \mathrm{HOBr}\) to produce \(\mathrm{BrO} \cdot\). The disproportionation of \(\mathrm{BrO} \cdot\) occurs and \(\mathrm{BrO}_{2}{ }^{-}\)produced is further oxidized by \(\mathrm{O}_{3}\) to produce \(\mathrm{BrO}_{3}{ }^{-}\).

In the presence of NOM, \(\mathrm{Br} \bullet\) reacts with NOM to produce \(\mathrm{Br}^{-}\)or bromo-organic compounds (81). Thus, the reactions of \(\mathrm{Br} \bullet\) with NOM fall into the same order of magnitude as those of \(\mathrm{Br} \bullet\) with bromide or ozone (e.g. 52 and 37). \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) also interfere with NOM (84). Little is known about the quantitative formation mechanisms
of bromo-organic compounds. As a result, products are not considered in the kinetic model.

In Advanced Oxidation Processes (AOPs) where HO radical is a main oxidant, bromate formation is dominated by the HO radical induced in the pathway ii) and iii). When hydrogen peroxide \(\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\) is used as an oxidant, the reactions of \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) with \(\mathrm{HO}_{2}{ }^{-}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\) leading to Br - are important reactions (von Gunten, 2003).

\section*{Effect of Carbonate and Phosphate}

The mechanism of carbonate species scavenging HO radical has been investigated by several researchers (Glaze et al., 1988, 1989, Peyton et al., 1988). Carbonate and bicarbonate ions \(\left(\mathrm{CO}_{3}{ }^{2-} / \mathrm{HCO}_{3}{ }^{-}\right)\)react with HO radical to produce carbonate radicals, \(\mathrm{CO}_{3} \bullet^{-}\)and \(\mathrm{HCO}_{3} \bullet\), respectively. In this model, these two reactions are reported to be similarly active (Chen et al., 1975; Larson et al., 1988), and therefore, can be referred to as one term, \(\mathrm{CO}_{3} \bullet^{-}(19,20)\). The \(\mathrm{CO}_{3} \bullet^{-}\)reacts itself, superoxide anion radical, \(\bullet \mathrm{O}_{2}{ }^{-}\), ozonide ion radical, \(\bullet^{\mathrm{O}_{3}-}\), and HO radical, respectively, at the comparable reaction rates to other radial involving reactions (22-25). In the \(\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{AOP}\), the reaction of \(\mathrm{CO}_{3} \bullet^{-}\) with \(\mathrm{H}_{2} \mathrm{O}_{2}\) to form superoxide radical, \(\mathrm{HO}_{2} \bullet\), is significant (27). Since \(\mathrm{CO}_{3} \bullet\) is a weak oxidant, it may react with some target organic compounds. But for the treatment of most organic pollutants, these reactions are ignored because this reaction is insignificant.

The role of phosphate ions is similar to that of carbonate ions. Hydrogen phosphate ion, \(\mathrm{HPO}_{4}{ }^{2-}\), reacts with \(\mathrm{HO}_{3} \cdot\) and \(\mathrm{HO} \cdot(29,30)\), whereas dihydrogen phosphate ion, \(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\), reacts with \(\cdot \mathrm{O}_{3}{ }^{-}\)and \(\mathrm{HO} \cdot(28,31)\) to form phosphate radical ions and reactive oxygenated species (ROS) further. In general, the reactions of phosphate ions do not significantly affect ozone-self decomposition.

The \(\mathrm{CO}_{3} \bullet^{-}\)also reacts with \(\mathrm{OBr}^{-}(56)\) and \(\mathrm{BrO}_{2}^{-}(57)\) at the comparable rate to the other ions which are produced from ozone self-decomposition.

Although the typical reaction rates that are induced from carbonate/bicarbonate ion or carbonate radicals are one or two magnitude of order smaller than those of HO •, the relatively higher concentrations of carbonate/bicarbonate present in the environmental waters make the scavenging reaction of carbonate/bicarbonate ions with \(\mathrm{HO} \cdot\) significant.

\section*{Bromate Mitigation Strategies}

\section*{pH depression}

Lowering pH shifts \(\mathrm{OBr}-/ \mathrm{HOBr}\) equilibrium towards HOBr , and therefore, \(\mathrm{BrO}_{3}-\) precursor, \(\mathrm{BrO}_{2}{ }^{-}\), is less produced by the reactions of \(\mathrm{O}_{3}\) with \(\mathrm{HOBr}(35)\) as compared to those with OBr - (34). In addition, as was observed in Figure \(\mathrm{X}, \mathrm{OBr}-/ \mathrm{HOBr}\) oxidation is dominated by HO radical. As a consequence, lowering pH leads to the smaller fraction of \(\mathrm{O}_{3}\) reacting with \(\mathrm{OBr}-/ \mathrm{HOBr}\) and reduces the formation of \(\mathrm{BrO}_{3}-\).

In addition to shifting the \(\mathrm{OBr}-/ \mathrm{HOBr}\) equilibrium by lowering pH , it slows the \(\mathrm{O}_{3}\) degradation because of (1). As a result, integral of \(\mathrm{O}_{3}\) concentration as a function of time (i.e. \(\int\left[\mathrm{O}_{3}\right] d t\), ozone exposure) will be larger, whereas \(\int[\mathrm{HO} \cdot] d t\), HO radical exposure, will be constant. Accordingly, a ratio of \(\int[\mathrm{HO} \cdot] d t\) and \(\int\left[\mathrm{O}_{3}\right] d t\) (i.e. \(R_{c t}\) (von Gunten and reference)) will be smaller. Pinkernell and von Gunten (2001) observed a reduced bromate formation at lower \(R_{c t}\) values. Although the \(R_{c t}\) values do not have linear relationship with the bromate formation, the \(R_{c t}\) would be one of the important factors to assess the bromate formation.

Because the initial fast transformation of \(\mathrm{O}_{3}\) into HO radical is almost independent of pH , lowering pH does not lead to the significant decrease of the initial \(\mathrm{BrO}_{3}{ }^{-}\)formation. Accordingly, the effect of pH depression is expected to be small.

\section*{Ammonia addition}

The addition of ammonia \(\left(\mathrm{NH}_{3}\right)\) only interferes with \(\mathrm{OBr}^{-} / \mathrm{HOBr}\) producing monobromamine \(\left(\mathrm{NH}_{2} \mathrm{Br}\right)\) (70 and 71) (Figure A-G8). As was discussed, \(\mathrm{Br}^{-}\)is dominantly oxidized by HO radical in the initial phase at the neutral pH . The \(\mathrm{Br} \bullet\) undergoes the oxidation by \(\mathrm{O}_{3}\) to produce \(\mathrm{BrO} \cdot\) and eventually to \(\mathrm{BrO}_{3}{ }^{-}\). In this process, the \(\mathrm{NH}_{3}\) addition is not effective to reduce \(\mathrm{BrO}_{3}{ }^{-}\). As a result, the \(\mathrm{NH}_{3}\) addition is only effective to the secondary phase of ozonation. Because the reaction of \(\mathrm{NH}_{3}\) with \(\mathrm{OBr}^{-}\)is a base-catalyzed equilibrium reaction (72), it is not effective if source waters already have high levels of \(\mathrm{NH}_{3}\).


Figure A-G8: Bromate mitigation by adding ammonia and/or hypochlorous acid

\section*{\(\mathbf{C l}_{\mathbf{2}}-\mathrm{NH}_{3}\) process}
\(\mathrm{A} \mathrm{Cl}_{2}-\mathrm{NH}_{3}\) process is comprised of three major steps: i) pre-chlorination, ii) ammonia addition, and iii) mono-bromamine oxidation. With the condition that \(\left[\mathrm{NH}_{3}\right]\) >
\([\mathrm{HOCl}]>\left[\mathrm{Br}^{-}\right], \mathrm{Br}^{-}\)is initially oxidized by hypochlorous acid \((\mathrm{HOCl})\) to \(\mathrm{HOBr}(75\) and 76). The HOBr is masked by the addition of \(\mathrm{NH}_{3}\) to form \(\mathrm{NH}_{2} \mathrm{Br}\) (70 and 71). The \(\mathrm{NH}_{3}\) added in this step also reacts with the excess HOCl to produce monochloramine \(\left(\mathrm{NH}_{2} \mathrm{Cl}\right)\) (78). The reaction of \(\mathrm{NH}_{3}\) with HOCl does not compete with those of \(\mathrm{NH}_{3}\) with HOBr due to the 20 times smaller reaction rate constants. The \(\mathrm{NH}_{2} \mathrm{Br}\) undergoes the oxidation by \(\mathrm{O}_{3}\) to form nitrate \(\left(\mathrm{NO}_{3}-\right)\) and \(\mathrm{Br}-(77)\). An advantage of the \(\mathrm{Cl}_{2}-\mathrm{NH}_{3}\) process over the single \(\mathrm{NH}_{3}\) addition is a hindrance of the reaction of HO radical with \(\mathrm{Br}^{-}\)producing \(\mathrm{Br} \bullet\) during the initial phase.

It should be noted that the presence of \(\mathrm{NH}_{3}\) in the source waters significantly affect the efficacy of the \(\mathrm{Cl}_{2}-\mathrm{NH}_{3}\) process. The \(\mathrm{NH}_{3}\) reacts with HOCl to produce \(\mathrm{NH}_{2} \mathrm{Cl}\) before reacting with \(\mathrm{Br}^{-}\)according to (75) and (78). The \(\mathrm{NH}_{2} \mathrm{Cl}\) further reacts with \(\mathrm{Br}^{-}\)to produce monobromamine, which is negligible due to the smaller reaction rate constant (79).

In addition to the hindrance of HO radical pathway for the \(\mathrm{BrO}_{3}{ }^{-}\)formation, the presence of NOM significantly contributes to the reduction of \(\mathrm{BrO}_{3}{ }^{-}\)by hindering HO radical. According to Buffle et al., (2004), two NOM-involving mechanisms could explain a decrease of HO radical by adding HOCl in the \(\mathrm{NH}_{3}\)-containing source waters: i) HOCl and/or \(\mathrm{NH}_{2} \mathrm{Cl}\) oxidizes specific and reactive moieties of NOM toward \(\mathrm{O}_{3}\) and ii) HOCl or its oxidation or substitution products scavenge HO radical. NOM undergoes the oxidation by HOCl (83) and HOBr (84). The latter reaction producing total organic brominated compounds \((\mathrm{TOBr})\) also contributes to minimize the \(\mathrm{BrO}_{3}{ }^{-}\)formation. However, products resulting from these reactions are not included in the model due to the
complex reactions of NOM. For the reaction mechanism ii), the HO radical scavenge reaction by \(\mathrm{NH}_{2} \mathrm{Cl}\) is represented (85).

\section*{Formation of TTHMs and TOX}

The addition of HOCl and the presence of HOBr lead to the formation of halogenated organic compounds (TOX or THMs) by reacting with NOM (Figure A-G9).


Figure A-G9: TOX and TTHMs formation scheme in the presence of NOM

Several empirical power function models are available for predicting totaltrihalomethanes (TTHMs). Amy et al. developed models implemented in EPA 1998 models that were based on lower chlorine doses applied to either raw/untreated waters or chemically coagulated (conventionally treated) waters (Amy et al., 1998). This software implemented the improved EPA 1998 model developed by Sohn et al. (2004). In this improved model, chlorine consumption is splited into two phases, including i) fast initial phase of chlorine consumption \((<5 \mathrm{~h})\) and ii) the following second phase of slow chlorine consumption ( \(5 \mathrm{~h}<\) ).

The TTHMs predicting model in the initial phase is used. The empirical parameters were determined using the EPA 1998 database.
\([\mathrm{TTHMs}]=\left[\mathrm{Cl}_{2}\right]\left\{\mathrm{A}_{\text {TTHM }}(1-\exp (-k \mathrm{t})\}\right.\)
where,
\(\ln (k)=5.41-0.38 \ln \left(\frac{\left[\mathrm{Cl}_{2}\right]}{[\mathrm{DOC}]}\right)+0.27 \ln \left(\left[\mathrm{NH}_{3}-\mathrm{N}\right]\right)-1.12 \ln (\mathrm{Temp})+0.05 \ln ([\mathrm{Br}-])-\)
\(0.854 \ln (\mathrm{pH})\)
\(\ln \left(\mathrm{A}_{\text {TTHM }}\right)=-2.11-0.87 \ln \left(\frac{\left[\mathrm{Cl}_{2}\right]}{[\mathrm{DOC}]}\right)-0.41 \ln \left(\left[\mathrm{NH}_{3}-\mathrm{N}\right]\right)+0.21 \ln \left(\left[\mathrm{Cl}_{2}\right]\right)+1.98 \ln (\mathrm{pH})\)
\([T T H M]=\) predicted trihalomethane conc. in initial phase \((\sim 5 h), \mu \mathrm{g} / \mathrm{L}\)
\(\left[\mathrm{Cl}_{2}\right]=\) applied chlorine dose, \(\mathrm{mg} / \mathrm{L}\)
\([\mathrm{DOC}]=\) dissolved organic carbon, \(\mathrm{mgC} / \mathrm{L}\)
\(\left[\mathrm{NH}_{3}-\mathrm{N}\right]=\) ammonia-nitrogen conc., \(\mathrm{mg} / \mathrm{L}\) as N
\([\mathrm{Br}-]=\) bromide concentration, \(\mu \mathrm{g} / \mathrm{L}\)
Temp \(=\) temperature, \({ }^{\circ} \mathrm{C}\)
\(t=\) reaction time, h
The reactions of \(\mathrm{HOCl}, \mathrm{HOBr}\), and \(\mathrm{NH}_{2} \mathrm{Br}\) with NOM to form the total organic halides (TOX) are complex due to the ambiguity of NOM properties. There are little studies attempted in the quantitative formation analysis of TOX. Therefore, in this model, the products from these reactions are not considered (82-84). Although the TOX is not currently regulated under the drinking water standard, the toxicity of TOX was reported much higher than bromate ion.

\section*{Modeling Equations}

\section*{Kinetic Rate Expressions}

Based on the elementary reactions in Table X, the overall kinetic rate expressions can be written as below. These species include: \(\mathrm{O}_{3}, \mathrm{HO}_{3} \cdot / \cdot \mathrm{O}_{3}{ }^{-},{ }^{\bullet} \mathrm{O}_{2}{ }^{-} / \mathrm{HO}_{2} \cdot \mathrm{HO}, \mathrm{H}\),
\(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HO}_{2}^{-}, \mathrm{HPO}_{4}{ }^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}^{2-}, \mathrm{Br}^{-}, \mathrm{OBr}^{-} / \mathrm{HOBr}, \mathrm{BrO}_{2}^{-}, \mathrm{BrO}_{3}^{-}, \mathrm{Br} \cdot, \mathrm{BrO}, \mathrm{Br}_{2}^{-}, \mathrm{Br}_{3}^{-}\), \(\mathrm{Br}_{2} \bullet^{-}, \mathrm{BrOH} \cdot-, \mathrm{Br}_{2} \mathrm{O}_{4}, \mathrm{NH}_{2} \mathrm{Br}, \mathrm{NHBr} 2, \mathrm{OCl}-/ \mathrm{HOCl}, \mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}, \mathrm{NH}_{2} \mathrm{Cl}\), and NOM.
\[
\begin{aligned}
& \frac{d\left[\mathrm{O}_{3}\right]}{d t}=-k_{1}\left[\mathrm{O}_{3}\right]\left[\mathrm{HO}^{-}\right]-k_{2}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{O}_{3}\right]-k_{4}\left[\mathrm{HO}_{2}^{-}\right]\left[\mathrm{O}_{3}\right]-k_{10}[\mathrm{HO} \bullet]\left[\mathrm{O}_{3}\right]-k_{18}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{3}\right] \\
& +k_{24}\left[\mathrm{CO}_{3} \bullet-\right]\left[\bullet \mathrm{O}_{3}^{-}\right]-k_{32}\left[\mathrm{O}_{3}\right]\left[\mathrm{Br}^{-}\right]-k_{33}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]-k_{34}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]-k_{35}\left[\mathrm{O}_{3}\right][\mathrm{HOBr}] \\
& -k_{36}\left[\mathrm{O}_{3}\right]\left[\mathrm{BrO}_{2}^{-}\right]-k_{37}\left[\mathrm{O}_{3}\right][\mathrm{Br} \bullet]-3 k_{77}\left[\mathrm{O}_{3}\right]\left[\mathrm{NHBr}_{2}\right] \\
& \frac{d\left[\mathrm{HO}_{3} \bullet\right]}{d t}=-k_{3}\left[\mathrm{HO}_{3} \bullet\right]-k_{7}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{3} \bullet\right]-k_{8}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HO}_{3} \bullet\right]-k_{9}\left[\mathrm{HO}_{3} \bullet\right]\left[\bullet \mathrm{O}_{2}^{-}\right] \\
& +k_{28}\left[\bullet \mathrm{O}_{3}^{-}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{-}\right]-k_{29}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right] \\
& \frac{d\left[\bullet \mathrm{O}_{3}^{-}{ }^{-}\right]}{d t}=k_{2}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{O}_{3}\right]-k_{24}\left[\mathrm{CO}_{3} \bullet-\right]\left[\bullet \mathrm{O}_{3}^{-}\right]-k_{28}\left[\bullet \mathrm{O}_{3}^{-}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]+k_{29}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right] \\
& \frac{d\left[\bullet \mathrm{O}_{2}^{-}\right]}{d t}=k_{1}\left[\mathrm{O}_{3}\right]\left[\mathrm{HO}^{-}\right]-k_{2}\left[\mathrm{O}_{3}\right]\left[\bullet \mathrm{O}_{2}{ }^{-}\right]+k_{4}\left[\mathrm{O}_{3}\right]\left[\mathrm{HO}_{2}{ }^{-}\right]-k_{6}[\mathrm{HO} \bullet]\left[\bullet \mathrm{O}_{2}{ }^{-}\right] \\
& -k_{9}\left[\mathrm{HO}_{3} \bullet\right]\left[\bullet \mathrm{O}_{2}{ }^{-}\right]+k_{12}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2}{ }^{-}\right]-k_{14}\left[\bullet \mathrm{O}_{2}{ }^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{17}\left[\mathrm{HO}_{2} \bullet\right]\left[\bullet \mathrm{O}_{2}{ }^{-}\right] \\
& -k_{23}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\bullet \mathrm{O}_{2}^{-}\right]-k_{62}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{Br}_{3}^{-}\right]-k_{65}\left[\bullet \mathrm{O}_{2}^{-}\right][\mathrm{HOBr}] \\
& \frac{d\left[\mathrm{HO}_{2} \bullet\right]}{d t}=k_{1}\left[\mathrm{O}_{3}\right][\mathrm{HO}-]+k_{10}[\mathrm{HO} \bullet]\left[\mathrm{O}_{3}\right]+k_{11}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{13}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \\
& +k_{14}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{15}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2} \bullet\right]-k_{16}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{HO}_{2} \bullet\right]-k_{17}\left[\mathrm{HO}_{2} \bullet\right]\left[\bullet \mathrm{O}_{2}{ }^{-}\right] \\
& +k_{26}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{HO}_{2}^{-}\right]+k_{27}\left[\mathrm{CO}_{3} \bullet-\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{61}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{3}^{-}\right]-k_{64}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{2}\right] \\
& \frac{d[\mathrm{HO} \bullet]}{d t}=k_{3}\left[\mathrm{HO}_{3} \bullet\right]+k_{4}\left[\mathrm{O}_{3}\right]\left[\mathrm{HO}_{2}{ }^{-}\right]-k_{5}[\mathrm{HO} \bullet][\mathrm{HO} \bullet]-k_{6}[\mathrm{HO} \bullet]\left[\bullet \mathrm{O}_{2}{ }^{-}\right] \\
& -k_{7}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{3} \bullet\right]-k_{10}[\mathrm{HO} \bullet]\left[\mathrm{O}_{3}\right]-k_{11}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{12}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2}^{-}\right] \\
& +k_{13}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{15}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2} \bullet\right]-k_{19}[\mathrm{HO} \bullet]\left[\mathrm{HCO}_{3}{ }^{-}\right]-k_{20}[\mathrm{HO} \bullet]\left[\mathrm{CO}_{3}{ }^{2-}\right] \\
& -k_{21}[\mathrm{NOM}][\mathrm{HO} \bullet]-k_{25}\left[\mathrm{CO}_{3} \bullet\right][\mathrm{HO} \bullet] \\
& -k_{30}[\mathrm{HO} \bullet]\left[\mathrm{HPO}_{4}{ }^{2-}\right]-k_{31}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]-k_{38}[\mathrm{HO} \bullet][\mathrm{HOBr}]-k_{39}[\mathrm{HO} \bullet]\left[\mathrm{OBr}^{-}\right] \\
& -k_{45}[\mathrm{HO} \bullet]\left[\mathrm{BrO}_{2}{ }^{-}\right]-k_{49}\left[\mathrm{BrO}_{2} \bullet\right][\mathrm{OH} \bullet]-k_{54}\left[\mathrm{Br}^{-}\right][\mathrm{HO} \bullet]+k_{55}[\mathrm{BrOH} \bullet \bullet] \\
& -k_{85}\left[\mathrm{NH}_{2} \mathrm{Cl}\right][\mathrm{HO} \bullet]
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d\left[\mathrm{HO}_{2}^{-}\right]}{d t}=-k_{4}\left[\mathrm{O}_{3}\right]\left[\mathrm{HO}_{2}^{-}\right]-k_{12}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2}^{-}\right]+k_{17}\left[\mathrm{HO}_{2} \bullet\right]\left[\bullet \mathrm{O}_{2}^{-}\right]+k_{25}\left[\mathrm{CO}_{3} \bullet-\right][\mathrm{HO} \bullet] \\
& -k_{26}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{HO}_{2}^{-}\right]-k_{60}\left[\mathrm{HO}_{2}^{-}\right][\mathrm{HOBr}] \\
& \frac{d\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{d t}=k_{5}[\mathrm{HO} \bullet][\mathrm{HO} \bullet]+k_{7}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{3} \bullet\right]+k_{8}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HO}_{3} \bullet\right]-k_{11}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \\
& -k_{13}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{14}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k_{16}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{HO}_{2} \bullet\right]-k_{18}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{3}\right] \\
& -k_{27}\left[\mathrm{CO}_{3} \bullet{ }^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{58}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][\mathrm{HOBr}]-k_{59}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{OBr}^{\bullet}\right] \\
& \frac{d\left[\mathrm{O}_{2}\right]}{d t}=k_{2}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{O}_{3}\right]+k_{3}\left[\mathrm{HO}_{3} \bullet\right]+k_{6}[\mathrm{HO} \bullet]\left[\bullet \mathrm{O}_{2}^{-}\right]+k_{7}\left[\mathrm{HO}^{-}\right]\left[\mathrm{HO}_{3} \bullet\right]+2 k_{8}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HO}_{3} \bullet\right] \\
& +2 k_{9}\left[\mathrm{HO}_{3} \bullet\right]\left[\bullet \mathrm{O}_{2}^{-}\right]+k_{10}[\mathrm{HO} \bullet]\left[\mathrm{O}_{3}\right]+k_{13}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k_{14}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]+k_{15}[\mathrm{HO} \bullet]\left[\mathrm{HO}_{2} \bullet\right] \\
& \left.+k_{16}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{HO}_{2} \bullet\right]+k_{17}\left[\mathrm{HO}_{2} \bullet\right]\left[\bullet \mathrm{O}_{2}{ }^{-}\right]+k_{18}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{3}\right]+k_{23}\left[\mathrm{CO}_{3} \bullet \bullet\right] \bullet \bullet \mathrm{O}_{2}^{-}\right] \\
& +k_{32}\left[\mathrm{O}_{3}\right]\left[\mathrm{Br}{ }^{-}\right]+2 k_{35}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]+k_{34}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]+k_{35}\left[\mathrm{O}_{3}\right][\mathrm{HOBr}]+k_{36}\left[\mathrm{O}_{3}\right]\left[\mathrm{BrO}_{2}^{-}\right] \\
& +k_{37}\left[\mathrm{O}_{3}\right][\mathrm{Br} \bullet]+k_{58}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][\mathrm{HOBr}]+k_{59}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{OBr}^{-}\right]+k_{60}\left[\mathrm{HO}_{2}^{-}\right][\mathrm{HOBr}] \\
& +k_{6[ }\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{3}^{-}\right]+k_{62}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{Br}_{3}^{-}\right]+k_{64}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{2}\right]+k_{65}\left[\bullet \mathrm{O}_{2}^{-}\right][\mathrm{HOBr}]+3 k_{77}\left[\mathrm{NHBr}_{2}\right] 3\left[\mathrm{O}_{3}\right] \\
& \frac{d\left[\mathrm{HCO}_{3}^{-}\right]}{d t}=-k_{19}[\mathrm{HO} \bullet]\left[\mathrm{HCO}_{3}^{-}\right]+k_{27}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \\
& \frac{d\left[\mathrm{CO}_{3}{ }^{2-}\right]}{d t}=-k_{20}[\mathrm{HO} \bullet]\left[\mathrm{CO}_{3}{ }^{-{ }^{-}}\right]+k_{23}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\bullet \mathrm{O}_{2}^{-}\right]+k_{24}\left[\mathrm{CO}_{3} \bullet{ }^{-}\right]\left[\bullet \mathrm{O}_{3}^{-}\right]+k_{26}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{HO}_{2}^{-}\right] \\
& +k_{56}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{OBr}^{-}\right]+k_{57}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{BrO}_{2}^{-}\right] \\
& \frac{d\left[\mathrm{CO}_{3} \bullet \cdot\right]}{d t}=k_{19}[\mathrm{HO} \bullet]\left[\mathrm{HCO}_{3}^{-}\right]+k_{20}[\mathrm{HO} \bullet]\left[\mathrm{CO}_{3}^{2-}\right]-k_{22}\left[\mathrm{CO}_{3} \bullet-\right]\left[\mathrm{CO}_{3} \bullet^{-}\right]-k_{23}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\bullet \mathrm{O}_{2}^{-}\right] \\
& -k_{24}\left[\mathrm{CO}_{3} \bullet^{\bullet}\right]\left[\bullet \mathrm{O}_{3}^{-}\right]-k_{25}\left[\mathrm{CO}_{3} \bullet^{-}\right][\mathrm{HO} \bullet]-k_{26}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{HO}_{2}^{-}\right]-k_{27}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \\
& -k_{56}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{OBr}^{-}\right]-k_{57}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{BrO}_{2}^{-}\right] \\
& \frac{d\left[\mathrm{CO}_{4}{ }^{2-}\right]}{d t}=k_{22}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{CO}_{3} \bullet^{-}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d\left[\mathrm{CO}_{2}\right]}{d t}=k_{22}\left[\mathrm{CO}_{3} \bullet^{-}\right]\left[\mathrm{CO}_{3} \bullet^{-}\right]+k_{25}\left[\mathrm{CO}_{3} \bullet^{-}\right][\mathrm{HO} \bullet] \\
& \frac{d\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{d t}=-k_{28}\left[\bullet \mathrm{O}_{3}^{-}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+k_{29}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HPO}_{4}^{2-}\right]-k_{31}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] \\
& \frac{d\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{d t}=k_{28}\left[\bullet \mathrm{O}_{3}^{-}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]-k_{29}\left[\mathrm{HO}_{3} \bullet\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]-k_{30}[\mathrm{HO} \bullet]\left[\mathrm{HPO}_{4}{ }^{2-}\right] \\
& \frac{d\left[\mathrm{HPO}_{4}{ }^{\bullet-}\right]}{d t}=k_{30}[\mathrm{HO} \bullet]\left[\mathrm{HPO}_{4}{ }^{2-}\right]+k_{31}[\mathrm{HO} \bullet]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] \\
& \frac{d\left[\mathrm{OBr}^{-}\right]}{d t}=k_{32}\left[\mathrm{O}_{3}\right]\left[\mathrm{Br}^{-}\right]-k_{33}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]-k_{34}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]-k_{39}[\mathrm{HO} \bullet]\left[\mathrm{OBr}^{-}\right] \\
& +k_{40}[\mathrm{BrO} \bullet][\mathrm{BrO} \bullet]-k_{44}\left[\mathrm{OBr}^{-}\right][\mathrm{Br} \bullet]+k_{50}[\mathrm{BrO} \bullet]\left[\mathrm{BrO}_{2}{ }^{-}\right]+k_{51}\left[\mathrm{Br}_{2}{ }^{\bullet-}\right]\left[\mathrm{BrO}_{2}{ }^{-}\right] \\
& -k_{56}\left[\mathrm{OBr}^{-}\right]\left[\mathrm{CO}_{3}{ }^{\bullet-}\right]-k_{59}\left[\mathrm{OBr}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]-k_{71}\left[\mathrm{OBr}^{-}\right]\left[\mathrm{NH}_{3}\right]+k_{72}\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{2} \mathrm{Br}\right] \\
& +k_{76}\left[\mathrm{OCl}^{-}\right]\left[\mathrm{Br}^{-}\right] \\
& \frac{d[\mathrm{HOBr}]}{d t}=-k_{35}\left[\mathrm{O}_{3}\right][\mathrm{HOBr}]-k_{38}[\mathrm{HO} \bullet][\mathrm{HOBr}]-k_{58}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right][\mathrm{HOBr}]-k_{60}\left[\mathrm{HO}_{2}{ }^{-}\right][\mathrm{HOBr}] \\
& -k_{65}\left[\bullet \mathrm{O}_{2}{ }^{-}\right][\mathrm{HOBr}]+k_{67}\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]-k_{68}[\mathrm{HOBr}]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]-k_{70}\left[\mathrm{NH}_{3}\right][\mathrm{HOBr}] \\
& +k_{75}\left[\mathrm{Br}^{-}\right][\mathrm{HOCl}]-k_{84}[\mathrm{HOBr}][\mathrm{NOM}] \\
& \frac{d\left[\mathrm{BrO}_{2}^{-}\right]}{d t}=k_{34}\left[\mathrm{O}_{3}\right]\left[\mathrm{OBr}^{-}\right]+k_{35}\left[\mathrm{O}_{3}\right][\mathrm{HOBr}]-k_{36}\left[\mathrm{O}_{3}\right]\left[\mathrm{BrO}_{2}^{-}\right]+k_{40}[\mathrm{BrO} \bullet][\mathrm{BrO} \bullet] \\
& -k_{45}[\mathrm{HO} \bullet]\left[\mathrm{BrO}_{2}^{-}\right]+k_{48}\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]\left[\mathrm{OH}^{-}\right]-k_{50}[\mathrm{BrO} \bullet]\left[\mathrm{BrO}_{2}{ }^{-}\right]-k_{51}\left[\mathrm{Br}_{2}{ }^{\bullet}\right]\left[\mathrm{BrO}_{2}^{-}\right] \\
& -k_{57}\left[\mathrm{CO}_{3}{ }^{-{ }^{-}}\right]\left[\mathrm{BrO}_{2}{ }^{-}\right] \\
& \frac{d\left[\mathrm{BrO}_{3}^{-}\right]}{d t}=k_{36}\left[\mathrm{O}_{3}\right]\left[\mathrm{BrO}_{2}{ }^{-}\right]+k_{48}\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]\left[\mathrm{OH}^{-}\right]+k_{49}\left[\mathrm{BrO}_{2} \bullet\right][\mathrm{OH} \bullet] \\
& \frac{d[\mathrm{Br} \bullet]}{d t}=-k_{37}\left[\mathrm{O}_{3}\right][\mathrm{Br} \bullet]-k_{44}[\mathrm{Br} \bullet]\left[\mathrm{OBr}^{-}\right]-k_{52}[\mathrm{Br} \bullet]\left[\mathrm{Br}^{-}\right]+k_{53}\left[\mathrm{Br}_{2}^{\bullet-}\right] \\
& +k_{63}[\mathrm{BrOH} \bullet \cdot]\left[\mathrm{H}^{+}\right]+k_{65}[\mathrm{HOBr}]\left[\bullet \mathrm{O}_{2}^{-}\right]-k_{66}\left[\mathrm{BrOH}^{\bullet}\right]-k_{80}[\mathrm{Br} \bullet]\left[\mathrm{OH}^{-}\right] \\
& -k_{81}[\mathrm{Br} \bullet][\mathrm{NOM}]
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d[\mathrm{BrO} \bullet}{d t}=k_{37}\left[\mathrm{O}_{3}\right][\mathrm{Br} \bullet]+k_{38}[\mathrm{HO} \bullet][\mathrm{HOBr}]+k_{39}[\mathrm{HO} \bullet]\left[\mathrm{OBr}^{\bullet}\right]-k_{40}[\mathrm{BrO} \bullet][\mathrm{BrO} \bullet] \\
& +k_{44}[\mathrm{Br} \bullet]\left[\mathrm{OBr}^{-}\right]-k_{50}[\mathrm{BrO} \bullet]\left[\mathrm{BrO}_{2}{ }^{-}\right]+k_{51}\left[\mathrm{Br}_{2}{ }^{*}\right]\left[\mathrm{BrO}_{2}{ }^{-}\right]+k_{56}\left[\mathrm{CO}_{3}^{*}{ }^{\bullet}\right]\left[\mathrm{OBr}^{-}\right] \\
& \frac{d\left[\mathrm{Br}_{3}^{-}\right]}{d t}=-k_{41}\left[\mathrm{Br}_{3}^{-}\right]+k_{42}\left[\mathrm{Br}_{2}\right]\left[\mathrm{Br}^{-}\right]+k_{43}\left[\mathrm{Br}_{2}^{\bullet}\right]\left[\mathrm{Br}_{2}^{\bullet}\right]-k_{61}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{3}^{-}\right]-k_{62}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{Br}_{3}^{-}\right] \\
& \frac{d\left[\mathrm{Br}_{2}{ }^{\bullet-}\right]}{d t}=-k_{43}\left[\mathrm{Br}_{2}{ }^{--}\right]\left[\mathrm{Br}_{2}{ }^{-}\right]-k_{51}\left[\mathrm{Br}_{2}{ }^{\bullet}\right]\left[\mathrm{BrO}_{2}^{-}\right]+k_{52}[\mathrm{Br} \bullet]\left[\mathrm{Br}^{-}\right]-k_{53}\left[\mathrm{Br}_{2}{ }^{--}\right] \\
& +k_{69}\left[\mathrm{BrOH}^{\bullet}\right]\left[\mathrm{Br}^{-}\right] \\
& \frac{d\left[\mathrm{Br}_{2}\right]}{d t}=k_{41}\left[\mathrm{Br}_{3}^{-}\right]-k_{42}\left[\mathrm{Br}_{2}\right]\left[\mathrm{Br}^{-}\right]-k_{64}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{2}\right]-k_{67}\left[\mathrm{Br}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] \\
& +k_{68}[\mathrm{HOBr}]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \frac{d\left[\mathrm{Br}_{2}^{-}\right]}{d t}=k_{61}\left[\mathrm{HO}_{2} \bullet\right]\left[\mathrm{Br}_{3}^{-}\right]+k_{62}\left[\bullet \mathrm{O}_{2}^{-}\right]\left[\mathrm{Br}_{3}^{-}\right] \\
& \frac{d\left[\mathrm{BrO}_{2} \bullet\right]}{d t}=k_{45}[\mathrm{HO} \bullet]\left[\mathrm{BrO}_{2}^{-}\right]-k_{46}\left[\mathrm{BrO}_{2} \bullet\right]\left[\mathrm{BrO}_{2} \bullet\right]+k_{47}\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]-k_{49}\left[\mathrm{BrO}_{2} \bullet\right][\mathrm{OH} \bullet] \\
& +k_{50}[\mathrm{BrO} \bullet]\left[\mathrm{BrO}_{2}^{-}\right]+k_{57}\left[\mathrm{BrO}_{2}^{-}\right]\left[\mathrm{CO}_{3}^{-}\right] \\
& \frac{d\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]}{d t}=k_{46}\left[\mathrm{BrO}_{2} \bullet\right]\left[\mathrm{BrO}_{2} \bullet\right]-k_{47}\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]-k_{48}\left[\mathrm{Br}_{2} \mathrm{O}_{4}\right]\left[\mathrm{OH}^{-}\right] \\
& \frac{d\left[\mathrm{BrOH}^{-}\right]}{d t}=k_{54}[\mathrm{HO} \bullet]\left[\mathrm{Br}^{-}\right]-k_{55}\left[\mathrm{BrOH} \bullet^{-}\right]-k_{65}\left[\mathrm{BrOH}^{\bullet-}\right]\left[\mathrm{H}^{+}\right]-k_{66}\left[\mathrm{BrOH}^{\bullet-}\right] \\
& -k_{69}[\mathrm{BrOH} \bullet-]\left[\mathrm{Br}^{-}\right]+k_{80}\left[\mathrm{OH}^{-}\right][\mathrm{Br} \bullet] \\
& \frac{d\left[\mathrm{NH}_{2} \mathrm{Br}\right]}{d t}=k_{70}[\mathrm{HOBr}]\left[\mathrm{NH}_{3}\right]+k_{71}\left[\mathrm{OBr}^{-}\right]\left[\mathrm{NH}_{3}\right]-k_{72}\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{2} \mathrm{Br}\right] \\
& -k_{73}\left[\mathrm{NH}_{2} \mathrm{Br}\right]\left[\mathrm{NH}_{2} \mathrm{Br}\right]+k_{74}\left[\mathrm{NHBr}_{2}\right]\left[\mathrm{NH}_{3}\right]-k_{77}\left[\mathrm{NHBr}_{2}\right] 3\left[\mathrm{O}_{3}\right]+k_{79}\left[\mathrm{NH}_{2} \mathrm{Cl}\right]\left[\mathrm{Br}^{-}\right] \\
& -k_{82}\left[\mathrm{NH}_{2} \mathrm{Br}\right][\mathrm{NOM}] \\
& \frac{d\left[\mathrm{NHBr}_{2}\right]}{d t}=k_{73}\left[\mathrm{NH}_{2} \mathrm{Br}\right]\left[\mathrm{NH}_{2} \mathrm{Br}\right]-k_{74}\left[\mathrm{NHBr}_{2}\right]\left[\mathrm{NH}_{3}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \frac{d[\mathrm{HOCl}]}{d t}=-k_{75}[\mathrm{HOCl}]\left[\mathrm{Br}^{-}\right]-k_{78}[\mathrm{HOCl}]\left[\mathrm{NH}_{3}\right]-k_{83}[\mathrm{HOCl}][\mathrm{NOM}] \\
& \frac{d\left[\mathrm{OCl}^{-}\right]}{d t}=-k_{76}\left[\mathrm{OCl}^{-}\right]\left[\mathrm{Br}^{-}\right] \\
& \frac{d\left[\mathrm{Cl}^{-}\right]}{d t}=k_{75}[\mathrm{HOCl}]\left[\mathrm{Br}^{-}\right]+k_{76}\left[\mathrm{HOCl}^{-}\right]\left[\mathrm{Br}^{-}\right]+k_{79}\left[\mathrm{NH}_{2} \mathrm{Cl}\right]\left[\mathrm{Br}^{-}\right] \\
& \frac{d\left[\mathrm{NO}_{3}^{-}\right]}{d t}=k_{77}\left[\mathrm{NH}_{2} \mathrm{Br}\right] 3\left[\mathrm{O}_{3}\right] \\
& \frac{d\left[\mathrm{NH}_{2} \mathrm{Cl}\right]}{d t}=k_{78}[\mathrm{HOCl}]\left[\mathrm{NH}_{3}\right]-k_{79}\left[\mathrm{NH}_{2} \mathrm{Cl}\right]\left[\mathrm{Br}^{-}\right]-k_{85}\left[\mathrm{NH}_{2} \mathrm{Cl}\right][\mathrm{NOM}] \\
& \frac{d[\mathrm{NOM}]}{d t}=-k_{21}[\mathrm{NOM}][\mathrm{HO} \bullet]-k_{81}[\mathrm{NOM}][\mathrm{Br} \bullet]-k_{82}[\mathrm{NOM}][\mathrm{NH} 2 \mathrm{Br}]-k_{83}[\mathrm{NOM}][\mathrm{HOCl}] \\
& -k_{84}[\mathrm{NOM}][\mathrm{HOBr}]
\end{aligned}
\]

The equlibrium relationships implemented in this model are as follows:
\[
\begin{aligned}
& {\left[\mathrm{HO}_{2}^{-}\right]=\frac{\mathrm{K}_{1}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\bullet \mathrm{O}_{3}^{-}\right]=\frac{\mathrm{K}_{3}\left[\mathrm{HO}_{3} \bullet\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{OBr}^{-}\right]=\frac{\mathrm{K}_{18}[\mathrm{HOBr}]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{NH}_{3}\right]=\frac{\mathrm{K}_{22}\left[\mathrm{NH}^{+}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{OCl}^{-}\right]=\frac{\mathrm{K}_{25}[\mathrm{HOCl}]}{\left[\mathrm{H}^{+}\right]}}
\end{aligned}
\]
\[
\begin{aligned}
& {\left[\bullet \mathrm{O}_{2}^{-}\right]=\frac{\mathrm{K}_{59}\left[\mathrm{HO}_{2} \bullet\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{\mathrm{K}_{60}\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{HPO}_{4}^{2-}\right]=\frac{\mathrm{K}_{61}\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{HCO}_{3}^{-}\right]=\frac{\mathrm{K}_{62}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& {\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=\frac{\mathrm{K}_{63}\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}^{+}\right]}}
\end{aligned}
\]

The ordinary differential equations resulting from the substitution of above rate expressions into the mass balances are solved using a backward differentiation formula method (Gear's method) called DGEAR. DGEAR and the associated nuclei are adaptations of a package designed by A.C.Hindmarsh based on C.W.Gear's subroutine DIFSUB (Hindmarsh, 1974).

\section*{Reactor Specific Equations}

The mass balance for a species, "A", in a completely mixed batch reactor (CMBR) or a completely mixed flow reactor (CMFR) yields following two ordinary differential equations:
\[
\begin{aligned}
& \frac{\mathrm{dC}_{\mathrm{a}}}{\mathrm{dt}}=\mathrm{r}_{\mathrm{a}} \\
& \frac{\mathrm{dC}_{\mathrm{a}}}{\mathrm{dt}}=\frac{1}{\tau}\left(\mathrm{C}_{\mathrm{ao}}-\mathrm{C}_{\mathrm{a}}\right)+\mathrm{r}_{\mathrm{a}} \quad(\mathrm{CMFR})
\end{aligned}
\]

Where \(C_{\text {ао }}\) is the influent concentration of species \(A, C_{a}\) is the concentration of \(A\) at time \(t, \tau\) is the hydraulic retention time of the reactor, and \(r_{a}\) is the overall kinetic rate expression of the species A in the reaction system.

Model equations for a plug flow reactor (PFR) and a real flow reactor (RFR) which has mixing characteristics somewhere between CMFR and PFR, can also be solved using the DGEAR algorithm using a Tanks-in-Series model. The same rate expressions describing the kinetics of the \(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{UV}\) process can also be used for modeling a PFR or RFR. The program can determine how many tanks are needed for modeling PFR or RFR according to dye study data provided by you.

\section*{Kinetic Parameters}

The use of the AdOx software requires kinetic information and physicochemical properties of the target compounds. AdOx \({ }^{\mathrm{TM}}\) contains a database in which you can get information for more than 600 types of compounds. Kinetics parameters needed for the modeling are listed below.
- Dissociation constant(s) of the compound if dissociation(s) of that compound exists.
- Rate constants of the reaction between target compounds with \(\mathrm{OH}, \mathrm{HO}_{2}, \mathrm{O}_{2}^{*}\), radicals.
- Rate constants of the reaction between the dissociated formats of target compound with \(\mathrm{OH}, \mathrm{HO}_{2}, \mathrm{O}_{2}\) radicals (default as 0 if not applicable).

\section*{References}

Amichai, O.; Treinin, A. J.Phy.Chem. On the oxybromine radicals. 1970, 74, 3670-3674.
Amy, G.; Siddiqui, M.; Ozekin, K.; Zhu, H.W.; Wang, C. Empirically based models for predicting chlorination and ozonation by-products: Trihalomethanes, haloacetic acids, chloral hydrate, and bromated. EPA-815-R-98-005. 1998.

Beckwith, R.C.; Wang, T.X.; Margerum, D.W. Equilibrium and Kinetics of Bromine Hydrolysis. Inorg. Chem, 1996, 35, 995-1000.

Bielski,B.H.J.; Cabelli,D.E.;Arudi,R.L.; Ross, A.B. Reactivity of perhyroxyl/superoxide radicals in aqueous solution. J.Phys.Chem. Ref. Data, 1985, 14(4), 1041-100.

Bühler, R.E.; Staehelin, J.; Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. 1. \(\mathrm{HO}_{2} / \mathrm{O}_{2}-\) and \(\mathrm{HO}_{3} / \mathrm{O}_{3}{ }^{-}\)as intermediates. J. Phys. Chem. 1984, 88, 25602564.

Buffle, M-O.; Galli, S.; von Gunten, U. Enhanced bromated control during ozonation: The chlorine-ammonia process. Environ. Sci. \& Technol. 2004, 38, 5187-5195.

Buxton, G.V.; Greenstock, C.L.; Helman W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxy radical \((\cdot \mathrm{HO} / \cdot \mathrm{O}-)\) in aqueous solution. J.Phys.Chem. Ref. Data. 1988, 17(2), 513-886.

Buxton, G.V.; Dainton, F.S. The radiolysis of aqueous solutions of oxybromine compounds; the spectra and reactions of BrO and \(\mathrm{BrO}_{2}\). Proc. R. Soc. London A, 1968, 304, 427-439.

Buxton, G.V.; Elliot, A. J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions. Radiat.Phys.Chem. 1986, 27, 241-243.

Christensen, H.S.; Sehested, K.; Corftizan, H. Reaction of hydroxyl radicals with hydrogen peroxide at ambient temperatures. J.Phys. Chem. 1982, 86, 15-88.

Crapski, G.; Lymar, S.V.; Schwarz, H.A. Acidity of the carbonate radical. J.Phy.Chem A, 1999, 103, 3447-3450.

Gear, C.W. The automatic integration of ordinary differential equations. Comm. ACM. 1971, 14(3), 176-179.

Haag. W. R.; Hoigné, J. Ozonation of bormide-containing waters: Kinetics of formation of hypobromous acid and bromate. Environ. Sci. \& Technol. 1983, 17, 261-267.

Haag. W. R.; Hoigné, J.; Bader, H. Improved ammonia oxidation by ozone in the reference of bromide ion during water treatment. Wat. Res. 1984, 18, 1125-1128.

Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Holcman, J.; Sehested, K.; Bjergbakke, E.; Hart, E.J. Formation of ozone in the reaction between the ozonide radical ion, O3-, and the carbonate radical ion, CO3-, in aqueous alkaline solutions. J. Phys. Chem. 1982, 86, 2069-2072.

Johnson, H.D.; Cooper, W.J.; Mezyk, S.P.; Bartels, D.M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. Radiat.Phys.Chem. 2002, 65, 317-326.

Judith,W.; Bielski, B.H.J. Kinetics of the interaction of HO 2 and O2- radicals with hydrogen peroxide. J.Am.Chem. Soc. 1979, 101, 58-62.

Kläning, U.K.; Wolff,T. Laser flash photolysis of HCIO, CIO-, HBrO , and BrO in aqueous solution. Reactions of Cl- and Br atoms. Ber.Bunsen-Ges. Phy.Chem, 1985, 89, 243-245.

Koppenol, W.H.; Butler, J.; Leeuwen, V.; Johan, W.L. The Harber-Weiss cycle. Photochem.Photobiol. 1978, 655-660.

Kumar, K.; Margerum, D.W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorg.Chem. 1987, 26, 2706-2711.

Mamou, A.; Rabani,J.; Behar, D. On the oxidation of aqueous Br- by OH radicals, studied by pulse radiolysis. J. Phy. Chem, 1977, 81, 1447-1448.

Maruthamuthu, P.; Neta, P. Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds. J. Phy.Chem. 1978, 82(6), 710-713.

Morris, J.C.; Isaac, R.A. In Water Chlorination: Environmental Impact and Health Effects; Jolly, R.L., Brungs, W.A., Cotruvo, J.A., Cumming, R.B., Mattice, J.S., Jacobs V. A., Eds; Ann Arbor Science: Ann Arbor, MI, 1983; Vol. 4, pp 49-62.

Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solutions. J.Phy.Chem. Ref. Data, 1988, 17, 1027-1284.

Nicoson, J.S.; Wang,L.; Becker, R.H.; Huff Hartz, K.E.; Muller, C.E.; Margerum, D.W. Kinetics and mechanisms of the ozone/bromide and ozone/chlorite reactions. Inorg. Chem. 2002, 41, 2975-2980.

Peyton, G.R. Guidelines for the Selection of a Chemical Model for Advanced Oxidation Processes. A symposium on advanced oxidation processes for the treatment of contaminated water and air (proceedings) June 4\&5, 1990, Toronto.

Pinkernell, U.; von Gunten, U. Bromate minimization during ozonation: Mechanistic considerations. Environ.Sci. \& Technol. 2001, 35, 2525-2531.

Schwarz, H.A.; Bielski, B.H. Reactions of \(\mathrm{HO}_{2}\) and \(\mathrm{O}_{2}\) - with iodine and bromine and the \(\mathrm{I}_{2}\) - and I atom reduction potentials. J.Phy.Chem. 1986, 90, 1445-1448.

Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J. A pulse radiolytic study of the reaction \(\mathrm{OH}+\mathrm{O}_{3}\) in aqueous medium. J.Phy.Chem, 1984, 88, 4144-4147.

Sehested, K.; Rasmussen, O.L.; Fricke,H. Rate constants of OH with \(\mathrm{HO}_{2}, \mathrm{O}_{2}\) - and \(\mathrm{H}_{2} \mathrm{O}_{2}+\) from hydrogen peroxide formation in pulse-irradiated oxygenated water. J.Phys.Chem. 1968, 72, 626-631.

Sidgwick, N.V. The Chemical Elements and Their Compounds: Vol. II; Oxford Press: Oxford, 1952.

Sohn, J.; Amy, G.; Cho, J.; Lee, Y.; Yoon, Y. Disinfectant decay and disinfection byproducts formation model development: chlorination and ozonation by-products.
Wat.Res. 2004, 38, 2461-2478.
Staehelin, J.; Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. \&Technol. 1982, 16, 676-681.

Stumm, W.; Morgan, J.J. Aquatic Chemistry. John Wiley \& Sons, Inc. \(3^{\text {rd }}\) ed. 1996, New York.

Trofe, T.W.; Inman, G.W.,Jr.; Johnson, J.D. Kinetics of monochloramine decomposition in the presence of bromide. Environ.Sci.\& Technol. 1980, 14, 544-549.
von Gunten, U.; Oliveras, Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. Environ.Sci. \& Technol. 1998, 32, 63-70.
von Gunten, U.; Oliveras, Y. Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Wat. Res. 1997, 31(4), 900-906.
von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. Environ.Sci. \& Technol. 1994, 28, 1234-42.

Wajon, J.E.; Morris, J.C. Rates of formation of N-bromo amines in aqueous solution. Inorg.Chem. 1982, 21, 4258-4263.

Westerhoff, P.; Chao,P.; Mash, H. Reactivity of natural organic matter with aqueous chlorine and bromine. Wat.Res. 2004, 38, 1502-1513.

Westerhoff, P.; Mezyk, S.P.; Cooper, W,J.; Minakata, D. Electron pulse radiolysis determination of hydroxyl radical rate constants with suwanee river fulvic acid and other dissolved organic matter isolates. Environ. Sci. \& Technol, 2007, 41, 4640-4646.

Westerhoff, P.; Song, R.; Amy, G.; Minear, R. Application of ozone decomposition models. Ozone Sci \& Eng. 1997, 19, 55-73.

Zehavi, D.; Rabani,J. The oxidation of aqueous bromide ions by hydroxyl radicals. A pulse radiolytic investigation. J.Phy.Chem. 1972, 76, 312-319.

Haag, W.R.; Hoigné, J. Ozonation of bromide-containing waters: Kinetics of formation of hypobrmous acid and bromated. Environ. Sci. \& Technol. 1983, 17, 261-267.
von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. Environ. Sci. \& Technol. 1994, 28, 1234-1242.
von Gunten, U.; Oliveras, Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. Environ. Sci. \& Technol. 1998, 32, 63-70.

Pinkernell, U.; von Gunten, U. Bromate minimization during ozonation: Mechanistic consideration. Environ. Sci. \& Technol. 2001, 35, 2525-2531.

Westerhoff, P.; Song, R.; Amy, G.; Minear, R. Numerical kinetic models for bromide oxidation to bromine and bromated. Wat.Res. 1998, 32(5), 1687-1699.

Westerhoff, P.; Ozekin, K.; Siddiqui, M.; Amy, G. Kinetics modeling of bromated formation in ozonated waters: Molecular ozone versus HO• radical pathways. J.AWWA. 1994, 901-920.

\section*{VITA}

\section*{Daisuke Minakata}

Daisuke Minakata was born in Wakayama, Japan. He attended School of Global Enginnering and received a B.A., and Environmental Engineering, Graduate School of Engineering and received a M.A. from Kyoto University, Japan. He began with his Ph.D. program at the Department of Civil and Environmental Engineering, Arizona State University in Fall, 2005. He transferred to the Department of Civil and Environmental Engineering, Georgia Institute of Technology in Spring, 2009. He loves swimming, biking and running. He enjoys playing with a dog, Kuro.```

