DEVELOPMENT OF AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS PREDICTORS FOR ADVANCED OXIDATION PROCESSES

A Dissertation Presented to The Academic Faculty

by

Daisuke Minakata

In Partial Fulfillment of the Requirements for the Degree of Engineering in the School of Civil and Environmental Engineering

> Georgia Institute of Technology December, 2010

COPYRIGHT 2010 BY DAISUKE MINAKATA

DEVELOPMENT OF AQUEOUS PHASE HYDROXYL RADICAL

REACTION RATE CONSTANTS PREDICTORS FOR ADVANCED OXIDATION PROCESSES

Approved by:

Dr. John C. Crittenden, Advisor School of Civil and Environmental Engineering *Georgia Institute of Technology*

Dr. Jae-Hong Kim School of Civil and Environmental Engineering *Georgia Institute of Technology*

Dr. Ching-Hua Huang School of Civil and Environmental Engineering *Georgia Institute of Technology* Dr. James Mulholland School of Civil and Environmental Engineering *Georgia Institute of Technology*

Dr. David Sherrill School of Chemistry and Biochemistry *Georgia Institute of Technology*

Date Approved: July 16th, 2010

To my mother and deceased father

ACKNOWLEDGEMENTS

First of all, I would like to thank my adviser, Dr. John Crittenden, very much for his tremendous supports and advices to me. He has been my coach over the course of my doctorate study years who told me to be a super-athlete. Though I may not be a superathlete just yet, I could not have made any progresses without his support. I would also like to thank other committee members at Georgia Tech: Dr. Jae-Hong Kim for his continuous encouragement, Dr. David Sherrill for his technical advices in quantum mechanical calculations, Dr. Ching Hua-Huang and Dr. James Mulhold for their constructive advices.

My appreciation extends to my former committee members at Arizona State University: Dr. Ke Li who is now at the University of Georgia for his mentor and advisement in research as well as in carrier, and Dr. Paul Westerhoff from ASU for his technical advices and collaborations in research.

I would like to include following names in appreciation for providing high performance computing resources: Drs. Karsten Schwan, Mattew Wolf and Chad Huneycutt from College of Computing at Georgia Tech; Drs. Ron Huchinsons and Neil Bright from Georgia Tech Office of Information Technology; Drs. Dan Stantione and Doug Fuller from ASU HPC. I also appreciate the IT support from CEE IT services from Georgia Tech: James Martino and Mike Anderson.

Following individuals helped me with experiments: Ryan Ravenelle from Georgia Tech for his technical advices and support, and his friendship; Dr. Weihua Song from University of California, Irvine for his tremendous assistance for arranging experiments and overcoming experimental difficulties; Ryan Lisk from Environmental Health Service

iv

at Georgia Tech for shipment of hazardous chemical materials. Thank you so much, folks.

I also appreciate others in research group at Georgia Tech as well as at ASU.

Faculty and Staff at Brook Bayer Institute for Sustainable Systems encouraged me and helped me with business prospect: Dr. Michael Chang, Dr. Ming Xu, Martha Lindsay, Christy Shannon, and Brent Verrill. Thank you.

I would like to acknowledge the following foundations, institutes and assistantships for their funding supports: National Science Foundation; Brook Bayer Institute for Sustainable Systems; High Tower Chair and Georgia Research Alliance at Georgia Tech; University of Notre Dame Radiation Center and Department of Energy; Richard Snell Chair at ASU.

My deepest gratitude goes to my family; my mother, sister, brother, uncle, aunt, and grandparents. My mother, Chiaki, always supports my decision and encourages me to move forward. Reminiscence of my deceased father still influences me in many ways to live everyday strong as well. Finally, I appreciate the continuous support with tremendous love from my favorite person, Ayako.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iv
LIST OF TABLES	ix
LIST OF FIGURES	xi
SUMMARY	xiv

CHAPTER 1	1
INTRODUCTION	
 1.1 SIGNIFICANCE AND OBJECTIVES 1.2 STRUCTURE OF THIS DISSERTATION 1.3 LITERATURE CITED 	1 10 11
CHAPTER 2	16
DEVELOPMENT OF A GROUP CONTRIBUTION METHOD TO PREDICT	
AQUEOUS PHASE HYDROXYL RADICAL REACTION RATE CONSTANTS	
2.1 Abstract	17 18
2.3 DEVELOPMENT OF THE GROUP CONTRIBUTION METHOD	22
2.3.1 Hydrogen-atom Abstraction	23
2.3.2 HO• Addition to Alkenes	26
2.3.3 HO• Addition to Aromatic Compounds	29
2.3.4 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-atom-containing	21
2.4 REGULTS AND DISCUSSION	31 22
2.4 RESULTS AND DISCUSSION	32
2.4.1 Constants	40
2.4.3 Hydrogen-Atom Abstraction from Saturated Aliphatic Compounds	43
2.4.3.1 Group Rate Constants for H-atom Abstraction.	.44
2.4.3.2 Group Contribution Factors for H-atom Abstraction	46
2.4.4 HO• Addition to Alkenes	50
2.4.4.1 Group Rate Constants and Group Contribution Factors for HO• Addition	n
to Alkenes.	50
2.4.5 HO• Addition to Aromatic Compounds	52
2.4.5.1 Group Rate Constants for HO• Addition to Aromatic Compounds	55

2.4.5.2 Group Contribution Factors for HO• Addition to Aromatic Compoun	ds. 58
compounds	59
2.4.6.1 Group Rate Constants for HO• Interaction	60
2.4.6.2 S- N- or P-atom-Containing Group Contribution Factors	00
2.4.7 Predictabilities of GCM and Future Studies	62
2.5 ACKNOWLEDGEMENT	68
2.6 Appendices	68
2.7 LITERATURE CITED	68
CHAPETER 3	74
I INEAR EREE ENERGY RELATIONSHIPS RETWEEN AQUEQUS PHASE	
HYDROXYL RADICAL REACTION RATE CONSTANTS AND FREE ENERGY ACTIVATION	C OF
3.1 Abstract	75
3.2 INTRODUCTION	75
3.3 LINEAR FREE ENERGY RELATIONSHIPS	87
3.4 COMPUTATIONAL METHODS	89
3.5 RESULTS AND DISCUSSION	92
3.5.1 A Comparison of Ab initio Quantum Mechanical Methods for HO• + Cl	H4 in
the Gaseous Phase	92
3.5.2 Verifications of Ab initio Quantum Mechanical Methods for the Gaseou	IS
Phase HO• Reactions	96
3.5.3 A Comparison of Implicit Solvation Models	98
3.5.4 Linear Free Energy Relationships between Aqueous Phase Free Energy	of
Activation and Logarithm of HO• Reaction Rate Constant	101
3.6 ACKNOWLEDGEMENT	113
3.7 Appendices	113
3.8 LITERATURE CITED	113
CHAPTER 4	126
QUANTITATIVE UNDERSTANDING OF AQUEOUS PHASE HYDROXYL RADICAL REACTIONS WITH HALOACETATE IONS: EXPERIMENTAL AND THEORETICAL STUDIES	
4.1 Abstract	127
4.2 INTRODUCTION	128
4.3 Methods	133
4.3.1 Experimental	133
4.3.1.1 Linear Accelerator (LINAC)	133
4.3.1.2 Flow Cell	135
4.3.1.3 Radiolysis of Water	136
4.3.1.4 Competition Kinetics	138
4.3.1.5 Procedures	139
4.3.1.6 Thermochemical Properties	. 140
4.3.2 Group Contribution Method	142

4.3.3 Theoretical Basis	
4.3.4 Linear Free Energy Relationships	145
4.4 RESULTS AND DISCUSSION	147
4.4.1 Experimental Section	147
4.4.1.1 Hydroxyl Radical Reaction Rate Constants	147
4.4.1.2 Arrhenius Parameters	150
4.4.1.3 Thermochemical Properties of Reactions	
4.4.2 Update of Group Contribution Method	154
4.4.3 THEORETICAL	156
4.4.3.1 <i>Ab</i> initio Quantum Mechanical Approach	156
4.4.3.2 Optimized Structure of Stationary, Pre-reactive Complex and T	ransition
States	161
4.4.3.3 Linear Free Energy Relationships	164
4.4.3.4 Entropy Contribution	165
4.4.3.5 Charge Distribution and Reaction Mechanisms	
4.4.3.6 Addition of Explicit Water Molecules	
4.5 CONCLUSIONS	
4.6 ACKNOWLEDGEMENT	
4. / APPENDICES	
4.8 LITERATURE CITED	180
CHAPTER 5	
IMPLICATIONS AND FUTURE STUDIES	
APPENDIX A	196
APPENDIX B	203
APPENDIX C	242
APPENDIX D	254
APPENDIX E	260
APPENDIX F	316
APPENDIX G	344
VITA	

LIST OF TABLES

Table 2.1: Calculated HO• reaction rate constants (Normal: calculated, <u><i>Italic</i></u> : predicted, Bold : error is out of the EG) as compared to literature-reported experimental values34
Table 2.2: Summary of experimental data and statistical results for calibration42
Table 2.3: Summary of experimental data and statistical results for prediction
Table 2.4: Group rate constants and group contribution factors for H-atom abstraction48
Table 2.5: Summary of the structural configurations in equation (2.13) based on the experimental rate constants
Table 2.6: Group rate constants and group contribution factors for HO• addition to alkenes. .52
Table 2.7: Summary of structural configurations in equation (2.17) based on theexperimental rate constants with aromatic compounds
Table 2.8: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include benzene rings
Table 2.9: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include pyridine
Table 2.10: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include furan
Table 2.11: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include imidazole
Table 2.12: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include triazine
Table 2.13: Group rate constants and group contribution factors for S, N, and P-atom containing compounds
Table 2.14: Predicted HO• reaction rate constants for emerging contaminants
Table 3.1: Number of available experimental rate constants in the aqueous phase AOPs on the basis of the extensive literature review
Table 3.2: Summary of theoretical studies of gaseous phase HO• reactions

Table 3.3: A comparison of Ab initio quantum mechanical methods for the gaseous phasereaction of HO• with CH4
Table 3.4: Calculated energy barrier for the gaseous phase reactions of HO• with CH ₃ OH, CH ₃ CHO, CH ₃ OCH ₃ , CH ₃ COCH ₃ , CH ₃ COOH, CH ₃ F, CH ₃ Cl and CH ₃ Br, and the literature-reported values
Table 3.5: Calculated $\Delta G^{\neq}_{rxn,aq}$, tunneling factor and literature reported HO• reaction rateconstants for the H-atom102
Table 3.6: Calculated $\Delta G^{\neq}_{rxn,aq}$, tunneling factor and literature reported HO• reaction rateconstants for the HO• addition to alkenes
Table 3.7: Calculated diffusion coefficients, radius of molecule and diffusion rate constants. 109
Table 4.1: Experimentally obtained temperature-dependent HO• rate constants and thermochemical properties, and theoretically calculated free energies of activation148
Table 4.2: Calibrated group rate constants and group contribution factors
Table 4.3: Molecules and rate constants that were used for the calibration
Table 4.4: Calculated gaseous and aqueous phase barrier height and free energy of activation. 160
Table 4.5: Geometry of HO• and H2O.162
Table 4.6: Geometry of acetate and halogenated acetate
Table 4.7: Geometry of transition states for the reaction of HO• with halogenated acetate
Table 4.8: Calculated cavitation entropy of activation, change in cavity volume, nonelectrostatic energy of activation and experimentally obtained entropy of activation

LIST OF FIGURES

Figure 1.1: Skeleton of the modules and placement of this study4
Figure 1.2: General reaction mechanisms that is induced by HO•5
Figure 1.3: Comparison of Henry's constant, log K _{OW} , and HO• rate constants for 87 organic compounds: \Box : the magnitude of k_{HO} is $10^{7\text{th}}$ order, $\circ:10^{8\text{th}}$ order $\Delta: 1.0 \sim 5.0 \times 10^9$, $\blacktriangle: \sim 5.0 \times 10^9$ and $\times:$ unknown rate constants calculated by the group contribution method.
Figure 2.1: Comparison of the aqueous and gaseous phase HO• reaction rate constants. The unit of the gaseous phase rate constant was converted from 1/molecule/cm ³ /s to 1/M/s
Figure 2.2: The experimental HO• reaction rate constants as a function of the number of – CH_2 - alkyl functional group for some functional groups. The chemical formula is expressed as CH_3 - $(CH_2)_n$ -R, where R is – CH_3 , -OH, -COOH, -NH ₂ , -CN, -CHO, -Cl, and –Br, for alkane, alcohol, carboxylic, amine, cyano, aldehyde, chlorine, and bromine, respectively, and <i>n</i> is the number of – CH_2 - alkyl functional groups. *There are only two rate constants available for – $C1$
Figure 2.3: Total of 434 HO• reaction rate constants from calibrations and predictions versus experimental rate constants for four reaction mechanisms. Error bars represent the range of experimentally reported values
Figure 2.4: Comparison of the group contribution factors for H-atom abstraction with the Taft constant, $\sigma^*[60]$. Group contribution factors include •: alkyl, oxygenated, and halogenated functional groups, \blacktriangle : S-, N-, or P-atom containing functional groups49
Figure 2.5: Comparison of the group contribution factors for HO• addition to aromatic compounds with electrophilic substituent parameter, σ +, (Karelson, 2000) (right). Figure includes the group contribution factors for benzene (■), pyridine (●), and furan compounds (▲). The σ * of [-CHCl ₂], [-CO], [-COO, COOH], [-S-, -SSHS-], [-NH ₂ , -NH-, -N<] is an average of [CH ₂ Cl, CH ₂ Br, CHCl ₂ , CHBr ₂], [COCH ₃ , COC ₂ H ₅ , COC(CH ₃) ₃ , COC ₆ H ₅ , COF, COCI], [COOH, COOC ₂ H ₅], [SCH ₃ , SC ₂ H ₅ , SCH(CH ₃) ₂], and [NHCH ₃ , NH(CH ₂) ₃ CH ₃ , N(C ₂ H ₅) ₂], respectively. The σ * of [-SO] and [-N-CO-] refer to [S(O)CH ₃] and [NHCOC ₆ H ₅], respectively.
Figure 3.1: Relationship between the logarithm of aqueous phase k_{HO} and calculated energy gap of HOMO-SOMO for 477 compounds
Figure 3.2: A comparison of calculated barrier height for the $CH_4 + HO$ •94
Figure 3.3: A plot of calculated free energy of solvation against experimental free energy of salvation

Figure 3.4: Log $k_{\rm I}$ – log $k_{\rm R}$ versus $\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$ for the H-atom abstraction from the C-H bond by HO•. The error bar represents the range of the literature-reported experimental rate constants
Figure 3.5: Log $k_{\rm I}$ – log $k_{\rm R}$ versus $\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$ HO• addition to alkenes. The error bar represents the range of the literature-reported experimental rate constants
Figure 3.6: Plot of the ratio, $R(=k_{exp}/k_D)$, versus calculated free energy of activation108
Figure 3.7: Plot of predicted HO• rate constants against the literature-reported experimental rate constants. The error bar represents the range of the literature-reported experimental rate constants. 110
Figure 4.1: Schematic picture of waters distributed in the cavity, first solvation shell and bulk phase for transition state for the reaction of HO• with acetate. Dotted line represents the hydrogen bond
Figure 4.2: Overall system of Linear Electron Accelerator (LINAC)134
Figure 4.3: Kinetics of $(SCN)_2^{\bullet}$ formation at 472 nm for N ₂ O saturated 3.00×10^{-4} M KSCN solution containing 0 (∇), 1.56 (\diamond), 2.41(∇), 3.48(Δ), and 5.01 (\circ) mM ClCH ₂ COO ⁻
Figure 4.4: Competition kinetics plots for hydroxyl radical reaction with chloroacetate, dichloroacetate and trichloroacetate, respectively, using SCN ⁻ as a standard. The error bar represents 95% of confidential values
Figure 4.5: Plot of logarithm of <i>k</i> versus inverse of temperature
Figure 4.6: LFERs obtained from experiments, calculations at G4 and the SMD solvation model, and calculations that include two explicit water molecules. 1: formate; 2: propionate; 3: malonate; 4: succinate; 5: chloroacetate; 6: difluoroacetate; 7: dibromoacetate; 8: pyruvate; 9: dichloroacetate; 10: acetate; 11: glyoxylate; 12: trichloroacetate; 13: tribromoacetate; 14: iodoacetate; 15: lactate (note that the compound # is consistent for other Figures though this chapter)
Figure 4.7: Isokinetic relation between the experimentally obtained enthalpy and entropy of activation
Figure 4.8: Comparison of calculated and experimental free energy of solvation for ionized compounds
Figure 4.9: Schematic picture of acetate with R functional group162

Figure 4.10: Schematic picture of pre-reactive complex between HO• with acetate, R is functional group
Figure 4.11: Schematic picture of transition state between HO• with acetate, R is functional group
Figure 4.12: Experimentally obtained free energies of entropies versus theoretically calculated change in cavity, ΔV_{cav} , Å ³ , and non-electrostatic energy of activation at G4 with the SMD model for series of acetate
Figure 4.13: Charge distributions of reactants, transition states and products for the gaseous and aqueous phases HO• reactions with acetate
Figure 4.14: Charge distributions of reactants, transition states and products for the aqueous phases HO• reactions with halogenated acetate
Figure 4.15: Comparison of observed barrier height for the reactions of HO• with a series of halogenated acetates in the absence of presence of explicit water molecule(s). Note that the transition state of the reaction of HO• with $CHCl_2COO^-$ could not be located174
Figure 4.16: Optimized transition state for the reaction of HO• with chloroacetate in the presence of explicit water molecule(s)
Figure 4.17 : Charge distributions of reactants, transition states and products for the aqueous phases HO• reactions with chloroacetate in the absence and presence of explicit water molecule(s). The transition state in the presence of one explicit water molecule shows three conformations
Figure 5.1: Aqueous phase free energy change profiles for the reactions that are initiated by HO•
Figure 5.2: Aqueous phase free energy change profiles for 1,2-H shift reaction of oxyl radical in the absence or presence of a water molecule
Figure 5.3: Aqueous phase free energy change profiles for hydrolysis reaction of formaldehyde with one and two water molecules assisted

SUMMARY

Emerging contaminants are defined as synthetic or naturally occurring chemicals or microorganisms that are not currently regulated but have the potential to enter the environment and cause adverse ecological and/or human health effects. With recent development in analytical techniques, emerging contaminants have been detected in wastewater, source water, and finished drinking water. These environmental occurrence data have raised public concern about the fate and ecological impacts of such compounds. Concerns regarding emerging contaminants and the many chemicals that are in use or production necessitate a task to assess their potential health effects and removal efficiency during water treatment.

Advanced oxidation processes (AOPs) are attractive and promising technologies for emerging contaminant control due to its capability of mineralizing organic compound via reactions with highly active hydroxyl radicals. However, the nonselective reactivity of hydroxyl radicals and the radical chain reactions make AOPs mechanistically complex processes. In addition, the diversity and complexity of the structure of a large number of emerging contaminants make it difficult and expensive to study the degradation pathways of each contaminant and the fate of the intermediates and byproducts. The intermediates and byproducts that are produced may pose potential effects to human and aquatic ecosystems. Consequently, there is a need to develop first-principle based mechanistic models that can enumerate reaction pathway, calculate concentrations of the byproducts, and estimate their human effects for both water treatment and reuse practices.

This dissertation develops methods to predict reaction rate constants for elementary reactions that are identified by a previously developed computer-based

xiv

reaction pathway generator. Many intermediates and byproducts that are experimentally identified for HO• induced reactions with emerging contaminants include common lower molecular weight organic compounds on the basis of several carbons. These lower carbon intermediates and byproducts also react with HO• at relatively smaller reaction rate constants (i.e., $k < 10^9 \text{ M}^{-1}\text{s}^{-1}$) and may significantly affect overall performance of AOPs. In addition, the structures of emerging contaminants with various functional groups are too complicated to model. As a consequence, the rate constant predictors are established based on the conventional organic compounds as an initial approch.

A group contribution method (GCM) predicts the aqueous phase hydroxyl radical reaction rate constants for compounds with a wide range of functional groups. The GCM is a first comprehensive tool to predict aqueous phase hydroxyl radical reaction rate constants for reactions that include hydrogen-atom abstraction from a C-H bond and/or a O-H bond by hydroxyl radical, hydroxyl radical addition to a C=C unsaturated bond in alkenes and aromatic compounds, and hydroxyl radical interaction with sulfur-, nitrogen-, or phosphorus-atom-containing compounds. The GCM shows predictability; factor of difference of 2 from literature-reported experimental values. The GCM successfully predicts the hydroxyl radical reaction rate constants for a limited number of emerging contaminants.

Linear free energy relationships (LFERs) bridge a kinetic property with a thermochemical property. The LFERs is a new proof-of-concept approach for *Ab initio* reaction rate constants predictors. The kinetic property represents literature-reported and our experimentally obtained hydroxyl radical reaction rate constants for neutral and ionized compounds. The thermochemical property represents quantum mechanically

XV

calculated aqueous phase free energy of activation. Various *Ab initio* quantum mechanical methods and solvation models are explored to calculate the aqueous phase free energy of activation of reactantas and transition states. The quantum mechanically calculcated aqueous phase free energies of activation are within the acceptable range when compared to those that are obtained from the experiments. These approaches may be applied to other reaction mechanisms to establish a library of rate constant predictions for the mechanistic modeling of AOPs. The predicted kinetic information enables one to identify important pathways of AOP mechanisms that are initiated by hydroxyl radical, and can be used to calculate concentration profiles of parent compounds, intermediates and byproducts. The mechanistic model guides the design of experiments that are used to examine the reaction mechanisms of important intermediates and byproducts and the application of AOPs to real fields.

CHAPTER 1

INTRODUCTION

1.1 Significance and Objectives

Emerging contaminants are defined as synthetic or naturally occurring chemicals or microorganisms that are not currently regulated but have the potential to enter the environment and cause adverse ecological and/or human health effects. With recent improvements in analytical techniques (Richardson, 2009; 2004; 2003; 2001; Richardson and Ternes, 2005; Pertović et al., 2003; Koester et al., 2003; Vanderford et al., 2003), emerging contaminants have been detected in wastewater, source waters, and finished drinking water (Benotti et al., 2009; Pedersen et al., 2005; Kolpin et al., 2002). Several surveys on emerging contaminants found relatively high residual levels in the environment presumably due to runoff and discharge of municipal and industrial wastewater effluents (Phillips et al., 2010; USGS, 2009; Benotti et al., 2008; Conn, et al., 2006; Kolpin et al., 2002; Snyder et al., 2001; Halling-Sorensen et al., 1998). These environmental occurrence data have raised public concern about the fate and ecological impacts of such compounds (Bruce et al., 2010; Hayes et al., 2010; Snyder, 2008; Snyder et al., 2007; RNRF, 2006; Schwarzenbach et al., 2006; NRC, 1999). As a result of their ubiquity and persistence in the environment, it is an urgent task to assess their potential health effects and removal efficiency during water treatment.

Chemical oxidation and reduction processes have been used for many years to treat potable water, wastewater, contaminated groundwater, and various industrial wastewater streams. Several technologies that have shown promise to destroy many of the emerging organic contaminants in water are the so-called advanced oxidation

processes (AOPs) (e.g., hydrogen peroxide with ultraviolet photolysis (UV/H₂O₂), ozone with hydrogen peroxide (O₃/H₂O₂), titanium dioxide with ultraviolet photolysis (TiO₂/UV)), which produce highly reactive hydroxyl radical (HO•) at room temperature and atmospheric pressure (Hoigné, 1998; Glaze and Kang, 1989; Glaze et al., 1987). The HO• is an electrophile that reacts rapidly and non-selectively with most electron-rich organic compounds, and is capable of mineralizing organic compound via radical chain reactions. The reported second-order HO• reaction rate constants for most organic contaminants in water are on the order of 10^7 - 10^9 Lmol⁻¹s⁻¹ (Buxton et al., 1988; Farhataziz and Ross, 1977), which are approximately three or four orders of magnitude higher than those of conventional oxidants employed in water treatment (Ikehata and Gamal El-Din, 2005a,b; von Gunten, 2003a; Deborde and von Gunten, 2008; Lee et al., 2008).

AOPs are attractive technologies that may be used to control the emerging contaminants; however, the nonselective reactivity of HO• and the radical chain reactions make AOPs mechanistically complex processes. In addition, the diversity and complexity of structure of a large number of emerging contaminants make AOPs difficult and expensive to study the degradation pathways of each contaminant and the fate of the intermediates and byproducts. For example, trichloroethylene (TCE) (Li et al., 2007; 2004), acetone (Stefan and Bolton, 1999), *para*-dioxane (*p*-dioxane) (Stefan and Bolton, 1998), and methyl *tert*-butyl ether (M*t*BE) (Stefan et al., 2000) destruction using UV/H₂O₂ and M*t*BE destruction using O₃/ H₂O₂ (Kang et al., 1999; Liang, et al., 1998) have been examined in detail. These studies shed light on the detailed elementary reactions and the radical pathways in AOPs but are limited to only these contaminants.

The intermediates and byproducts that are produced may pose potential effects to human and aquatic ecosystems (Dodd et al., 2009). As a consequence, there is a need to develop a first-principle based mechanistic model that can enumerate reaction pathway, calculate concentrations of intermediates and byproducts, and estimate intermediates and byproducts and their human health effects for both water treatment and reuse practices. The increasing concerns about emerging contaminants make this requirement more urgent.

Figure 1.1 displays a basic flow diagram of the overall methodology for this work. The reaction pathway generator will enumerate all reaction possibilities that are based on the known reaction rules (see below for these). Either rate constant calculation or toxic screening modules will simplify the pathways by selecting reactions that have smaller reaction rates and intermediates that have high toxicity. Algorithms that can predict the reaction rate constants assign rate constants to the selected pathways. An algorithm will solve the ordinary differential equations (ODEs). The DGEAR algorithm (Hindmarsh and Gear, 1974) was successfully used to solve the ODEs for the UV/H₂O₂ kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). Solving these ODEs will simulate the concentration profiles of the parent compound, the selected intermediates, and final byproducts. Although detailed procedures vary for each module, Phaendtner and Broadbelt (2008a) demonstrated mechanistic modeling of the degradation of lubricating oils during the process of condensed-phase hydrocarbon autoxidation based on the automated mechanisms generation and structure-reactivity relationships (Phaendtner and Broadbelt, 2008b; 2007).

Figure 1.1: Skeleton of the modules and placement of this study

In previous research, a computerized pathway generator that predicts the degradation pathways by the HO• initiated chain reactions in AOPs was developed (Li and Crittenden, 2009). The model was based on the general reaction rules that were discovered during past experimental research (Stefan et al., 2000; Stefan and Bolton, 1998; 2000; Bolton and Carter, 1994) as shown in Figure 1.2. Accordingly, the pathway generator enumerates possible intermediates and their associated reactions that are not able to be detected in the experiments. For example, the generated pathway for ethane contains 137 intermediates (molecules and radicals) and 3367 reactions. Some organic intermediate compounds (e.g. carboxylic acids) have lower reaction rate constants with HO• (i.e. 10^{6} - 10^{7} Lmol⁻¹s⁻¹) than the parent compounds. These intermediates require longer retention times and might impose potential risks to human health (e.g., haloacetic acids). In order to calculate the concentration profile, it is critical to utilize the reaction rate constants and the toxicity of intermediates that are predicted by the rate constant predictor and toxicity estimator, respectively, to include only important pathways.

Figure 1.2: General reaction mechanisms that is induced by HO•

The complexity of the pathway requires an algorithm that can calculate the rate constant to establish a library of reaction rate constant predictors for mechanistic modeling. Practically, although HO• reaction rate constants for many compounds have been measured experimentally and compiled in the critical review (Buxton et al., 1988), measuring the reaction rate constants for exited chemical compounds and many intermediates in different reaction mechanisms is far from complete. Greater than 50 million chemical compounds have been registered in chemical abstract services (CAS, 2010) and more than 40 million chemicals are commercially available (CAS, 2010), and concerns about emerging contaminants makes the task even more challenging if not impossible. In addition, no apparent consistent relations are observed between the rate constants and general physical chemical properties (e.g., Kow, Henry's constant). For example, Figure 1.3 plots Henry's constant and log Kow of 87 Contaminant Candidate List 3 organic compounds associated with literature-reported experimental HO• reaction rate constants. Adding to the difficulty of estimating the reaction rate constants, a compound generally reacts with HO• via several elementary reactions. The measured reaction rate constants are overall rate constants instead of the rate constants for specific elementary reactions that are generated by the pathway generator. It should be noted that many intermediates and byproducts that are experimentally identified for reactions of HO• with emerging contaminants include common lower molecular weight organic compounds on the basis of several carbons (Cooper et al., 2009; Stefan et al., 2000; Stefan and Bolton, 1998; 2000). Considering that these lower carbon intermediates and byproducts also react with HO• at relatively smaller reaction rate constants (i.e., $k < 10^9$ $M^{-1}s^{-1}$) and may significantly affect overall performance of AOP, the rate constant predictor should be established based on the conventional organic compounds as an initial approch.

Figure 1.3: Comparison of Henry's constant, log K_{OW} , and HO• rate constants for 87 organic compounds: \Box : the magnitude of k_{HO} . is 10^{7th} order, $\circ:10^{8th}$ order $\Delta: 1.0\sim 5.0\times 10^9$, $\blacktriangle: \sim 5.0\times 10^9$ and $\times:$ unknown rate constants calculated by the group contribution method

Several robust tools have been developed to predict radical reaction rate constants for gaseous phase reactions, including: (1) a group contribution method (GCM) (Atkinson, 1986; 1987; Kwok and Atkinson, 1995), (2) quantitative structure-activity relationships (QSARs) (Wang et al., 2009; Gramatica et al., 2004), (3) bond dissociation energies (BDEs) (Heicklen, 1981), (4) computational molecular orbital OH radical (MOOH) methods (Klamt, 1996; Böhnhardt et al., 2008), (5) extrapolation of transition state theory (Cohen, 1982), and (6) neural networks (Bakken and Jurs, 1999). In addition, with use of quantum mechanical methods, it has become possible to calculate the reaction rate constants for various gas phase radical reactions. However, for aqueous phase, only a few studies have developed empirical models for HO• reaction rate constants, including the GCM (Monod et al., 2005), correlations of bond dissociation energies (BDEs) with Arrhenius activation energy (Herrmann, 2003; Gligorovski and Herrmann, 2004) and neural networks (Dutot et al., 2003). There are only a few theoretical studies that have focused on predicting HO• reaction rate constants and other radical reactions in AOPs (Dematteo et al., 2005; Nicolaescu et al., 2005; Pramod et al., 2006; McKee, 2003; Bhat et al., 2004). These studies shed light on detailed reactivity trends for relatively larger molecules but they may not be applicable to a comprehensive model to predict rate constants for the reactions that take place in AOPs.

This study will explore methods to predict the reaction rate constants for the predicted reaction pathways in the aqueous phase AOPs. First, we will develop a GCM for the aqueous phase HO• reaction rate constants. Data base of literature-reported experimental HO• reaction rate constants will be compiled for the GCM. Second, we

will develop linear free energy relationships (LFERs) to relate the logarithm of aqueous phase HO• reaction rate constants with free energies of activation for neutral compounds. The aqueous phase free energy of activation will be calculated using *Ab initio* quantum mechanical methods for the gaseous phase and a solvation method to consider the impact of water. Several solvation methods will be compared using implicit solvation models and statistical solvation model. The quantum mechanically calculated free energy of activation in the aqueous phase will be compared to those that are estimated from the experimentally obtained Arrhenius activation energy and frequency factor. Third, we will examine temperature dependent-reaction rate constants for ionized compounds (i.e., a series of haloacetate ions). The thermochemical properties that are obtained from experiments will be compared to the theoretical calculations. We will also develop the LFERs for the ionized compounds. Once the LFERs are validated with the experimentally obtained values, these LFERs will predict the reaction rate constants for compounds that have not been examined experimentally. The uses of the rate constants predictors are two fold: they enable kinetic modeling, and they indicate the relative importance of pathways.

This study will help engineers and researchers gain a quantitative insight of HO• induced reactions. Predicting reaction rate constant is important for quantifying the efficacy of AOPs as alternative treatment processes and in developing criteria such as reaction time, dose or residual requirements for AOPs optimization. The predicted overall HO• reaction rate constants can also be used as a screening tool associated with apparent removal efficiency for a newly identified contaminant during water treatment processes where HO• is involved. For engineering design, it will free engineers from

complex chemistry details and identify the pitfalls of AOP's technology. Understanding and developing algorithms that can predict the reaction rate constants will help researchers explore chemical kinetics and the practical design of AOPs. Sophisticated quantum mechanical theories help engineers understanding the chemical disciplines and fundamental scientific knowledge. The theoretical studies will give a benchmark to the experimental investigation and engineering design, and improve in understanding AOPs.

1.2 Structure of This Dissertation

This dissertation consists of the introductory part, three main chapters, future studies, and appendices. After this introductory chapter, Chapter 2 discusses development of a group contribution method to predict the aqueous phase HO• reaction rate constants. The work from this chapter has been published and presented in Minakata et al., (2009; 2008). In Chapter 3, linear free energy relationships are developed for neutral compounds. A part of the work from this chapter has been submitted and will be presented in Minakata and Crittenden (2010a,b). Chapter 4 addresses measurement of temperature-dependent HO• reaction rate constants for ionic compounds and development of LFERs. This Chapter includes an update of the GCM. The work from this chapter will be presented and plans to be submitted in Minakata and Crittenden (2010c) and Minakata et al., (2010), respectively. Implications and future studies will be addressed lastly. Appendices cover the detailed computational codes, data, procedures of calculations, and optimized molecular structure of each compound that is determined in this study.

1.3 Literature Cited

Benotti, M. J.; Trenholm, R. A.; Vanderford, B. J.; Holady, J. C.; Stanford, B. D.; Snyder, S. A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. *Environ. Sci. Technol.* 2008, *43*(3), 597-603.

Bolton, J. R.; Carter, S. R. Homogeneous photodegradation pf pollutants in contaminated water: An introduction, Chap. 33, in G. R. Helz, R. G. Zepp, and D. G. Crosby (eds), *Aquatic and Surface Photochemistry*, CRC Press, Boca Raton, FL.

Bruce, G.M.; Pleus, R.C.; Snydere, S.A. Toxicological relevance of pharmaceuticals in drinking water. *Environ. Sci. Technol.* 2010. ASAP.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O⁻) in aqueous solution. *J. Phys. Chem. Ref. Data.* 1988, *17* (2) 513-795.

Chemical Abstract Services (CAS). A division of the American Chemical Society. http://www.cas.org/ (accessed September 30, 2009).

Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L. Occurrence and fate of organic contaminants during onsite wastewater treatment. *Environ. Sci. Technol.* 2006, *40*, 7358-7366.

Cooper, W.J.; Cramer, C.J.; Martin, N.H.; Mezyk, S.P.; O'Shea, K.E.; von Sonntag, C. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reduction processes in aqueous solutions. *Chem. Rev.* 2009, *109*(3), 1302-1345.

Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review. *Wat.Res*.2008, *42*, 13-51.

Dodd, M.C.; Kohler, H-P.E.; von Gunten, U. Oxidation of antibacterial compounds by ozone and hydroxyl radical: Elimination of biological activity during aqueous ozonation processes. *Environ. Sci. Technol.* 2009, *43*, 2498-2504.

Farhataziz; Ross, A.B. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions. *NSRDS-NBS* 59. 1977, 1-113.

Glaze, W. H.; Kang, J-W.; Chapin, H. D. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. *Ozone. Sci. Eng.* 1987, *9*, 335-352.

Glaze. W. H.; Kang, J-W. Advaced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. *Ind. Eng. Chem. Res.* 1989, *28*, 1580-1587.

Halling-Sorensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Holten Lützhoft, H.C.; Jøgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment – a review. *Chemosphere*. 1998, *36*(2), 357-393.

Hayes, T.B.; Khoury, V.; Narayan, A.; Nazir, M.; Park, A.; Brown, T.; Adame, L.; Chan, E.; Buchholz, D.; Stueve, T.; Gallipeau, S. Atrazine induces complete feminization and chemical castration in male African cawed frogs. *PNAS*, 2010, *107*(10), 4612-4617.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hoigné, J. Chemistry of aqueous ozone, and transformation of pollutants by ozonation and advanced oxidation processes. In: J. Hubrec, editor. The handbook of environmental chemistry quality and treatment of drinking water. Berlin: Springer, 1998.

Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozonebased advanced oxidation processes: A review (part I). *Ozone Sci and Eng.* 2005, *27*, 83-114.

Ikehata, K.; Gamal El-Din, M. Aqueous pesticide degradation by ozonation and ozonebased advanced oxidation processes: A review (part II). *Ozone Sci and Eng.* 2005, *27*, 173-202.

Kang, J-W.; Angelalin, H-M.; Hoffmann, M. Sonolytic destruction of methyl *tert*-butyl ether by ultrasonic irradiation: The role of O₃, H₂O₂, frequency and power density. *Environ. Sci. Technol.* 1999, *33*, 3199-3205.

Kang, J-W.; Angelalin, H-M.; Hoffmann, M. Sonolytic destruction of methyl *tert*-butyl ether by ultrasonic irradiation: The role of O₃, H₂O₂, frequency and power density. *Environ. Sci. Technol.* 1999, *33*, 3199-3205.

Koester, C.J.; Simonich, S.L.; Esser, B.K. Environmental analysis. *Anal. Chem.* 2003, 75, 2813-2829.

Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L. B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. *Envrion. Sci. Technol.* 2002, *36*, 1202-1211.

Lee, Y.; Escher, B.I.; von Gunten, U. Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. *Environ. Sci. & Technol.* 2008, 42(17), 6333-6339.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes. *Environ. Sci.* & *Technol.* 2009, *43(8)*, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H₂O₂ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. *Wat. Res.* 2008, *42*(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/H₂O₂ advanced oxidation process: product study and kinetic modeling. *Environ. Sci. Technol.* 2007, *41*, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. *Environ. Sci. Technol.* 2004, *38*, 6685-6693.

Liang, J.; Palencia, S. L.; Yates, S. R.; Davis, K. M.; Wolfe, L. R. Oxidation of methyl tertiary-butyl ether (MTBE) by ozone and peroxone processes. *J. AWWA*, 1998, *91* (6), 104-114.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. *Environ. Sci. & Technol.* 2009, *43*, 6220-6227.

Minakata, D.; Li, K.; Crittenden, J.; Westerhoff, P. Development of Group Contribution Method (GCM) for Hydroxyl Radical (HO•) Reaction Rate Constant in the Aqueous Phase. The 14th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-14). Town & Country Resort, San Diego, California, USA. September 22-25, 2008.

Minakata, D.; Crittenden, J. Quantitative Understanding of Advanced Oxidation Processes for the Treatment of Emerging Contaminants. IWA World Water Congress & Exhibition. Montreal, Canada, September 19-24, 2010a.

Minakata, D.; Crittenden, J. Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants and the Free Energy of Activation. *Environ. Sci. & Technol.* 2010b. Submitted.

Minakata, D.; Crittenden, J. Linear Free Energy Relationship (LFER) for the Aqueous Phase Hydroxyl Radical (HO•) Reactions with Ionized Species: Experimental and Theoretical Studies. 240th American Chemical Society (ACS) National Meeting & Exposition, Boston, Massachusetts. August 22-26, 2010c.

Minakata, D.; Song, W.; Crittenden, J. Temperature-dependent aqueous phase hydroxyl radical reaction rate constants with ionized compounds: Experimental and theoretical studies. *Environ. Sci. & Technol.* 2010. In preparation.

NRC, 1999, Hormonally Active Agents in the Environment, NAP, Washington, D.C.

NRC, 1999, Identifying Future Drinking Water Contaminants, NAP, Washington, D.C.

Pedersen, J.A.; Soliman, M.; Suffet, I.H. Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. *J. Agric. Food Chem.* 2005, *53*, 1625-1632.

Pertović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. *Trends in Analytical Chemistry*, 2003, *22*(10), 685-696.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. *Ind. Eng. Chem. Res.* 2008a, *47*, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant. 1. Structure-reactivity relationships for free-radical oxidation. *Ind. Eng. Chem. Res.* 2008b, 47, 2886-2896.

Pfaendtner, J.; Broadbelt, L.J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. *Chem. Eng. Sci.* 2007, *62*, 5232-5239.

Phillips, P.J.; Smith, S.G.; Kolpin, D.W.; Zaugg, S.D.; Buxton, H.T.; Furlong, E.T.; Esposito, K.; Stinson, B. Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. *Environ. Sci. Technol.* 2010, *44*, 4910-4916.

Renewable Natural Resources Foundations. Environmental Impacts of Emerging Contaminants. *Renewable Resource Journal*. 2006, *24*(1), 1-36.

Richardson, S.D. Water analysis: Emerging contaminants and current issues. *Anal. Chem.* 2009, *81*, 4645-4677.

Richardson, S.D. Environmental mass spectrometry: Emerging contaminants and current issues. *Anal. Chem.* 2004, *76*, 3337-3364.

Richardson, S.D. Mass spectrometry in environmental sciences. *Chem. Rev.* 2001, *101*, 211-254.

Richardson, S.D. Water analysis: Emerging contaminants and current issues. *Anal. Chem.* 2003, 2831-2857.

Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. *Anal. Chem.* 2005, 77, 3807-3838.

Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. *Science*. 2006, *313*, 1072-1077.

Snyder, S. A.; Wert, E. C.; Hongxia, L.; Westerhoff, P.; Yoon, Y. Removal of EDCs and Pharmaceuticals in Drinking and Reuse Treatment Processes. AWWARF Project, 2007.

Snyder, S.A.; Villeneuve, D.L.; Snyder, E.M.; Giesy, J.P. Identification and quantification of estrogen receptor agonists in wastewater effluents. *Environ. Sci. & Technol.* 2001, *35*, 3620-3625.

Snyder, S.A. Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. *Ozone. Sci. Eng.* 2008, *30*, 65-69.

Stefan, M. I.; Bolton, J. R. Mechanism of the degradation of 1, 4-Dioxane in dilute aqueous solution using the UV/hydrogen peroxide process. *Environ. Sci.& Technol.* 1998, *32*, 1588-1595.

Stefan, M. I.; Bolton, J. R. Reinvestigation of the acetone degradation mechanisms in dilute aqueous solution by the UV/H₂O₂ process. *Environ. Sci. & Technol.* 1999, *33*, 870-873.

Stefan, M. I.; Mack, J.; Bolton, J. R. Degradation pathways during the treatment of methyl *tert*-butyl ether by the UV/H₂O₂ process. *Environ. Sci. & Technol.* 2000, *34*, 650-658.

Hopple, J.A.; Delzer, G.C.; Kingsbury, J.A. Anthropogenic organic compounds in source water of selected community water systems that use groundwater, 2002-05. Scientific Investigations Report 2009-5200. U.S.Department of the Interior and U.S. Geological Survey 2009.

Vanderford, B.J.; Pearson, R.A.; Rexing, D.J.; Snyder, S.A. Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry. *Anal Chem.* 2003, 75(22):6265-74.

von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and products formation. *Wat. Res.* 2003a, *37*, 1443-1467.

CHAPTER 2

Development of a Group Contribution Method to Predict Aqueous Phase Hydroxyl Radical Reaction Rate Constants

†work from this chapter has been published and presented in the following citation: Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. *Environ. Sci. & Technol.* 2009, *43*, 6220-6227.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The 16th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). Novermber 15-18, 2010. San Diego, California, USA.

Minakata, D.; Li, K.; Crittenden, J.; Westerhoff, P. Development of Group Contribution Method (GCM) for Hydroxyl Radical (HO•) Reaction Rate Constant in the Aqueous Phase. The 14th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-14). September 22-25, 2008. Town & Country Resort, San Diego, California, USA.

2.1 Abstract

Hydroxyl radical (HO•) is a strong oxidant that reacts with electron-rich sites of organic compounds and initiates complex chain mechanisms. In order to help understand the reaction mechanisms, a rule-based model was previously developed to predict the reaction pathways. For a kinetic model, there is a need to develop a rate constant estimator that predicts the rate constants for a variety of organic compounds. In this study, a group contribution method (GCM) is developed to predict the aqueous phase HO• reaction rate constants for the following reaction mechanisms: (1) H-atom abstraction, (2) HO• addition to alkenes, (3) HO• addition to aromatic compounds, and (4) HO• interaction with sulfur (S)-, nitrogen (N)- or phosphorus (P)-atom-containing compounds. The GCM hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO•, which can be estimated using the Arrhenius activation energy, E_a , and temperature. Each $E_{\rm a}$ for those elementary reactions can be comprised of two parts: (1) a base part that includes a reactive bond in each reaction mechanism and (2) contributions from its neighboring functional groups.

The GCM includes 66 group rate constants and 80 group contribution factors, which characterize each HO• reaction mechanism with steric effects of the chemical structure groups and impacts of the neighboring functional groups, respectively. Literature-reported experimental HO• rate constants for 310 and 124 compounds were used for calibration and prediction, respectively. The genetic algorithms were used to determine the group rate constants and group contribution factors. The group contribution factors for H-atom abstraction and HO• addition to the aromatic compounds were found to linearly correlate with the Taft constants, σ^* , and electrophilic substituent

parameters, σ^+ , respectively. The best calibrations for 83% (257 rate constants) and predictions for 62% (77 rate constants) of the rate constants were within 0.5 to 2 times the experimental values. This accuracy may be acceptable for model predictions of the advanced oxidation processes (AOPs) performance depending on how sensitive the model is to the rate constants.

2.2 Introduction

The hydroxyl radical (HO•) is a reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites of organic contaminants. It is the active species that potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., O₃/H₂O₂, UV/H₂O₂, UV/TiO₂) and natural waters (Westerhoff, et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Because of the concerns of emerging contaminants and the large number of chemicals that are in use or being produced (CAS, 2009), there is a need for kinetic models that can quickly assess their removal by AOPs. The three critical components for building a kinetic model to predict AOPs performance are (1) numerical methods that solve ordinary differential equations (ODEs), (2) algorithms that can predict reaction pathways, and (3) algorithms that can predict reaction rate constants. Many kinetic models have been built for known reaction pathways (Li et al., 2008; 2007; Stefan et al., 1996; Crittenden et al., 1999). Recently, a model that can generate reaction pathways for the aqueous phase AOPs has been developed (Li and Crittenden, 2009). Yet the capability of generating rate constants for the aqueous phase radical reactions is still limited because of the complexity of radical chemistry.

A number of studies have been conducted to predict the HO• reaction rate constants in the gaseous phase, including 1) a group contribution method (GCM) (King et al., 1999; Atkinson, 1987; Kwok and Atkinson, 1995), 2) quantitative structure-activity relationships (QSARs) (Wang et al., 2009; Öberg, 2005; Gramatica et al., 2004; Medven et al., 1996), 3) bond dissociation energies (BDEs) (Heicklen, 1981), 4) computational molecular orbital OH radical (MOOH) methods (Klamt, 1996; Böhnhardt et al., 2008), 5) extrapolation of transition state theory (Cohen, 1982), 6) correlation with ionization potential (IP) (Percival et al., 1995; Grosjean and Williams, 1992) and 7) neural networks (NNs) (Bakken and Jurs, 1999). When the experimental rate constants for compounds with different functional groups were available, the GCM was proven to be robust for the prediction of gas phase rate constants for compounds with a wide range of functional groups. Atkinson's GCM is one of the most widely accepted methods and is implemented in the U.S. Environmental Protection Agency software, AOPWIN (US EPA, 2000). In their method, the HO• rate constant was determined by the reaction mechanism and effect of neighboring functional group of compound of interest. For each reaction mechanism such as H-atom abstraction, HO• addition, and interactions of HO• with S-, N-, or P-atom-containing compounds, there were "group rate constants" that represented the reaction mechanism and "substitutent factors" that represented the effects of neighboring and next-nearest neighboring functional groups. Using this GCM, the gaseous-phase rate constants at 298 K of ~90% of approximately 485 organic compounds were predicted within a difference of a factor of 2 from the experimental values (Kwok and Atkinson, 1995).

Although the GCM is successful in the gaseous phase, applying it to the aqueous phase requires carefully discerning the mechanistic differences between aqueous and gaseous phase reactions. It is reported that for the H-atom abstraction involving C-H bonds, relative solvent effects are usually much smaller as compared to other reaction mechanisms (e.g., β -scission) (Avila et al., 1993) (which is why the gaseous phase C-H bond strengths in BDE can be used to rationalize reactions in solution). For the aqueous phase, uncertainties still remain associated with long/short range interactions between solvent and solute in the first solvation shell and on its boundary. Figure 2.1 compares the HO• reaction rate constants in the gaseous and aqueous phases for a total of 92 organic compounds. A rough linear correlation was found for the HO• rate constants between two phases. The linearity for alkanes is better than that for oxygenated aliphatic compounds (e.g. alcohol, ether, ester). In general, these polar compounds form hydrogen bond in the aqueous phase, which makes the adjacent C-H bonds vulnerable and the aqueous phase reactions distinctive from the gaseous phase ones. In addition, there are significant mechanistic differences of the formation of the transition state in two phases. Solvent cage (Persico and Granucci, 2007) during the solvation process affects the free energy of activation of reactions (Cramer, 2004) and, thus, changes the rate constant. The impact varies significantly for different radicals and functional groups.

Figure 2.1: Comparison of the aqueous and gaseous phase HO• reaction rate constants. The unit of the gaseous phase rate constant was converted from $1/\text{molecule/cm}^3/\text{s}$ to 1/M/s

There are only a few studies concerned with the prediction of aqueous phase reaction rate constants in AOPs. Monod et al. (2005) applied the GCM to estimate the aqueous phase HO• rate constants for the oxygenated aliphatic compounds. They reported that 84% of their 128 calculated data were within a difference of a factor of 5 from the experimental values. However, the parameters that represented the property of functional groups in their GCM did not follow trends that would be expected on the basis of the reaction mechanisms. For example, their "substituent factors at 298K" of –CH₃ and –CH₂– groups were different in magnitude of an order (i.e., 1.00 and 11.13, respectively), while –OH group has 6.76 of "substituent factor at 298K". Herrmann (2003) used the correlation between BDE (uncertainty of \pm 8.4 kJ/mol) of the weakest C-

H bond broken and Arrhenius activation energy, E_a , and obtained the Evans and Polanyi relationship for 16 oxygenated compounds with a 0.75 correlation coefficient. Dutot et al. (2003) used an artificial neural network and multilayer perception (MLP) to estimate HO• rate constants, and 87% of the MLP predictions were within a factor of 2 from the experimental data.

In this study, a GCM is developed to predict the aqueous phase HO• rate constants that integrate the reaction mechanisms in the aqueous phase and the essential features of Atkinson's GCM. The potential errors and limitations of the GCM will be discussed herein.

2.3 Development of the Group Contribution Method

The GCM is based on Benson's thermochemical group additivity (Benson, 1976). It hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO•, which can be estimated using E_a . For each reaction mechanism, there is a base activation energy, E_a^0 , and a functional group contribution of activation energy, $E_a^{R_i}$, due to the neighboring (i.e., α -position) and/or the next nearest neighboring (i.e., β -position) functional group (i.e., R_i). These contributions to the rate constant can be parameterized and determined empirically when sufficient rate constant data are available.

The GCM considers four reaction mechanisms that HO• initiates in the aqueous phase, which include (1) H-atom abstraction, (2) HO• addition to alkenes, (3) HO• addition to aromatic compounds, (4) HO• interaction with sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing compounds. Accordingly, an overall reaction rate constant, $k_{overall}$, may be given in equation (2.1).

$$k_{\text{overall}} = k_{\text{abs}} + k_{\text{add-alkene}} + k_{\text{add-aromatic}} + k_{\text{int}}$$
(2.1)

where, k_{abs} , $k_{add-alkene}$, $k_{add-aromatic}$, and k_{int} are the rate constants for the aforementioned reaction mechanisms 1 – 4, respectively. The manner in which these rate constants are determined is discussed in the following section.

2.3.1 Hydrogen-atom Abstraction

For H-atom abstraction, the active bond is a C-H bond. According to the functional groups on the C atom, there are primary, secondary, and tertiary C-H bond(s) except in the special case of methane. Therefore, the fragments of a molecule are CH_3R_1 , $CH_2R_1R_2$, and $CHR_1R_2R_3$, where R_i is a functional group (i = 1-3). Each of the fragments corresponds to a partial rate constant $k_{CH_3R_1}$, $k_{CH_2R_1R_2}$, and $k_{CHR_1R_2R_3}$, respectively. The E_a for the reaction of HO• is affected by the C-H bond itself and adjacent functional group(s). The contribution that results from the C-H bond to the E_a is defined as base activation energy, E_a^0 , while the contribution of the functional groups is defined as a group contribution parameter, $E_{a,abs}^{R_i}$, due to the functional group R_i for H-atom abstraction. For example, the base activation energy for H-atom abstraction from one of the primary C-H bonds is $E_{a, prim}^0$. The $E_{a, abs}^{R_i}$ indicates the electron-donating and withdrawing ability of the functional group. An electron-donating functional group decreases the E_a^0 and, hence, increases the overall reaction rate constant and vice versa. Accordingly, the partial rate constant for the fragmented part, CH₃R₁, can be written as below

$$k_{\rm CH_3R_1} = 3A_{\rm prim} \ e^{\frac{E_{a,\rm prim}^0 + E_{a,\rm abs}^{\rm R_1}}{RT}}$$
(2.2)

where 3 is the amount of primary C-H bonds, A_{prim} denotes the Arrhenius frequency factor for the reaction of HO• with CH₃R₁, *R* is the universal gas constant, and *T* denotes absolute temperature.

Similarly, the partial rate constants for other fragmented parts CH_2R_2 and $CHR_1R_2R_3$ are expressed in equations (2.3) and (2.4) using the corresponding frequency factors, A_{sec} and A_{tert} , and group contribution parameters, $E_{a,abs}^{R_2}$ and $E_{a,abs}^{R_3}$, respectively.

$$k_{\rm CH_2R_1R_2} = 2A_{\rm sec}e^{-\frac{E_{a,\rm sec}^0 + E_{a,\rm abs}^{\rm R_1} + E_{a,\rm abs}^{\rm R_2}}{RT}}$$
(2.3)

$$k_{\text{CHR}_{1}\text{R}_{2}\text{R}_{3}} = A_{\text{tert}} e^{-\frac{E_{a,\text{tert}}^{0} + E_{a,\text{abs}}^{\text{R}_{1}} + E_{a,\text{abs}}^{\text{R}_{2}} + E_{a,\text{abs}}^{\text{R}_{3}}}{RT}}$$
(2.4)

However, for equations (2.2) – (2.4), the functional group contribution is ignored for cases where the neighboring functional groups have no effect on the H-atom abstraction (i.e., $E_{a,abs}^{-H}$ is zero, where a valence bond of the H-atom is expressed as a line before H).

The group rate constants that represent H-atom abstraction from the primary, secondary, and tertiary C-H bond are defined as k_{prim}^0 , k_{sec}^0 , and k_{tert}^0 and are expressed in equations (2.5)-(2.7).

$$k_{\rm prim}^{0} = A_{\rm prim}^{0} e^{\frac{E_{a,\rm prim}^{0}}{R_{T}}}$$
(2.5)

$$k_{\rm sec}^0 = A_{\rm sec}^0 e^{\frac{E_{a,\rm sec}^0}{RT}}$$
(2.6)

$$k_{\text{tert}}^0 = A_{\text{tert}}^0 e^{\frac{E_{a,\text{tert}}^0}{RT}}$$
(2.7)

In addition, the group rate constant k_{R_4} is defined for the HO• interaction with the functional group R₄ (e.g., -OH and -COOH). The detailed discussions for R₄ will be

given in the following sections. The group contribution factor, X_{R_i} , that represents the influence of functional group R_i is defined in equation (2.8).

$$X_{\mathrm{R}_{i}} = e^{-\frac{E_{a,\mathrm{abs}}^{\mathrm{R}_{i}}}{RT}}$$
(2.8)

Because each reaction is independent of one another, the rate constant for H-atom abstraction, k_{abs} , may be written as the sum of the partial rate constants

$$k_{\rm abs} = 3\sum_{0}^{I} k_{\rm prim}^{0} X_{\rm R_{1}} + 2\sum_{0}^{J} k_{\rm sec}^{0} X_{\rm R_{1}} X_{\rm R_{2}} + \sum_{0}^{K} k_{\rm tert}^{0} X_{\rm R_{1}} X_{\rm R_{2}} X_{\rm R_{3}} + k_{\rm R_{4}}$$
(2.9)

where, *I*, *J*, and *K* denote the number of the fragments CH_3R_1 , CH_2R_2 , and $CHR_1R_2R_3$, respectively. Equation (2.10) shows an example of the rate constant calculation for 1,2-dichloro-3-bromopropane (CH₂Cl-CHCl-CH₂Br). The detailed definitions of the functional groups will be given in the Results and Discussions.

$$k_{\text{overall}} = 2k_{\text{sec}}^{0} X_{\text{-Cl}} X_{\text{-CHCl-}} + k_{\text{tert}}^{0} X_{\text{-Cl}} X_{\text{-CH}_{2}\text{Cl}} X_{\text{-CH}_{2}\text{Br}} + 2k_{\text{sec}}^{0} X_{\text{-Br}} X_{\text{-CHCl-}}$$
(2.10)

Rate constant additivity can be an important concern. To investigate this, the experimental rate constants for the linear and longer chain compounds with some functional groups were compared with the number of $-CH_2$ - alkyl functional group as shown in Figure 2.2. The linear relationship was observed, and it verified the rate constant additivity. For nonlinear compounds, nonadditive effects arise from different contributions to entropy of activation (Cohen and Benson, 1987) and hence affect *A*. Generally, *A* can be assumed to be constant for the same reaction mechanism because intrinsic entropy due to translation and rotation can be assumed to be constant. Strictly speaking, however, moments of inertia of primary, secondary, and tertiary C-H bond would be different and thus affect entropy (Cohen, 1991). Although this difference is insignificant when compared to other factors such as the impacts of neighboring

functional groups (Cohen and Benson, 1987), the GCM considers different A_{prim} , A_{sec} , and A_{tert} . Therefore, this should be sufficient to treat nonlinear compounds.

Figure 2.2: The experimental HO• reaction rate constants as a function of the number of $-CH_2$ - alkyl functional group for some functional groups. The chemical formula is expressed as CH_3 - $(CH_2)_n$ -R, where R is $-CH_3$, -OH, -COOH, $-NH_2$, -CN, -CHO, -Cl, and -Br, for alkane, alcohol, carboxylic, amine, cyano, aldehyde, chlorine, and bromine, respectively, and *n* is the number of $-CH_2$ - alkyl functional groups. *There are only two rate constants available for -Cl.

2.3.2 HO• Addition to Alkenes

Detailed mechanisms of HO• addition to alkene in the aqueous phase have not

been elucidated yet. It is expected that molecular solvation affects the E_a and water

molecules interact with the HO• approaching the carbon double bonds. Nevertheless, it

can be a reasonable assumption that there is little difference in the major reaction

mechanisms between the aqueous and gaseous phases (Singleton and Cvetanović, 1976;

Davey et al., 2004; Getoff, 1991). As postulated by Cvetanović (1976), the reactions

between HO• and alkene proceeds via a π complex which is initiated to loose association of HO• to the π -electron cloud spanning the double bond. Recent observation by infrared spectroscopy suggests a T-shaped reactant complex between HO• and acetylene (the hydrogen of HO• pointing toward the alkene) (Davey et al., 2004). Several quantum calculations on HO• addition to alkene in the gaseous phase supports the general mechanisms of the HO• addition on π bonds (Greenwald et al., 2005). The initial transition reaction of HO• with alkene is via a barrier-less association reaction followed by an addition on the double bond through a transition state slightly above the π -complex energy (Peeters et al., 2007). Villà et al. (1997) found that there is a correlation between activation energy and energy at a saddle point of entrance channel relative to reactants. The negative energy on the saddle point indicates that there is a second transition state in some energy range near the reaction threshold. On the first saddle point (i.e. inner transition state), the bottleneck at the high energies is dominant, whereas on the second saddle point (i.e. outer transition state), the bottleneck at the low energies is dominant. At the first transition state, the rate of HO• addition can be significantly affected by the polar effect of the functional group. If the functional group at the neighboring carbon atom is electron-donating group (e.g. –CH₃), the addition reaction of HO• is enhanced and the vise-versa in case of the electron-withdrawing group.

$$HO \bullet + H_2C = CH-R \to \left[\overset{\delta}{HO} \cdots CH_2 = \overset{\delta}{CH} - R \right]^{\neq} \to HOCH_2 - \dot{C}HR$$
(2.11)

Although there are many explanations in terms of the differences in stabilities of the newly formed radical centered, it is not convincing because the stabilities of the radicals formed play only a minor role in determining the rate of HO• addition to alkenes in case that the alkene functional groups are varied. Consequently, the functional groups exert polar effects of similar magnitude reflecting to a first approximation only the difference in the steric effects of the functional groups. In addition, the functional groups at a carbon atom undergoing attack in the α -position have the different effects to the HO• addition than those at the neighboring carbon atom in the β -position.

Considering a basic C=C double bond structure (i.e., one σ -bond and one π -bond, >C=C<), HO• has two places to add. The probability of HO• addition to either of the carbons depends on the functional groups bonded to the unsaturated carbons. Except in the special case of ethylene, six basic structures associated with the number of H-atoms and their positions are considered, including *cis* and *trans* conformations (i.e., >C=C<, H>C=C<, H₂C=C<, H>C=C<H(cis), H>C=C<H(trans), and H₂C=C<H). If the base structure is symmetrically associated with the number and position of hydrogen atom(*s*), the probability of HO• addition to two unsaturated carbons is assumed to be identical, whereas it is different for the asymmetrical base structure. This treatment reflects the differences in the *A* resulting from regioselectivity. Accordingly, the group rate constant, $k_{(structure)-h}^0$, and group contribution factor, Y_{R_I} , for HO• addition to one of the base structures may be written using Arrhenius frequency factor, $A_{(structure)-h}^0$, and group contribution parameter, $E_{a,add-alkene}^{R_i}$, of functional group R_l (*l* denotes the number of functional groups, l = 1-4), respectively.

$$k_{(\text{structure})-h}^{0} = A_{(\text{structure})-h}^{0} e^{\frac{E_{a}^{0}, (\text{structure})}{RT}}$$
(2.12)

$$Y_{\mathrm{R}_{I}} = e^{\frac{E_{a,\mathrm{add-alkene}}^{\mathrm{R}_{I}}}{RT}}$$
(2.13)

where (structure) represents six base structures that are addressed above, $E_{a,(\text{structure})}^{0}$ denotes a base part of E_a for (structure), and *h* denotes a position for HO• to add (i.e., 1 and 2 for the addition to the left and right carbon, respectively). The rate constant for HO• addition to alkene, $k_{\text{add-alkene}}$, may be written in equation (2.14).

$$k_{\text{add-alkene}} = \sum g \, k_{(\text{structure})-h}^0 \, Y_{\text{R}_1} \tag{2.14}$$

where *g* indicates 1 or 2 that represents asymmetrical and symmetrical addition, respectively. Equation (2.15) shows an example for tetrachloroethylene ($Cl_2C=CCl_2$).

$$k = 2k_{>C=C<}^{0} Y_{-C|} Y_{-C|} Y_{-C|} Y_{-C|}$$
(2.15)

2.3.3 HO• Addition to Aromatic Compounds

It has been proposed that HO• fixation at a given carbon may be via a short-lived π -complex for the aqueous phase reactions of HO• with aromatic compounds (Ashton et al., 1995). The formation of the π -complex is a reversible reaction on one hand. On the other hand, HO-adduct radical by the fixation of HO• to the π -bond is irreversibly produced to form σ bond. High regioselectivity of HO• addition occurs at the transition state from the π - to the σ - complex.

$$\operatorname{Ar} + \operatorname{HO} \bullet \to [\operatorname{HO} \cdots \operatorname{Ar}]_{\pi}^{\bullet}$$
(2.16)

$$\left[\mathrm{HO}\cdots\mathrm{Ar}\right]_{\pi}^{\bullet}\to\mathrm{Ar}+\mathrm{HO}\bullet\tag{2.17}$$

$$\left[\mathrm{HO}\cdots\mathrm{Ar}\right]_{\pi}^{\bullet} \rightarrow \left[\mathrm{HO}\cdots\mathrm{Ar}\right]_{\sigma}^{\bullet} \tag{2.18}$$

Reaction (2.16) is diffusion-controlled and Reactions (2.17) and (2.18) are activation-controlled. According to Ashton et al. (1995), the rearrangement of the π - to the σ - complex requires little or no activation energy, whereas the dissociation of the σ - complex requires approximately 20 kJ/mol.

Although the HO• preferentially adds to the aromatic ring at the close to diffusion-controlled rates, the HO• addition to the aromatic ring can be expected to be highly regioselective due to the electrophilic HO•. Therefore, the electron-donating and - withdrawing functional groups on the aromatic ring can significantly affect the rate constants and the ratio of *ortho-*, *meta-*, *para-*, and *ipso-*positions.

For the HO• addition to aromatic compounds, the following points are considered. (1) Probability for the symmetrical HO• addition to the benzene ring is identical. (2) Addition to the *ipso*-position is negligible due to the significant steric effect (Mvula et al., 2001; Raghavan and Steenken, 1980; Merga et al., 1996). Although some studies report the possibility for the addition to the *ipso*-position (Razavi et al., 2009), it is quite negligible for the aromatic compounds with single functional groups, which are used for the calibration (e.g., <8% for phenol (Mvula et al., 2001; Raghavab and Steenken, 1980) and <1% for chloro benzene (Merga et al., 1996)). Therefore, only when all positions on the aromatic ring are filled with the functional groups, HO• adds to the *ipso*-position with the identical probability on all available positions. The reaction rate constant for the HO• addition to aromatic compounds is formulated in the following manner. The E_a is a sum of two parts: (i) a base part, E_a^0 , resulting from the HO• addition to the aromatic ring depending on the number(s) and position(s) of the functional group and (ii) group contribution parameter(s), $E_{a,add-aromatic}^{R_m}$, due to the functional group, R_m (where *m* is the number of functional group(s), m = 1-6), on the aromatic ring. We assume that A differs not by the types of the functional group to reduce the number of group contribution factors to calibrate but by the number and position of the functional groups. Accordingly,

30

the group rate constant, $k_{(i-\text{name})-j}^0$, and the group contribution factor, Z_{R_m} , may be expressed as below

$$k_{(i-\text{name})-j}^{0} = A_{(i-\text{name})-j}^{0} e^{\frac{E_{a}^{0}, (i-\text{name})}{RT}}$$
(2.19)

$$Z_{\mathrm{R}_{m}} = e^{\frac{E_{a,\mathrm{add-aromatic}}^{R_{m}}}{RT}}$$
(2.20)

where, $A_{(i-name)-j}^{0}$ denotes the Arrhenius frequency factor; $E_{a,(i-name)}^{0}$ denotes a base part of E_a ; the name, benz, pyr, fur, imid, or triaz denotes a compound that has a base structure of benzene, pyridine, furan, imidazole, or triazine, respectively; *i* denotes position(s) of the functional group, and *j* denotes position(s) for HO• to add. The rate constant for the HO• addition to aromatic compounds may be expressed as shown in equation (2.21)

$$k_{\text{add-aromatic}} = \sum n k_{(i-\text{name})-j}^0 Z_{R_m}$$
(2.21)

where *n* denotes the number of available position(s) to add. Equation (2.22) shows an example for 1,4-*tert*-butylphenol [(CH₃)₃C-C₆H₄-OH].

$$k = \left\{ 2k_{(1,4-\text{benz})-2,6}^{0} + 2k_{(1,4-\text{benz})-3,5}^{0} \right\} Z_{\text{-OH}} Z_{\text{-Alkane}} + 3 \times 3 \times k_{\text{prim}}^{0} X_{\text{-C}} + k_{\text{-OH}}$$
(2.22)

2.3.4 HO• Interactions with Sulfur-, Nitrogen-, or Phosphorus-atom Containing Compounds

When a molecule has S-, N-, or P-atom-containing functional groups, HO• interacts with the S-, N-, or P-atom in the aqueous phase forming a $2\sigma/1\sigma^*$ two-center– three-electron (2c-3e) adduct (Asmus and Bonifačič, 1999). These functional groups also affect the H-atom abstraction reaction by donating or withdrawing electrons on the C-H bond. The group rate constant, k_{R_4} , in equation (2.9) represents the HO• interaction with S-, N-, or P-containing compounds. Because almost all of the functional groups in the neighboring positions were alkyl functional groups, and therefore, we assume that the effect of the functional groups might be uniform, the influence of neighboring functional groups was not considered for the interaction reactions. Equation (2.23) shows an example for iminodiacetic acid (HOOC-CH₂-NH-CH₂-COOH).

$$k = 2 \times 2k_{\text{sec}}^{0} X_{\text{-COOH}} X_{\text{-NH-}} + k_{\text{-NH-}} + 2k_{\text{-COOH}}$$
(2.23)

2.4 Results and Discussion

2.4.1 Calibration and Prediction

The group rate constants and group contribution factors for each reaction mechanism were calibrated with literature-reported experimental rate constants. The objective function (OF) was minimized using the genetic algorithms (Goldberg, 1989; Charbonneau and Knapp, 1995). Appendix A includes the source code of genetic algorithms.

$$OF = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{k_{\exp,i} - k_{cal,i}}{k_{\exp,i}} \right]^2}$$
(2.24)

where, $k_{exp,i}$ and $k_{cal,i}$ are the experimental and calculated reaction rate constant of compound *i*, respectively, and *N* is the number of the rate constants. First, group rate constants, k^0 , and group contribution factors for the H-atom abstraction, X_{R_i} , were calibrated. Then, these group rate constants and group contribution factors were used when aliphatic side chains were present in the alkene and aromatic compounds upon the calibrations of the group rate constants and group contribution factors for alkenes and aromatic compounds (i.e., Y_{R_i} for alkene and Z_{R_i} for aromatic compounds, respectively). For the HO• interaction, the group rate constant, k_{R_i} , in equation (2.9), and group contribution factors for S-, N-, or P-atom-containing functional groups were calibrated.

We critically evaluated the literature reported experimental rate constants before the calibrations. When several rate constants were reported for the same compound, an average value was used or the most reasonable rate constant was selected by comparing the value to those for compounds with similar structures (Hermann, 2003; Buxton et al., 1988; U of Notre Dame RCDC, 2009). The rate constants that we used for the calibration are at standard conditions (i.e., 25°C and 1 mol/L) in the aqueous phase. When the experimental conditions were not reported in the literature, we used those reported values. Our objective is to calibrate the group rate constants and group contribution factors with the experimental data and predict rate constants within a factor of 0.5 to 2.0 of the experimental value, which we refer to as our error goal (EG). This EG would be in the range of general experimental errors (Buxton et al., 1988; U of Notre Dame RCDC, 2009) and sufficient for decision-making that has been used for the physical-chemical property estimators (e.g., within an order of magnitude) (US EPA, 2007). For calibration, rate constants for single-functional group compounds were used to avoid the interference of different functional groups. For prediction, we used the calibrated group rate constants and group contribution factors to predict the rate constants for multifunctional group compounds. Sample deviation (SD) that was calculated from equation (2.24) was also used to evaluate the rate constants from calibrations and predictions. All observed overall HO• rate constants for the 434 compounds were summarized in Table 2.1. Appendix B includes up-to-date literature-reported experimental HO• rate constants.

33

group		formula	compound	k exp	k cal	$((k \exp-k \operatorname{cal})/k \exp)2$	k cal/k exp
Alkane	1	CH3-CH3	ethane	1.80E+09	7.90E+08	0.31476	0.44
	2	CH3-CH2-CH3	propane	3.60E+09	2.11E+09	0.17127	0.59
	3	CH3-CH(CH3)-CH3	2-methylpropane	4.60E+09	4.04E+09	0.01490	0.88
	4	CH3-(CH2)2-CH3	butane	4.60E+09	3.52E+09	0.05556	0.76
	5	CH3-(CH2)3-CH3	pentane	5.40E+09	4.92E+09	0.00776	0.91
	6	CH3-(CH2)4-CH3	hexane	6.60E+09	6.33E+09	0.00164	0.96
	7	CH3-(CH2)5-CH3	heptane	7.70E+09	7.74E+09	0.00003	1.01
	8	CH3-(CH2)6-CH3	octane	9.10E+09	9.15E+09	0.00003	1.01
	9	CH3-CH(CH3)-CH3	2-methylpropane	4.60E+09	4.04E+09	0.01490	0.88
	10	CH3-CH2-CH(CH3)-CH3	2-methylbutane	5.20E+09	5.10E+09	0.00035	0.98
	11	CH3-CH2-CH(CH2-CH3)-CH2-CH3	3-ethylpentane	5.90E+09	8.49E+09	0.19332	1.44
	12	CH3-C(CH3)2-CH2-CH(CH3)-CH3	2,2,4-Trimethylpentane	6.10E+09	6.41E+09	0.00259	1.05
Alcohol	13	CH3-OH	methanol	9.70E+08	3.04E+08	0.47157	0.31
	14	CH3-CH2-OH	ethanol	2.10E+09	1.18E+09	0.19372	0.56
	15	CH3-(CH2)2-OH	1-propanol	3.20E+09	2.55E+09	0.04109	0.80
	16	CH3-(CH2)3-OH	1-butano1	4.20E+09	3.96E+09	0.00327	0.94
	17	(CH3)3-C-OH	tert-butanol	7.00E+08	8.21E+08	0.02972	1.17
	18	CH3-(CH2)5-OH	1-hexyanol	7.00E+09	6.78E+09	0.00102	0.97
	19	CH3-(CH2)6-OH	1-heptanol	7.40E+09	8.19E+09	0.01127	1.11
	20	CH3-CH(OH)-CH3	2-propanol	1.90E+09	2.37E+09	0.06154	1.25
	21	CH3-CH(CH3)-CH2-OH	2-methyl-1-propanol	3.30E+09	4.55E+09	0.14411	1.38
	22	CH3-CH2-C(CH3)(OH)-CH3	2-methyl-2-butanol	1.90E+09	2.34E+09	0.05322	1.23
	23	CH3-C(CH3)2-CH2-OH	2,2-dimethyl-1-propanol	5.20E+09	2.04E+09	0.37026	0.39
	24	CH3-CH2-CH(CH3)-CH2-OH	3-methyl-1-butanol	3.80E+09	6.04E+09	0.34681	1.59
	25	CH3-CH(OH)-CH2-CH3	2-butano1	3.50E+09	3.78E+09	0.00662	1.08
	26	CH3-C(CH3)(OH)-CH2-CH3	tert-amyl alcohol	1.90E+09	1.77E+09	0.00439	0.93
Diol	27	<u>H0-CH2-OH</u>	<u>dihydroxymethane</u>	1.30E+09	<u>5.41E+08</u>	<u>0.34047</u>	0.42
	28	HO-CH2-CH2-OH	<u>ethyleneglycol</u>	<u>2.40E+09</u>	<u>1.59E+09</u>	<u>0.11475</u>	0.66
	29	CH3-CH(OH)2	<u>1,1-ethanediol</u>	<u>1.20E+09</u>	<u>1.36E+09</u>	<u>0.01753</u>	<u>1.13</u>
	30	CH3-CH(OH)-CH2-OH	<u>1,2-propanediol</u>	<u>1.70E+09</u>	2.82E+09	<u>0.43429</u>	<u>1.66</u>
	31	<u>HO-(CH2)3-OH</u>	<u>1,3-propanediol</u>	<u>2.50E+09</u>	<u>3.00E+09</u>	<u>0.03929</u>	<u>1.20</u>
	32	CH3-CH(OH)-CH2-CH2-OH	<u>1,3-butanediol</u>	2.20E+09	4.23E+09	<u>0.85046</u>	<u>1.92</u>
	33	<u>HO-(CH2)4-OH</u>	<u>1.4-butanediol</u>	<u>3.20E+09</u>	<u>4.40E+09</u>	<u>0.14158</u>	<u>1.38</u>
	34	CH3-CH(OH)-CH(OH)-CH3	2,3-butanediol	<u>1.30E+09</u>	4.05E+09	<u>4.48664</u>	<u>3.12</u>
	35	<u>HO-(CH2)5-OH</u>	<u>1,5-pentanediol</u>	<u>3.60E+09</u>	<u>5.81E+09</u>	<u>0.37775</u>	<u>1.61</u>
	36	CH3-CH(OH)-CH2-CH(OH)-CH3	2,4-pentanediol	2.30E+09	5.46E+09	<u>1.89022</u>	2.37
	37	<u>HO-(CH2)6-OH</u>	<u>1,6-hexyanediol</u>	<u>4.70E+09</u>	7.22E+09	<u>0.28774</u>	<u>1.54</u>
	38	HO-CH2-CH(OH)-CH2-OH	<u>glvcerol</u>	<u>2.00E+09</u>	<u>3.17E+09</u>	<u>0.34377</u>	<u>1.59</u>
Ether	39	CH3CH(OCH3)2	1,1-dimethoxyethane	2.20E+09	1.48E+09	0.10720	0.67
	40	CH3-O-CH3	dimethylether	1.00E+09	3.89E+08	0.37364	0.39
	41	<u>CH3-0-CH2-0-CH3</u>	<u>methylene glycol diethyl ether</u>	<u>3.20E+08</u>	<u>6.99E+08</u>	<u>1.40301</u>	2.18
	42	CH3-CH2-O-CH2-CH3	diethylether	2.90E+09	2.09E+09	0.07809	0.72
	43	(CH3)2HC-O-CH(CH3)2	diisopropyl ether	2.49E+09	4.41E+09	0.59325	1.77
	44	(CH3)3-C-O-CH2-CH3	tert-butyl-ethyl-ether	1.80E+09	1.77E+09	0.00037	0.98
	45	C ₂ H ₅ C(CH ₃) ₂ OCH ₃	tert-amyl methyl ether	2.37E+09	1.87E+09	0.04479	0.79
	46	CH3CH2-O-CH2CH2-CH2CH2-O-CH2CH3	<u>diethylene glycol diethyl ether</u>	3.20E+09	6.23E+09	<u>0.89594</u>	<u>1.95</u>
	47	CH3CH2-O-CH2CH2-O-CH2CH3	ethylene glycol diethyl ether	2.30E+09	3.41E+09	0.23369	<u>1.48</u>
	48	CH3-O-CH2-CH2-O-CH3	ethylene glycol dimethyl ether	1.60E+09	1.71E+09	<u>0.00481</u>	<u>1.07</u>
	49	CH2(OC2H5)2	diethoxymethane	1.60E+09	2.40E+09	0.24995	1.50
	50	CH2(OCH3)2	dimethoxymethane	1.20E+09	6.99E+08	0.17428	0.58
	51	CH3-C(CH3)(OCH3)CH2-OH	2-methyl-2-methoxy propanol	8.40E+08	1.82E+09	<u>1.35033</u>	2.16
	52	CH3-O-CH2-CH2-OH	2-methoxyethanol	1.30E+09	1.65E+09	0.07206	1.27
	53	C2H5-O-CH2-CH2-OH	2-ethoxyethanol	1.70E+09	2.50E+09	<u>0.22113</u>	<u>1.47</u>
	54	HO-CH2-CH2-O-CH2-CH2-OH	diethylene glycol	<u>2.10E+09</u>	<u>2.91E+09</u>	<u>0.14849</u>	<u>1.39</u>
Ketone	55	CH3-CO-CO-CH3	2,3-butanedion	2.80E+08	1.09E+08	0.37456	0.39
	56	CH3-CH2-CO-CH3	2-butanone	8.10E+08	6.45E+08	0.04165	0.80
	57	CH3-CO-CH3	acetone	1.10E+08	1.09E+08	0.00015	0.99
	58	CH3-CH2-CH2-CO-CH3	2-pentanone	1.90E+09	2.00E+09	0.00260	1.05
	59	CH3-CH2-CO-CH2-CH3	3-pentanone	1.40E+09	1.18E+09	0.02453	0.84
	60	CH3-CO-CH(OH)-CH3	3-hydro-2-butanone	2.90E+09	7.67E+08	0.54106	0.26
	61	(CH3)2-CH-CH2-CO-CH3	methyl-iso-butyl ketone	2.10E+09	4.00E+09	0.81715	1.90
	62	CH3-CO-CH2CH2-CO-CH3	acetonyl acetone	7.60E+08	4.78E+08	0.13754	<u>0.63</u>

Aldehyde	63	CH3-CHO	acetaldehyde	9.50E+08	1.01E+09	0.00464	1.07
	64	CH3-CH2-CHO	propionaldehyde	2.20E+09	1.94E+09	0.01355	0.88
	65	CH3-CH2-CH2-CHO	butyraldehyde	3.90E+09	3.32E+09	0.02205	0.85
	66	(CH3)2-CH-CHO	isobutyl aldehyde	2.90E+09	3.17E+09	0.00876	1.09
	67	CH3-C(CH3)(OCH3)-CHO	2-methyl-2-methoxy-propanal	3.99E+09	1.52E+09	<u>0.38446</u>	0.38
	68	HO-C(CH3)2-CHO	hvdroxv-iso-butvlaldehvde	3.00E+09	1.77E+09	0.16826	0.59
	69	СН3-СО-СНО	methyl glyoxal	5.30E+08	1.65E+08	0.47519	0.31
	70	СНОСООН	alvoxalic acid	5.90E+08	3.15E+07	0.89604	0.05
	71	CH2 COCHO	normai a al dahuda	6 40E+08	9 51 E±07	0.75497	012
.	71	<u>CH3-COCHO</u>	<u>pyruvic utaenyae</u>	0.492+00	0.51E+07	0.73407	0.13
Ester	72	CH3-COO-CH3	methyl acetate	1.201+08	1.52E+07	0.76318	0.13
	73	CH3-COO-CH2-CH3	ethyl acetate	4.00E+08	4.29E+08	0.00536	1.07
	/4	CH3-COO-CH2-CH2-CH3	propyl acetate	1.40E+09	1.7/E+09	0.07099	1.27
	75	CH3-CH2-COO-CH3	methyl propionate	4.50E+08	4.63E+08	0.00088	1.03
	76	CH3-CH2-COO-CH2-CH3	ethyl propionate	8.70E+08	8.77E+08	0.00007	1.01
	77	<u>CH3-COO-CH2CH2OH</u>	<u>2-hydroxyethyl acetate</u>	9.10E+08	8.09E+08	0.01240	0.89
	78	CH3COOCH(CH3)2	isopropyl acetate	4.50E+08	8.43E+08	0.76430	1.87
	79	CH3-COO-(CH2)3-CH3	n-butylacetate	1.80E+09	3.18E+09	0.58911	1.77
Carboxyl	80	CH3-CH2-COOH	propionic acid	3.20E+08	4.64E+08	0.20261	1.45
	81	CH3-(CH2)2-COOH	butyric acid	2.20E+09	1.81E+09	0.03140	0.82
	82	(CH3)2CHCH2COOH	3-methylbutyric acid	1.40E+09	3.81E+09	2.96711	2.72
	83	(CH3)3-C-COOH	tri-methyl-acetic acid	6.50E+08	7.21E+08	0.01206	1.11
	84	CH3-C(CH3)(OCH3)-COOH	2-methyl-2-methoxy-propanoic acid	7.73E+08	6.76E+08	0.01590	0.87
	85	HOCH2COOH	glycolic acid	5.40E+08	1.26E+08	0.58749	0.23
	86	CH3-CH(OH)-COOH	lactic acid	430E+08	5 70E+08	0 10634	1 3 3
	87	CH3CH2CH(OH)COOH	2. Independent de la calid	130E+00	1928+09	0.22400	1.47
	88	HO CH2 (CHOH) COOH	alucuronic acid	1 30E+00	6.01E+00	1212216	1.47
	00	<u>no-cn2-(cn0n)4-c00n</u>	gracaronic acta	1.70E+07	1.50E+07	0.00442	4.02
Th: 1 1	0.9	HOOG GUD GOOM	acede acid	1./0E+0/	1.39E+07	0.00445	0.93
Dicarboxylic	90	HOOC-CH2-COOH	malonic acia	1.60E+07	3.29E+06	0.63098	0.21
	91	<u>HOOC-(CH2)2-COOH</u>	<u>succinic acid</u>	<u>1.10E+08</u>	<u>1.05E+08</u>	<u>0.00243</u>	0.95
	92	<u>HOOC-(CH2)3-COOH</u>	glutaric acid	<u>8.30E+08</u>	<u>1.51E+09</u>	<u>0.67739</u>	<u>1.82</u>
	93	<u>HOOC-(CH2)4-COOH</u>	<u>adipic acid</u>	<u>2.00E+09</u>	<u>2.92E+09</u>	<u>0.21236</u>	<u>1.46</u>
	94	<u>HOOC-(CH2)6-COOH</u>	<u>saberic acid</u>	<u>4.80E+09</u>	<u>5.74E+09</u>	<u>0.03825</u>	<u>1.20</u>
	95	<u>HOOC-(CH2)7-COOH</u>	<u>azelaic acid</u>	<u>5.40E+09</u>	7.15E+09	<u>0.10470</u>	<u>1.32</u>
	96	HOOC-(CH2)8-COOH	sabacic acid	<u>6.40E+09</u>	<u>8.56E+09</u>	<u>0.11347</u>	<u>1.34</u>
	97	HOOC-CH(OH)-CH(OH)-COOH	<u>tartaric acid</u>	7.00E+08	3.18E+08	0.29850	0.45
	98	HOOC-CH2-C(COOH)(OH)-CH2-COOH	<u>citric acid</u>	5.00E+07	1.62E+08	<u>5.01353</u>	3.24
	99	HOOC-CH(OH)-COOH	tartoronic acid	1.70E+08	1.04E+08	0.15289	0.61
	99 100	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH	<u>tartoronic acid</u> malic acid	1.70E+08 8.20E+08	<u>1.04E+08</u> 2.11E+08	<u>0.15289</u> 0.55146	<u>0.61</u> 0.26
Halogenated	99 100 101	<u>HOOC-CH(OH)-COOH</u> <u>HOOC-CH2-CH(OH)-COOH</u> Cl-CH2-COOH	<u>tartoronic acid</u> <u>malic acid</u> chloroacetic acid	<u>1.70E+08</u> <u>8.20E+08</u> 4.30E+07	<u>1.04E+08</u> <u>2.11E+08</u> 9.63E+06	0.15289 0.55146 0.60227	0.61 0.26 0.22
Halogenated	99 100 101 102	<u>HOOC-CH(OH)-COOH</u> <u>HOOC-CH2-CH(OH)-COOH</u> <u>CL-CH2-COOH</u> CD_CH2	<u>tartoronic acid</u> <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane	<u>1.70E+08</u> <u>8.20E+08</u> <u>4.30E+07</u> 5.80E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07	0.15289 0.55146 0.60227 0.07428	0.61 0.26 0.22 0.73
Halogenated	99 100 101 102 103	<u>H00C-CH/OH)-CO0H</u> <u>H00C-CH2-CH(OH)-C00H</u> <u>CL-CH2-C00H</u> CL-CH2 B2-CH2 B2-CH2	<u>tartoronic acid</u> <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibrommethane	<u>1.70E+08</u> <u>8.20E+08</u> <u>4.30E+07</u> 5.80E+07 9.90E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08	0.15289 0.55146 0.60227 0.07428 0.21590	0.61 0.26 0.22 0.73 1.46
Halogenated	99 100 101 102 103	<u>HOOC-CH/OH)-COOH</u> <u>HOOC-CH2-CH(OH)-COOH</u> <u>CI-CH2-COOH</u> CL2-CH2 Br-2-CH2 Br-2-CH2	<u>tartoronic acid</u> <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibrommethane	<u>1.70E+08</u> <u>8.20E+08</u> <u>4.30E+07</u> 5.80E+07 9.90E+07 7.10E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816	0.61 0.26 0.22 0.73 1.46
Halogenated	99 100 101 102 103 104	<u>H00C-CH(0H)-C00H</u> <u>H00C-CH2-CH(0H)-C00H</u> <u>CL-CH2-C00H</u> CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane	<u>1.70E+08</u> <u>8.20E+08</u> <u>4.30E+07</u> 5.80E+07 9.90E+07 7.10E+07 1.00E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 0.22E+06	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.06602	0.61 0.26 0.22 0.73 1.46 0.44
Halogenated	99 100 101 102 103 104 105	<u>HOOC-CH/OH)-COOH</u> <u>HOOC-CH2-CH(OH)-COOH</u> <u>CL-CH2-COOH</u> CL2-CH2 Br-CH2 Br-CH2 Br-C12CH CL3C-CHC12 GUB-CH	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane pentachtroethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 1.00E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.00529	0.61 0.26 0.22 0.73 1.46 0.44 0.92
Halogenated	99 100 101 102 103 104 105 106	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL2-CH2 BrCL2CH BrCL2CH CI3C-CHC12 CHBr2C1 CHBr2C1 CHBr2C1	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane pentachlrooethane chlorodibromomethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.00E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 4.07E+02	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528	0.61 0.26 0.73 1.46 0.44 0.92 0.69
Halogenated	99 100 101 102 103 104 105 106 107	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 BrCL2CH BrCL2CH CL3C-CHC12 CHBr3C1 CHBr3 D CHD CHDP	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane chlorodibromomethane tubromomethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.50E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.02E+06	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460	0.61 0.26 0.73 1.46 0.44 0.92 0.69 0.71
Halogenated	99 100 101 102 103 104 105 106 107 108	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 Br2-CH2 Br2-CH2 BrC12CH CL3C-CHC12 CHBr2CI CHBr3 BrCH2-CH2Br BrCH2-CH2Br	tartoronic acid <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane bromodichloromethane chlorodibromomethane tribromomethane 1,2-dibromoethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.83E+08 000	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09
Halogenated	99 100 101 102 103 104 105 106 107 108 109	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL2-CH2 Br2-CH2 BrC12CH CL3C-CHC12 CHBr2C1 CHBr3 BrCH2-CH2Br CH3-CHC12	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane chlorodibromomethane thibromomethane 1,2-dibromoethane 1,1-dichloroethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.30E+08 1.30E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 2.22E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 Br-C2-CH2 Br-C12-CH CL3C-CHC12 CHBr3C1 CHBr3 BrCH2-CH2Br CH3-CHC12 CH3-CHC12 CH3-CHC12	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane chlorodibromomethane thibromomethane 1,2-dibromoethane 1,1-dichloroethane 1,2-dichloroethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.09556 0.09555	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2 CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH2-CH2Br CH3-CHC12 CH2CLCH2C1 CH2CL-CH2C1	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,1-dichloroethane 1,2-dibroroethane 1,2-dichloroethane 1,2-dichloroethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+07 1.30E+08 2.00E+08 1.00E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 <u>3.10E+07</u> 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08 9.22E+06	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.05653 0.00603	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 CH3-CHC2 CHBr3 BrCH2-CH2Br CH3-CHC12 CH2C1-CH2C1 CL2CH-CC13 Br2CH-CH3r2	tartoronic acid <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane bromodichloromethane chlorodibromomethane tribromomethane 1,2-dibromoethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2,2-tetrabromoethane	1.70E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 8.30E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.23E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.005653 0.00603 0.00632	0.61 0.22 0.73 1.46 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2 Br2-CH2 BrC12CH CL3C-CHC12 CH3C-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH3-CHC12 CH3-CHC12 CH3-CHC12 CH3-CHC13 Br2CH-CCH32 CL3C-CH32 CL3C-CH32	tartoronic acid <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane bromodichloromethane chlorodibromomethane thibromomethane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloroethane 1,2-2.tetrabromoethane 1,1,2.2-tetrabromoethane 1,1,1-2-tetrachloroethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 5.80E+07 9.90E+07 7.10E+07 8.30E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 <u>3.10E+07</u> 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08 9.22E+08 1.52E+08 2.22E+08 2.22E+08 1.52E+08 2.22E+08 2.33E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.09555 0.05653 0.00603 0.000322 0.08698	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29
Halogenated	99 100 101 102 103 104 105 106 107 108 109 101 111 112 113 114	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 CH3C-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC2 CH3C-CH2C1 CH2C-CH2C1 CH2CL-CH2C1 CH2CH-CC13 Br2CH-CH3C1 CH2C-CH2C1 CH2C-CH2C1 CH2C-CH2C1	tartoronic acid <u>natic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-2-tetrabromoethane 1,1,2-2-tetrabromoethane 1,1,2-2-tetrabromoethane 1,1,2-2-tetrabromoethane 1,1,2-2-tetrabromoethane 1,1,2-2-tetrabromoethane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 5.80E+07 7.10E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.80E+07 1.80E+07 1.10E+08	1.04E+08 2.11E+08 9.63E+06 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.32E+08 1.52E+08 9.22E+06 2.07E+08 2.32E+07 1.06E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.03653 0.00603 0.00332 0.08698 0.00108	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.94
Halogenated	99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 CC3C-CHC12 CCH8r3 BrCH2-CH2Br CCH3-CHC12 CH2C-CH2C1 CL2CH-CC13 Br2CH-CH8r2 Cl3C-CH2C1 CC13-CH2C1 CC13-CH3	tartoronic acid <u>nulic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,2-dichloroethane 1,1-2.tetrachloroethane 1,1-2.tetrachloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1,1-trichloroethane	1.70E+03 8.20E+08 8.20E+07 9.90E+07 7.10E+07 8.30E+07 9.90E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+08 0.00E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.08660 0.00663 0.00663 0.00603 0.00603 0.00352 0.08698 0.00108 0.36488	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL2-CH2 Br2-CH2 Br2-CH2 Br2CH2 CH3-CHC1 CH3-CHC1 CH3-CHC2 CH3-CHC2 CH3-CHC2 CH3-CHC2 CH3-CHC2 CH3-CHC2 CH3-CH2C1 CC12-CH2C1 CC12-CH2C1 CC13-CH2 CC13-CH3 CC13-CH3 CH3-CH2-C1	tartoronic acid <u>malic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane bromodichloromethane pentachlocoethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromothane 1,2-dibroroethane 1,2-dichloroethane 1,2-tetrachloroethane 1,1,2,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dibropropane	1.70E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 8.30E+07 9.90E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 1.00E+07 1.00E+07 1.00E+07 2.00E+08 1.00E+07 1.00E+08 2.50E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.23E+08 2.22E+08 2.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09	0.15289 0.55146 0.60227 0.07428 0.01590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.005653 0.00603 0.0018 0.00603	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.97 0.40 0.43
Halogenated	99 100 101 102 103 104 105 105 105 106 107 108 109 110 111 112 113 114 115 116 117	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2 CL2-CH2 Br-CL2CH CL3C-CH2 CH3C-CH2 CH3C-CH2 CH3C-CH2 CH3CH2CH CH3-CH2 CH3	tartoronic acid <u>natic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,1-dichloroethane 1,1-dichloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-2-trichloroethane 1,1,1-2-trichloroethane 1,1,1-tichloroethane 1,1,1-tichloroethane 1,2-dichloros-bromepropane	1.70E+08 8.20E+08 4.30E+07 5.80E+07 5.80E+07 9.90E+07 7.10E+07 8.30E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.00E+07 2.00E+08 1.00E+07 1.80E+07 1.10E+08 2.00E+08 1.00E+07 2.20E+08 1.00E+07 3.00E+07 1.10E+08 2.00E+08 2.00E+08	1.04E+08 2.11E+08 9.63E+06 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08 2.27E+08 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 2.72E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.09556 0.05653 0.00603 0.000352 0.00608 0.00108 0.36488 0.32351 0.39359	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	HOOC-CH/OH)-COOH HOOC-CH2-CH/OH)-COOH CL2-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CCBr2-CHC12 CCH8r3 BrCH2-CH2Br CH3-CHC12 CH2CL-CH2C1 CH2CL-CH2C1 C12CH-CC13 Br2CH-CH8r2 C13C-CH2C1 CC13-CH2 CC13-CH3 CH3CH2CH2-CH2 CC13-CH3 CH3CH2CH2-CH2Br CH2C1-CH2I-CH2Br	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane bromodichloromethane chlorodibromomethane thbromomethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichloroethane 1,1,1-trichloroethane 1,2-dichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,2-dichloroethane 1,2-dichloroethane	1.70E+08 8.20E+07 9.90E+07 7.10E+07 1.00E+07 1.50E+08 2.60E+08 2.60E+08 1.30E+08 2.00E+08 1.30E+08 1.00E+08 1.00E+08 1.80E+07 2.20E+08 1.80E+07 1.10E+08 1.00E+08 2.50E+09 7.30E+08 4.10E+09	1.04E+08 2.11E+08 9.63E+06 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+07 1.06E+09 2.72E+08 1.04E+09	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.05653 0.00603 0.00332 0.08698 0.00108 0.36488 0.32351 0.39359 0.55646	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.37 0.25
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH2-CH2C1 CH2CH-CC13 Br2CH-CH3 CH3CH2CH2-C1 CC13-CH3 CH3CH2CH2-C1 CH3CH3CH3CH3	tartoronic acid <u>nulic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,1-2-tetrabromoethane 1,1,2,2-tetrabromoethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane	1.70E+03 8.20E+08 8.20E+07 9.90E+07 7.10E+07 8.30E+07 9.90E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.00E+08 2.50E+09 7.30E+08 4.10E+09 4.00E+08	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.23E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 2.72E+08 1.04E+09 3.72E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.005653 0.00603 0.00603 0.00352 0.08698 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491	0.61 0.22 0.73 1.46 0.44 0.92 0.71 1.09 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL2-CH2 Br2-CH2 Br2-CH2 Br2CH2 Br2CH2 CHBr2COH CH3C-CH2 CHBr2CH2 CHBr2CI CHBr2CH2 CH3-CH2D CH3-CH2D CH3-CH2CI CH2-CH2CI CH2-CH2CI CH2-CH2CI CH3-CH2CI CH3-CH2CI CCI3-CH3 CH3CH2-CH2Br CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CI CH2CI-CH2-CH2Br CH2CI-CH2-CH3 CH3-CH2-CH2-CI	tartoronic acid <u>nulic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane bromodichloromethane pentachkroethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromothane 1,1-dichloroethane 1,2-dichloroethane 1,1,2,2-tetrabromothane 1,1,2,2-tetrabromothane 1,1,1-2-tetrachloroethane 1,1,1-trichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichlorogropane 1,2-dichloropropane 1,2-dichloropropane	1.70E+08 8.20E+08 8.20E+07 9.90E+07 9.90E+07 1.00E+07 8.30E+07 9.90E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.10E+08 2.50E+08 2.50E+08 3.40E+09 4.10E+09 3.40E+09	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+66</u> 4.22E+07 1.45E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+09 2.72E+08 1.04E+09 3.72E+08 2.44E+09	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.005653 0.00603 0.005646 0.02251 0.39359 0.55646 0.00491 0.07938	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.97 0.40 0.43 0.37 0.25 0.93 0.72
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 121	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH2-CH2 CHBr3 BrCH2-CH2Br CH3-CHC12 CH2-CH2C1 CH2-CH2-CH2 CH2-CH2-CH2Br CH2-CH2-CH2Br CH2-CH2-CH2-CH2Br CH2-CH2-CH2-CH2-CH2Br CH2-CH2-CH2-CH2-CH2Br CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	tartoronic acid <u>natic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichloronethane 1,2-dichloronethane 1,1,2-tetrabromopropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane	1.70E+08 8.20E+08 8.20E+08 9.90E+07 7.10E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 1.30E+08 1.30E+08 1.30E+08 1.30E+08 1.30E+08 1.30E+08 1.30E+08 1.00E+08 1.00E+08 1.00E+08 4.10E+09 4.00E+08 3.40E+09	1.04E+08 2.11E+08 9.63E+06 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.33E+08 9.22E+08 9.22E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 1.04E+09 3.72E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00663 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00608 0.00108 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20
Halogenated	99 100 101 102 103 104 105 106 107 108 109 100 110 111 113 114 115 116 117 117 118 119 120	<u>HOOC-CH/OH)-COOH</u> <u>HOOC-CH2-CH/OH)-COOH</u> <u>CL-CH2-COOH</u> CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH2CL-CH2CI CH2CL-CH2CI CH2CL-CH2CI CC13-CH3 CH3C-CH2CI CC13-CH3 CH3C-CH2CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2OH CH3-(CH2)-3-CI <u>Br-CH2-CH2OH</u>	tartoronic acid <u>natic acid</u> <u>chloroacetic acid</u> dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,1-2-tichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-trichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane 1,2-dichloropropane	1.70E+03 8.20E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 8.30E+07 9.90E+07 7.10E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 3.40E+09 3.40E+09 3.40E+09 3.40E+09	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 2.32E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 2.44E+09 3.72E+08 2.44E+09 5.61E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.09528 0.08460 0.00756 0.05653 0.00603 0.005653 0.00603 0.00352 0.00603 0.00352 0.00603 0.00352 0.00603 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16500	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20
Halogenated	99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	HOOC-CH/OH)-COOH HOOC-CH2-CH/OH)-COOH CL-CH2-COOH CL-CH2 Br-CL2CH Br-CL2CH CL3C-CHC1 CH3C-CHC1 CH3C-CHC2 CH3C-CH2CH CH3C-CH2CH CH2-CH2CH CH2CH-CC13 Br-2CH-CH3C CC13C-CH2CH CC13C-CH2CH CC13C-CH2CH CC13C-CH2CH CH2CH-CC13 CH3CH2CH2-C1 CH3CH2CH2-C1 CH2CH-CHC3 CH3CH2CH2-C1 CH2Br CH2Br-CH2-CH2Br CH2Br-CH2-CH2Br CH2CH-CHC1-CH3 CH3C-CH2-CH2Br CH2CH-CHC3CH2Br CH2CH-CHC3CH2Br CH2CH-CHC3CH2Br CH2CH2CH2CH2OH CH2CH2CH2-CH2OH CH2CH2CH2-CH2OH CH2-CH2-CH2OH	tartoronic acid <u>nulic acid</u> <u>chloroacetic acid</u> <u>dichloromethane</u> <u>dibromomethane</u> <u>bromodichloromethane</u> <u>pentachloroethane</u> <u>thbromomethane</u> <u>1,2-dibromoethane</u> <u>1,2-dichloroethane</u> <u>1,1-dichloroethane</u> <u>1,1-2-tetrachloroethane</u> <u>1,1,2-2-tetrachloroethane</u> <u>1,1,2-2-tetrachloroethane</u> <u>1,1,2-2-tetrachloroethane</u> <u>1,1,1-trichloroethane</u> <u>1,1,1-trichloroethane</u> <u>1,2-dichloro-3-bromopropane</u> <u>1,2-dichloro-3-bromopropane</u> <u>1,2-dichloro-3-bromopropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>1,2-dichloropane</u> <u>2-2horomethanol</u> <u>2-2 zeichloropane</u> <u>2,2 zeichlo</u>	1.70E+08 8.20E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 9.90E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 1.00E+07 1.00E+07 1.00E+07 1.00E+08 2.50E+08 1.00E+08 3.40E+07 3.40E+09 3.50E+08 3.40E+09 3.50E+08 3.40E+09	<u>1.04E+08</u> <u>2.11E+08</u> <u>2.11E+08</u> <u>4.22E+07</u> 1.45E+08 <u>3.10E+07</u> 9.22E+06 <u>5.74E+07</u> 1.06E+08 <u>2.23E+08</u> <u>2.22E+06</u> <u>2.22E+06</u> <u>2.33E+07</u> <u>1.06E+08</u> <u>2.33E+07</u> <u>1.06E+08</u> <u>3.72E+08</u> <u>2.72E+08</u> <u>3.72E+08</u> <u>2.44E+09</u> <u>7.69E+08</u> <u>5.61E+09</u> <u>1.66E+08</u> <u>5.61E+08</u>	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00603 0.005564 0.00108 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.02495	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.97 0.94 1.29 0.97 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.59
Halogenated	99 100 101 102 103 104 105 106 107 108 100 100 100 100 101 111 112 113 114 115 116 117 118 119 120 120 122 123	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3C-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH3-CHC14 C12CH-CC13 Br2CH-CH2C1 C12CH-CC12 C12C-CH2C1 C12C-CH2C1 CH3-CH2-CH2Br CH2CL-CHC1-CH2Br CH2CL-CHC1-CH2Br CH2CL-CHC1-CH2Br CH2CL-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-CH2-OH C1-CH2-OH C1-CH2-OH	tartoronic acid nulic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroptoane 1,2-dichloroptoane 1,2-dichlorobutane 2-bromoethanol 2-2-trichloroethanol 2-2-2-trichloroethanol	1.70E+08 8.20E+08 8.20E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 1.00E+07 2.00E+08 1.00E+07 1.00E+07 3.00E+07 1.00E+08 1.00E+07 3.40E+09 3.40E+09 3.50E+08 9.50E+08 9.50E+08 9.20E+08	1.04E+08 2.11E+08 2.03E+07 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.32E+06 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 1.04E+09 3.72E+08 2.44E+09 7.69E+08 5.61E+08 1.66E+08 1.66E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00608 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.46805	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.59 0.40
Halogenated	99 100 101 102 103 104 105 106 107 108 109 109 109 109 110 111 111 112 113 114 115 116 117 120 121 122 123 124	HOOC-CH/OH)-COOH HOOC-CH2-CH/OH)-COOH CL-CH2-COOH CL-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3c-CH2CH CH3c-CH2D CH3c-CH2D CH3c-CH2D CH3c-CH2D CH3C-CH2CH CH3C-CH2D CH3C-CH2CH CH3C-CH2CH CH3C-CH2CH2 CH3C-CH2CH2 CH3C-CH2CH2 CCH3-CH2 CH3C-CH2CH2 CCH3-CH2 CH2CI-CH2CH2 CH2CI-CH2CH2 CH2CI-CH2-CH2 CH2CI-CH2-CH2-DH CH2CI-CH2-OH CL2CH2-CH2-OH CCH3-CH2-OH CCH3-CH2-OH <tr< td=""><td>tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,1-dichloroethane 1,1,2,2-tetrabromoethane 1,1,2,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichlorogropane</td><td>1.70E+03 8.20E+03 8.20E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.00E+08 2.00E+08 1.00E+08 2.50E+09 7.30E+08 3.40E+09 3.40E+09 3.40E+09 3.40E+08 2.30E+08 4.20E+08</td><td>1.04E+08 2.11E+08 2.11E+08 2.11E+08 4.22E+07 1.45E+08 3.10E+07 9.22E+06 2.74E+07 1.06E+08 2.83E+08 2.22E+06 2.07E+08 9.22E+06 2.07E+08 3.96E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 2.44E+09 7.69E+08 3.6E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08</td><td>0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00663 0.00603 0.00352 0.08698 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.09227 0.09227</td><td>0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.59 0.40 0.59</td></tr<>	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,1-dichloroethane 1,1,2,2-tetrabromoethane 1,1,2,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichlorogropane	1.70E+03 8.20E+03 8.20E+07 5.80E+07 9.90E+07 7.10E+07 1.00E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.00E+08 2.00E+08 1.00E+08 2.50E+09 7.30E+08 3.40E+09 3.40E+09 3.40E+09 3.40E+08 2.30E+08 4.20E+08	1.04E+08 2.11E+08 2.11E+08 2.11E+08 4.22E+07 1.45E+08 3.10E+07 9.22E+06 2.74E+07 1.06E+08 2.83E+08 2.22E+06 2.07E+08 9.22E+06 2.07E+08 3.96E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 2.44E+09 7.69E+08 3.6E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00663 0.00603 0.00352 0.08698 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.09227 0.09227	0.61 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.59 0.40 0.59
Halogenated	99 100 101 102 103 104 105 106 107 108 109 100 110 111 111 112 113 114 115 116 1177 120 121 121 122 123 124 125	<u>HOOC-CH/OH)-COOH</u> <u>HOOC-CH2-CH/OH)-COOH</u> <u>CL-CH2-COOH</u> CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3-CHC12 CHBr3C1 CHBr3C1 CHBr3C1 CHBr3C1 CH2-CH2DF CH2-CH2DF CH2-CH2C1 CH2CH-CC13 Br2CH-CH3C1 CH3CH2CH2C1 CC13-CH3 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-C1 CH3CH2CH2-CH2BF CH2CL-CHC1-CH3 CH3-CH2-CH2BF CH2CL-CHC1-CH3 CH3-(CH2)-CH2BF CH2C-CH2-CH2OH <u>CC13-CH2-OH</u> <u>CC13-CH2-OH</u>	tartoronic acid nulic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromoethane 1,2-dichloroethane 1,1-2-tichloroethane 1,1-2-tichloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-2-tetrachloroethane 1,1,1-2-tetrachloroethane 1,1,1-trichloroethane 1,2-dichlorospropane	1.70E+03 8.20E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.00E+07 1.00E+07 1.00E+07 1.00E+08 2.50E+09 7.30E+08 4.10E+09 3.40E+09 3.50E+08 2.30E+08 2.30E+08 2.30E+08 2.30E+08 3.10E+09	<u>1.04E+08</u> <u>2.11E+08</u> <u>9.63E+06</u> 4.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.23E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 2.33E+07 1.08E+09 2.72E+08 1.64E+09 7.69E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+08 1.66E+	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00603 0.00556 0.00603 0.00556 0.00556 0.00556 0.00556 0.00556 0.00556 0.00491 0.07938 1.43156 0.00491 0.07938 1.43156 0.00491	0.61 0.22 0.73 1.46 0.44 0.92 0.71 1.09 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.59 0.59 0.70
Halogenated	99 100 101 102 103 104 105 106 107 108 109 100 110 101 111 112 113 114 115 116 110 117 118 119 121 123 124 125 125 126	HOOC-CH/OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2-COOH CL-CH2 Br-CL2CH Br-CL2CH Br-CL2CH CG2-CH2 Br-CL2CH Br-CL2CH CG3C-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC10 CH2CH-CC13 Br2CH-CH2C1 CG3C-CH2C1 CG1C-CH2C1 CG1C-CH2C1 CC13-CH3 CH3CH2CH2-C1 CH2Br-C12-CH2Br CH2C1-CHC1-CH3 CH3CH2-CH2-C1 CH2C1-CH2-CH2Br CH2C1-CH2-CH3 CH3-CH2-CH2-OH <u>CL-CH2-CH2-OH</u> <u>CL-CH2-CH2-OH</u> <u>CL3-CH2-OH</u> <u>CL3-CH2-OH</u> <u>CC13-CH2-OH</u> <td>tartoronic acid natic acid chloroacetic acid dichloromethane dibromomethane pentachlrooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,2-dichloroethane 1,1-2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,2-dichloro-3-bromogropane 1,3-dibromogropane 1,3-dibromogropane 1,2-dichlorobutane 2-bromogethanol 2-2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol Albothane</td> <td>1.70E+08 8.20E+08 8.20E+08 4.30E+07 9.90E+07 9.90E+07 1.00E+07 8.30E+07 9.90E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.10E+08 2.50E+08 3.40E+09 3.40E+09 3.50E+08 2.30E+08 2.30E+08 3.40E+09 1.30E+07 1.30E+07</td> <td>L04E+08 2.11E+08 2.11E+08 2.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+06 2.07E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 2.72E+08 1.04E+09 2.72E+08 1.04E+09 2.44E+09 7.69E+08 5.61E+08 1.66E+08 2.75E+08 1.55E+07</td> <td>0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00756 0.49556 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.005554 0.03251 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.09227 0.83066 0.03719</td> <td>0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.72 2.20 0.59 0.71</td>	tartoronic acid natic acid chloroacetic acid dichloromethane dibromomethane pentachlrooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,2-dichloroethane 1,1-2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,1-2-tetrachloroethane 1,1,2-tetrachloroethane 1,1,2-tetrachloroethane 1,2-dichloro-3-bromogropane 1,3-dibromogropane 1,3-dibromogropane 1,2-dichlorobutane 2-bromogethanol 2-2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol 2.2.2-trifluoroethanol Albothane	1.70E+08 8.20E+08 8.20E+08 4.30E+07 9.90E+07 9.90E+07 1.00E+07 8.30E+07 9.90E+07 1.00E+07 8.30E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.80E+07 1.10E+08 2.50E+08 3.40E+09 3.40E+09 3.50E+08 2.30E+08 2.30E+08 3.40E+09 1.30E+07 1.30E+07	L04E+08 2.11E+08 2.11E+08 2.22E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+06 2.07E+08 9.22E+06 2.07E+08 2.33E+07 1.06E+08 3.96E+07 1.08E+09 2.72E+08 1.04E+09 2.72E+08 1.04E+09 2.44E+09 7.69E+08 5.61E+08 1.66E+08 2.75E+08 1.55E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00756 0.49556 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.00603 0.005554 0.03251 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.09227 0.83066 0.03719	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.72 2.20 0.59 0.71
Halogenated	99 100 101 102 103 104 105 106 107 108 109 100 101 101 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127	HOOC-CH(OH)-COOH HOOC-CH2-CH(OH)-COOH CL-CH2-COOH CL-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3c-CHC12 CHBr3 BrCH2-CH2Br CH3-CHC12 CH3-CHC12 CH2-CH2G1 CH2CH-CH3 Br2CH-CH2 CH3-CHC12 CC13-CH3 CH3C-CH2CH1 CH2CH-CHC1 CH2CH-CH2 CC13-CH3 CH3C-CH2-CH2 CH2CH-CHC1-CH3 CH2CH-CH2-CH2-DH CH2CH-CH2-CH2-OH CL-CH2-CH2-OH CL-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH2-OH CC13-CH10-DH2 CR3-CHC10Br CH203	tartoronic acid nulic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromomethane 1,2-dibromomethane 1,2-dichloroethane 1,1-dichloroethane 1,2-dichloroethane 1,1,2-tetrabromoethane 1,1,2-tetrabromoethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,1,1-trichloroethane 1,2-dichloronopropane 1,3-dibromopropane 1,2-dichloropropane 1,2-d	1.70E+03 8.20E+03 8.20E+04 9.90E+07 7.10E+07 1.00E+07 8.30E+07 1.00E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.20E+08 1.00E+07 2.20E+08 1.00E+07 1.10E+08 1.00E+08 2.50E+09 7.30E+08 3.40E+09 3.40E+09 3.40E+09 3.40E+09 3.40E+09 3.40E+09 3.40E+09 3.40E+09 1.30E+07 1.40E+07	1.04E+08 2.11E+08 2.11E+08 2.11E+08 3.10E+07 1.45E+08 3.10E+07 9.22E+06 5.74E+07 1.06E+08 2.83E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 2.35E+07 1.06E+08 3.96E+07 1.08E+09 3.72E+08 1.04E+09 3.72E+08 1.66E+08 1.66E+08 1.66E+08 1.52E+07 1.55E+07 1.67E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.05653 0.00603 0.00603 0.00352 0.08698 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.16800 0.36485 0.09227 0.83066 0.03719 0.03709	0.61 0.26 0.22 0.73 1.46 0.44 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 0.59 0.59 0.59 0.70 0.59 0.70 0.59 0.70 0.59 0.70 0.59 0.70 0.71 0.72
Halogenated	99 100 101 101 102 103 104 105 105 106 106 106 107 108 109 109 109 109 109 100 110 111 111 115 116 117 118 119 120 123 124 125 126 127 128 126	<u>HOOC-CH/OH)-COOH</u> <u>HOOC-CH2-CH/OH)-COOH</u> <u>CL-CH2-COOH</u> CL2-CH2 Br2-CH2 Br2-CH2 Br2-CH2 CH3C-CHC12 CHBr3 BrCH2-CH2Br CH3C-CH2CI CH2CL-CH2CI CH2CL-CH2CI CC13-CH3 CH3C-CH2CI CC13-CH3 CH3C-CH2CI CH3C-CH2Br CH3C-CH2CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2Br CH2CL-CH2-CH2OH <u>CC13-CH3</u> -CH2OH <u>CC13-CH3-CH2OH</u> <u>CC13-CH3-CH2OH</u> <u>CC13-CH3-CH2OH</u> <u>CC13-CH2OH</u> <u>CC13-CH2OH</u>	tartoronic acid malic acid chloroacetic acid dichloromethane dibromomethane pentachirooethane chlorodibromomethane 1,2-dibromoethane 1,2-dibromoethane 1,2-dibromoethane 1,1-dichloroethane 1,1-2-trichloroethane 1,1,2-trichloroethane 1,1,1-trichloroethane 1,2-dichloropropane 1,2-dichloropr	1.70E+03 8.20E+08 8.20E+08 8.20E+07 9.90E+07 7.10E+07 1.00E+07 8.30E+07 8.30E+07 9.90E+07 7.10E+07 1.50E+08 2.60E+08 1.30E+08 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 2.00E+08 1.00E+07 3.00E+08 3.40E+09 3.40E+09 3.40E+08 2.30E+08 2.30E+08 3.10E+07 1.30E+07	1.04E+03 2.11E+08 2.11E+08 2.11E+08 4.22E+07 1.45E+08 3.10E+07 9.22E+06 2.33E+08 2.33E+08 2.22E+08 1.52E+08 9.22E+06 2.07E+08 9.22E+06 2.07E+08 3.96E+07 1.06E+08 3.96E+07 1.04E+09 3.72E+08 2.44E+09 7.69E+08 1.66E+08 1.66E+08 1.52E+07 1.52E+07 3.36E+07	0.15289 0.55146 0.60227 0.07428 0.21590 0.31816 0.00603 0.09528 0.08460 0.00756 0.49556 0.00663 0.00603 0.00352 0.00603 0.00352 0.00603 0.00356 0.00603 0.00352 0.00608 0.00108 0.36488 0.32351 0.39359 0.55646 0.00491 0.07938 1.43156 0.04890 0.36485 0.09227 0.83066 0.03709 0.03709 0.12712	0.61 0.26 0.22 0.73 1.46 0.92 0.69 0.71 1.09 1.70 0.76 0.92 0.94 1.29 0.97 0.40 0.43 0.37 0.25 0.93 0.72 2.20 0.40 0.43 0.37 0.59 0.93 0.72 2.20 0.40 0.43 0.37 0.59 0.40 0.70 0.59 0.40 0.70 0.59 0.40 0.70 0.59 0.64

131 H3C-S-S-CH3 di-met 132 H3C-CH2-S-CH2-CH3 di-et 133 H3C-CH2-S-S-CH2-CH3 di-et 134 (CH3)2-CH-S-S-CH2-CH3 di-eth 135 CH3-S-CH2-CH2-CH3 di-eth 136 H3C-S-CH2-CH2-OH 2-meth 136 H3C-S-CH2-CH0 m	hyl-di-sulfides 1.70E+			
132 H3C-CH2-S-CH2-CH3 dieu 133 H3C-CH2-S-S-CH2-CH3 di-eth 134 (CH3)2-CH3-S-S-CH2-CH3 di-ethyl-n 135 CH3-S-CH2-CH2-OH di-ethyl-n 136 H3C-S-CH2-CH2-OH neth 136 H3C-S-CH2-CH2-OH neth	tye at once and an other	10 536E+09	0.46893	032
132 H3C-CH2-SCH2-CH3 ditest 133 H3C-CH2-S-S-CH2-CH3 di-eth 134 (CH3)2-CH-S-S-CH2-CH3 di-ethyl-n 135 CH3-S-CH2-CH3 di-ethyl-n 136 H3C-S-CH2-CH2-OH 2-meth 136 H3C-S-CH2-CH2-CH0 n	Index 140E+	10 8 66 8 + 00	0.14554	0.62
135 <u>H3C-CH2-S-S-CH2-CH3</u> <u>di-eth</u> 134 (CH3)2-CH-S-S-CH-(CH3)2 di-ethyl-n 135 CH3-S-CH2-CH2-OH 2-meth 136 H3C-S-CH2-CH0 n	<u>1.40E+</u>	10 0.07E+09	0.09393	0.02
134 (CH3)2-CH-S-S-CH-(CH3)2 dt-ethyl-n 135 CH3-S-CH2-CH2-OH 2-meth 136 H3C-S-CH2-CH2-CH0 neth	<u>vi-ai-suijides</u> <u>1.40E</u> +	<u>10 9.97E+09</u>	0.08282	0.71
135 CH3-S-CH2-CH2-OH 2-meth 136 H3C-S-CH2-CH2-CH0 n	nethyl-di-sulfides 2.00E+	10 1./3E+10	0.018/6	0.86
136 H3C-S-CH2-CH0 n	ylthio-ethanol 7.90E+	09 6.86E+09	0.01719	0.87
	nethional 8.20E+	09 7.63E+09	0.00477	0.93
137 <u>H0-CH2-CH2-S-CH2-CH2-OH</u> <u>2,2'-t</u>	hiodiethanol 2.00E+	<u>10</u> <u>9.68E+09</u>	0.26617	0.48
138 HO-CH2CH2CH2-S-CH2CH2CH2-OH 3.3'-t	hiodiethanol 1.40E+	10 7.67E+09	0.20451	0.55
139 HOOC-CH2-S-CH2-COOH thiod	liacetic acid 6.00E+	09 2.57E+09	0.32636	0.43
Sulfoxide 140 CH3-SO-CH3 di-met	hyl-sulfoxide 6.50E+	09 2.23E+09	0.43088	0.34
141 CH3 CH2 SO CH2 CH3 di ati	mil sulfaxida 6 50F+	00 3 77F+00	0.17602	0.58
141 <u>CH3-CH3-SO-CH3-CH3</u> di mu	mil sulfavida 6 20E+	00 650E+00	0.00102	1.02
142 <u>CH3-CH2-CH2-CH2-CH3</u> <u>al-pro</u>	<u>0.30E</u>	09 0.30 <u>E+09</u>	0.00103	1.05
143 <u>(CH3)2CH-SO-CH(CH3)2</u> <u>at(1-meth</u>	vi-ethvi)sulfoxide <u>0.80E</u> +	<u>09 <u>5.80E+09</u></u>	0.02176	0.85
144 (CH3-CH2-CH2)2-SO di-bu	tyl-sulfoxide 8.00E+	09 9.32E+09	0.02/21	1.16
145 CH3-SO-CH2-S-CH3 methyl methyl	1 thiomethyl sulfoxide 4.80E+	09 6.37E+09	0.10649	1.33
146 HO-CH2CH2-SO-CH2CH2-OH di(2-hydro	xyethyl) sulfoxide 5.30E+	09 4.57E+09	0.01877	0.86
147 (CH3)2-CH-SO-CH-(CH3)2 diisope	ropyl sulfoxide 6.80E+	09 5.80E+09	0.02176	0.85
Thiol 148 HS-CH2-CH2-OH merc	aptoethanol 6.80E+	09 4.65E+09	0.09962	0.68
149 HS-CH2-COOH merca	ptoacetic acid 1.20E+	09 1.10E+09	0.00707	0.92
150 HS-CH2-COOCH3 methy	thioglycolate 2.10E+	10 1.10E+09	0.89813	0.05
151 HS-CH2-CH(OH)-CH(OH)-CH2-SH dit	hiothreitol 1 50E+	10 1 11E+10	0.06789	0.74
Nitrila 152 CH3 CN ac	etonitrile 2 20F+	07 646E+06	0.40808	0.20
152 CNCN at		07 1.00E+07	0.00977	1.00
	valogen 1.00E	07 6 59E+06	0.00377	0.07
154 CH3-CH2-CN pro	pionitrile 9.30E+	0/ 0.581+00	0.80352	0.07
155 NC-CH2-CH2-CN suc	cino nitrile 3.80E+	07 1.11E+07	0.50119	0.29
Nitro 156 CH3-CH2-CH2-NO2 1-ni	tropropane 2.50E+	08 1.89E+09	43.05812	7.56
157 (CH3)2-CH-NO2 2-ni	tropropane 8.00E+	07 9.61E+08	121.23321	12.01
158 <u>CH2CINO2</u> <u>chloro</u>	nitromethane <u>1.94E</u> +	<u>08 1.33E+08</u>	<u>0.10015</u>	<u>0.68</u>
159 <u>CHCl2N02</u> <u>dichlor</u>	onitromethane 5.12E+	08 <u>1.33E+08</u>	<u>0.54908</u>	0.26
160 CH2BrNO2 bromo	nitromethane 8.36E+	07 1.33E+08	0.34364	1.59
161 CHBr2NO2 dibrom	onitromethane 4.75E+	08 1.33E+08	0.51959	0.28
162 CHR#CINO2 browschi	oronitromathana 120E+	08 1 33E+08	0.46822	0.32
102 <u>CHDrChV02</u> <u>Dromochi</u>	4.20E+	00 1.53E+00	0.40022	0.32
Amide 103 CH3-CO-NH2 a	cetamide 1.90E+	J8 1.54E+08	0.03564	0.81
164 HO-CH2-CO-NH2 gr	ycolamide 1.10E+	09 2.91E+08	0.54119	0.26
165 HO-CH(CH3)-CO-NH2 2-hydrox	xypropionamide 1.30E+	09 4.53E+08	0.42496	0.35
166 (CH3)2-CH-CO-NH2 2-methy	plpropionamide 1.60E+	09 5.93E+08	0.39619	0.37
167 C2H5-CO-NH2 pro	pionamide 7.00E+	08 3.30E+08	0.27881	0.47
168 (CH3)3-C-CO-NH2 trimet	hylacetamide 1.50E+	09 1.34E+09	0.01107	0.89
169 (CH3)2-CH-CO-NH2 iso	outyramide 1.60E+	09 5.93E+08	0.39619	0.37
170 CH3-CO-NH-C-(CH3)3 N-tert-t	outyl-acetamide 1.10E+	09 1.80E+09	0.40164	1.63
171 CH3-CO-NH-CH3 N-met	hvlacetamide 1.60E+	09 1.68E+09	0.00241	1.05
172 (CH3)2-CH-CO-NH-CH3 N-bu	tvlformamide 190E+	09 2.84E+09	0 24314	1 49
172 (CH3)2-CF-CO-NH-CH3 N met	nt nivelemide 2.40E+	0 2.04E+00	0.03770	1.10
175 (CH3)5-C-CO-NH-CH3 N metho	4 propiopomido 140E+	1 25E±00	0.10551	1.12
174 CH3-CH2-CO-WI-CH3 N-methy	dia abastamani da 1.00E (0 2.12E+09	0.10331	1.52
175 (CH3)2-CH-CO-NH-CH3 N-methy	/iisobutyramide 1.90E+	09 2.12E+09	0.01308	1.11
1/6 CH3-CO-N-(CH3)2 N,N-dim	ethyl acetamide 3.50E+	09 3.30E+09	0.00326	0.94
177 (CH3)3-C-CO-N-(CH3)2 N,N-dim	ethyl pivalamide 3.90E+	09 3.41E+09	0.01585	0.87
Amine 178 H2N-CH2-CO-NH2 2-ami	noacetamide 2.80E+	09 4.35E+09	0.30821	1.56
179 CH3-NH2 me	thyl amine 5.70E+	09 4.57E+09	0.03910	0.80
180 CH3-CH2-NH2 et	hyl amine 6.40E+	09 6.28E+09	0.00037	0.98
181 CH3-(CH2)3-NH2 N-ł	outyl amine 8.20E+	09 9.12E+09	0.01255	1.11
182 CH3-CH2-CH2-NH2 pro	opyl amine 7.30E+	09 7.71E+09	0.00316	1.06
183 H2N-CH2-CH2-NH2 ethy	lenediamine 5.50E+	09 1.19E+10	1.35598	2.16
184 (CH3)3-C-NH2 tart	butyl amine 6 00E+	09 5.24F+00	0.01601	0.87
185 CH3/CH3/NH2 N	amylamine 7.00E	10 1 05E+10	0.25300	1.50
105 OIL5-(OIL2)+-IVIL2 IV-1 186 OUL2 (OUL3) S NULD IV	arritamina 1.20E	10 1 10E+10	0.00470	0.02
	explanine 1.30E+	10 1.19ET10	0.00070	0.92
18/ CH3-(CH2)/-NH2 N-	ociyiamine 1.46E+	10 1.48E+10	0.00011	1.01
	ropyl amme 1.30E+	10 8.89E+09	0.09983	0.68
188 (CH3)2-CH-NH2 iso-p	l hydroxy amine 1.40E+	10 4.19E+09	0.49073	0.30
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy	ethylamine 8.90E+	09 1.25E+09	0.73888	0.14
188 (CH3)2-CH-NH2 iso-f 189 CH3-O-NH2 O-methy 190 CH3-NH-CH3 dim	utvlamine 180E+	10 1.03E+10	0.18103	0.57
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-NH-CH3 dim 191 CH3-(CH2)3-NH-(CH2)3-CH3 dit				
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-NH-CH3 dim 191 CH3-(CH2)3-NH-(CH2)3-CH3 dib 192 HOOC-CH2-NH-CH2-COOH Imino	diacetic acid 4.90E+	<u>0/</u> <u>2.45E+08</u>	<u>16.05732</u>	<u>5.01</u>
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-ONH2 dim 191 CH3-CH2 dim 191 CH3-CH2 dim 192 HOOC-CH2-NH-CH2 dim 193 (C2H3)2-N-OH NN-diath	diacetic acid 4.90E+ A hydroxyl amine 1.30E+	07 <u>2.45E+08</u> 09 8.09E+09	<u>16.05732</u> 27.27052	<u>5.01</u> 6.22
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 dim 191 CH3-NH-CH3 dim 192 HOOC-CH2-NH-CH2-COOH Imino 193 (CH2/5)2-N-CH3 Moit 194 (CH2/CH2)3-NH-CH2-COOH NN-detay	diacetic acid 4.90E+ <u>A hydroxyl amine</u> 1.30E+ utyl amine 1.70E+	07 2.43E+08 09 8.09E+09 10 1.89E+10	<u>16.05732</u> <u>27.27052</u> 0.01240	<u>5.01</u> <u>6.22</u>
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 O-methy 191 CH3-O-NH2 dim 191 CH3-(CH2)3-NH-(CH2)3-CH3 dith 192 HOOC-CH2-NH-CH2-COOH Imino 193 (C2H5)2-N-OH NN-diethy 194 (CH3)2N trib	diacetic acid 4.90E+ di acetic acid 4.90E+ 1 hydroxyl amine 1.30E+ putyl amine 1.70E+ thyl amine 1.70E+	0/ 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10	<u>16.05732</u> <u>27.27052</u> 0.01240	<u>5.01</u> <u>6.22</u> 1.11
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 dim 191 CH3-O-NH2 dim 191 CH3-(CH2)3-NH-(CH2)3-CH3 dib 192 HOOC-CH2-NH-(CH2)3-CH3 dib 193 (C2H5)2-N-OH Imino 194 (CH3(CH2)3)3-N trib 195 (C2H5)3-N trib 196 (CTD)3-N trib	Algorithm 4.90E+ Algorithm 1.30E+ outyl amine 1.70E+ thyl amine 1.00E+ thyl amine 1.00E+	07 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10 10 5.27E+00	<u>16.05732</u> <u>27.27052</u> 0.01240 0.00135	5.01 6.22 1.11 1.04
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 dith 191 CH3-O-NH2 dith 192 HOOC-CH2-NH-CH3 dith 193 (C2H3)2-N-OH Mining 194 (CH3)CH2)3-N trib 195 (C2H3)3-N trib 196 (CH3)3-N trim	Algorithm 4.90E+ 21 hydroxyl amine 1.30E+ utyl amine 1.70E+ thyl amine 1.00E+ ethyl amine 1.30E+	07 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10 10 5.26E+09	<u>16.05732</u> <u>27.27052</u> 0.01240 0.00135 0.35486	<u>5.01</u> <u>6.22</u> 1.11 1.04 0.40
188 (CH3)2-CH-NH2 iso-p 189 CH3-0-NH2 O-methy 190 CH3-0NH-CH3 dim 191 CH3-NH-CH3 dim 191 CH3-(CH2)3-NH-(CH2)3-CH3 dift 192 <u>HOOC-CH2-NH-CH2-COOH</u> Imino 193 (C2H5)2-N-OH NN-diethy 194 (CH3)3-N trib 195 (C2H5)3-N tric 196 (CH3)3-N trim 197 (HO-CH2-CH2)3-N trie	Application Application diacetic acid 4.90E+ diacetic acid 1.30E+ utyl amine 1.70E+ thyl amine 1.00E+ ethyl amine 1.30E+ hanolamine 8.00E+	07 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10 10 5.26E+09 09 1.18E+10	16.05732 27.27052 0.01240 0.00135 0.35486 0.22263	5.01 6.22 1.11 1.04 0.40 1.47
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 dim 191 CH3-O-NH2 dim 191 CH3-CH2)3-NH-(CH2)3-CH3 dith 192 HOOC-CH2-NH-CH2-COOH Imino 193 (C2H3)2-N-OH NN-diethy 194 (CH3)(CH2)3)3-N trib 195 (C2H3)3-N trib 196 (CH3)3-N trib 197 (HO-CH2-CH2)3-N trib 198 (CH2COOH)3-N Nitrido	Agencies Agencies adiacetic acid 4.90E+ Al hydroxyl amine 1.30E+ utyl amine 1.30E+ hanolamine 8.00E+ btriacetic acid 2.10E+	0/ 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10 10 5.26E+09 09 1.18E+10 09 3.75E+09	16.05732 27.27052 0.01240 0.00135 0.35486 0.22263 0.61681	5.01 6.22 1.11 1.04 0.40 1.47 1.79
188 (CH3)2-CH-NH2 iso-p 189 CH3-O-NH2 O-methy 190 CH3-O-NH2 O-methy 191 CH3-O-NH2 dith 191 CH3-O-NH2 dith 192 HOOC-CH2-NH-CH3 dith 193 (C2H3)2-N-OH Minima 194 (CH3)CH2)3-N trith 195 (C2H3)3-N trith 196 (CH3)3-N trith 197 (HO-CH2-CH2)3-N trith 198 (CH2CONH)3-N Nithit 197 (HO-CH2-CH2)3-N trith 198 (CH2CONH)3-N Nithit 199 (HOCH2CH2)3-N Nith	Algorithm Hole diacetic acid 4.90E+ d.hydroxyl amine 1.30E+ utyl amine 1.00E+ thyal amine 8.00E+ hanolamine 8.00E+ lotriethanol 8.00E+	07 2.43E+08 09 8.09E+09 10 1.89E+10 10 1.04E+10 10 5.26E+09 09 1.18E+10 09 3.75E+09 09 1.18E+10	16.05732 27.27052 0.01240 0.00135 0.35486 0.22263 0.61681 0.22263	5.01 6.22 1.11 1.04 0.40 1.47 1.79 1.47
188 (CH3)2-CH-NH2 iso-p 189 CH3-0-NH2 O-methy 190 CH3-NH-CH3 dim 191 CH3-NH-CH3 dift 191 CH3-NH-CH3 dift 192 HOOC-CH2-NH-CH2-COOH Imino 193 (C2H3)2-N-OH NN-diethy 194 (CH3)CH2)3-N trib 195 (C2H3)3-N trib 196 (CH3)3-N trib 197 (HO-CH2-CH2)-N trie 198 (CH2OOH)3-N trit 199 (HOCH2CH2)3-N Nitrid 199 (HOCH2CH2)3-N Nitrid	diacetic acid 4.90E+ diacetic acid 4.90E+ diacetic acid 1.30E+ utyl amine 1.00E+ thyl amine 1.00E+ hanolamine 8.00E+ thriactic acid 2.10E+ lotnethanol 8.00E+	07 2.45E+08 09 8.09E+09 10 1.89E+10 10 5.26E+09 09 1.18E+10 10 3.75E+09 09 1.18E+10 10 8.68E+09	16.05732 27.27052 0.01240 0.00135 0.35486 0.22263 0.61681 0.22263 0.20932	5.01 6.22 1.11 1.04 0.40 1.47 1.79 1.47 0.54

Nitroso, Nitramine	202	(CH3)2-N-NO	N-nitrosodimethylamine	4.30E+08	7.44E+06	0.96571	0.02
	203	CH3-CH2-N(CH3)-N=O	methylethylnitrosamine	4.95E+08	1.00E+09	1.04348	2.02
	204	CH3-CH2-N(N=O)-CH2-CH3	diethylnitrosamine	6.99E+08	8.52E+08	0.04814	1.22
	205	(CH3)2-N-NO2	dimethylnitramine	5.44E+08	1.25E+08	0.59463	0.23
	206	(CH3-CH2)2-N-NO2	diethyl nitramine	8.67E+08	1.23E+09	0.17748	1.42
	207	(CH3)(CH3CH2)-N-NO2	methyl ethyl nitramine	7.60E+08	6.78E+08	0.01153	0.89
	208	(CH3-CH2-CH2)2-N-NO	N-nitrosodipropvlamine	2.30E+09	3.52E+09	0.27939	1.53
	209	(CH3-CH2-CH2-CH2)2-N-NO	N-nitrosodibutylamine	4.71E+09	6.33E+09	0.11871	1.34
	210	(CH3-CH2-CH2-CH2)(CH3-CH2)-N-NO	N-nitrosoethvlbutvlamine	3.10E+09	3.58E+09	0.02403	1.16
	211	(,,,,,,,	N-nitrosopyrrolidine	1.75E+09	2.42E+09	0.14783	1.38
	212		N-nitrosopiperidine	2.98E+09	4 23E+09	0 17472	1.42
	213		N-nitrosohexamethyleneimine	4 35E+09	5.63E+09	0.08715	1.30
Phosphorus	214	(CH3)(CH3-Q-)2-P=Q	dimethyl methylphosphonate (DMMP)	2.00E+08	9.83E+07	0.25837	0.49
1 no spinoras	215	(CH3)(CH3CH2)(CH3CH2O)-PO	Diethyl methylphosphonate (DFMP)	6 00E+08	9 72E+08	0 38393	1.62
	216	PO4-(CH3)3	trimethyl phosphate	1.20E+08	1 34E+08	0.01274	1.11
	217	PO4.(CH2-CH3)3	triethyl phosphate	2.90E+09	1.47E+09	0.24189	0.51
	218	PO4_(CH2_CH2_CH3)3	tributyl phosphate	1.00E+10	9.74E+09	0.00069	0.97
Cyclo	210	104-(012-012-012)5	cyclohentane	7 70E+09	9.86E+09	0.07867	1.28
cyclo	220		cycloheptanol	1 70E+00	1.01E+10	24.63004	5.96
	221		eveloherene	6 10E+00	8.45E+00	0.14957	1.20
	221		cyclonexarie	0.10E+09	6.045±00	0.14637	1.39
	222		cyclopentane	4.302+09	0.00E+09	0.119/4	0.39
	223		tetranyarojuran	4.00E+09	<u>1.14E+09</u>	0.01223	0.28
	224		<u>1,4-dioxane</u>	3.10E+09	2.04 <u>E</u> +09	0.02160	0.85
	225		<u>1,4-attniane</u>	1.80 <u>E</u> +10	<u>1.33E+10</u>	0.01891	0.80
	226		1,3,2-trioxane	1.50E+09	1.60E+09	0.00413	1.06
	227		tetramethylene sulfoxide	7.00 <u>E</u> +09	4.94 <u>E+09</u>	0.08670	0.71
	228		2-methyl-1,3-dioxalane	3.50E+09	1.61E+09	0.29277	0.46
	229		1,3-dioxolane	4.00E+09	1.59E+09	0.36155	0.40
	230		ethylene oxide	6.80E+07	6.8/E+0/	0.00012	1.01
	231		<u>1,2-epoxybutane</u>	7.80E+08	<u>1.87E+09</u>	<u>1.95576</u>	<u>2.40</u>
	232		<u>1,2-epoxypropane</u>	2.50E+08	<u>5.23E+08</u>	<u>1.19651</u>	2.09
	233		2.3-epoxypropanol	<u>4.70E+08</u>	<u>9.06E+08</u>	<u>0.86236</u>	<u>1.93</u>
alkene	234	H2C=CHCH2OH	allyl alcohol	5.90E+09	4.62E+09	0.04712	0.78
	235	H2C=CHCH2CH3	1-butene	7.00E+09	5.49E+09	0.04670	0.78
	236	H2C=CHCH3	propylene	7.00E+09	2.08E+09	0.49370	0.30
	237	(CH3)2C=CH2	isobutylene	5.40E+09	3.67E+09	0.10322	0.68
	238		1,4-cyclohexadiene	7.70E+09	7.75E+09	0.00004	1.01
	239		cvclopentene	7.00E+09	6.13E+09	0.01558	0.88
	240		cucloherene	8 80E+00	8 07E+00	0.00603	0.92
	240	HIC-CHCOCH3	1 hutana 2 ana	8.50E+09	6.11E+00	0.07905	0.52
	241	H2C-CHCOCH3	1-Duterie-S-one	5.00E+09	6.00E+00	0.07895	1.05
	242	H2C=CHCONH2	acrylamide	1.20E+09	0.20E+09	0.00231	1.05
	245	H2C=C(CH3)-CO-NH2	methyl acrylamide	1.30E+10	1.03E+10	0.03074	0.81
	244	-00,-00	1,4-benzoquinone	1.20E+09	1.022+09	0.11909	1.55
	245	H2C=CH-OH	vinyi alconol	1.30E+08	1.00E+08	0.00104	0.07
	240	H2C=CHCHO	acrolein	7.00E+09	0.//E+09	0.00104	0.97
	247	CH3CH=CHCHO	crotonaldenyde	5.80E+09	7.25E+09	0.06251	1.25
	248	H2C=CHCOOH	acrylic acid	1.50E+09	2.3/E+09	0.33383	1.58
	249	C1s HOUC-CH=CH-COUH	maleic acid	6.00E+09	2.66E+09	0.31067	0.44
	250	HUUC-CH=CH-COOH (trans)	fumaric acid	6.00E+09	1.15E+09	0.65287	0.19
	251	H2C=CHCOOCH2CH2OH	2-hydroxyethyl acrylate	1.10E+10	3.16E+09	0.50771	0.29
	252	H2C=C(CH3)COOCH3	methyl methacrylate	1.10E+10	4.41E+09	0.35916	0.40
	253	H2C=CHCl	vinyl chloride	1.20E+10	2.12E+09	0.67771	0.18
	254	H2C=CCI2	vinylidine chloride	6.80E+09	4.46E+09	0.11884	0.66
	255	CICH=CHCl (cis)	dichloroethylene	3.80E+09	2.66E+09	0.09068	0.70
	256	CICH=CHC1 (trans)	dichloroethylene	4.40E+09	5.01E+09	0.01935	1.14
	257	C12C=CC12	tetrachloroethylene	2.00E+09	2.03E+09	0.00017	1.01
	258	-F, -F, -F, -F	fluoranil	3.90E+09	3.91E+09	0.00001	1.00
	259	H2C=CHCH2CN	allyl cyanide	6.90E+09	3.94E+09	0.18459	0.57
	260	H2C=CHCN	acrilonitrile	5.30E+09	5.20E+09	0.00032	0.98
	261	H2C=C(CH3)CN	methacylonitrile	1.20E+10	9.26E+09	0.05215	0.77

Benzene	262	C6H5-CH2CH3	ethylbenzene	7.50E+09	7.11E+09	0.00268	0.95
	263	C6H5-OH	phenol	6.60E+09	7.14E+09	0.00674	1.08
	264	C6H5-F	fluorohenzene	5 70E+09	5.40E+09	0.00283	0.95
	265	C6H5C1	chlorobenzene	4 30E+00	5.42E+00	0.06970	1.26
	205	CGUS Dr	thematication	4.30E+09	4.97E+00	0.00370	0.04
	200	COHD-Br	bromobenezene	5.20E+09	4.8/E+09	0.00393	0.94
	267	C6H5-I	iodobenzene	5.30E+09	4.56E+09	0.019/2	0.86
	268	C6H5-CN	benzonitrile	3.90E+09	2.28E+09	0.17232	0.58
	269	C6H5-NO2	nitrobenzene	3.90E+09	2.25E+09	0.17940	0.58
	270	C6H5-CHO	benzaldehyde	4.40E+09	4.44E+09	0.00010	1.01
	271	C6H5-COOH	benzoic acid	4.30E+09	3.77E+09	0.01509	0.88
	272	C6H5-COCH3	acetophenone	6.40E+09	5.50E+09	0.01982	0.86
	273	C6H5-CONH2	benzamide	4 60E+09	4 81E+09	0.00210	1.05
	274	C6U5 SOCU3	methyl phenyl sulforide	0.70E+00	4 90E+00	0.24564	0.50
	274	CGUS CUDOU	henryl suitonde	9.70E109	4.09E+09	0.04501	0.30
	275	COND-CH2ON	Denzylaiconol	5.40E+09	0.24E+09	0.00591	0.74
	276	Coh5-NH-CO-CH3	acetaniiide	5.20E+09	4.80E+09	0.00592	0.92
	277	C6H5-SO3H	benzene sulfonic acid	2.10E+09	2.0/E+09	0.00019	0.99
	278	C6H5-NH-OH	phenyl hydroxylamine	1.50E+10	6.23E+09	0.34155	0.42
	279	C6H5-CH2CH2-C(CH3)2-OH	2-methyl-4-phenyl-2-butanol	5.90E+09	9.09E+09	0.29222	1.54
	280	C6H5-CHOHCH(CH3)2	2-methyl-1-phenyl-1-propanol	9.50E+09	1.07E+10	0.01498	1.12
	281	C6H5-CHOHCH3	phenylethanol	1.10E+10	7.42E+09	0.10607	0.67
	282	C6H5-CH(OH)(CH2-CH3)	1-phenyl-1-propanol	1.00E+10	8.76E+09	0.01534	0.88
	283	C6H5-CH2-CH2OH	1-phenyl-2-propanol	2.10E+10	7.55E+09	0.41045	0.36
	284	C6H5-O-CH3	anisol	5.40E+09	5 93E+09	0.00974	1 10
	204	(06H5)2 CO	hanzonhanona	0.00E+00	1.00E+10	0.04407	1.10
	205	(06115)2-00	dinhandamina	1.00E+10	1.032 + 10	0.05141	1.21
	260	(COH5)2-NH	diprieriyiamite	1.00E+10	1.23E+10	0.00141	1.25
	287	(C6H5)2-SU	dipnenyl sulfoxide	6.30E+09	7.28E+09	0.02418	1.10
	288	C6H5-CH(OH)-CH3	1-phenyl-1-propanol	1.00E+10	7.36E+09	0.06994	0.74
	289	<u>HO-C6H4-CH3</u>	<u>o-cresol</u>	<u>1.10E+10</u>	<u>6.77E+09</u>	<u>0.14786</u>	<u>0.62</u>
	290	<u>HO-C6H4-CH3</u>	<u>p-cresol</u>	<u>1.20E+10</u>	<u>7.14E+09</u>	<u>0.16394</u>	<u>0.60</u>
	291	C6H4-C12	1,2-dichlorobenzene	4.00E+09	4.76E+09	0.03595	1.19
	292	C6H4-C12	1,3-dichlorobenzene	5.70E+09	6.02E+09	0.00308	1.06
	293	C6H4-C12	1,4-dichlorobenzene	5.40E+09	5.04E+09	0.00450	0.93
	294	C6H4-(OH)2	1.2-benzenediol	1.10E+10	8.21E+09	0.06425	0.75
	295	1 3-C6H4 (OH)2	resorcinal	1 20E+10	8 68E+09	0.07644	0.72
	296	HO-C6H4-Cl	2-chlorophenol	1.20E+10	6.27E+09	0 22766	0.52
	297	HO-C6H4-CI	3-chlorophenol	7 20E+09	7 9/E+09	0.00963	1.10
	207	HO C6H4 CI	1 chlorophenol	0.202+00	6.64E±00	0.08100	0.71
	250	<u>10-0014-01</u>	<u>4-chilorophenoi</u>	3.005-103	<u>0.045+03</u>	0.00133	0.71
	299	<u>HU-C6H4-U-CH3</u>	2-methoxyphenol	2.00E+10	0.02E+09	0.43408	0.54
	300	<u>H0-C6H4-0-CH3</u>	<u>3-methoxyphenol</u>	<u>3.20E+10</u>	8.55E+09	0.53706	0.27
	301	<u>H0-C6H4-0-CH3</u>	<u>4-methoxyphenol</u>	2.60E+10	7.21E+09	0.52247	0.28
	302	<u>HO-C6H4-NO2</u>	<u>4-nitrophenol</u>	3.80E+09	2.94E+09	<u>0.05180</u>	0.77
	303	4-CH3-C6H4-CN	4-tolunitrile	1.20E+10	3.11E+09	0.54935	0.26
	304	1 4-C6H4(CN)2	1 4-dicyanobenzene	7 80E+08	8 90E+08	0.01989	1 14
	305	4-F-C6H4-CN	nfluorohenzonitrile	3 50E+09	1788+09	0 24221	0.57
	306	(CH3)3 C C6H4 OH	tert hutvlnhenol	1 00F+10	6 60E+00	0.41086	0.35
	207	CELLED	tert-outyphenor	7.50E+10	4.71E+00	0.41980	0.55
	307	Con4-r2	o-diffuorobenzene	7.30E+09	4./IE+09	0.15884	0.03
	308	CoH4-F2	p-difluorobenzene	1.00E+10	4.98E+09	0.25182	0.50
	309	C6H4-(OCH3)2	1,2-dimethoxybenzene	5.20E+09	5.71E+09	0.00958	1.10
	310	C6H4-(OCH3)2	1,3-dimethoxybenzene	7.20E+09	7.12E+09	0.00014	0.99
	311	C6H4-(OCH3)2	1,4-dimethoxybenzene	7.00E+09	6.02E+09	0.01954	0.86
	312	4-O2N-C6H4-NH2	p-nitroaniline	1.40E+10	3.16E+09	0.59950	0.23
	313	CH3-C6H4-CN	p-tolunitrile	1.20E+10	2.52E+09	0.62419	0.21
	314	4-C1-C6H4NO2	1-chloro-4-nitrobenzene	1.30E+09	2.09E+09	0.36644	1.61
	315	4-02N-C6H4-COCH3	4-nitroacetonhenone	3 30E+09	2.15E+09	0 12185	0.65
	316	(HO)2-C6H3-C1	124-chlorocatecohol	7.00E+09	6.87F+09	0.00034	0.98
	217	C6U2 (OU)2	nhlaradhainal	1.00E±10	1.06E±10	0.00226	1.06
	210	2.4.(10)2.0612.010	dilucitor de la constante de l	1.00E+10	5.507±00	0.00330	1.00
	210	<u>5,4-(HU)2-COH3-CHU</u>	ainvarox v Denzalaenvae	0.50E+09	<u>5.505+09</u>	0.11400	0.00
	319	(HO)2-C6H3-COCH3	2,4-dihydroxyacetophenone	3.00E+10	6.95E+09	0.59054	0.23
	320	(HO)2-C6H3-COCH3	2,5-dihydroxyacetophenone	<u>8.00E+09</u>	<u>9.64E+09</u>	<u>0.04201</u>	<u>1.20</u>
	321	(HO)2-C6H3-COCH3	3.4-dihydroxyacetophenone	<u>1.00E+10</u>	<u>8.20E+09</u>	<u>0.03232</u>	<u>0.82</u>
	322	(NO2)2-C6H3-OCH3	<u>3,5-dinitroanisole</u>	5.20E+09	1.05E+09	0.63751	0.20
	323	C6H3-(OCH3)3	1,2,3-trimethoxybenzene	7.00E+09	7.15E+09	0.00047	1.02
	324	C6H3-(OCH3)3	1.2.4-trimethoxybenzene	6.20E+09	5.27E+09	0.02267	0.85
	325	C6H3-(OCH3)3	1 3 5-trimethorybenzene	8 10E+09	6 15E+09	0.05822	0.76
	226	HO C(H2 CH20	2.2 dimethouse al	2 00E+10	8 55E±00	0.22779	0.10
	320	HO C(H2 CH2C	2,5-umetroxyprenot	2.00E+10	6.33E+09	0.54//0	0.45
	527	HU-C6H3-CH3U	2,4-aimethoxyphenol	2.60E+10	0.24E+09	0.57783	0.24
	328	<u>HO-C6H3-CH30</u>	3,5-dimethoxyphenol	2.00E+10	7.31E+09	<u>0.40229</u>	0.37

	329	C6H5-CH3	toluene	5.10E+09	5.91E+09	0.02495	1.16
	330	C6H5-NH2	aniline	1.70E+10	2.05E+10	0.04239	1.21
	331	H3C-C6H4-CH3	o-xvlene	6.70E+09	5.69E+09	0.02286	0.85
	332	H3C-C6H4-CH3	m-vylene	7 50E+09	7.00E+09	0.00437	0.93
	222		n vilana	7.00E+00	5.092+00	0.02125	0.95
	224	CH2 CH2 CH2	1.2.2 trimethed because	7.00E+09	7.01E 00	0.02125	1.00
	334	-CH3, -CH3, -CH3	1,2,5-timethyl benzene	7.00E+09	7.01E+09	0.00000	1.00
	333	-CH3, -CH3, -CH3	1,2,4-trimethyl benzene	0.20E+09	5.30E+09	0.02100	0.80
	336	-CH3, -CH3, -CH3	1,3,5-trimethyl benzene (mesitylene)	6.40E+09	6.10E+09	0.00222	0.95
	337	F, F, F, F,F	hexafluorobenzene	1.40E+09	1.58E+09	0.01714	1.13
	338	-CH3, -CH3, -CH3, -CH3, -CH3	hexamethylbenzene	7.20E+09	4.00E+09	0.19813	0.55
	339	F,F,F,F,F,F	pentafluorobenzene	7.00E+09	6.15E+09	0.01478	0.88
	340	-CH3 (6)	pentamethylbenzene	7.50E+09	8.85E+09	0.03263	1.18
	341	F, F,F,F,F,I	pentafluoroiodobenzene	1.20E+09	1.34E+09	0.01295	1.11
	342	-CH3, -CH3, -CH3, -CH3	1.2.3.4-tetramethylbenzene	7.20E+09	8.80E+09	0.04952	1.22
	343	FFFF	1.2.3 4-tetrafluorobenzene	8 00E+09	6 59E+09	0.03086	0.82
	344	-CH3 -CH3 -CH3 -CH3	1.2.3.5-tetramethylbenzene	7 10E+09	7.04E+09	0.00008	0.99
	345	CH3 CH3 CH3 CH3	1.2.4.5 tetramethylbenzene	7.00E+00	8 48E+00	0.04408	1.21
	246	-CID, -CID, -CID, -CID	1.2.4.5 tetramethemethemetere	7.00E+09	0.46E+09	0.04455	1.21
	240		1,2,4,5-tetramethoxyberizerie	7.00E+09	5.5JE+09	0.00901	1.20
	347	-CI, -CI, -CI, -OH	2,4,5-trichlorophenol	1.20E+10	4.29E+09	0.41309	0.36
	348	<u>-Cl, -Cl, -O-COOH</u>	2,4-dichlorophenoxyacetic acid	6.60E+09	<u>4.19E+09</u>	<u>0.13339</u>	0.63
	349	<u>-0-COOH</u>	phenoxyacetic acid	<u>1.00E+10</u>	<u>5.74E+09</u>	<u>0.18155</u>	<u>0.57</u>
	350	-C1, -C1, -OH	2,4-dichlrophenol	7.10E+09	5.24E+09	0.06860	0.74
	351	-OH, -OH, -OH	1,2,4-trihydroxybenzene	8.60E+09	8.95E+09	0.00170	1.04
	352	-OH, -OH, -C(CH3)3	tert-butyl hydroquinone	6.30E+09	8.27E+09	0.09748	1.31
	353	1.2.4.5-Cl. OH. OH. Cl	2.5-dichlorohydroguinone	2.10E+10	5.63E+09	0.53545	0.27
	354	-F -F -F -F -OH -OH	tetrafluorohydroquinone	3 10E+09	2.90E+09	0.00434	0.93
	355	- <i>F</i> - <i>F</i> - <i>F</i>	1.3.5-trifluorohenzene	4 10E+09	4 63E+09	0.01651	1.13
	256	<u> </u>	1.2.2 trifluorobertzene	2 70E+00	5.46E+00	0.22722	1.49
	267	- <u>27, -27, -27</u>	1.2.4 trifuorobenzene	3.00 E 00	<u>3.40E+03</u>	0.00000	1.40
	250	<u>-777</u>	<u>1,2,4-irijiuorobenzene</u>	3.90 <u>2</u> +09	<u>3.902+09</u>	0.00000	1.00
	308	<u>F. F. F. F.FCOCH3</u>	pentalluoroacetophenone (PFA)	1.50E+09	1.65 <u>E+09</u>	0.01023	1.10
	359	<u>F, F, F, F, F, CHO</u>	<u>pentafluorobenzaldehyde</u>	<u>2.00E+09</u>	<u>1.81E+09</u>	<u>0.00902</u>	<u>0.91</u>
	360	<u>F. F. F. F. FCOOH</u>	<u>pentafluorobenzoic acid</u>	<u>1.10E+09</u>	<u>1.11E+09</u>	<u>0.00004</u>	<u>1.01</u>
	361	<u>F, F, F, F, F, F-NH2</u>	<u>pentafluoroaniline</u>	<u>9.60E+09</u>	<u>2.41E+09</u>	<u>0.56079</u>	0.25
	362	<u>F,F,F,F,F, -OH</u>	<u>pentafluorophenol</u>	9.50E+09	2.17E+09	<u>0.59599</u>	0.23
pyridine	363	-CH3	2-methyl pyridine	2.50E+09	2.82E+09	0.01641	1.13
<u> </u>	364	-CH3	3-methyl pyridine	2.40E+09	2.40E+09	0.00000	1.00
	365	-NH2	2-pyridine amine	8.40E+09	4.48E+09	0.21746	0.53
	366	-NH2	4-pyridine amine	5 00E+09	5.87E+09	0.03020	1.17
	367	Br	2 bromonumidine	2.40E+00	1.55E+00	0.12506	0.65
	369	-Di	3 bromonunidina	1.10E+00	1.29E+00	0.02760	1.17
	260	-51	2 ablanamidina	1.0E+09	2.095+00	0.02/09	1.17
	270	-01	2-chloropyndine	2.10E+09	2.082+09	0.02478	0.52
	370	-0	4-chioropyndine	3.10E+09	1.01E+09	0.231/1	0.52
	3/1	-CN	3-cyanopyndine	7.50E+08	7.0/E+08	0.00322	0.94
	372	-OH	2-pyridone	6.50E+09	5.16E+09	0.04247	0.79
	373	-OH	3-pyridinol	5.40E+09	4.29E+09	0.04197	0.80
	374	-OH	4-pyridinol	1.10E+10	6.73E+09	0.15102	0.61
	375	-COOH	2-pyridine carboxylic acid	2.60E+07	2.84E+07	0.00822	1.09
	376	-COOH	3-pyridinecarboxylic acid	2.20E+07	2.36E+07	0.00542	1.07
	377	-COOH	4-pyridinecarboxylic acid	6.00E+07	3.69E+07	0.14812	0.62
	378	-pvr	4.4'-bipvridine	5.30E+09	6.72E+09	0.07154	1.27
	379	-prv	2.2'-bipyridine	6.20E+09	5.13E+09	0.02972	0.83
	380	-CONH2	4-pyridinecarboyyamide	1.60E+09	1.67E+09	0.00214	1.05
	201	CONH2	3 nuridinecarbovyamida	1.40E+00	1.06E+00	0.05010	0.76
	282	-CONH2	2.6 dimethed remidine	2.00E+09	2.285+09	0.00910	1.00
	382		2,0-dimethyl pyndine	3.00E+09	3.28E+09	0.00809	1.09
	383		3,0-dimethyl pyndine	8.00E+09	8.30E+09	0.00139	1.04
	384		2,4,6-trimethylpyridine	2.50E+09	2.41E+09	0.00122	0.97
Furan	385	-CH3	2-methylfuran	1.90E+10	1.29E+10	0.10188	0.68
	386	-CH2-OH	furfuryl alcohol	1.50E+10	1.33E+10	0.01325	0.88
	387	-CHO	furaldehyde	7.80E+09	7.29E+09	0.00434	0.93
	388	-CH3	5-methylfurfural	7.20E+09	1.02E+10	0.17522	1.42
	389	-O-CH3	5-hydroxymethylfurfuryl	5.80E+09	8.46E+09	0.20982	1.46
	390	-NO2	5-nitro-2-furaldehvde	5,50E+09	6.46E+09	0.03066	1.18
Urea	301	H2N-CO-NH2	11163	7 90E+05	8 18E+05	0.00123	1.04
	307	H2N_CS NH2	thiourea	1 20E+10	8 00E+09	0 11120	0.67
	374	11213-0.0-13112	unourea	1.200-10	0.26E+09	0.02002	1.17
	202	(CH2)ON CS N(CH2)2	totrom others! the owned				
	393	(CH3)2N-CS-N(CH3)2	tetramethyl thiourea	8.00E+09	9.30E+09	0.02902	1.17
	393 394	(CH3)2N-CS-N(CH3)2 CH3-NH-CS-NH-CH3	tetramethyl thiourea 1,3-dimethyl thiourea	1.20E+09	9.36E+09 1.35E+09	0.01574	1.13
	393 394 395	(CH3)2N-CS-N(CH3)2 CH3-NH-CS-NH-CH3 CH3-NH-CO-NH-CH3	tetramethyl thiourea 1,3-dimethyl thiourea 1,3-dimethylurea	8.00E+09 1.20E+09 2.60E+09	1.35E+09 2.25E+09	0.01574 0.01830	1.13
	393 394 395 396	(CH3)2N-CS-N(CH3)2 CH3-NH-CS-NH-CH3 CH3-NH-CO-NH-CH3 CH3-NH-CO-NH2	tetramethyl thiourea 1,3-dimethyl thiourea 1,3-dimethylurea methylurea	8.00E+09 1.20E+09 2.60E+09 2.00E+09	1.35E+09 2.25E+09 1.12E+09	0.01574 0.01830 0.19160	1.17 1.13 0.86 0.56
	393 394 395 396 397	(CH3)2N-CS-N(CH3)2 CH3-NH-CS-NH-CH3 CH3-NH-CO-NH-CH3 CH3-NH-CO-NH2 (CH3)2-N-CO-N-(CH3)2	tetramethyl thiourea 1,3-dimethyl thiourea 1,3-dimethylurea methylurea tetramethyl urea	8.00E+09 1.20E+09 2.60E+09 2.00E+09 5.20E+09	1.35E+09 2.25E+09 1.12E+09 4.50E+09	0.02902 0.01574 0.01830 0.19160 0.01836	1.17 1.13 0.86 0.56 0.86

Imidazole	398	xanthine	5.20E+09	4.68E+09	0.00994	0.90
	399	theophilline	6.30E+09	6.93E+09	0.00997	1.10
	400	isoguanine	1.20E+10	7.47E+09	0.14259	0.62
	401	guanine	9.20E+09	5.31E+09	0.17865	0.58
	402	imidazole	3.90E+09	4.49E+09	0.02312	1.15
	403	1-methyl imidazole	8.10E+09	4.85E+09	0.16141	0.60
	404	theobromine	5.80E+09	6.78E+09	0.02843	1.17
	405	caffeine	6.90E+09	7.90E+09	0.02107	1.15
	406	<u>5-nitrofuroic acid</u>	5.30E+09	6.18E+09	<u>0.02730</u>	<u>1.17</u>
	407	nifuroxime	1.00E+10	1.44E+10	0.18964	1.44
	408	2-acetyl furan	4.50E+09	4.18E+09	0.00505	0.93
	409	2-furancarboxamide	5.50E+09	6.34E+09	0.02307	1.15
	410	2-phenylfuran	1.60E+10	1.51E+10	0.00297	0.95
	411	5-bromofurfural	3.90E+09	5.49E+09	0.16641	1.41
	412	5-nitrofuroic acid	5.30E+09	1.32E+10	2.23704	2.50
	413	5-phenylfurfural	5.90E+09	1.51E+10	2.44642	2.56
	414	furoin	1.30E+10	1.69E+10	0.08935	1.30
triazine	415	2,4,6-trimethoxy-1,3,5-triazine	2.06E+08	5.83E+08	3.35339	2.83
	416	2-chloro-4,6-diamino-s-triazine	5.00E+07	3.03E+08	25.52272	6.05
	417	simazine	2.10E+09	3.12E+09	0.23397	1.48
	418	atrazine	2.00E+09	4.88E+09	2.07497	2.44
	419	propazine	1.20E+09	6.65E+09	20.59739	5.54
	420	simetone	4.70E+09	3.90E+09	0.02866	0.83
	421	terbutazine	2.80E+09	2.80E+09	0.00000	1.00
	422	simetryne	2.60E+10	6.48E+09	0.56350	0.25
	423	ametryne	2.60E+10	8.25E+09	0.46618	0.32
	424	<u>cycloserine</u>	<u>9.00E+09</u>	<u>5.47E+09</u>	<u>0.15376</u>	0.61
	425	<u>Linuron</u>	6.50E+09	4.78E+09	<u>0.06980</u>	0.74
	426	<u>diuron</u>	7.50E+09	5.71E+09	0.05683	0.76
	427	<i>isoproturon</i>	5.70E+09	<u>1.01E+10</u>	<u>0.59055</u>	<u>1.77</u>
	428	<u>chlortoluron</u>	7.50E+09	6.15E+09	<u>0.03263</u>	0.82
	429	<u>acetaminophen</u>	<u>9.80E+09</u>	5.87E+09	<u>0.16076</u>	0.60
	430	Diazepam	7.20E+09	<u>1.14E+10</u>	0.34270	<u>1.59</u>
	431	<u>Diclofenac</u>	7.50E+09	1.18E+10	0.33286	1.58
	432	Ibuprofen	7.40E+09	1.06E+10	0.18241	<u>1.43</u>
	433	2.4-D (2.4-dichlorophenoxy)-acetic acid	6.60E+09	4.28E+09	0.12396	0.65
	434	<u>clofibric acid</u>	4.70E+09	<u>5.81E+09</u>	0.05559	<u>1.24</u>

2.4.2 Overall Results

Tables 2.2 and 2.3 summarize experimental data and statistical results for calibrations and predictions, respectively. The total degrees of freedom (DF) were 164. The best calibration for 83% (257 rate constants) of the rate constants and the prediction for 62% (76 rate constants) of the rate constants were within the EG. The SD was 0.92 from the calibration, which indicated that the calibrated data were distributed within the range from 1.65σ (90%) to 1.96σ (95%) from the experimental values under the assumption of a normal distribution. Figure 2.3 plots 434 rate constants from calibrations and predictions against the experimental rate constants for four reaction mechanisms. The least-squares fit is y = 0.65x and has a correlation coefficient, r, of 0.58 (note that the

OF in equation (2.24) weighs all data points equally, so that the lowest data point would not significantly change the overall correlation even though it is eliminated). The correlation coefficient is comparable to the literature-reported values (e.g., 0.56 with the recalculated MOOH method (Böhnhardt et al., 2008) and 0.59 with Atkinson's GCM (Kwok and Atkinson, 1995), respectively, from 805 gaseous phase HO• rate constants).

Group rate con	stant and functional group	# of group rate constant	# of group contribution factor	# of experimental data	# of data within EG (%)	S.D.
	Overall	66	80	310	257 (83%)	0.92
Overall for	. U atom abstraction	H-atom abs	traction	94	71 (959/)	0.42
Overall io	II-atom abstraction	5	18	84	/1 (85%)	0.42
alkyl	$k_0^{\text{prim}}, k_0^{\text{sec}}, k_0^{\text{tert}}$ -CH ₃ , (-CH ₂ - \approx -CH< \approx >C<)	3	2	12	11 (90%)	0.27
alkyl halides	Cl, Br, -CF ₃ , -CCl ₃ , - CH _n (halogen) _m	-	5	22	17 (77%)	0.40
cycloalkanes	RS3, RS5, -O-(2nd)	-	3	7	5 (71%)	0.41
alcohol	<i>k</i> _{ОН} , -ОН	1	1	14	12 (86%)	0.37
ether	-O-	-	1	8	7 (88%)	0.48
carbonyl	-CO-	-	1	5	5 (100%)	0.47
aldehyde	-CHO	-	1	4	4 (100%)	0.13
ester	-OCOR	-	1	7	6 (86%)	0.60
carboxylic	k_{COOH} , (-COOH \approx -COOR)	1	2	12	10 (83%)	0.70
	Н	O• addition	to alkene	-	·,	
Overall	for HO• addition	7	7	28	22 (79%)	0.40
alkyl	-CH3 ≈ -CH2-	-	1	7	6 (86%)	0.34
carbonyl	-CO	-	1	4	4 (100%)	0.28
aldehyde	-CHO	-	1	2	2 (100%)	0.25
carboxylic	-COOH ≈ COO	-	1	5	1 (20%)	0.74
aikyi naildes	-F, -CI	-	2	2	3 (83%) 2 (100%)	0.45
cyanide	hbe aOH	- lition to arou	natic compound	3	5 (100%)	0.34
Overall for HOe add	lition to aromactic compounds	40		120	106 (88%)	0.73
Over	all for benzene	21	18	68	61 (90%)	0.75
alkul	$_{\rm CH_2} \sim _{\rm $		1	22	21 (95%)	0.30
alkyl balides	-Eng ~ -Eng ~ -Eng ~ -E	-	1	17	14 (82%)	0.30
oxygenated	-OH, -CHO,	-	5	20	18 (90%)	0.27
S-containing	-SO -SO3H	-	2	3	3 (100%)	0.30
N-containing	-CONH2, -CN, -NO2, -NH-CO-, -NH-, -NH2	-	6	7	7 (100%)	0.36
Over	all for pyridine	12	8	22	22 (100%)	0.24
alkyl	-CH3	-	1	5	5 (100%)	0.083
oxygenated	-OH, -COOH	-	2	6	6 (100%)	0.28
alkyl halides	-Cl, -Br	-	2	4	4 (100%)	0.37
N-containing	-CONH2, -CN, -NH2	-	3	5	5 (100%)	0.28
Ov	erall for furan	4	10	13	13 (100%)	0.52
alkyl	-CH3 ≈ -CH2	-	1	3	3 (100%)	0.38
oxygenated	-О-, -СНО, -СО, -СООН	-	4	5	5 (100%)	0.80
alkyl halides	-Br	-	1	1	1 (100%)	N.A.
N-containing	-NO2, -CONH2-, -CHCN-	-	3	4	4 (100%)	0.91
aromatic	-C6H5	-	1	0	1 (100%)	N.A.
olled		2	4	8	ð (100%)	0.55
carbonyl	-UL2≈ ≤U<	-	1	5	2 (100%) 5 (100%)	0.55
N-containing	-00 -NH -N<	-	2	6	6(100%)	0.25
	rall for triazine	1	5	9	3 (33%)	2.57
ether	-0-	-	1	1	0 (0%)	N.A
alkyl halides	-Cl	-	1	5	2 (40%)	3.48
S-containing	-S-	-	1	2	0 (0%)	1.01
N-containing	-NH2, -NH-	-	2	8	3 (38%)	2.66
	HO• Interaction wit	h S, N, or P-	atom containing	compounds		
Overall	or HO• interaction	14	10	78	58 (74%)	1.5
Overal	for S-containing	4	2	12	10 (83%)	0.38
sulfide, thiol	-S- ≈ -S-S- ≈ -HS	3	1	8	6 (75%)	0.45
sulfoxide	-SO-	1	1	4	4 (100%)	0.24
Overal	for N-containing	8	6	54	37 (69%)	1.8
nitriles	-CN	1	1	4	3 (25%)	0.79
nitro	-NO2	1	1	2	0 (0%)	13
amide	-N-CO-	3	1	15	10 (67%)	0.46
amine	-NH2 ≈ -NH- ≈ -N<	3	1	21	17 (81%)	0.47
nitroso and nitramine	-N-NO, -N-NO2	0	2	12	9 (75%)	0.58
urea	k -n-co-n-	1	0	7	7 (100%)	0.25
phosphorus	->P=O, -O-P<-	1	2	5	5 (100%)	0.47

Table 2.2: Summary of experimental data and statistical results for calibration

Departion machanism	Number of	Number of data	۲D
Reaction mechanism	experimental data	within EG (%)	5.D.
Overall	124	76 (62%)	1.2
H-atom abstraction	60	35 (58%)	1.1
HO• addition to aromatic compounds	46	33 (72%)	0.53
HO• Interaction with S, N, or P-atom containing compounds	18	8 (44%)	2.2

Table 2.3: Summary of experimental data and statistical results for prediction

Figure 2.3: Total of 434 HO• reaction rate constants from calibrations and predictions versus experimental rate constants for four reaction mechanisms. Error bars represent the range of experimentally reported values.

2.4.3 Hydrogen-Atom Abstraction from Saturated Aliphatic Compounds

The group rate constants of primary, secondary, and tertiary C-H bonds, k_{prim}^0 , k_{sec}^0

, and k_{tert}^0 , respectively, and group contribution factors, X_{R_i} , of alkyl and halogenated

functional groups were calibrated first. Then, other group contribution factors were subsequently calibrated using these group rate constants and alkyl group contribution factors. For the calibration, the multifunctional group compounds (e.g., glycol, polycarboxylic) were not used except for the alkyl halides (e.g., CH₂ClBr). As shown in Table 2.2, for the overall H-atom abstraction, the DF were 61. 85% of the calibrated data was within the EG. The S.D. was 0.42.

Once the group rate constants and group contribution factors were calibrated, 60 of the rate constants for the multifunctional group compounds were used to predict rate constants and were compared with experimental values. Table 2.3 summarizes the results from the prediction. A total of 58% of the predicted data were within the EG. The SD was 1.1.

2.4.3.1 Group Rate Constants for H-atom Abstraction

Group rate constants of k_{prim}^0 , k_{sec}^0 , and, k_{tert}^0 are 1.18×10^8 , 5.11×10^8 , and 1.99×10^9 M⁻¹s⁻¹, respectively. The trend $k_{prim}^0 < k_{sec}^0 < k_{tert}^0$ is consistent with the radical stability of primary, secondary, and tertiary carbon-centered radicals due to the hyperconjugation. The approximate magnitude of the group rate constants can be verified from the experimentally obtained E_a (Monod et al., 2005; Elliot and McCracken, 1989) and A(Monod et al., 2005; Asmus et al., 1973). For instance, $E_{prim}^0 + E_{a,abs}^{-OH}$ and $E_{prim}^0 + E_{a,abs}^{-CO}$ are equivalent to 4.8 kJ/mol of methane and 11.6 kJ/mol of acetone, respectively. Due to their electron withdrawing-ability (i.e., $E_{a,abs}^{-OH}$ and $E_{a,abs}^{-CO}$ are greater than 0), E_{prim}^0 should be less than 4.8 kJ/mol. Assuming the typical Arrhenius frequency factor, A, as 10^{10} M⁻¹s⁻¹ for the H-atom abstraction by HO• (e.g., 7.2×10^9 for methanol; 1.6×10^{10} for acetone), the approximate magnitude of k_{prim}^0 can range from 10⁸ to10⁹, which is in agreement with our estimated k_{prim}^0 .

When aqueous-phase group rate constants are compared with gaseous-phase ones, the aqueous-phase group rate constants are more variable than the gaseous-phase ones (i.e., $k_{tert}^0 / k_{prim}^0 = 16.9$ and $k_{sec}^0 / k_{prim}^0 = 4.3$ versus $k_{tert(gas)}^0 / k_{prim(gas)}^0 = 4.3$ and $k_{sec(gas)}^0 / k_{prim(gas)}^0 =$ 1.0). This is probably due to both the cage effect and the effect of solvation (Benson, 1982). In the aqueous phase, HO• and solute molecules significantly interfere with water molecules that form a first solvation cage surrounding a targeted molecule. As a result of restriction of their molecular rotation and translation in the solvent cage, the solutes suffer a significant decrease in entropy. According to the following equation (2.25) (Brezonik, 2002) that relates the activation of entropy in the aqueous phase, ΔS^{\neq} , with the Arrhenius frequency factor *A*,

$$A = e\kappa T / h \exp\left(\Delta S^{\neq} / R\right) \tag{2.25}$$

the *A* in the aqueous phase generally becomes smaller than the gaseous phase one. In addition, it may be more difficult for HO• to attack tertiary C-H bond due to three other functional groups than to the secondary and primary C-H bonds. As a result, the following trend is observed: $A_{\text{tert}}/A_{\text{prim}} > A_{\text{tert}(\text{gas})}/A_{\text{prim}(\text{gas})}$. One can also understand the effect of water molecules to the E_a from free energy of solvation as shown in the following equation

$$\Delta G^{\neq} = E_{a} - RT - T\Delta S^{\neq} \tag{2.26}$$

where ΔG^{\neq} is free energy of activation in solution, and for the aqueous phase (Brezonik, 2002)

$$E_{\rm a} = \Delta H^{\neq} + RT \tag{2.27}$$

As a consequence, in general, larger rate constants are observed in the aqueous phase than in the gaseous phase, although this depends on the polarizability of solute molecules. For non-polarized molecules (e.g., alkanes), positive solvation energy is observed. Theoretically calculated solvation energy (i.e., G_{sov} (CHCl₃) < G_{sov} (CH₂Cl) < G_{sov} (CH₃Cl)) (Vassilev and Baerends, 2005) also verifies our obtained trend $k_{tert} > k_{sec} > k_{prim}$.

In the aqueous phase, the H-atom abstraction reaction from a C-H bond preferentially occurs before an O-H bond due to the smaller BDEs of C-H bond. In addition, the polarity of oxygen makes the molecule extensively soluble in the aqueous phase because of the formation of hydrogen bonds, which prevent attacks to the O-H bond by HO•. Nonetheless, several experimental studies reported approximately 10% of H-atom abstraction from the O-H bond (Asmus et al., 1973). Therefore, a term k_{R_4} accounted for the group rate constants $k_{.OH}$ and $k_{.COOH}$, respectively, as shown in equation (2.9). The $k_{.OH}$ is 1.00×10^8 M⁻¹s⁻¹, which represents 33, 8.5, and <5% of the H-atom abstraction from the O-H bond in methanol, ethanol, and other alcohol compounds, respectively. These percentages are comparable with the experimental observations (Asmus et al., 1973). The k_{COOH} is 7.0×10^5 M⁻¹s⁻¹. The magnitude of the k_{COOH} is consistent with the rate constant for oxalic acid (Getoff et al., 1971).

2.4.3.2 Group Contribution Factors for H-atom Abstraction.

A total of 18 group contribution factors for H-atom abstraction (i.e., X_{R_i}) are summarized in Table 2.4. The group contribution factors of X_{-CH_2-} , $X_{>CH-}$, and $X_{>C<}$ were assumed to be identical because of the following reasons: (1) limited data availability for the >C< functional group and (2) identical BDEs affected by the corresponding functional group (i.e., 400.8 kJ/mol for CH₃CH₂C-**H**(CH₃)₂, 399.2 kJ/mole for (CH₃)₂CHC-H(CH₃)₂, and 400.4 kJ/mol for (CH₃)₃C-H, respectively) (Luo, 2002). When the alkyl functional groups had the ether functional groups at both sides of the α positions, another group contribution factor $X_{\text{-O-(second)}}$ was considered. Group
contribution factors for carboxylic and ester functional groups, -COOH and -COOR,
were assumed to be identical due to their similar electron-withdrawing ability. Because
of their strong electron-withdrawing ability, the influence of the β -position that resulted
from the halogen functional groups was considered. This represented $X_{\text{-CH}_{a}(\text{halogen})_{m}}$ where
(n,m) = (1,1), (1,2), or (2,1) for Cl or Br atom, (i.e., $X_{\text{-CH}_{2}\text{Cl}} \approx X_{\text{-CHCL}} \approx X_{\text{-CH}_{2}\text{Br}} \approx$ $X_{\text{-CHBr}_{2}} \approx X_{\text{-CHBr}}$), respectively, which was assumed to be identical for the purpose of
reducing the number of group contribution factors. The values of $X_{\text{-F}}$, $X_{\text{-I}}$, and $X_{\text{-CF}_{2}}$. were
not available because no experimental data were available for these functional groups.
Ring structures were expected to increase E_a because of the extra energy to form the ring
structure; consequently, group contribution factors for the 3-ring, X_{RS_3} , and the 5-ring,

 X_{RS_5} , for saturated cyclic compounds were considered, respectively.

Group rate constant ($\times 10^{-8} \text{ M}^{-1} \text{s}^{-1}$)				
k^{0}_{prim}	1.18			
k^{0}_{sec}	5.11			
k_{tert}^{0}	19.9			
k _{OH}	1.00			
k _{COOH}	0.00700			
Group contribution fac	tor, X			
-CH ₃	1.12			
-CH ₂ , >CH-, >C<	1.17			
->C-(oxygenated)-	0.681			
-OH	0.578			
-O-	0.551			
-CO-	0.154			
-CHO	0.602			
=O	0.360			
-COO, -COOH	0.0430			
-O-second	0.945			
-OCOR	0.000			
-RS5 (5 ring strain)	0.860			
-RS3 (3 ring strain)	0.0520			
-C1	0.203			
-Br	0.377			
-CF ₃	0.102			
-CCl ₃	0.112			
-CH ₂ Cl, -CHCl ₂ , -CHCl-, -CH ₂ Br, -CHBr ₂ , -CHBr-	0.367			

Table 2.4: Group rate constants and group contribution factors for H-atom abstraction

The group contribution factors for the H-atom abstraction linearly correlate with the Taft constant, σ^* (Karelson, 2000), as shown in Figure 2.4. Because the alkyl functional groups contribute to weakening the C-H bond with release of the steric compression as the alkyl functional group moves apart to form a planar radical, they increase in the HO• reactivity in the H-atom abstraction reactions. Therefore, X_{-CH_3} and $X_{-CH_2-} \approx X_{>CH-} \approx X_{>C<}$ values are greater than 1.0, which correspond to negative values of the Taft constant. All of the group contribution factors for the oxygenated and the halogenated functional groups show smaller than 1.0, which indicate the electron-withdrawing ability of the functional groups.

Figure 2.4: Comparison of the group contribution factors for H-atom abstraction with the Taft constant, $\sigma^*[60]$. Group contribution factors include \bullet : alkyl, oxygenated, and halogenated functional groups, \blacktriangle : S-, N-, or P-atom containing functional groups.

2.4.4 HO• Addition to Alkenes

Twenty-eight alkenes were categorized based on the base C=C double-bond structures and position(s) of hydrogen atom(s) adjacent to those base structures. Table 2.5 summarizes the structural configurations for equation (2.13) based on the basis of the compounds that are available in the literature. There were few rate constants reported for the conjugated and unconjugated dienes. Therefore, these compounds were excluded from calibration. As shown in Table 2.2, the total DF were 14. A total of 79% of the calibrated data was within the EG. The SD was 0.4.

structure	l	g	h
>C=C<	4	2	-
	2	1.	1
II/C-C<	3	1	2
出出>C-C<	r	1	1
	2	1	2
H>C=C <h(cis)< td=""><td>2</td><td>2</td><td>-</td></h(cis)<>	2	2	-
H>C=C <h(trans)< td=""><td>2</td><td>2</td><td>-</td></h(trans)<>	2	2	-
	1	1 .	1
	1	1 .	2

Table 2.5: Summary of the structural configurations in equation (2.13) based on the experimental rate constants

2.4.4.1 Group Rate Constants and Group Contribution Factors for HO• Addition to Alkenes.

Group rate constants and group contribution factors are summarized in Table 2.6.

It was found that the group contribution factors did not linearly correlate with the Taft

constant (data not shown). Two reasons can be considered. First, the functional group contribution to the E_a does not follow the general inductive effect (i.e., Taft constant). For example, the group contribution factor for alkane does not indicate the electrondonating value (i.e., $Y_{-alkane} = 0.171$). Because of the limited data availability and gaseous phase reaction mechanisms (Greenwald et al., 2005; Alvarez-Idaboy et al., 2000), the rate constant expression as shown in equation (2.13) did not consider the different effects of functional groups to two unsaturated carbons (one being attacked and the neighboring one). For example, the effects of three chlorine functional groups for 1,1,2trichloroethylene were treated identical in association with the two unsaturated carbons in the >C=CH- base structure. Although Peeters et al. (2007) successfully applied the GCM to the gaseous phase HO• rate constants with nonconjugated and conjugated (poly) alkenes on the basis of the number of functional groups on the neighboring carbon, their approach was limited to nonpolar functional groups, and it was not clear if it was applicable to the heteroatom functional groups and aqueous phase reactions. Second, the experimental rate constants do not seem to follow the inductive effect (e.g., vinyl chloride > ethylene > vinyl alcohol) because of the experimental errors or the existence of unknown reaction mechanisms. We suggest more experimental studies be conducted for alkenes to confirm this.

Group rate constant ($\times 10^{-9}$)					
k ⁰ (HH>C=C <h)-1< th=""><th>10.0</th></h)-1<>	10.0				
$k^0_{(\mathrm{HH}>\mathrm{C}=\mathrm{C}<\mathrm{H})-2}$	0.10				
$k^{0}_{(\text{HH}>\text{C}=\text{C}<)-1}$	97.9				
$k^{0}_{(\text{HH}>\text{C}=\text{C}<)-2}$	3.16				
$k^{0}_{(\text{H}>\text{C}=\text{C}<\text{H})(\text{cis})}$	30.1				
$k^{0}_{(\text{H>C=C$	52.1				
$k^{0}_{>\mathrm{C=C}<}$	514				
Group contribution	factor, Y				
-Alkane	0.171				
-CO-	0.600				
-CHO	0.600				
-COOH, -COOR	0.234				
-F	0.000				
-C1	0.210				
-CN	0.171				

 Table 2.6: Group rate constants and group contribution factors for HO• addition to alkenes

Despite the observation of the nonlinear correlation between the group contribution factors and the Taft constant, 79% of the calibrated rate constants were within the EG, and this might be acceptable for a rate constant estimator. It should be addressed that more quantitative investigations are required to examine the effect of the functional groups in the aqueous phase.

2.4.5 HO• Addition to Aromatic Compounds

Table 2.7 summarizes the structural configurations for equation (2.17) based on the basis of the compounds that were available in the literature. As shown in Table 2.2, for the overall HO• addition to aromatic compounds, the total DF were 35. 88% of the rate constants from the calibration was within the EG. The SD was 0.73. Once the group rate constants and group contribution factors were calibrated, the rate constants for 46 compounds were predicted as shown in Table 2.3. A total of 64% of the rate constants from the prediction was within the EG. The SD was 0.53.

name		т	i	п	j
		1	1	2	2,6
	mono-			1	4
				2	3,5
	di-	2	1,2	2	3,6
				2	4,5
			1,3	1	2
				2	4,6
				1	5
			1,4	2	2,6
				2	3,5
benz	tri-	3	1,2,3	2	4,6
				1	5
			1,2,4	1	3
				1	5
				1	6
			1,3,5	3	2,4,6
			1,2,3,4	2	5,6
	tetra-	4	1,2,3,5	2	4,6
			1,2,4,5	2	3,6
	penta-	5	1,2,3,4,5	1	6
	hexa-	6	1,2,3,4,5,6	6	1,2,3,4,5,6
pyr	mono-	1	2	2	3,6
				2	4,5
			3	1	2
				2	4,6
				1	5
			4 ~	2	2,6
				2	3,5
	di-	2	2,6	2	3,5
				1	4
			3,5 -	2	2,6
				1	4
	tri-	3	2,4,6	2	3,5
fur	mono-	1	2	1	3
				1	4
				1	5
	di-	2	2,5	2	3,4
imid	di-	2	3,4	1	1
				2	3,4
triaz	tri-	3	1,3,5	3	2,4,6

 Table 2.7: Summary of structural configurations in equation (2.17) based on the experimental rate constants with aromatic compounds

2.4.5.1 Group Rate Constants for HO• Addition to Aromatic Compounds.

Tables 2.8-2.12 summarize the group rate constants for aromatic compounds that include benzene, pyridine, furan, imidazole and triazine compounds, respectively. The approximate magnitude of the group rate constants can be compared with theoretical studies because there is no experimental data for E_a . According to Ashton et al. (1995), E_a between 13 and 21 kJ/mol of the net reaction was observed for various aromatic compounds. From their conclusion that the electron-withdrawing functional groups increased the E_a by approximately 2.1-8.4 kJ/mol, the magnitude of group rate constants fell in the range of 10⁹ orders. This is consistent with the group rate constants from the calibration.

Because the group rate constants for pyridine, furan, imidazole, and triazine compounds include the hetero atoms (e.g., N, NH, and O) that affect the HO• addition to aromatic ring, the calibrated group rate constants vary in magnitude of order from 10^6 to $10^9 \text{ M}^{-1}\text{s}^{-1}$. For example, the group rate constant, $k^0_{(2-\text{pyr})-3,6}$, that represents one functional group on 2-position and the addition of HO• to either the 3- or 6-position is $9.9 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$. This value and other group rate constants for pyridine are smaller than those of benzene compounds because of the lower reactivity and lower electrophilic nature of the pyridine nucleus toward the HO• (Solar et al., 1993). For triazine compounds, the group rate constant $k^0_{(1,3,5+\text{triaz})-2,4,6}$ (i.e., functional groups located on the 1,3,5-positions and HO• interacts with each N-atom located on the 2,4,6-positions) represents the reactivity of HO• with the triazine base structure other than the functional groups. However, this single group rate constant does not seem to represent the reaction mechanisms well.

Additional group rate constants may be required and can be calibrated when more

experimental data are available.

Group rate constant (×1 (benzene)	Group contribution factor, Z (functional group on benzene ring)		
k^{0} (1-benz)-2,6	1.02	-Alkane	1.00
k^{0} (1-benz)-3,5	1.29	-OH	1.27
k^{0} (1-benz)-4	0.914	-O-	1.03
$k^{0}_{(1,2-\text{benz})-3,6}$	1.78	-CHO	0.672
$k^{0}_{(1,2-\text{benz})-4,5}$	0.706	-COOH	0.680
k^{0} (1,3-benz)-2	0.989	-CO-	0.981
k^{0} (1,3-benz)-4,6	1.70	-CONH2	0.842
k^{0} (1,3-benz)-5	1.91	-F	0.973
k^{0} (1,4-benz)-2,6	0.713	-Cl	0.978
$k^{0}_{(1,4-\text{benz})-3,5}$	1.92	-Br	0.878
k^{0} (1,2,3-benz)-4,6	2.15	-I	0.821
$k^{0}_{(1,2,3-\text{benz})-5}$	1.64	-NH-	1.11
k^{0} (1,2,4-benz)-3	2.80	-NH-CO-	0.855
$k^{0}_{(1,2,4-\text{benz})-5}$	0.307	-NH2	1.48
$k^{0}_{(1,2,4-\text{benz})-6}$	1.13	-CN	0.411
k^{0} (1,3,5-benz)-2,4,6	1.68	-NO2	0.405
k^{0} (1,2,3,4-benz)-5,6	3.68	-SO ₃ H	0.373
k^{0} (1,2,3,5-benz)-4,6	2.80	-SO	0.656
k^{0} (1,2,4,5-benz)-3,6	3.53		
k^{0} (1,2,3,4,5-benz)-6	7.06		
$k^{0}_{(1,2,3,4,5,6-\text{benz})-1,2,3,4,5,6}$	0.312		

Table 2.8: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include benzene rings
Group rate constant $(\times 10^{-9} \text{ M}^{-1} \text{s}^{-1})$ (pyridine)		Group contribution factor (functional group on pyridine)	
k ⁰ (2-pyr)-3,6	0.990	-Alkane (Pyr)	0.962
k ⁰ (2-pyr)-4,5	0.293	-OH (Pyr)	1.97
<i>k</i> ⁰ (3-pyr)-2	0.456	-COOH (Pyr)	0.011
k ⁰ (3-pyr)-4,6	0.823	-CONH ₂ (Pyr)	0.498
k ⁰ (3-pyr)-5	0.025	-Cl (Pyr)	0.812
k ⁰ (4-pyr)-2,6	0.791	-Br (Pyr)	0.603
k ⁰ (4-pyr)-3,5	0.889	-CN (Pyr)	0.333
<i>k</i> ⁰ (2,6-pyr)-3,5	1.03	-NH ₂ (Pyr)	1.75
k ⁰ (2,6-pyr)-4	0.732		
k ⁰ (3,5-pyr)-2,6	3.71		
$k^{0}_{(3,5-pyr)-4}$	0.793		
k^{0} (2,4,6-pyr)-3,5	0.761		

 Table 2.9: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include pyridine

Table 2.10: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include furan

Group rate constant (×10 ⁻⁹ M ⁻¹ s ⁻¹) (furan)		Group contribution factor (functional group on furan)	
k^0 (2-fur)-3	3.92	-Alkane (fur)	1.24
k^{0} (2-fur)-4	4.81	-O- (fur)	1.02
k^{0} (2-fur)-5	1.42	-CHO (fur)	0.647
k^{0} (2,5-fur)-3,4	5.71	-CO- (fur)	0.406
		-COOH (fur)	0.600
		-CONH2-(fur)	0.610
		-Br (fur)	0.647
		-NO ₂ (fur)	0.778
		-CH-CN-(fur)	0.903
		-C ₆ H ₅ (fur)	0.943

Group rate constant (×10 ⁻⁹ M ⁻¹ s ⁻¹) (imidazole)		Group contribution factor (functional group on imidazole)	
$k^{0}_{(3,4-\text{imid})-1}$	1.71	-Alkane (imid)	1.17
$k^{0}_{(3,4-\text{imid})-3,4}$	1.08	-CO (imid)	0.731
		-NH (imid)	1.43
		-N< (imid)	1.61

Table 2.11: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include imidazole

Table 2.12: Group rate constants and group contribution factors for HO• addition to aromatic compounds that include triazine

Group rate constant (×10 ⁻⁶ M ⁻¹ s ⁻¹) (triazine)		Group contri (funtional gro	ibution factor up on triazine)
k ⁰ (1,3,5-triaz)-2,4,6	4.13	-O- (triaz)	0.214
		-Cl (triaz)	1.00
		-NH ₂ (triaz)	4.95
		-NH- (triaz)	0.0416
		-S- (triaz)	1.83

2.4.5.2 Group Contribution Factors for HO• Addition to Aromatic Compounds.

Tables 2.9-2.12 summarize the group contribution factors for the HO• addition to aromatic compounds. Figure 2.5 plots those values against electrophilic substituent constants, σ^+ (Karelson, 2000), for benzene (r= 0.89), pyridine (r= 0.93), and furan (r= 0.65) compounds. Because only one σ^+ for imidazole functional groups is available, Figure 2.5 does not include the plot for imidazole. These observations validate that the group contribution factors that are empirically derived from the experimental rate constants linearly correlate with the general electron-donating and -withdrawing property. For furan compounds, the weak correlation may be due to insufficient number of data.

Figure 2.5: Comparison of the group contribution factors for HO• addition to aromatic compounds with electrophilic substituent parameter, σ +, (Karelson, 2000) (right). Figure includes the group contribution factors for benzene (**■**), pyridine (**●**), and furan compounds (**▲**). The σ * of [-CHCl₂], [-CO], [-COO, COOH], [-S-, -SS- -HS-], [-NH₂, -NH-, -N<] is an average of [CH₂Cl, CH₂Br, CHCl₂, CHBr₂], [COCH₃, COC₂H₅, COC(CH₃)₃, COC₆H₅, COF, COCI], [COOH, COOC₂H₅], [SCH₃, SC₂H₅, SCH(CH₃)₂], and [NHCH₃, NH(CH₂)₃CH₃, N(C₂H₅)₂], respectively. The σ * of [-SO] and [-N-CO-] refer to [S(O)CH₃] and [NHCOC₆H₅], respectively.

2.4.6 HO• Interactions with Sulfur-, Nitrogen-, or Phosphoruscontaining-Compounds

As shown in Table 2.2, the DF were 54. 74% of the calibrated data was within

the EG. The SD was 1.5. Once the group rate constants and group contribution factors

were determined, 18 of the rate constants were predicted and compared with the

experimental rate constants as shown in Table 2.3. A total of 44% of the rate constants was within the EG. The SD was 2.2.

2.4.6.1 Group Rate Constants for HO• Interaction

The group rate constants and group contribution factors were summarized in Table 2.13. Because no direct interactions were experimentally observed (Mezyk et al., 2006; 2004), the group rate constants, $k_{\text{-N-NO}}$ and $k_{\text{-N-NO}}$ were not considered. The group rate constants $k_{\text{-CN}}$ and $k_{\text{-N+H2}}$ can be compared with the rate constants for compounds that react with HO• via only interaction such as cyanogen and thiourea, respectively. The rate constant for thiourea is approximately twice of $k_{\text{-NH2}}$ because the electron positive -CS-functional group does not significantly affect the electron density of the N-atom. The reaction of HO• with urea may be different because two amine functional groups in urea bond to the electron-negative functional group, -CO-. As a result, another group rate constant $k_{\text{-N-CO-N-}}$ was considered for methylurea, tetramethyl urea, and 1,3-dimethylurea.

The magnitude of most group rate constants for the S-containing compounds was in the same order as for the amine-related compounds but approximately 1 order of magnitude larger than those for the amide-related compounds. This is probably because of the electronegative –CO- functional group that is a part of amide functional groups.

Group rate constant ($\times 10^{-8} \text{ M}^{-1} \text{s}^{-1}$)			
k _{-S-}	23.6		
k	36.7		
k_{-SO}	19.2		
k _{-HS-}	9.93		
k _{-CN}	0.0555		
<i>k</i> - _{NO2}	1.33		
<i>k</i> - _{CO-NH2}	0.998		
k -co-nh-	5.00		
k -co-N<	9.98		
<i>k</i> _{-NH2}	40.0		
k - _{NH-}	1.00		
$k_{\text{-N}<}$	35.3		
k -N-CO-N-	0.00409		
k -P=	0.258		
Group contribu	tion factor, X		
-S-, -SS-, -HS-	2.40		
-SO	0.445		
-CN	0.00292		
-NO ₂	0.00		
-NH ₂ , -NH-, -N<	1.63		
-N-CO-	3.19		
-N-NO	0.0105		
-N-NO ₂	0.176		
->P=O	0.103		
-O-P<-	0.00004		

Table 2.13: Group rate constants and group contribution factors for S, N, and P-atom containing compounds

2.4.6.2 S-, N-, or P-atom-Containing Group Contribution Factors

The S-, N-, or P-atom-containing group contribution factors apparently play the

same role as the functional groups for H-atom abstraction, i.e., $X_{R_i} = e^{\frac{E_{a,abs}^{R_i}}{RT}}$. However, it is anticipated that S-, N-, or P-atom-containing functional groups may have different effects on H-atom abstraction. The group contribution factors for -S, -S-S- and -SH, and -NH₂, -NH- and -N<, respectively, were assumed to be identical due to the following reasons: (1) limited data availability for single functional group compounds, (2) similar electron inductive ability, and (3) application for the gaseous phase. One might consider additional rate constants (e.g., amino acids) to overcome the limited data availability. However, the single-functional group compounds were used to calibrate the group contribution factors to avoid the interference of different functional groups. In addition, the same data sets for the S- and N-atom containing-compounds were used to calibrate the group rate constants, k_{-S-} , k_{-S-S-} and k_{-SH} , and k_{-NH2} , k_{-NH-} and $k_{-N<}$, respectively. These group rate constants were not assumed to be identical because the interaction of HO• with each functional group might be more significant than the electron donating effects that result from these functional groups. Therefore, within the limited data availability, our assumption should be acceptable. For similar electron inductive ability, the Taft constant indicates similar values among these S- and N-atom-containing functional groups. For example, the Taft constants for SCH₃, SC₂H₅, and SH are 1.66, 1.44, and 1.52, respectively (Karelson, 2000), and those for NH₂, NHCH₃, N(CH₃)₂, NH(CH₂)₃CH₃, and N(C₂H₅)₂ are 0.62, 0.94, 1.02, 1.08, and 1.00, respectively (Karelson, 2000). These values are well distinguished from 3.61 of NH₃⁺, 4.66 of NO₂, 4.16 of N+(CH₃)₃, and 3.64 of CN. Finally, Atkinson (Atkinson, 1986; 1987; Kwok and Atkinson, 1995)

assumed that the "substituent factors" for -S-, -S-S-, and –SH, and for –NH₂, -NH-, -N<, -NNO, and –NNO₂ were identical and successfully predicted the gaseous phase HO• rate constants. Although the reaction mechanisms for the interaction in the gaseous phase may be different from the aqueous phase, the manner in which S- and N-atom-containing functional groups affect the neighboring C-H bond could be very similar between two phases. The –SO and –N-CO- functional groups were treated separately because of the electronegative oxygen atom. In contrast, the X_{-CO-N} was treated as identical to X_{-CO-} . It is observed that the amide nitrogen is much more effective in activating the methyl group that undergoes the H-atom abstraction than ester oxygen (Hayon et al., 1970). This is consistent with the group contribution factors (i.e., $X_{-COO} = 0.04$, $X_{-N-CO} = 3.19$).

Figure 2.4 compares the group contribution factors of S-, N-, or P-atomcontaining functional groups with the Taft constant, σ^* (Karelson, 2000). A linear correlation between these group contribution factors and σ^* was observed (r=0.99). As compared with X_{R_i} for the alkyl, oxygenated, and halogenated functional groups, those for S-, N-, or P-atom-containing functional groups are greater. This implies that S, N, or P-atom-containing functional groups donate more electrons toward the neighboring C-H bond(s), hence, enhancing the H-atom abstraction by HO•. It should be noted that insufficient experimental data resulted in poor calibration for nitrile and nitro compounds. As it turns out, we may have to consider the electron-negative effect of these compounds in the β -position because of their strong electron-withdrawing ability. However, this will have to wait until more data become available.

2.4.7 Predictabilities of GCM and Future Studies

Because the GCM is based on the group additivity of the rate constants, it is not able to predict the rate constants for the reactions that are close to the diffusion-control limit. The rate constant expression may not thoroughly reflect the reaction mechanisms in the aqueous phase due to the unknown reaction mechanisms (e.g., HO• addition to alkenes). In addition, there are insufficient experimental data sets (e.g., nitriles and nitros, furan, and triazine compounds) and suspect data (e.g., alkenes). As a result, nonlinear correlation was observed between the group contribution factors with the electron-donating and -withdrawing ability, i.e., the Taft constant or electrophilic substitutent parameter. The observed inconsistencies of the experimental data may have resulted from the difference in experimental protocols such as the differences of analytical approach or HO• production methods (e.g., pulse radiolysis, UV/H₂O₂, O_3/H_2O_2). For these groups, additional experimental studies are needed to obtain better calibration.

Solvation effects can be expected to affect the reactions for polar- and nonpolar functional groups differently due to the absence or presence of the hydrogen bonds. These might cause over or under prediction for the oxygenated multifunctional group compounds (i.e., poly alcohols, poly carboxylic compounds, and benzenes with di- and trifunctional groups) because of the invalid thermochemical additivity. A more sophisticated approach (e.g., quantum mechanical calculation) may be required to investigate these effects, and this is an undergoing project.

Steric hindrance that results from the halogenated and carboxylic functional groups may also cause over and under prediction. While alcohols with –CF₃ or –CCl₃ functional groups undergo the solvation effect, steric hindrance might be more significant (i.e.,

steric constants, E_s , for –CF₃ and –CCl₃ are -2.40 and -3.30, respectively, as compared to -1.24 for –CH₃ and -0.46 for –Cl (Karelson, 2000)). We are also currently investigating the steric hindrance for specific functional groups. Although the GCM uses only experimentally reported rate constants based on the thermochemical additivity of the E_a , the group contribution factors linearly correlate with the general inductive constants for most cases. In addition, the rate constants for the multifunctional group compounds were predicted and compared with the experimental rate constants. It turns out that the GCM can predict most of the rate constants within the 0.5 to 2 times the experimental values. Therefore, the GCM can be used to predict the rate constants for many compounds with any kinds of functional groups that we have sufficient data to calibrate group rate constants and group contribution factors within the EG, and this may be acceptable for the design of AOPs, depending on how sensitive the model is to the rate constants.

As an extra trial, the GCM predicted the rate constants for 11 emerging aromatic compounds and compared them with the experimental rate constants as shown in Table 2.1. It was found that all of the predicted values were within the EG. In addition, the GCM predicted the rate constants for 68 emerging compounds that include the EPA's Contaminate Candidate List 2 (CCL2) and 3 (CCL3) compounds as shown in Table 2.14. Table 2.14 includes calculated half-lives for HO• concentrations of 10⁻⁹, 10⁻¹⁰, and 10⁻¹¹ mole/L based on equations (2.28) and (2.29):

$$\frac{dC_{\rm R}}{dt} = -k_{\rm HO}.C_{\rm HO}.C_{\rm R}$$
(2.28)

$$t_{1/2} = \frac{\ln(2)}{k_{\text{HO.}}C_{\text{HO.}}}$$
(2.29)

It is clear that as the HO• concentration decreases to 10⁻¹¹ mole/L due to HO• scavengers (e.g., natural organic matters, carbonate and bicarbonate, iron and manganese) in water, longer retention time in AOPs will be required. Although the HO• rate contants for these compounds have not been experimentally obtained, our calculcated half-life of these emergning contaminants can be used as a screening tool to examine the initial fate of these emerging contaminants during AOPs.

					Half-life, min	
	CAS	Note	k cal	$[HO_{-}] = 10^{-9} \text{ mole/L}$	$[HO•] = 10^{-10} \text{ mole/L}$	$[HO•] = 10^{-11}$ mole
1 1-dichloropropane	78-99-9	CCL2	9 31E+08	0.745	7.45	74.5
1.2-diphenvlhydrazine	122-66-7	CCL2	1.23E+10	0.057	0.565	5.65
1,3-dichloropropane	142-28-9	CCL2	6.25E+08	1.11	11.1	111
cis-1,3-dichloropropene	10061-01-5	CCL2	5.13E+09	0.135	1.35	13.5
trans-1,3-dichloropropene	10061-02-6	CCL2	8.72E+09	0.079	0.795	7.95
2,2-dichloropropane	594-20-7	CCL2	7.92E+07	8.75	87.5	875
2,4-dichlorophenol	120-83-2	CCL2	5.24E+09	0.132	1.32	13.2
2,4-Dinitrophenol	51-28-5	CCL2	1.14E+09	0.610	6.10	61.0
2,4-dinitrotoluene	121-14-2	CCL2	9.50E+08	0.730	7.30	73.0
2,6-dinitrotoluene	606-20-2	CCL2	1.23E+09	0.564	5.64	56.4
2-methylphenol	95-48-7	CCL2	6.32E+09	0.110	1.10	6.10
Acetochlor	34256-82-1	CCL2	1.14E+10	0.061	0.610	0.10
DDE (diabless disk and diabless attailess)	72 55 0	CCL2	2.36E+10	0.027	0.208	2.08
Diazinon	333-41-5	CCL2	9 90E+09	0.070	0.125	7.00
Dieldrin	60-57-1	CCL2	1 53E+10	0.045	0.452	4 52
Disulfoton	298-04-4	CCL3	6 63E+09	0 104	1.04	10.4
EPTC	759-94-4	CCL2	2.08E+10	0.033	0.334	3.34
Fonofos	944-22-9	CCL2	4.61E+09	0.151	1.51	15.1
Cymene, isopropyltoluene	99-87-6		8.95E+09	0.077	0.774	7.74
Methylbromide	74-83-9	CCL3	1.33E+08	5.22	52.2	522
Metolachlor	51218-45-2		1.22E+10	0.057	0.568	5.68
Metribuzin	21087-64-9		4.72E+09	0.147	1.47	14.7
Molinate	2212-67-1		1.89E+10	0.037	0.367	3.67
Cyclonite	121-82-4		1.03E+08	6.75	67.5	675
Alachlor	15972-60-8		1.06E+10	0.066	0.655	6.55
Carbofuran	1563-66-2		7.73E+09	0.090	0.896	8.96
Dalapon	75-99-0		4.15E+08	1.67	16.7	167
Endothall	145-73-3		5.39E+09	0.129	1.29	12.9
Epichlohydrin	106-89-8		3.03E+08	2.29	22.9	229
Glyphosate	1071-83-6		7.45E+08	0.930	9.30	93.0
Lindane	58-89-9	CCL3	3.27E+08	2.12	21.2	212
(alpha-Hexachlorocyclohexane)	70 42 5		6.06E100	0.114	1.14	11.4
Methyoxychlor	/2-45-5		6.06E+09	0.114	1.14	11.4
TCED tri(2_ablassathst) the enhance	23135-22-0		0.9/E+09	0.099	7.00	9.95
Marrahamata	57 52 4		2.06E±00	0.799	1.99	19.9
DEET (N N-diethyl-3-methyl-benzamide)	134-62-3		1 44E+10	0.048	0.483	4 83
Gemfibrozil	25812-30-0		9 40E+09	0.074	0.738	7 38
Dilantin	57-41-0		5.55E+09	0.125	1.25	12.5
Triclosan	3380-34-5		9.72E+09	0.071	0.713	7.13
Benzafibrate	41859-37-0		1.60E+10	0.043	0.433	4.33
Clofibric acid	882-09-7		5.81E+09	0.119	1.19	11.93
Cyclophosphamide	50-18-0		4.07E+09	0.170	1.70	17.01
Aspirin	50-78-2		3.51E+09	0.197	1.97	19.74
Decabromobipheyl ether	1163 10 5		2.025±00	0 3 4 3	3.43	34.3
(DBDE)	1103-19-5		2.02E+09	0.343	3.43	54.5
Hexabromobiphyl	36355-01-8		9.56E+09	0.073	0.725	7.25
Hexabromocyclodecane (HBCD)	3194-55-6		7.03E+09	0.099	0.987	9.87
Octabromobiphenyl ether	67889-00-3		8.41E+09	0.082	0.824	8.24
Pentabromodiphenyl ether	32534-81-9		8.32E+09	0.083	0.833	8.33
Tetrabromobisphenol A	79-94-7		1.20E+10	0.058	0.577	5.77
(IBBPA) 1,2-bis(2,4,6-tribromophenoxy)ethane	37853-59-1		9 18E+09	0.075	0.755	7 55
(TBE) 2,3,4,5,6-pentabromoethylbenzene	85-22-3		2 54E+09	0.273	2 73	27.3
(PEB)	96-18-4	CCL3	1.04E+09	0.663	6.63	66.3
1 3-Dinitrohenzene	99-65-0	CCL3	1.03E+09	0.671	6 71	67.1
2-Propen-1-ol	107-18-6	CCL3	4 62E+09	0 150	1 50	15.0
Benzylchloride	100-44-7	CCL3	6.57E+09	0,105	1.05	10.5
Cumen hydroperoxide	80-15-9	CCL3	6.48E+09	0.107	1.07	10.7
Hydrazine	302-01-2	CCL3	8.00E+09	0.087	0.867	8.67
n-Propylbenzene	103-65-1	CCL3	8.51E+09	0.081	0.814	8.14
o-Toluidine	95-53-4	CCL3	1.17E+10	0.059	0.591	5.91
Oxirane, methyl-	75-56-9	CCL3	5.23E+08	1.32	13.2	132
Oxydemeton-methyl	301-12-2	CCL3	6.63E+09	0.105	1.05	10.5
Profenofos	41198-08-7	CCL3	1.18E+10	0.059	0.587	5.87
RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine)	121-82-4	CCL3	9.55E+07	7.26	72.6	726
sec-Butylbenzene	135-98-8	CCL3	1.03E+10	0.067	0.670	6.70
Triethylamine	121-44-8	CCL3	1.04E+10	0.067	0.669	6.69
	78-48-8	CCL3	1.81E+10	0.038	0.382	3.82
Tribufos						

Table 2.14: Predicted HO• reaction rate constants for emerging contaminants

2.5 Acknowledgement

This work was supported by National Science Foundation Award 0607332 award from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors also appreciate support from the Snell Research Assistantship at Arizona State University and the Hightower Chair and Georgia Research Alliance at Georgia Institute of Technology. We gratefully acknowledge the contributions of Jessica Brosilo for her editorial assistance.

2.6 Appendices

An executed program is provided along with an input text file for the calculations of the HO• reaction rate constants. In addition, a Microsoft Excel spread sheet is also given for this purpose. Appendix A contains the source of genetic algorithm. Appendix B includes up-to-date experimental HO• radical rate constants. Appendix C includes a GCM identifier.F90 program source code.

2.7 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Alvarez-Idaboy, J.R.; Mora-Diez, N.; Vivier-Bunge, A. A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. *J. Am. Chem. Soc.* 2000, *122*, 3715-3720.

Ashton, L.; Buxton, G.V.; Stuart, C.R. Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. Evidence for the formation of a π complex intermediate? *J. Chem. Soc. Faraday. Trans.* 1995, *91*(11), 1631-1633.

Asmus, K.-D.; Bonifačič, M. In Sulfur-Centered Reactive Intermediates as Studied by Radiation Chemical and Complementary Techniques; Chapter 5. 141-191. Alfassi, Z. B. Eds. The Chemistry of Free Radicals S-Centered Radicals. 1999. Chichester, U.K.

Asmus, K.-D.; Möckel, H.; Henglein, A. Pulse radiolytic study of the site of OH• radical attack on aliphatic alcohols in aqueous solution. *J. Phy. Chem.* 1973, 77(10), 1218-1221.

Atkinson, R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. *Int. J. Chem. Kinet.* 1987, 19, 799-828.

Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric condition. *Chem. Rev.* 1986, *86*, 69-201.

Avila, D.V.; Brown, C.E.; Ingold, K.U.; Lusztyk, J. Solvent effects on the competitive β -scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem. *J. Am. Chem. Soc.* 1993, *115*, 466-470.

Bakken, G.; Jurs, P.C. Prediction of hydroxyl radical rate constants from molecular structure. J. Chem. Inf. Comput. Sci. 1999, 39, 1064-1075.

Benson, S.W. "Thermochemical Kinetics", 2nd ed. Wiley, Interscience, New York, 1976.

Benson, S.W. The Foundations of Chemical Kinetics Robert E. Krieger, Malabar, Florida, 1982.

Böhnhardt, A.; Kühne, R.; Ebert, R-U.; Schüürmann, G. Indirect photolysis of organic compounds: Prediction of OH reaction rate constants through molecular orbital calculations. *J. Phys. Chem.* 2008, *112*, 11391-11399.

Brezonik, P.L. Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers. CRC Press. Boca Raton, 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O⁻) in aqueous solution. *J. Phys. Chem. Ref. Data.* 1988, *17* (2) 513-795.

Charbonneau, P.; Knapp, B. 1995, A User's guide to PIKAIA 1.0, *NCAR Technical Note* 418+IA, National Center for Atmospheric Research, Boulder.

Cohen, N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane reaction. *Int. J. Chem. Kinet.* 1991, *23*, 397-417.

Cohen, N. The use of transition-state theory to extrapolate rate coefficients for reactions of OH with alkanes. *Int. J. Chem. Kint.* 1982, *14*, 1339-1362.

Cohen, N.; Benson, S.W. Empirical correlations for rate coefficients for reactions of OH with haloalkanes. *J. Phys. Chem.* 1987, *91*, 171-175.

Cramer, C.J. Essential of computational chemistry 2nd ed. John Wiley & Sons. Ltd. England, 2004; Chapter 11.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for H₂O₂/UV process in a completely mixed batch reactor. *Wat. Res.* 1999, *33*(10), 2315-2328.

Davey, J.B.; Greenslade, M.E.; Marshall, M.D.; Lester, M.I.; Wheeler, M.D. Infrared spectrum and stability of a π -type hydrogen-bonded complex between the OH and C₂H₂ reactants. *J.Chem.Phys.* 2004, *121*(7), 3009-3018.

Dutot, A-L.; Rude, J.; Aumont, B. Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds. *Atmos. Environ.* 2003, *37*, 269-276.

Elliot, A.J.; McCracken, D.R. Effect of temperature on O⁻ reactions and equilibria: a pulse radiolysis study. *Radiat. Phys. Chem.* 1989, *33*, 69-74.

Getoff, N. Radiation and photoinduced degradation of pollutants in water. A comparative study. *Radiat. Phys. Chem.* 1991, *37*(5/6), 673-680.

Getoff, N.; Schwörer, F.; Markovic, V.M.; Sehested, K.; Nielsen, S.O. Pulse radiolysis of oxalic acid and oxalates. *J. Phys. Chem.*, 1971, 75(6), 749-755.

Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, INC. Massachusetts, U.S.A. 1989.

Gramatica, P.; Pilutti, P.; Papa, E. Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training – test sets and consensus modeling. *J. Chem. Inf. Comput. Sci.* 2004, *44*, 1794-1802.

Greenwald, E.E.; North, S.W.; Georgievskii, Y.; Klippenstein, S.J. A two transition state model for radical-molecule reactions: a case study of the addition of OH to C_2H_4 . *J. Phy. Chem. A.* 2005, *109*, 6031-6044.

Greenwald, E.E.; North, S.W.; Georgievskii, Y.; Klippenstein, S.J. A two transition state model for radical-molecule reactions: a case study of the addition of OH to C_2H_4 . *J. Phy. Chem. A.* 2005, *109*, 6031-6044.

Grosjean, D.; Williams II, E.L. Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics. *Atmos. Environ.* 1992, 26A(8), 1395-1405.

Hayon, E.; Ibata, T.; Lichtin, N.N.; Simic, M. Sites of attack of hydroxyl radicals on amides in aqueous solution. *J. Am. Chem. Soc.* 1970, *92*(13), 3898-3903.

Heicklen, J. The correlation of rate coefficients for H-atom abstraction by HO radicals with C-H bond dissociation enthalpies. *Int. J. Chem. Kint.* 1981, *13*, 651-665.

Herrmann, H. Kinetics of aqueous phase reactions relevant for atmospheric chemistry. *Chem. Rev.* 2003, *103*, 4691-4716.

Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. *Environ. Sci. Technol.* 2003, *37*, 1016-1024.

Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley & Sons, INC. New York, 2000.

King, M.D.; Canosa-Mas, C.E.; Wayne, R.P. A structure-activity relationship (SAR) for predicting rate constants for the reaction of NO₃, OH and O₃ with monoalkenes and conjugated dienes. *Phys. Chem. Chem. Phys.*, 1999, *1*, 2239-2246.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. *Chemosphere*. 1996, *32*(4), 717-726.

Kwok, E.S.C.; Atkinson, R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. *Atmos. Environ.* 1995, *29*(14), 1685-1695.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. *Environ. Sci. Technol.* 2009, *43*, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H₂O₂ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. *Wat. Res.* 2008, *42*(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/H₂O₂ advanced oxidation process: product study and kinetic modeling. *Environ. Sci. Technol.* 2007, *41*, 1696-1703.

Luo, Y-R. "Handbook of Bond Dissociation Energies in Organic Compounds", CRC Press, 2002.

Medven, Ž.; Güsten, H.; Sabljić, A. Comparative QSAR study on hydroxyl radical reactivity with unsaturated hydrocarbons: PLS versus MLR. *J. Chemometrics*. 1996, *10*, 135-147.

Merga, G.; Schuchmann, H.-P.; Madhava Rao, B.S.; von Sonntag, C. •OH radicalinduced oxidation of chlorobenzene in aqueous solution in the absence and presence of oxygen. J. Chem. Soc., Perkin Trans. 2, 1996, 1097-1103.

Mezyk, S.P.; Cooper, W.J.; Madden, K.P.; Bartels, D.M. Free radical destruction of Nnitrosodimethylamine in water. *Environ. Sci. Technol.* 2004, *38*, 3161-3167.

Mezyk, S.P.; Ewing, D.B.; Kiddle, J.J.; Madden, K.P. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water. *J. Phy. Chem.* A. 2006, *110*, 4732-4737.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. *Atmos. Environ.* 2005, *39*, 7667-7688.

Mvula, E.; Schuchmann, M.N.; von Sonntag, C. Reaction of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. *J. Chem. Soc.*, *Perkin Trans.* 2, 2001, 264-268.

Öberg, T. A QSAR for the hydroxyl radical reaction rate constant: validation, domain of application, and prediction. *Atmos. Environ.* 2005, *39*, 2189-2200.

Peeters, J.; Boullart, W.; Pultau, V.; Vandenberk, S.; Vereecken, L. Structure-activity relationship for the addition of OH to (poly)alkenes: site-specific and total rate constants. *J. Phy. Chem. A.* 2007, *111*, 1618-1631.

Percival, C.J.; Marston, G.; Wayne, R.P. Correlations between rate parameters and calculated molecular properties in the reactions of the hydroxyl radical with hydrofluorocarbons. *Atmos. Environ.* 1995, *29*(3), 305-311.

Persico, M.; Granucci, G. Photochemistry in condensed phase. In "Continuum Solvation Models in Chemical Physics." Mennucci, B.; Cammi, R. 2007, John Wiley & Sons. Ltd. England.

Raghavan, N.V.; Steenken, S. Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. *J. Am. Chem. Soc.* 1980, *102*(10), 3495-3499.

Razavi, B.; Song, W.; Cooper, W.J.; Greaves, J.; Jeong, J. Free-radical-induced oxidative and reductive degradation of fibrate pharmaceuticals: Kinetic studies and degradation mechanisms. *J. Phys. Chem. A.* 2009, *113*, 1287-1294.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. *Environ. Sci. Technol.* 2004, *38*, 5476-5483.

Schuchmann H-P.; von Sonntag, C. Photolysis at 185 nm of dimethyl ether in aqueous solution: involvement of the hydroxymethyl radical. *J. Photochem.* 1981, *16*, 289-295.

Singleton, D.L.; Cvetanović, R.J. Temperature dependence of the reactions oxygen atoms with olefins. *J.Am.Chem.Soc.* 1976, *98*, 6812-6819.

Solar, S.; Getoff, N.; Sehested, K.; Holcman, J. Pulse radiolysis of pyridine and methylphyridines in aqueous solutions. *Radiat. Phys. Chem.* 1993, *41*(6), 825-834.

Stefan, M.I.; Hoy, A.R.; Bolton, J.R. Kinetics and mechanisms of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. *Environ. Sic. Technol.* 1996, *30*, 2382-2390.

U.S. Environmental Protection Agency. AOPWIN. v1.91, 2000.

U.S. EPA. Office of the Administrator Science Advisory Board. Science Advisory Board (SAB) Review of the Estimation Programs Interface Suite (EPI SuiteTM), 20460, 2007.

University of Notre Dame, The Radiation Chemistry Data Center (RCDC), http://www.rad.nd.edu/rcdc/index.html (accessed June 12, 2009).

Vassilev, P.L., M.J.; Baerends, E.J., Hydroxyl radical and hydroxide ion in liquid water: A comparative electron density functional theory study. *J. Phys. Chem. B.* 2005. *109*, 23605-23610.

Villá, J.; González-Lafont, A.; Lluch, J.M.; Corchado, J.C.; Espinosa-García, J. Understanding the activation energy trends for the $C_2H_4 + OH \rightarrow C_2H_4OH$ reaction by using canonical variational transition state theory. *J.Chem.Phys.* 1997, 107(*18*), 7266-7274.

Wang, Y-n.; Chen, J.; Li, X.; Wang, B.; Cai, X.; Huang, L. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation. *Atmos. Environ.* 2009, *43*, 1131-1135.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. *Environ. Sci. Technol.* 2005, *39*, 6649-6663.

CHAPETER 3

Linear Free Energy Relationships between Aqueous Phase Hydroxyl

Radical Reaction Rate Constants and Free Energy of Activation

†work from this chapter will be presented and plan to be published in the following citation:

Minakata, D.; Crittenden, J. Quantitative Understanding of Advanced Oxidation Processes for the Treatment of Emerging Contaminants. IWA World Water Congress & Exhibition. Montreal, Canada, September 19-24, 2010.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The 16th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). Novermber 15-18, 2010. San Diego, California.

Minakata, D.; Crittenden, J. Linear Free Energy Relationships between the Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants and the Free Energy of Activation. *Environ. Sci. & Technol.* Submitted.

3.1 Abstract

Hydroxyl radical (HO•) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). For mechanistic modeling, we need to develop a method that can predict reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions. In this study, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO• reaction rate constants and theoretically calculated free energies of activation. The theoretical method uses *Ab initio* quantum mechanical calculations for gas phase reactions and solvation methods to estimate the impact of water. The aim of this study is to develop LFERs for H-atom abstraction from a C-H bond and HO• addition to alkenes. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for mechanistic modeling of AOPs.

3.2 Introduction

The hydroxyl radical (HO•) is a reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites on organic contaminants. It is the active species that potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., O₃/H₂O₂, UV/H₂O₂, UV/TiO₂) and natural waters (Westerhoff et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Concerns regarding emerging contaminants (Richardson, 2009) and the many chemicals that are in use or production (CAS, 2009) necessitate mechanistic modeling (Pfaendtner and Broadbelt, 2008) that can quickly assess their removal by AOPs.

A mechanistic model to evaluate performance in AOPs includes three critical components: (1) numerical methods that solve ordinary differential equations (ODEs), (2)

algorithms that can predict reaction pathways, and (3) algorithms that can predict reaction rate constants. The DGEAR algorithm (Hindmarsh and Gear, 1974) was successfully used to solve the ODEs for UV/H₂O₂ kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). A model that generates reaction pathways for aqueous phase AOPs has also been developed (Li and Crittenden, 2009). A group contribution method (GCM) recently has been developed (Minakata et al., 2009) to predict aqueous phase HO• reaction rate constants for compounds with a wide range of functional groups. The GCM calibrated 55 group rate constants and 80 group contribution factors with 310 compounds and predicted 124 compounds. It showed that 83% (257 rate constants) and 62% (77 rate constants) of the rate constants from calibrations and predictions were within 0.5 to 2.0 times the experimental values.

The GCM was shown to predict the rate constants for compounds with a wide range of functional groups. Nevertheless, certain assumptions and factors limit the use of the GCM. Essentially, the GCM can only deal with molecules for which all required group rate constants and group contribution factors have been calibrated before. As a result, for more minor functional groups and compounds with limited experimental rate constants, the GCM suffers from the parameters that do not represent comprehensive abiliy of functional groups. Table 3.1 summarizes number of literature-reported experimental rate constants for the reactions that are appeared in AOPs.

Reaction mechanisms	Genetic representations of reaction mechanisms	Compound groups	Experimental k	Exp. Free energy of solvation of compounds	Arrehenius parameters, E_a and A
		Hydrocarbons (alkanes)	12	10	0
		Oxygenated compounds (Alcohols, Diol,			
H-atom abstraction	$CHR_3 + HO \bullet \rightarrow \bullet CR_3 + H_2O$	Ether, Ester, Aldehyde, Ketone,	122	15	39
		Carboxylic)		_	
		Alkyl halides	52	7	0
HO• addition to alkenes	$R_2C=CR'_2 + HO^{\bullet} \rightarrow R_2(HO)C-^{\bullet}CR'_2$	Unsaturated alkenes	21	n.a.	0
O2 addition	$\bullet CR_3 + O_2 \rightarrow \bullet OOCR_3$	Alkyl carbon centered radicals (Aliphatic)	34	n.a.	1
	$R-C(O)O \bullet \rightarrow R \bullet + CO_2$				
β-scission and 1,2-H shift	$CR_3CR'_2O \bullet \rightarrow \bullet CR_3 + R'_2C=O$	Alkyl oxyl radicals (Aliphatics)	<5	n.a.	-
	$HR_2CO \bullet \rightarrow \bullet C(OH)R_2 + R_2C=O$				
Formation of tetroxide	$R_3COO \bullet + \bullet OOCR'_3 \rightarrow R_3COOOOCR'_3$	Alkyl peroxyl radical (Aliphatics)	10	n.a.	-
Perovul radical	$\begin{array}{c} R \\ HO - C - O - O^{\bullet} & \longrightarrow C = O \\ R^{\bullet} & R^{\bullet} \\ R^{\bullet} & R^{\bullet} \end{array} + HO_{2}^{\bullet} (O_{2}^{\bullet} + H^{\dagger})$	Uni-molecular decay (Elimination of HO ₂ •-/O ₂ •-)	12	n.a.	5
reaction mechanisms	$\begin{array}{c} R_2 CHO0\text{-}OOCHR_2 \\ \hline \\ R_2 CHO0\text{-}OOCHR_2 \\ \hline \\ R_2 CHO0\text{+}O_2 \\ R_2 CHO0\text{+}O_2 \\ R_2 CHOOCHR_2 + O_2 \end{array}$	Bi-molecular	-	n.a.	-
Hydrolysis (aldehyde)	$\begin{array}{l} \text{R-CHO} \rightarrow \text{R-CH}(\text{OH})_2 \rightarrow \text{RC} \bullet(\text{OH})_2 \\ \rightarrow \text{R-(OH)}_2\text{C-OO} \bullet \rightarrow \text{R-COOH} \end{array}$	Aliphatic compounds	a.v.	a.v.	-

Table 3.1: Number of available experimental rate constants in the aqueous phase	AOPs
on the basis of the extensive literature review	

*R, R'=alkyl or H; n.a. = not available; "-" = not clear; a.v.=available

According to Table 3.1, there are only limited number of rate constants that are available for the reaction mechanisms other than the HO• involving reaction mechanisms. In addition, because the GCM assumes that a functional group has approximately the same interaction properties under a given molecule, it disregards the changes of the functional group properties that can arise from the intramolecular environment by electronic pushpull effects, or by intramolecular hydrogen bond formation, or by steric effects. It is expected that these intramolecular electron-interactions might be very different between the gaseous and aqueous phases and, therefore, solvation effect that results from the surrounding water molecules should be considered for the aqueous phase reactions. Accordingly, there is a need to develop more robust approaches to consider the effect of both intramolecular electron interactions and solvation for the aqueous phase (Klamt, 2005; Cohen, 1991).

Quantum mechanics is very attractive for investigation of electronic behavior for different functional groups. Quantum mechanical methods have proven to reliably reproduce molecular structures (Chen et al., 1993; Montogomery, 1999; Parkinson et al., 1999; Papasavva et al., 1996; DeFrees et al., 1982), vibrational spectroscopy (Pople et al., 1993; Wong, 1996), heats of reaction (Zhong and Bozzelli, 1997; Andzelm and Wimmer, 1992), activation energies (Jursic, 2000; Saeys et al., 2003) and kinetic rate data (Zhang et al., 2000; Zhu et al., 1999; Sheng et al., 2002; Fontana et al., 2001; Maity et al., 1999; Chandra et al., 2000; Gonzalez-Lafont et al., 2001; Masgrau et al., 2001; Louis et al., 2000; Melissas and Truhlar, 1993; Truong and Truhular, 1993; Urata et al., 2003). Due to the increased computational abilities as computers and software tools have improved, quantum chemical approaches have become attractive for examining larger and more complicated chemical systems.

A procedure to calculate the thermochemical properties in the gaseous phase using quantum mechanics has been well-established. Standard statistical mechanical calculations are applied following either Ochterski (2000) or Irikura (1998). The selection of a reasonable computational method and basis set combination is an important factor in quantum mechanical calculations. There is a tradeoff between the computational cost and the accuracy. To our best knowledge, there are little comprehensive studies that explore the computational methods and basis sets on the calculations of thermochemical properties for the reactions in AOPs. For example, the density functional theory (DFT) has been widely accepted to optimize structures of

molecules and radicals for both ground-state and transition state and recognized as the most cost-effective accurate method in quantum calculations. However, Izgorodina et al. (2007) found that all of the DFT methods they examined failed to provide an accurate description of the energetics of the radical reactions as compared with benchmark G3(MP2)-RAD values. While molecular structures are predicted well at lower levels of theories, reaction barriers are often underpredicted with the standard small basis sets like 6-31G(d). To eliminate these errors, high level single point calculations, or a series of them (i.e., multi-point energy calculations), are often done with much larger basis sets or more expensive and accurate methods.

A number of studies in calculating thermochemical properties in the gaseous phase have proved an improvement for calculated energies using multi-point energy calculations (e.g. Gaussian-*n*- series (Pople et al., 1989; Curtiss, 1991; Curtiss et al., 1998) and completely basis set (CBS) (Nyden and Perterson, 1981; Ochterski and Peterson, 1996; Montgomery and Frisch, 1999; 2000) over the expensive coupled-cluster method (e.g. CCST(T)). Table 3.2 summarizes the theoretical studies to examine the thermochemical properties for the gaseous phase reactions of HO• at the transition state. Among these, some studies applied transition state theory (TST) (Eyring et al., 1935; Eyring, 1938) and variational transition state theory (VTST) (Truhlar and Garrett, 1980) to estimate temperature-dependent reaction rate constants. In addition to the HO• induced mechanisms, the cyclization/fission mechanism for the 1,2-H shift in the gaseous phase (George et al., 2000), the gaseous phase beta-scission reactions of peptide-backbone alkoxyl radicals (Wood et al., 2006; 2005), neopentyl radical (Zheng et al., 2005), *n*-butyl radical (Zheng and Blowers, 2007), propyl radical (Zheng and Blowers,

2006), alkoxyl radicals (Rauk et al., 2003; Headlam and Davies, 2002; Fittschen et al., 2000) and peroxyl radical self-reaction [e.g., ethyl peroxyl radical (Sun et al., 2007; Zheng et al., 2005; Boyd et al., 1990)] have been theoretically studied.

Table 3.2: Summary of theoretical studies about the gaseous phase reactions of HO•

Compounds	Methods*	References
CH4, C2H6, 2-C3H8, 3-C4H10	G2, G2(MP2)	Aliagas and Gronert 1998
CH4 CH3E CH2E2 CHE3	B3LVP/6-311G(2d 2n)//B3LVP/6-311G(2d 2n)	Jursic 1996
CH4	CPS 0	Jursic 2000
CH4	CD3-Q	Maliana and Techlar 1002
CH4	QCISD/cc-pV1Z//MP2/adj-cc-pV1Z	Melissas and Truhlar, 1993
Hydrocarbons C1 to C10	CBS-QB3, MPW1K/6-31G(d)	Saeys et al., 2003
H2COO•	CCSD(T)/aug-cc-pVTZ//B3LYP/6-311+G(2df,2p)	Mansergas and Anglada, 2006
	CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(d,p)	
	CASPT2(17,14)/6-311+G(2df,2p)//CASSCF(11,10)/6-311+G(2df,2p)	
CH3F	QCISD(T)/6-311+G(d,p)//MP2/6-31+G(d,p)	Lien et al 2001
	OCISD(T)/6-311+G(dp)//MP2/6-311+G(dp)	
	CCSD(T)/aug.cc.nVTZ/MP2/6-31C(dn)	
	CC3D(T)/aug-CC-pVT2//WF2/O-51G(u,p)	
	QCISD(1)/0-311++G(3df,3pd)//MP2/0-311+G(d,p)	
CF3CH2CH3	mPW1B95-41.0/6-31+G(d,p)	González-Lafont et al., 2008
CHF3	mPW1PW91X/6-31+G(d,p), B1B95X/6-31+G(d,p), mPW1B95X/6-31+G(d,p)	Abu and Swaminathan 2007
CH2F2	QCISD(T)/6-311++G(2df,p)//QCISD/6-311G(d,p)	Gonzalez-Lafont et al., 2001
CH3CH2F, CH2FCH3	G2, G2(MP2)	Sekuăk et al., 1996
CH3F, CH3Cl, CH3Br	PMP4(SDTO)/6-311G(3df.2p)//UMP2/6-311G(2d.2p)	Louis et al., 2000
CH2F2 CH2FCI CH2ClBr CH2Br2	PMP4(SDTO)/6-311++G(3df 3nd)//UMP2/6-311G(2d 2n)	
CHE2 CHE2CI CHE2Pr CHECI2		
CHICLES	A MUM 117 (6.21 + C(4 -) A MUM 17 (6.21 + C(4 -) A MUM 06 (6.21 + C(4 -)	T
CH3CHF2	MPWB1K/0-51+G(a,p), MPW1K/0-51+G(a,p), MPWB95/0-51+G(a,p)	Lagniknani et al 2005
	MP2/6-311G(d,p), MPWB1K/MG3S//MPWB1K/6-31+G(d,p)	
	MP4SDTQ/aug-cc-pVTZ//MPWB1K/6-31+G(d,p)	
CF3OH	MP2/6-31G(d)/MP2/6-31G(d), MP2/6-311G(d,p)/MP2/6-31G(d)	Brudnik et al., 2001
	MP4/6-31G(d)//MP2/6-31G(d) MP4/6-311G(d p)//MP2/6-31G(d)	
	OCISD/6-311G(d p)//MP2/6-31G(d) OCISD(T)/6-311G(d p)//MP2/6-31G(d)	
	QCI3D/0-5110(a,p)//MI 2/0-510(a), QCI3D(1)/0-5110(a,p)//MI 2/0-510(a)	
CERCURACI		W
CF3CH2OH	MC-QCISD//B3LYP/6-311G(d,p)	wang et al., 2007
	B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p)	
	G3(MP2)//B3LYP/6-311G(d,p)	
CF2HCF2CFH2	G3(MP2)//BB1K/6-31+G(d,p)	Gao et al., 2008
CF3CHFOCH3	G3(MP2)//MP2/6-311G(dp)	Sun et al., 2009
CHE2CHEOCE3	MC-OCISD//B3LVP/6-311G(dn)	Vang et al 2008
CUESCHIOCES	MC OCTED//PD1E/6 21+C(4.e)	1 ung (1 un., 2000
	мс-устад//дд1к/0-31тб(q,p)	37 . 1 2002
CF3CH2OCHF2	G3(MP2)	Yang et al., 2007
CH3C1	MP(full)/6-311G(2df,2p)//MP(full)/6-311G(d,p)	Chandra and Uchimaru, 2000
	QCISD(T)/6-311G(2df,2p)//MP(full)/6-311G(d,p)	
CH2CCl2	G3(MP2)	Yamada et al., 2001
CH2CC12	CBS-0	
CHICCHECHI	NC OCIED 2//221 XD/6 2110(4=)	Wang et al. 2007
CHICHICHI	MC-QCISD-5//B5LTP/0-511G(dp)	wang et al., 2007
CH3Br	CCSD(T,full)/cc-pVTZ//MP2(full)cc-pVTZ	Tzima et al 2006
C2H5Br	CCSD(T)/6-311++G(2df,2p)//MP2/6-31G(d)	Martinez-Avilés et al., 2007
	CCSD(T)/6-311G(2d,2p)//MP2/6-31G(d)	
	MP2/6-31G(d)//MP2/6-31G(d)	
CH2Br2	PMP4(SDTO)/6-311++G(3df3nd)//TMP2/6-311G(2d2n)	Louis et al. 2000
PrCH2CH2CH2	CCSD(T)/6 211 + C(2dS2n)/MD2/6 21C(d)	Mustinez Aziles et al. 2008
CHECKE	UTT (A) (1	Number 2 Avies et al., 2000
	UHF/AMI	Many and Monati 2001
СНЗСНО, ССВСНО, СРЗСНО		
CF3CHO, CH2CICHO, CHCl2CHO	MNDO, AM1, PM3	Rayez et al., 1993
CH3OH	QCISD(T)/CBS//B3LYP/6-311++G(d,p)	Jasper et al., 2007
CH3OH	G2	Jodkowski et al., 1999
CH3OH	CCSD(T)/6-311+G(dn)//B3LYP/6-311G(dn)	Zhang et al. 2002
CH3OH C2H5OH	CCSD(T)/6-311+G(3df2n)/(MP2/6-311+G(3df2n))	Xu and Lin 2007
CHION CINSON	MD/SDO/6 211C(4n)	Darda et al. 1000
		Tardo et al., 1999
нсно	MP4(SD1Q)/0-311++G(3dI,3pd)//MP2/0-311++G(d,p)	
CH3OCHO	MP2/6-31G(d)//MP2/6-31G(d)	Good et al., 1999
HCOOH	PMP2/6-311++G(2d,2p)//MP2/6-311++G(2d,1p)	Galano et al.,
HCOOH	CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(2df,2p)	Anglada
	CCSD(T)/aug-cc-pVTZ//OCISD/6-311+G(2df.2p)	
HCOOH CH3COOH	CBS-OB3	
CH3COOH	G2M(CC MP2)//B3LVP/6.311++G(2df2nd)	Vimal and Stevens 2006
CIBCOON	D213(D0,301-2)/D3L1F/0-311++O(201,2pu)	v milai anu sievens, 2000
CIDCOOR	B3L 1 F/0-31G(a3a,p)//MP2/0-311++G(2ai,2pa)	Sineut et al., 2005
	B3LYP/0-311++G(2df,2pd)MP2/6-311++G(2df,2pd)	
	CCSD(T)/aug-cc-pVDZ//MP2/6-311++G(2df,2pd)	
	G2M(CC,MP2)//MP2/6-311++G(2df,2pd)	
C4H9COOH	CBS-QB3, QCISD/6-311++G(d,p)	Sun et al., 2009
CH3C(O)OCH3	MC-OCISD/MP2/6-311G(dp)	Yang et al., 2008
(CH3)3COCH3	MP2/6-31G(d n)/MP2/6-31G(d n) PMP2/6-31G(d n)/MP2/6-31G(d n)	Atadinc et al 2002
CHIOCHI	MD/6 210(4.a)//MD/6 21(4.a) DMD/6 210(4.a)//MD/6 210(4.a)	2 mounte et al 2002
CIDOCID	NE2/0-31G(d,p)//ME2/0-31(d,p), FME2/0-31G(d,p)//ME2/0-31G(d,p)	
	MP4/0-311G(3df,2p)//MP2/0-31G(d,p), PMP4/6-311G(3df,2p)//MP2/6-31G(d,p)	
	CCSD(T)/6-311++G(d,p)//MP2/6-31G(d,p)	
CH3C(O)CH3	B3LYP++(2d,2p)	Davis et al 2005
CH3COCHO	G3X	Baeza-Romero et al 2007
HOCH2C(O)CH3	CCSD(T)/6-311++G(d.p)//BHandHLYP/6-311++G(d.p)	Galano 2006
CH3SH C2H5SH p-C3H7SH	CCSD(T)/6.311++G(dp)/BHandHLVP/6.311++G(2d2p)	Cruz-Torres and Galano 2007
(CU2)260		Cruz-101105 and Galdilo, 2007
(013)280	mr w 1r w 71/0-311G(d,p)//PMP2/0-311G(d,p) of B3L YP/0-311G(d,p)	
	mPW1PW91/6-311G(dt,p), mPW1PW91/6-311++G(d,p), mPW1PW91/6-311++G(df,p)	
	BHandHLYP/6-311G(d,p), BHandHLYP/6-311G(df,p)	
	BHandHLYP/6-311++G(d,p), BHandHLYP/6-311++G(df,p)	
(CH3)2S	MP2/6-311++G(3df,3pd)	Aloisio 2006
CH3SCH2CH3	MP4(SDTO)/6-311+G(3df.2p)//MP2/6-31+G(2d n)	
	OCISD(T)/6.311+C(3df2n)//MD2/6.31+C(2dn)	
	QC15D(1)/0-511TG(50(,2P)//MP2/0-51TG(20,P)	
	CCSD(1)/0-311+G(3df,2p)//MP2/6-31+G(2d,p)	
CH3-S-CH3		
	MP2/6-311++G(3df,3dp)	
CH3NHC(O)OCH3	MP2/6-311++G(3df,3dp) BMC-CCSD//MP2/6-311+G(d,p)	Zhang et al., 2008
CH3NHC(O)OCH3	MP2/6-311++G(3df,3dp) BMC-CCSD/MP2/6-311+G(dp) MC-OCISD/MP2/6-311+G(dp)	Zhang et al., 2008
CH3NHC(O)OCH3	MP2/6-311++G(3df;3dp) BMC-CCSD//MP2/6-311+G(dp) MC-QCISD/3/MP2/6-311+G(dp) G3MP2/(MP2/6-311+G(dp)	Zhang et al., 2008
CH3NHC(O)OCH3	MP2(6-311++G(2df3dp)) BMC-CCSD/MP2(6-311+G(dp)) G3MP2/MP2(6-311+G(dp)) G3MP2/MP2(6-311+G(dp)) G0CTSPCTV6.11+G(dp)	Zhang et al., 2008
UCH CHACK	MP2/6-311++G(3df(3dp) BMC-CCSD7/MP2/6-311+G(dp) MC-OCISD7/MP2/6-311+G(dp) G3MP2/MP2/6-311+G(dp) QCISD(T)/6-311+G(ddp)/MP2/6-311+G(dp)	Zhang et al., 2008
HCN, CH3CN	MP2/6-311++G(3df;3dp) BMC-CCSD//MP2/6-311+G(dp) MC-QCISD/3/MP2/6-311+G(dp) G3MP2/MP2/6-311+G(2df,2p)//MP2/6-311+G(d,p) QCISD(T)/6-311++G(2df,2p)//MP2/6-311+G(d,p) CCSD(T)/6-311++G(2df,2p)/MP3/MP2/6-311++G(2d,2p)	Zhang et al., 2008 Galano 2007
HCN, CH3CN toluene	MP2/6-311++G(3df3dp) BMC-CCSD/MP2/6-311++G(dp) G3MP2/MP2/6-311+G(dp) G3MP2/JMP2/6-311+G(dp) CCSD(T)/6-311++G(dp)//BHandHLYP(6-311++G(dp) CCSD(T)/6-311++G(dp)//BHandHLYP(6-311++G(dp))	Zhang et al., 2008 Galano 2007 Uc et al 2006
HCN, CH3CN toluene m-xylene	MP2/6-311++G(3df3dp) BMC-CCSD7/MP2/6-311+G(dp) G3MP2/MP2/6-311+G(dp) G3MP2/MP2/6-311+G(dp) QCISD(T)/6-311++G(2df2p)//MP2/6-311+G(dp) CCSD(T)/6-311++G(2df2p)//BHandHLYP/6-311++G(dp) B3LYP/6-31G(dp)//B3LYP/6-31G(dp)	Zhang et al., 2008 Galano 2007 Uc et al 2006 Fan and Zhang, 2008

* method for energy calculation/basisset for energy calculation//method for geometry optimization/basis set for geometry optimization

Although many studies focused on individual compounds, few studies explored comprehensive relationships between computationally obtained molecular or reaction energies and observed reaction rate constants for the prediction. A William Green's group developed new group additivity values (GAV) for transition-state-specific moieties for H-abstraction from alkanes by H and CH₃ radicals on the basis of the quantum mechanically calculated heats of formation, entropies, and heat of capacity values (Sumathi et al., 2001a). In their series of papers, they developed procedures for Habstraction from alkenes, alkyl, alcohols, aldehydes, and acids by H-atoms, HO• addition, and isomerization reactions (Sumathi et al., 2001b). In addition, they presented the qualitative justification for partitioning the energy of the transition structure into contributions from unreactive and reactive moieties using atoms in molecule (AIM) analysis (Sumathi et al., 2002). Méreau et al (2000) built predictive structure-activity relationships (QSARs) on the basis of the kinetic and thermodynamic parameters obtained by using computational chemistry and transition state theory for the decomposition reactions of alkoxyl radicals and extrapolated to larger alkoxyl radicals. A Thanh Truong's group has developed a reaction class transition state theory hypothesizing that the reactions in the same class share similarities in the shape of the potential energy surfaces along the reaction path (Truong et al., 1999). Their method has been extended to H-atom abstraction by •CH₃ with alkane (Kungwan and Truong, 2005), reaction of •CHO with alkane (Huynh and Truong, 2007), H-atom abstraction by H• with alkane (Truong, 2000) and by HO• with alkane (Huynh et al., 2006) and addition of HO• to alkene (Huynh et al., 2008). Pfaendtner and Broadbelt (2008) established a library of kinetic correlations that are suitable for the computer-based mechanistic modeling of

condensed-phase autoxidation of hydrocarbons. The Evans-Polanyi relationship related experimentally obtained Arrhenius activation energy (E_a) with quantum mechanically calculated enthalpies of reactions (ΔH^{\neq}). They successfully captured the different reactivity trends for 17 different reaction families. However, the rate constants that result from the kinetics depend not only enthalpies but also entropic contribution, in particular for the solution phase. The significant contribution of the entropy that arises from the vibrational origin has been discovered for H-atom abstraction and proton-coupled electron-transfer (Mader et al., 2007). As a consequence, the free energy of activation (ΔG^{\neq}) should be considered for the thermodynamic parameters.

In contrast to the gaseous phase reactions, only a few studies have been conducted theoretically for the aqueous phase reactions due to the complexities and difficulties in the solvation contribution to quantum mechanics. There are two major ways to model reactions in the aqueous phase, including an explicit model or using an implicit model. The explicit representation of the aqueous phase involves a large number of degrees of freedom, thereby having a high dimensionality (Ayala and Schlegel, 1997). As a result, a solute molecule must be treated averagely over these degrees of freedom. Monte Carlo (MC) simulation or Molecular Dynamics (MD) can be used to average energies over a sufficiently long time frame or to choose configurations of the system randomly with the averaged thermodynamic properties, respectively. The MC and MD approaches would be appropriate when dealing with a larger molecule in the aqueous phase, e.g., protein (Eisenberg and McLachlan, 1986). However there are uncertainties to represent solvent molecules (Marenich et al., 2008).

In the implicit model, the solvent is implicitly expressed as a continuum solvent. The implicit model has two main advantages over the explicit model: 1) it reduces the degrees of freedom by assuming the aqueous phase as a continuum medium and 2) it provides an accurate way to deal with electrostatic forces such as electronic polarization that dominates most solvation processes (Cramer and Truhlar, 1999). As a result of the continuum medium, computational demand is significantly reduced because the size of the electronic structure problem is essentially the same as in the gaseous phase (Cramer and Truhlar, 2008). For example, phenol (Bonin et al., 2007), benzene (DeMatteo et al., 2005), quinoline (Nicolaescu et al., 2005), azacytosines (Pramod et al., 2006) and amino acid (Štefanić et al., 2009) have been examined using the polarizable continuum model (PCM). There are few studies examined computationally for other reaction mechanisms such as beta-fragmentation of aminyl radial from amino acids (Bonifačić et al., 2000). However, these studies were limited to examining the potential energy differences of the reactions and products and few studies accounted the activation energy at the transition state. Ashcraft et al (2007) addressed the use of computational chemistry calculations for the estimation of physical properties and constants in solution by connecting between the pseudochemical potential of Ben-Naim (Ben-Naim, 1987; 2006) and the traditional standard state-based thermochemistry. This work seems to be the most sophisticated application of computational chemistry to the solution phase up to date. However, for the reaction phases, there are almost no studies concerned with the AOP related reactions in the aqueous phase.

The electron densities on frontier orbitals of atoms provide useful means for the characterization of electron donor/acceptor interactions between molecules. According to

the frontier electron reactivity theory (Fukui et al., 1952), the majority of chemical reactions take place at the position and in the direction where the overlapping of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the respective reactants is at maximum. While the HOMO energy characterizes the susceptibility of the molecule toward the attack by electrophiles, the LUMO energy features the susceptibility of the molecule toward the attack by nucleophiles. It has been anticipated that the energy gap between HOMO and LUMO could be related to the chemical stability of compounds. Larger HOMO-LUMO gaps are considered to be indicators of higher stability of compounds toward chemical reactions. For the H-atom abstraction reaction by HO•, a strong correlation between HOMO energy and the logarithms of the HO• rate constants in the gaseous phase was observed (Pfrang et al., 2006a, b; King et al., 1999; Bartolorri and Edney, 1994; Cooper et al., 1992). Yet, in the aqueous phase, only a few papers have examined the correlation of the HOMO-LUMO with the reaction rate constants in water treatment applications (e.g., O_3 reactions, Hu et al., 2000).

Figure 3.1 represents the correlations between the logarithm of a total of 477 aqueous phase HO• rate constants and the energy gap between HOMO and singly occupied molecular orbital (SOMO) of HO• (i.e., -1.83 eV, Schuiz et al., 1982). It is noted that the SOMO is used to represent the HO• reactivity of electrophile in stead of LUMO. The energies were calculated using the semi-empirical AM1 method (Dewar et al., 1985) with the HyperChem software. As a result, it is found that there is little clear correlation except for the H-atom abstraction from alkanes by HO•. Although the distribution of energy gap is close to each other for the same functional group, this

correlation is not quantitative enough to be useful for predicting the reaction rate constants for unknown compounds. In addition, the correlation of this energy gap neglects the electronic reorganization of the transition state, and therefore, may lead to quantitatively incorrect results. As a result, orbital energy that has been used for a number of organic compounds cannot be used for the aqueous phase HO• radical rate constant estimation. Appendix D includes all calculated data.

Figure 3.1: Relationship between the logarithm of aqueous phase k_{HO} and calculated energy gap of HOMO-SOMO for 477 compounds.

In this study, we will develop linear free energy relationships (LFERs) that relate literature-reported experimental HO• reaction rate constants with theoretically calculated aqueous phase free energies of activation for two reaction mechanisms: H-atom abstraction from a C-H bond by HO•, and HO• addition to alkenes. We will compare the free energies of activation to estimates from literature-reported experimental values. Quantum mechanical approaches for calculating the free energy of activation will be explored herein.

3.3 Linear Free Energy Relationships

In this section, we will establish LFERs that bridge kinetics and thermochemical properties. The kinetic information is literature-reported experimental HO• reaction rate constants, while the thermochemical properties are theoretically calculated free energies of activation. The next section describes the theoretical methods in detail.

According to the LFERs, the log of the rate constant and the log of the equilibrium constant should be linearly related (Brezonik, 2002). Transition state theory (TST) (Eyring et al., 1935) states that the log of the rate constant and the free energy of activation are linearly related. For the same reaction mechanisms, the free energies of activation and the rate constants for an arbitrary and a reference reaction are related by equation (3.1):

$$\log_{10} k_{\rm I} - \log_{10} k_{\rm R} = -\rho \left(\Delta G_{\rm rxn,I}^{\rm act} - \Delta G_{\rm rxn,R}^{\rm act} \right) + \sigma \tag{3.1}$$

where $k_{\rm I}$ and $k_{\rm R}$ are the reaction rate constants, M⁻¹s⁻¹, for an arbitrary reaction, I, and a reference reaction, R, respectively; ρ denotes coefficients for the difference in the free energy of activation; σ is a constant; and $\Delta G_{\rm rxn,I}^{\rm act}$ and $\Delta G_{\rm rxn,R}^{\rm act}$ are the free energies of activation, kcal/mol, (Pu et al., 2006) for reactions I and R, respectively. Figure 3.2 plots the logarithms of literature-reported HO• rate constants versus ΔG_{rxn}^{act} . The reaction of HO• with CH₄ was selected as the reference. ΔG_{rxn}^{act} was estimated from the experimentally obtained E_a values and frequency factors provided in the literature (Ervens, et al., 2003; Elliot and McCracken, 1989; Monod et al., 2005; Chin and Wine, 1994; Gligorovski and Herrmann, 2004; Herrmann, 2003).

The theoretically calculated free energy of activation in the aqueous phase, $\Delta G^{\neq}_{rxn,aq}$, which is defined as a quasithermodynamic molar free energy of activation (Pu et al., 2006) at a given temperature *T*, is given by

$$\Delta G_{\rm rxn,aq}^{\neq} = G_{\rm aq}^{\neq} - G_{\rm reactants,aq} \tag{3.2}$$

where G_{aq}^{\neq} is a quasithermodynamic quantity, kcal/mol, that indicates the free energy of the transition state, and $G_{reactants,aq}$ is the molar free energy of reactants, kcal/mol. ΔG_{rxn}^{act} can be related to $\Delta G_{rxn,aq}^{\neq}$ using the extrathermodynamic contribution to the free energy of activation (Pu et al., 2006), ΔG_{extra} , kcal/mol, as shown in equation (3.3):

$$\Delta G_{\rm rxn}^{\rm act} = \Delta G^{\neq}_{\rm rxn,aq} + \Delta G_{\rm extra} \tag{3.3}$$

where

$$\Delta G_{\text{extra}} = -RT \ln \gamma(T) \tag{3.4}$$

 $\gamma(T)$ is a transmission coefficient that represents the effect of tunneling at temperature *T*. When a hydrogen atom is involved in a reaction, nuclear quantum effects, in particular quantized vibrations and tunneling, become important. Tunneling occurs when some systems pass through the transition state with less than the quantized energy. Because the transition state is a metastable state, it does not have quantized energy levels. To a good approximation, however, all bound modes of a potential energy surface can be assumed to have a quantized energy requirement (Wigner, 1932), and this is validated by accurate

quantum dynamics (Chartfield et al., 1992).

The solvated energy term should consider the interactions of the aqueous phase reactions. Essentially, the free energy of activation in the aqueous phase for a reaction, $\Delta G_{\rm rxn,aq}^{\neq}$, is the sum of the free energy of solvation (Cramer, 2004), $\Delta \Delta G_{\rm rxn,solvation}^{\neq}$, and the gaseous phase free energy of activation, $\Delta G_{\rm rxn,gas}^{\neq}$, as shown below:

$$\Delta G_{\rm rxn,aq}^{\neq} = \Delta G_{\rm rxn,gas}^{\neq} + \Delta \Delta G_{\rm rxn,solvation}^{\neq}$$
(3.5)

where
$$\Delta\Delta G_{\text{rxn,solvation}}^{\neq} = \left(G_{\text{solvation}}^{\neq} - G_{\text{solvation}}^{\neq,0}\right) - \left(G_{\text{reactants,solvation}} - G_{\text{reactants,solvation}}^{0}\right)$$
 (3.6)

 $\Delta\Delta G^{\neq}_{\text{rxn, solvation}}$ is free energy of solvation, kcal/mol, for a reaction measured with respect to a system composed of the pure, unperturbed aqueous phase at equilibrium and the solute molecule(s) in a separate phase considered to be an ideal gas; $G^{\neq,0}_{\text{solvation}}$ and $G^{0}_{\text{reactants,solvation}}$ are the standard state free energies of solvation for the transition state and reactants, respectively, and $G^{\neq}_{\text{solvation}}$ and $G_{\text{reactants,solvation}}$ are the free energies of solvation that are computed in solution for the transition state and reactants, respectively (Tomasi et al., 2005). The detailed modifications associated with the change of state are given in the Results and Discussion.

3.4 Computational Methods

For the gaseous phase, *Ab initio* molecular orbital and density functional theory (DFT) calculations were performed using Gaussian03 (Frisch et al., 2003). The Berny geometry optimization algorithm (Schlegel, 1982) optimized the geometry of reactants, complex compounds, and products with a key word of "Opt=Tight." The transition states were found as first-order saddle points on the potential energy surface (PES) using the quadratic synchronous transit method (QST) (Peng and Schlegel, 1993; Peng et al.,

1996). All transition states were verified by a single negative frequency, and some of them were confirmed by obtaining the true reactant(s)/product(s) using the intrinsic reaction coordinate (IRC) (Fukui et al., 1952). Using the optimized geometry and frequencies obtained from a Hessian calculation, the total microcanonical partition function was calculated for each molecule and radical within the rigid-rotor harmonic oscillator assumption. The zero-point vibrational energy (ZPVE) was included in each thermochemical property. A quadratically convergent self-consistent field (SCF) procedure (Bacskay, 1981), SCF=QC, was used for linear searches when far from convergence, and Newton-Raphson steps when close. The harmonic oscillator approximation is known to incorrectly treat low-frequency torsional modes due to internal rotation (Pitzer and Gwinn, 1942). However, the internal rotation correction had a very minor effect on the activation energy, even for molecules with many dihedrals (Pfaendtner and Broadbelt, 2007; Van Cauter et al., 2006). Furthermore, low-frequency vibrational modes contributed little to the vibrational contribution to the internal energy. Therefore, the contribution of anharmonicity from hindered rotors was not included in this study. Basis set superposition error (BSSE) was not considered because 1) the BSSE may not be too large as compared to the accuracy of the transition state calculations, 2) methods for BSSE correction are still controversial, and 3) BSSE corrections by the counterpoise method require additional expensive calculations. The effect of tunneling was included using Wigner's equation (Wigner, 1932).

To calculate the free energy of solvation, three implicit solvation models were used, namely: 1) the conductor-like polarizable continuum model (CPCM) (Cossi et al., 2003; Barone and Cossi, 1998) implemented in Gaussian03 (Frisch et al., 2003), 2) the

solvent model (SM8) (Zhu et al., 1998; Cramer and Truhlar, 1996; Still et all., 1990) implemented in GAMESSPLUS-v2009 (Higashi et al., 1993), and 3) the conductor-like screening model for real solvation (COSMO-RS) (Klamt, 1996, Klamt et al., 1998) implemented in COSMOtherm (Eckert and Klamt, 2006). CPCM defined the cavity using a United Atom Hartree-Fock (UAHF) model (Barone et al., 1997). SM8 used the van der Waals radii in the solvent-accessible surface area (SASA) (Hermann, 1972; Mennucci and Tomashi, 1997) calculation (Marenich et al., 2008). The COSMO approach defines the molecular cavity as the union of all those points that have a smaller relative distance to an atom of the molecule under consideration than to other molecules. The relative distance is defined as the ratio of the distance and the vdW radius of the entire atom. We compared these three solvation models for molecules at the ground state and determined which to use to establish the LFERs. In particular, we decided to use the COSMO-RS model to calculate $\Delta\Delta G^{\neq}_{rxn, solvation}$. In this process, the gaseous phase geometry was first optimized using DFT and MP2 (Moller and Plesset, 1934) with various basis sets. Because our investigations of the structures of reactants and transition states using the CPCM model showed few structural differences between the gaseous and aqueous phases, the optimized gaseous phase structures were used to calculate $\Delta\Delta G^{\neq}_{rxn}$ solvation. Second, the cosmo/ccf files that represent the charge distributions of the optimized structures were generated with the single point calculation using RI-DFT with BP-functional and def-TZVP basis set that are implemented in the TURBOMOLE (Ahlrichs et al., 1989) 'calculate' function. Lastly, the cosmo/ccf files were transmitted to COSMOtherm to calculate the chemical potential and partial pressure of a compound in the aqueous phase.

3.5 Results and Discussion

3.5.1 A Comparison of *Ab* initio Quantum Mechanical Methods for HO• + CH4 in the Gaseous Phase

It is important to compare various quantum mechanical methods and basis sets for transition state structure optimization and thermochemical property calculation for Hatom abstraction by HO•. We optimized the transition state structures of CH_4 and HO• using various DFT and MP2 methods and calculated the gaseous phase barrier height using both single point energy calculations and hybrid methods. The barrier height and energy of reaction for each method have been tabulated and compared to the literaturereported values, as shown in Table 3.3 and Figure 3.2.
	Reaction CI	$H_4 + HO \bullet -$	→ •CH ₃ + H	20			
Method and basis set	Barrier height, kcal/mol	ZPE	<s<sup>2></s<sup>	Imaginary frequency	r(C-H), Å	r(O-H), Å	<(HOH)
mp2/6-311++G(3d,3p)//mp2/6-311++G(3d,3p)	6.95	0.051725	0.779599	-1792.6293			
mp2/6-311+G(3df,2p)//MP2(Full)/6-31G(d)	7.29	0.052417	0.785448	-2314.8722	1.22594	1.26893	99.45222
mp2/aug-cc-pVTZ//MP2(Full)/6-31G(d)	6.41	0.052174	0.785466	-2296.2110	1.22594	1.26893	99.45222
B3LYP/6-31++G(d,p)//B3LYP/6-31++G(d,p)	0.48						
B3LYP/6-311+++G(3df,3pd)//B3LYP/6-31+++G(d,p)	0.24				1.21724	1.32403	100.31456
BHandHLYP/6-31+G(d,p)	8.12	0.052359	0.765306	-1851.8709			
MPWB1K/6-31+G(d,p)	7.12	0.055848	0.752871	-64.7369	1.22086	1.27783	99.90577
M05 2X/6-31+G(d,p)	4.26	0.052074	0.759078	-1183.3195	1.21871	1.30625	100.99250
CBS-QB3	3.76	0.050051	0.756548	-1109.0212	1.23306	1.28573	99.17334
Gl	5.65	0.048208	0.784800		1.22597	1.26888	99.45768
G2	6.25	0.048208	0.784807		1.22597	1.26888	99.45768
G2MP2	5.48	0.048208	0.784804		1.22594	1.26893	99.45217
G3	5.45	0.048208	0.761336		1.22594	1.26893	99.45217
G3MP2	6.01	0.048208	0.784807		1.22597	1.26888	99.45770
G3B3	4.43	0.048492	0.757109	-1447.5378	1.27386	1.23835	100.19049
G3MP2B3	4.95	0.050467	0.757115	-1444.3300	1.27326	1.23889	100.15053
QCISD(T)/6-311+G(d,p)//MP2(Full)/6-31G(d)	6.31	0.051093	0.787455	-1618.2755			
CCSD/6-31+G(d,p)//MP2(Full)/6-31G(d)	7.73	0.052108	0.786781	-1781.8067			
CCSD/6-31++G(d,p)//MP2(Full)/6-31G(d)	7.60	0.052014	0.786817	-1778.8191	1 22504	1 26902	00 45222
CCSD/6-311++G(d,p)//MP2(Full)/6-31G(d)	6.66	0.051625	0.787459	-1734.7900	1.22394	1.20895	99.43222
CCSD(T)/6-31+G(d,p)//MP2(Full)/6-31G(d)	7.82	0.051666	0.786781	-1658.9361			
CCSD(T)/6-311+G(d,p)//MP2(Full)/6-31G(d)	6.52	0.051162	0.787455	-1622.9927			
MCG3/3†	6.35						
MC3BB†	6.11						
MC3MPW†	6.15						
W1‡	6.22						
Exp.*	6.70						

Table 3.3: A comparison of *Ab initio* quantum mechanical methods for the gaseous phase reaction of HO• with CH₄.

†: Ellingson et al., 2009; ‡: Boese and Martin, 2004; *Lynch and Truhlar, 2001

Figure 3.2: A comparison of calculated barrier height for the CH₄ + HO•

The various methods yielded only small differences in the optimized geometry of the transition states. DFT gives a larger angle for H-O-H. The addition of the diffuse function does not change the optimized geometry significantly. Overall, no significant spin contamination was observed. The MP2 methods provide similar barrier heights when different basis sets are used. The augmented correlation-consistent polarized valence triple- ζ sets (Dunning, 1989) are known to give more flexibility when considering electron-electron correlations. As compared to the 6-311+G(3df,2p) basis set, aug-cc-pVTZ provides a smaller barrier height. All values calculated by DFT with the B3LYP basis set (Becke, 1993; Lee et al., 1988) underestimate the barrier height significantly when compared to the values obtained by other methods. This is consistent

with the observation by Izgorodina et al. (2007). In addition, no improvement in the calculated energy was observed when the larger basis set, i.e., 6-311++G(3df,3pd), was used. The barrier heights calculated using the hybrid DFT methods varied based on the type of density functional used. In both of these functionals, the percentage of HF exchange has been parameterized for the calculation of accurate kinetics data (in particular barrier heights and energies of reaction). Nevertheless, for our tested system all hybrid-DFT methods slightly overestimate the barrier height as compared to the literature-reported values (e.g., W1 or the best estimated from the experiment) by approximately 1.0 kcal/mol. A composite method [i.e., CBS-QB3 (Montgomery et al., 1999; 2000); G1 (Pople et al., 1989; Curtiss and Jones, 1990); G2 (Curtiss, 1991) and G3 (Curtiss et al., 1998)] that includes several thermochemical property calculations with higher order corrections slightly underestimates the barrier height when compared to the literature-reported values. The coupled cluster (CC) (Čížek, 1966) with various basis sets gives higher energy values than the literature, but the largest basis set (i.e., 6-311++G(d,p) provides a similar value to that in the literature. It should be mentioned that the Weizmann theory (Martin and Oliveira, 1999; Parthiban and Martin, 2001) and the CC method (e.g., CCSD(T)) (Purvis and Bartlett, 1982) that is typically used for the high level thermochemical property calculations may not be relevant in our case due to the expensive computational demand. Because we calculate the ΔG^{\neq}_{gas} using a high level Ab initio method for many compounds, the Gaussian-n-series should be sufficient.

3.5.2 Verifications of *Ab* initio Quantum Mechanical Methods for the Gaseous Phase HO• Reactions

To verify the Gaussian-*n*-series hybrid methods for different functional groups and atoms, we calculated the barrier heights for representative compounds from different functional groups (i.e., CH₃OH, CH₃CHO, CH₃OCH₃, CH₃COCH₃, CH₃COOH, CH₃F, CH₃Cl and CH₃Br) and compared them with literature-reported values. Table 3.4 summarizes the overall results for these calculations. Most of the calculated barrier heights are within ± 2 kcal/mol of the results that are obtained by CCSD(T) and QCISD(T). The G3 hybrid methods underestimate the barrier height. Little difference is observed between the G1 and G2 hybrid methods. However, the G2 method estimates most of the calculated energies lower than does the G1 hybrid method. According to a general performance evaluation of the G2 and G3 methods, the mean absolute deviations (MADs) of the 147 enthalpies of formation calculated in the experiment were 1.56 kcal/mol and 0.94 kcal/mol (Curtiss et al., 1998), respectively. From these verifications, it can be concluded that the G1, G2 and G3 methods should be sufficient to provide highly accurate thermochemical properties within the acceptable computational errors for the gaseous phase reaction of HO• with aliphatic alkanes as well as with oxygenated and halogenated compounds.

	$\rm CH_3OH$	CH ₃ CHO	CH ₃ OCH ₃	$\mathrm{CH}_3\mathrm{COCH}_3$	CH ₃ COOH	CH_3F	CH ₃ Cl	CH_3Br
G3	0.41	2.84	3.01	2.20	3.76	3.90	3.12	
G3MP2	1.12	3.56	3.70	2.94	2.88	4.57	3.79	
G3B3	1.72	3.22	1.65	2.63	3.78	3.61	0.15	
G3MP2B3	2.68	0.05	2.26	0.15	4.53	4.32	0.17	
G2	2.14	1.02	1.25	0.40	1.97	2.06	1.33	1.77
G1	0.51	3.03	3.09	2.32	3.69	4.14	3.25	3.58
CBS-QB3	0.65	1.34	-0.61	1.40	2.61	2.84	-0.24	
MP2/aug-cc-pVTZ//MP2(Full)/6-31G(d)	2.89	3.96	2.47	3.36	5.16	5.39	4.61	4.50
CCSD(T)/6-311+G(d,p)//MP2(full)/6-31G(d)	1.75	4.54	0.45			5.26	4.08	
QCISD(T)						4.37 ^e	4.38 ^g	
CCSD(T)	1.0 ^a		2.55 ^b	3.99 ^d		5.1 ^f		3.39 ^h
best estimate ‡			2.72 ^c			2.80-3.06 ^e		

Table 3.4: Calculated energy barrier for the gaseous phase reactions of HO• with CH₃OH, CH₃CHO, CH₃OCH₃, CH₃COCH₃, CH₃COOH, CH₃F, CH₃Cl and CH₃Br, and the literature-reported values.

a: CCSD(T)/6-311+G(3df,2p)//MP2/6-311+G(3df,2p). Xu and Lin, 2007

b: *CCSD*(*T*)/6-311++*G*(*d*,*p*)//*MP2*/6-31*G*(*d*,*p*). Atadinc et al., 2002

c: Kasai and Meyers, 1959

d: CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p). Henon et al., 2003

e: QCISD(T)/6-311++G(3df,3pd)//MP2/6-311+G(d,p). Lien et al., 2001

f: CCSD(T)/aug-pVTZ//MP2/6-31G(d,p) Espinosa-García et al., 1998

g: QCISD(T)/6-311G(2df,2p)//MP2(full)/6-311G(d,p). Chandra and Uchimaru, 2000

h: CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ. Tzima et al., 2006

‡: values obtained by fitting to experimental values

3.5.3 A Comparison of Implicit Solvation Models

To compare the performances of implicit solvation models, the free energies of solvation for alkanes as well as oxygenated and halogenated compounds were calculated using three implicit solvation models: 1) CPCM (Cossi et al., 2003; Barone and Cossi, 1998), 2) SM8 (Zhu et al., 1998; Cramer and Truhlar, 1996; Still et all., 1990), and 3) COSMO-RS (Klamt, 1996, Klamt et al., 1998)). The oxygenated compounds included alcohols, ethers, esters, aldehydes, and carbonyl and carboxylic compounds. The calculated free energies of solvation were compared with the literature-reported experimental values (Marenich et al., 2009). In the COSMO-RS approach, the free energy of solvation for a compound, *i*, $\Delta G^{i}_{solvation, calc}$, was calculated as corresponding to the partial vapor pressure of each compound (i.e., pure compound vapor pressure times the activity coefficient):

$$\Delta G'_{\text{solvation, calc}} = RT \ln(10) \times [\log_{10} P - \log_{10} (1000)]$$
(3.7)

where *P* is the partial pressure, mbar. If the reference state is 1 bar, the $log_{10}(1000)$ is the decadic logarithm of 1000 mbar pressure. This procedure was verified by comparing it to the COSMO-RS default method, as shown in equation (3.8):

$$\Delta G^{i}_{\text{solvation, default}} = (\mu^{i}_{\text{gas}} - \mu^{i}_{\text{aq}}) - \text{RT} \ln \left(\rho_{\text{s}} V^{i}_{\text{gas}} / MW_{\text{aq}}\right)$$
(3.8)

where μ_{gas}^{i} and μ_{aq}^{i} are the chemical potentials of the compound, *i*, in the ideal gas and aqueous phases, respectively; ρ_{s} is the density of water; V_{gas}^{i} is the molar volume of the ideal gas; and the MW_{aq} is the molecular weight of water. The $\Delta G_{solvation, calc}^{i}$ was converted into the state at 1 atm of ideal gas and 1 mol of liquid solvent. CPCM calculates the energy values at the ideal gas state, and therefore, a correction factor (Liptak and Shields, 2001) of 1.89 kcal/mol (i.e., *RT* ln(24.47)) was included to account for a state change from 1 mol/24.47 L (gaseous phase at 298 K) to 1 mol/L (aqueous phase). SM8 calculates the free energy of solvation at the standard state of 1 atm and 1 mol/L. Figure 3.3 plots the calculated free energies of solvation against the literature-reported experimental values. The sample deviation (SD) calculated in equation (3.9) is 0.79 (N=40) by COSMO-RS, 1.6 (N=38) by CPCM with G3B3 and UAHF radii, and 1.8 (N=39) by SM8 with M06-2X/6-31+G(d,p) and Bondi radii:

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{\Delta G_{solvation,exp}^{i} - \Delta G_{solvation,eac}^{i}}{\Delta G_{solvation,exp}^{i}} \right)^{2}}$$
(3.9)

where *N* is the total number of samples, and $G_{\text{solvation,exp}}^{i}$ and $G_{\text{solvation,calc}}^{i}$ are experimental and calculated free energies of solvation for molecule *i*.

Figure 3.3: A plot of calculated free energy of solvation versus experimental free energy of solvation

COSMO-RS performs slightly better than CPCM and SM8. All solvation methods indicate larger errors as compared to the literature-reported experimental values (Marenich et al., 2009) for the following compounds: CHF₃, CCl₃CH₃ and CH₃CH₂CH₂Cl than the rest of the compounds. For example, the calculated free energy of solvation for CHF₃ is 0.583, -1.840 and 1.768 kcal/mol with COSMO-RS, CPCM and SM8, respectively, as compared to the experimental value, -0.200 kcal/mol (Marenich et al., 2009). For CCl₃CH₃ and CH₃CH₂CH₂Cl, we observed a similar inconsistency. Therefore, calculation of the free energy of solvation for halogenated compounds is still limited. If these three compounds were eliminated, the SD values for COSMO-RS, CPCM and SM8 would be 0.19, 0.40 and 0.48, respectively.

In addition to its better performance, COSMO-RS has two major advantages over CPCM and SM8: 1) construction of potential energy operator and 2) the contribution of free energy of solvation. CPCM and SM8 model the surrounding solvent as a homogeneous medium characterized by a bulk permittivity (i.e., $\varepsilon = 78.4$ for water) and electrostatic solute-solvent interactions are treated linearly depending on the solute wave function. COSMO-RS does not assume either homogeneous behavior of the solvent or a linear response of the electrostatic interactions. Whereas CPCM and SM8 consider no change in the association free energy in the solution phase, COSMO-RS includes a temperature-dependent entropic term as well as an enthalpic contribution. Accordingly, the COSMO-RS theory was selected for establishing the LFERs.

3.5.4 Linear Free Energy Relationships between Aqueous Phase Free Energy of Activation and Logarithm of HO• Reaction Rate Constant

In this section, we establish the LFERs between the calculated aqueous phase

 $\Delta G^{\neq}_{rxn,aq}$ and the literature-reported experimental HO• reaction rate constants that were compiled in a previous study (Minakata et al., 2009). The gaseous phase free energy of activation, $\Delta G^{\neq}_{rxn,gas}$, was calculated using the G1, G2 and G3 methods, and $\Delta \Delta G^{\neq}_{rxn,solvation}$ was calculated using the COSMO-RS theory. $\Delta G^{\neq}_{rxn,gas}$ includes the zero point energy and the chemical potential, $\Delta \mu$, to consider the dissolution contribution of molecule. Among the different possible transition states and conformations of compounds, the lowest energy point was selected for the LFERs. The HO• reactions with methane and ethylene were selected for the reference reactions of H-atom abstraction and HO• addition to alkenes, respectively. Tables 3.5 and 3.6 summarize the calculated $\Delta G^{\neq}_{rxn,aq}$ and ΔG_{extra} values. Appendix E includes the optimized structures and their zmatrices of coordinates.

				۷C				Tunolino			à	ate constant
Molecules * Italic-underline	Chemical formula. **H indicates the targetted H-atom for	1111		time of the second seco		Entimeted	imginary freq ¹ ,	2 Amount	ΔG_{etcs}		2	ate constant Defension of
used for prediction	abstraction	COSMO-RS	COSMO-RS	COSMO-RS	Experimental	from TST	v [‡] , cm ¹ [¶] uMP2(full)/6-31G(d)	[=1+1/24(h/ [*] /k BT) ²]	[=-RThn(y)], kcalimol	k HO+ aq exp	log k HO• aq	reaction rate constants
CH4	H-CH3	4.83	5.63	5.03		7.49	-2277.3876	6.0445	-1.06	1.20E+08	8.08	Getoff 1989
C2H6	H-CH2CH3	1.32	-0.42	1.64		5.78	-2037.8351	5.0391	-0.96	1.80E+09	9.26	Hickel, 1975
C3H8	H-CH2CH2CH3 CH3CH-H-CH3 (Edipse)	2.51 -0.10	0.75 -1.83	2.82 0.19		5.23	-2032.7101 -1756.9491	5.0188 4.0024	-0.95 -0.82	3.60E+09	9.56	Rudakov 1981
	CH3CH-H-CH3 (Staggered)	0.20	-1.54	0.50			-1783.7622	4.0947	-0.83			
C4H10	CH2CH-H-CH2CH3 (Anti Staggered) CH2CH-H-CH2CH3 (Anti Staggered)	1.51	-0.58	1.43		5.08	-1020.0201	3.9482	-0.81	4.60E+09	9.66	Rudakov 1981
CENTS	H-CH2(CH2)3CH3 (AntiStaggered)	1.05	67.0	1 34		90 V	9661 8661	1.0000	0.00	OUTOVY S	0.73	Distriction 1001
2000	CH3CH2CH-H-CH2CH3 (Am Staggered)	1.59	-0.03	1.97		4.70	-1689,3046	3.7756	-0.79	0.1001.0	67.6	NUMBER 1 201
CH3CH(CH3)CH	3 CH3C-H-(CH3)CH3	-1.84	-3.45	-1.78		4.93	-1467.7308	3.0953	-0.67	4.60E+09	9.66	Rudakov 1981
CHCB	H-CR	4.36	61 C	435		808	-2557 0942	7 3597	-118	5.40E+07	773	Mucsavijewe et al., 2005 Haae and Vao. 1992
CH2Cl2	H-CHCl2	4.11	2.11	4.02		7.76	-2519.5418	7.1743	-1.17	9.00E+07	7.95	Gebf, 1991
CH3CHCl2	CH3C-H-Cl2	3.41	1.46	3.48		7.49	-2394.2912	6.5757	-111	1.30E+08	8.11	Lat et al, 1988
NICCONT.	H-CH2CHCl2	8.87	7.19	8.99			2112 CULC	1.0000	0.00	001100	0.00	Milosavljevic et al., 2005
CHECCE	H-CH2CCI3 H CHC/CH2CI (Among	8.26	6.55 2.44	820		7.66	-2417.6716	6.6851	-1.12	1.00E+08	8.00	Cetoff 1989
CH2C/CH2CI	H-CHC(CH2CI (cis)	8.21	£ 9	8.22		7.17	-2361.6846	6.4248	-1.10	2.20E+08	8.34	WIRDSAVJCVIC CLAL, 2000
CHOCICHUD	H-CHCICHCI2	5.63	5.07	6.84			-2480.7342	6.9855	-1.15			
	CH2CHH-CCI2	5.00	4.35	6.34	-	7.01	-2429.2225	6.7395	-1.13	3.00E+08	8.48	Milosavljevic et al., 2005
CH3OH	H-CH2OH	3.92	2.13	4.03	5.25 ^a , 5.04 ^b	6.15	-2052.4804	5.0973	-0.96	9.70E+08	8.99	Buxton 1988
CH3CH2OH	Н-СН2СН2ОН Счасч и он	2.45	0.73	2.35	917 C 1900 C . 02 F	5 65	-2289.3343	6.0976	-1.07	1 001700	97.0	Durdon 1000
	CHICKLE CHICKLE	1 05	0.0	1 95	4./0.1.2.0/.4	00.5	-1026.9272	7602.4	0.01	1 000100	97.0	Duration 1 200
CH3CH(OH)CH3	H-CH2CH(OH)CH3	5.78	5.04	67.9	4C.4	N. C	-2312.7695	6.2024	-1.08	1.700-07	07.6	0.02 1 1102000
	CH2-H-(CH2)20H	5.47	3.78	5.83			-2013.2164	4.9421	-0.95			
CH3CH2CH2OH	CH3CH-H-CH2OH	3.53	1.79	3.41			-2106.9496	5.3177	-0.99			
	CH3CH2CH-H-OH	1.09	-0.68	121	$4.78 \pm 4.06^{\circ}$	5.38	-1747.6682	3.9707	-0.82	2.80E+09	9.45	Buton 1988
CHBOCHB	H-CH2OCH3 H-CH2OCH3	4.74 5.87	4.48	3.04 5.62		6.10	-1974.9769 -1974.9300	4.7936	-0.93	1.00±+09	9.00	Elbenberger 1980
CH3COCH3	H-CH2COCH3	9.98	8.18	6.50	6.21 ± 4.78^{a} , 6.30^{c}	7.61	-2435.5382	6.7694	-1.13	1.10E+08	8.04	Buxton et al., 1988
HCOOH	H-COOH	10.80	4.84	6.68	6.45 ^a , 6.09 ^d	7.73	-2598.6814	7.5682	-1.20	1.00E+08	8.00	Buxton 1988
CH3COOH	H-CH2COOH	10.68	8.90	10.61	$7.64^{\rm a}$, $6.94^{\rm d}$	8.70	-2395.7644	6.5825	-1.12	1.70E+07	7.23	Chin and Wine 1994
CH3CH2C00H	H-CH2CH2COOH	5.18	3.52	5.48	5.73 ± 3.1^{a}	6.91	-2293.2677	6.1151	-1.07	3.20E+08	8.51	Ervens et al., 2002
	CH3-H-CHCOOH H-CH3COOCH3	8.11	0.45	0.12		7 52	-7380.4547	1.0000	000	1 2012108	8.08	Adame 1965
CH3COOCH3	CH3COOCH2-H	11.37	68.6	11.59			-2449.6606	6.8365	-1.14	1.400-00	00.0	COL 1 GIIDINU
HCOOCH2CH3	HCOO-H-CHCH3	4.35	2.51	439		6.88	-2257.5596	5.9570	-1.06	3.30E+08	8.52	Gligorovski and Herrmann, 2004
нсно	н-сно н-сно	3.28	0.04	0.49	6.45 ⁰	6.10	08007/077-	0/ 66/5	-1.09	1 00E+00	0.00	
	н-сн2сно	9.28	7.45	946	6.20±4.78 ^a		-2463.6179	6 90 32	-114			
CH3CH0	CH3CO-H	1.26	-0.66	1.18	0.117000	5.28	-1853.6834	4.3421	-0.87	3.60E+09	9.56	Schuchmann and von Sonntag, 1988
(CH3)3COH	H-CH2(CH2)2COH	7.57	5.91	7.93	5.49 ± 1.91^{a}	6.43	-2040.1477	5.0482	-0.96	6.00E+08	8.78	Buxton 1988
HOCH20H	HOCH-H-OH	10.57	8.68	10.53	5.62 ^d	6.11	-1697.9395	3.8041	-0.79	7.80E+08	8.89	Chin and Wine 1994
CH3CH0H0H	СН3С- Н -(0Н)2 СН2- Н -СИОНУ2	6.70 8.70	4.71 7.60	6.83		6.01	-1511.9899	3.2235 6.2000	-0.69	7.80E+08	8.89	Shuchmarn 1988
HO(CH2)20H	HOCH2CH-H-OH	1.07	-0.66	12:0		5.76	-1933.4386	4.6358	-0.91	1.70E+09	9.23	Willson et al., 1971
	H-CH2COCH0 (Eclipsed)	11.07	9.17	11.25				1.0000	0.00			
CH3COCHO	H-CH2COCH0 (Staggered)	10.58	212	10.69			-2376.8010	6.4945	-1.16			
	H-COCOCH3 (Eclipsed)	0.58	-1.5	0.35	5.02 ± 2.87^{a}	6.53	-2368.5761	6.4565	-1.10	6.49E+08	8.81	Ervens et al., 2003
CHBCOCOOH	H-CH2COCOOH (eclised)	11.05	8.24	10.18	6.69 ± 1.91 ^a	7.55	-2427.1805	6.7299	-1.13	1.20E+08	8.08	Ervens et al., 2003
1000000	H-CH2COCOOH (staggered)	11.28	9.00	10.96			-2401.7424	6.6104	-1.12			
CRUCTOON I	H-COCOOH (rans stansard)	7.44	6C.7	CT L	573 L 7 07 ⁸	6.64	-2498.0206	7 0603	-1.16	5 90E+08	8 77	Errore at al. 2003
	H-COCOOH (trans, celipsed)	7.64	5.44	7.32	1017 E 6110	5	-2591.0319	7.5296	-1.19	00.000		
CH3COCOCH3	H-CH2COCOCH3	10.17	8.39	10.24	7.32°	7.32	-2360.4423	6.4191	-1.10	1.70E+08	8.23	Lilie 1968
HOOCCH2COOH	И НООС-Н-СНСООН	11.38	9.52	11.10		8.50	-2421.8843	6.7049	-1.13	2.40E+07	7.38	Scholes and Willson, 1967
CH2CKC00H	CH-H-CCOOH	7.88	5.96	7.72		8.16	-2437.5873	6.7791	-1.13	4.30E+07	7.63	Adams 1965
HOCH2COOH	HO-H-CHCOOH (rans)	6.98 4.03	2.26	3.91		6.49	-2122.5221	5.6369	-1.00	6.00E+08	8.78	Buxton et al. 1988
	HO-H-CHCOOH (trans2)	5.39	3.55	5.32			-2085.2222	5.2291	-0.98			
CICH2CH2OH	CICH-H-CH2OH	5.60	3.64	534			-2378.1241	6.5006	-1.11	0.401.00	000	1000 TOTA 100
LISCHOOL	CICH2CH-H-OH CINCH H-OH	0.80	06.9	0.85		6.16	-2056.4137	5.1131 5.2131	-1.04	9.50E+08 4.20E+08	8.98	Anbar and Neta, 1967 Wellinger at 1974
F3CH2OH	F3CH-H-OH	5.09	3.28	5.11		7.11	-2283.0368	6.0695	-1.07	2.30E+08	8.36	Walling et al. 1974 Walling et al. 1974
F3CCHCI2	F3CC-H-C12	8.48	6.49	8.50		8.91	-2537.7303	7.2637	-1.17	1.30E+07	7.11	Lal 1988
^a Ervens et al., 200	73											
^c Monod et al., 200	155 JS											
^d Chin and Wine 15	766											
^e Gligorovski and .	Herrmann, 2004											

Table 3.5: Calculated $\Delta G^{\neq}_{rvn an}$. tunneling factor and literature reported HO• reaction rate constants for the H-atom

constant	Reference	Thomas 1967	Thomas 1967		Thomas 1967		Thomas 1967		Maruthamuthu 1980		Kumar et al., 1990		Walling et al., 1973	Koester 1971		Koester 1971		Koester and Asmus, 1971	Koester and Asmus, 1971		Koester and Asmus, 1971	K oester and Asmus, 1971
Rate	bg k ⊮o∙aq	9.64	9.85		9.73		9.85		9.78		8.93		9.18	10.08		9.83			9.70		9.52	9.30
	k ∺o• aq exp	4.40E+09	7.00E+09		5.40E+09		7.00E+09		6.00E+09		8.50E+08		1.50E+09	1.20E+10		6.80E+09			5.00E+09		3.30E+09	2.00E+09
	$\begin{array}{l} \Delta G_{extra} \\ [=-RTh(\gamma)], \\ keal/mol \end{array}$	0.00	-0.15	-0.15	0.00	0.00	-0.13	0.00	-0.18	-0.14	-0.15	-0.14	-0.14	-0.17	-0.21	-0.16	-0.26	-0.23	-0.21	-0.27	-0.22	0.00
Tunneling	γ [=1+1/24(hw [‡] /k BT) ²]	1.00	1.28	1.28	1.00	1.00	1.25	1.00	1.35	1.26	1.28	1.26	1.27	1.32	1.42	1.32	1.56	1.47	1.44	1.57	1.44	1.00
	Imaginary freq, v [‡] , cm ⁻¹ [¶] uMP2(full)/6- 31G(d)		-540.5534	-535.1928			-503.9755		-599.8342	-521.0079	-537.4719	-519.9402	-531.1804	-576.1003	-658.1480	-572.6321	-759.3241	-692.0306	-670.9326	-766.6955	-674.3879	
be	Estimated from TS T	4.29	4.02		4.17		4.02		4.11		5.26		4.93	3.70		4.03			4.22		4.46	4.76
	G1 with COSMO-RS	-1.44	-1.42	-0.08	-3.36	-0.52	-1.39	1.33	2.04	0.78	6.49	7.40	5.02	0.67	3.79	0.10	5.90	3.19	2.02	5.91	2.83	5.30
∆G [#]	G2 with COSMO-RS	-3.32	-3.41	-2.06	-5.25	-2.47	-3.35	-0.58	0.24	-1.23	4.51	5.44	3.28	-1.18	1.99	-1.60	4.14	1.54	0.20	4.14	1.42	3.94
	G3 with COSMO-RS	-1.63	-1.74	-0.31	-4.10	-1.23	-1.77	1.05	1.88	0.49	6.16	7.25	5.01	09.0	3.82	0.34	6.15	3.20	2.19	6.23	3.42	5.30
	Chemical formula. **HO indicates the added HO radical	H2C(0H)=CH2	H2C(OH)=CHCH3	H2C=C(OH)HCH3	H2C(OH)=C(CH3)2	H2C=C(OH)(CH3)2	H2C(OH)=CHCH2CH3	H2C=C(OH)HCH2CH3	H2C(OH)=CHCH2OH	H2C=C(OH)HCH2OH	H2C(OH)=CHCOCH3	H2C=C(OH)HCOCH3	H2C(0H)=CHCOOH	H2C(OH)=CHCI	H2C=C(OH)HCI	H2C(OH)=CCD	H2C=C(OH)CI2	CIHC(0H)=CCHC(cis)	CIHC(0H)=CCHCl(trans)	CHCFC(0H)Cl2	CIHC(OH)=CC12	CDC(OH)=CCD
	Molecules	H2C=CH2	H2C=CHCH3		H2C=C(CH3)2		H2C=CHCH2CH3		H2C=CHCH2OH		H2C=CHCOCH3		H2C=CHCOOH	H2C=CHCI		H2C=CHCD		CIHC=CHCI		HCIC=CCD		CDC=CCD

Table 3.6: Calculated $\Delta G^{\neq}_{rxn,aq}$, tunneling factor and literature reported HO• reaction rate constants for the HO• addition to alkenes.

We observed linear correlations between log $k_{\rm I}$ – log $k_{\rm R}$ and $\Delta G^{\rm act}_{\rm I}$ – $\Delta G^{\rm act}_{\rm R}$ for Hatom abstraction by HO• and HO• addition to alkenes, respectively (Figures 3.4 and 3.5). The compounds used include alkanes as well as oxygenated and halogenated compounds with a single functional group. With the exception of three chlorinated compounds (trichloromethane, dichloromethane and 1,1-dichloroethane), the least squares fit for Hatom abstraction calculated with COSMO-RS obtains linear correlations as: $\log k_{\rm I} - \log k_{\rm I}$ $k_{\rm R} = -0.176 \left(\Delta G^{\rm act}_{\rm I} - \Delta G^{\rm act}_{\rm R} \right) + 0.615 ({\rm N} = 26, r^2 = 0.851)$ by G3, log $k_{\rm I} - \log k_{\rm R} = -0.188$ $(\Delta G^{\text{act}}_{\text{R}} - \Delta G^{\text{act}}_{\text{R}}) + 1.138 \text{ (N=26, } r^2 = 0.871\text{) by G2, and } \log k_{\text{I}} - \log k_{\text{R}} = -0.199 \text{ (} \Delta G^{\text{act}}_{\text{I}} - \frac{1}{2} \text{ (} \Delta G^{\text{act}}_{\text{R}} - \frac{1}{2} \text{ (} \Delta G^{$ $\Delta G^{\text{act}}_{\text{R}}$) + 0.498 (N=26, r^2 =0.871) by G1. Underestimation of $\Delta G^{\neq}_{\text{rxn.ag}}$ of the three chlorinated compounds can be attributed to a relatively small activation barrier and a complex formed in the entrance channel of potential energy surface (Louis et al., 2000). In addition, the literature-reported experimental values for trichloromethane are in a relatively wider range $(0.74 - 5.4 \times 10^7 \text{ M}^{-1}\text{s}^{-1})$ (Buxton et al., 1988), and almost all data were obtained in the 1960s without reporting the precise experimental conditions (e.g., temperature, pH). For these reasons, we did not include these three compounds in the correlation.

Figure 3.4: Log $k_{\rm I}$ – log $k_{\rm R}$ versus $\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$ for H-atom abstraction from the C-H bond by HO•

Figure 3.5: Log $k_{\rm I}$ – log $k_{\rm R}$ versus $\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$ for HO• addition to an alkene

For the HO• addition calculated with COSMO-RS, the obtained linear correlations are log $k_{\rm I}$ – log $k_{\rm R}$ = -0.166 ($\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$) + 0.689 (N=10, r^2 =0.928) by G3, log $k_{\rm I}$ – log $k_{\rm R}$ = -0.156 ($\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$) + 0.626 (N=10, r^2 =0.903) by G2, and log $k_{\rm I}$ – log $k_{\rm R}$ = -0.158 ($\Delta G^{\rm act}_{\rm I}$ - $\Delta G^{\rm act}_{\rm R}$) + 0.612 (N=10, r^2 =0.915) by G1. Regardless of the calculated $\Delta G^{\neq}_{\rm rxn,aq}$, the logarithms of the experimental rate constants for propylene, isobutylene and 1-butene are identical. This is probably because the reactions involved in HO• addition to these compounds are close to the diffusion limit. To investigate the diffusion rate constant, we calculated the diffusion coefficient and the diffusion reaction rate constant for each molecule using the Hayduk-Laudie correlation (Hayduk and Laudie, 1974).

The diffusion-encounter rate constant is based on diffusion toward the surface of a sphere around the reacting molecule and leads to values of $k_{\rm D}$ that are about half those based on the frequency factor given by the Smoluchowski equation (Adamson, 1979): $k_{\rm D} = 4 \times \pi \times D_l \times r \times N_0/1000$ (3.10)

where k_D is the diffusion-encounter rate constant, $M^{-1}s^{-1}$; D_l is the diffusion coefficient; r is the radius of the molecule; and N₀ is Avogadro's number. The diffusivities of small, uncharged molecules in water can be calculated using the Hayduk-Laudie correlation (Hayduk and Laudie, 1974), which is derived from the Wilke-Chang correlation.

$$D_{l} = \frac{13.26 \times 10^{-5}}{\left(\mu_{\omega}\right)^{1.14} \left(V_{b}\right)^{0.589}}$$
(3.11)

where D_l = liquid-phase diffusion coefficient of solute, cm²/s; μ_{ω} = viscosity of water, cP (1 kg/m•s = 1000 cP); and V_b = molar volume of solute at normal boiling point, cm³/mole. First, we calculated the V_b of a water molecule with B3LYP/6-311++G(3df,3pd) and compared it to the value obtained from LeBas (LeBas, 1915) to validate our methodology. This calculated value, 16.83 cm³/mole, is close to the 18.8 cm³/mol from LeBas. Then, we calculated the D_l of water as 2.51×10^{-6} cm²/s, which is close to the literature-reported experimental value at 25°C, 2.40×10^{-6} cm²/s (Ferrell and Himmelblau, 1967). Using B3LYP/6-311++G(3df,3pd), we obtained 2.6×10^{-6} cm²/s for the D_l of HO•.

Table 3.7 summarizes the calculated k_D for the HO• reactions that were investigated in the previous sections and provides a comparison with the chemical reaction rate k_{HO*} . Figure 3.6 plots the ratio, R (= k_{exp}/k_D), against the calculated free energy of activation in the aqueous phase, ΔG^{\neq}_{aq} . The reactions considered here are all chemical rather than diffusion-limited reactions. As the calculated free energy of activation decreases (and molecular volume increases), the reaction approaches the diffusion rate reaction (i.e., *R* approaches 1.0).

Figure 3.6: Plot of the ratio, $R(=k_{exp}/k_D)$, versus calculated free energy of activation.

	volume of	Diffusion	radius of					
Molecule A	molecule A*,	coefficient, D_{A_i}	molecule A, Å	$D (D_{\rm A} + D_{\rm H0}, \dagger), \rm cm^{-/sec}$	$\lambda (\lambda_{\rm A} + \lambda_{\rm H0,} \ddagger), \rm cm$	<i>k</i> _D , M 's '	k_{exp} , M [*] s [*]	$R (=k_{exp}/k_{D})$
	cm ² /mole	cm2/sec						
CH4	27.31	1.89E-05	1.87	4.49E-05	2.97E-08	1.0071E+10	1.20E+08	0.012
C2H6	43.33	1.44E-05	2.18	4.04E-05	3.74E-08	1.1418E+10	1.80E+09	0.158
C3H8	53.56	1.27E-05	2.34	3.87E-05	3.90E-08	1.1406E+10	3.60E+09	0.316
C4H10	79.77	1.01E-05	2.67	3.60E-05	4.23E-08	1.1526E+10	4.60E+09	0.399
C5H12	84.21	9.74E-06	2.72	3.57E-05	4.28E-08	1.1556E+10	5.40E+09	0.467
CH3CH(CH3)CH3	77.45	1.02E-05	2.64	3.62E-05	4.21E-08	1.1511E+10	4.60E+09	0.400
CH3Cl	45.74	1.40E-05	2.22	3.99E-05	3.78E-08	1.1410E+10	5.50E+07	0.005
CHCB	76.90	1.03E-05	2.64	3.62E-05	4.20E-08	1.1508E+10	1.40E+07	0.001
CH2Cl2	59.64	1.19E-05	2.42	3.79E-05	3.98E-08	1.1420E+10	9.00E+07	0.008
CH3CHCl2	84.84	9.70E-06	2.73	3.57E-05	4.29E-08	1.1561E+10	1.30E+08	0.011
CH3CCB	85.06	9.68E-06	2.73	3.56E-05	4.29E-08	1.1562E+10	1.00E+08	0.009
CH3Br	50.23	1.32E-05	2.29	3.92E-05	3.85E-08	1.1404E+10	2.20E+08	0.019
CH2ClCH2Cl	67.98	1.10E-05	2.53	3.70E-05	4.09E-08	1.1456E+10	2.20E+08	0.019
CH2CICHCI2	69.01	1.10E-05	2.54	3.69E-05	4.11E-08	1.1461E+10	3.00E+08	0.026
СНЗОН	28.90	1.83E-05	1.90	4.42E-05	3.46E-08	1.1595E+10	9.70E+08	0.084
CH3CH2OH	36.12	1.60E-05	2.05	4.20E-05	3.61E-08	1.1471E+10	1.90E+09	0.166
CH3CH(OH)CH3	65.84	1.13E-05	2.50	3.72E-05	4.07E-08	1.1445E+10	1.90E+09	0.166
CH3CH2CH2OH	48.25	1.35E-05	2.26	3.95E-05	3.82E-08	1.1405E+10	2.80E+09	0.246
CH3OCH3	41.46	1.48E-05	2.15	4.07E-05	3.71E-08	1.1427E+10	1.00E+09	0.088
CH3COCH3	49,99	1.32E-05	2.29	3.92E-05	3.85E-08	1.1404E+10	1.10E+08	0.010
HCOOH	35 31	1.62E-05	2.04	4 22E-05	3 60E-08	1 1481E+10	1.00E+08	0.009
CH3COOH	38 39	1.55E-05	2.09	4 14E-05	3.65E-08	1 1449E+10	1 70E+07	0.001
CH3CH2COOH	53 27	1 28E-05	2 33	3 87E-05	3 90E-08	1 1406E+10	3 20E+08	0.028
CH3COOCH3	64.32	1.14E-05	2 49	3 74E-05	4 05E-08	1 1439E+10	1 20E+08	0.010
HCOOCH2CH3	67.33	1.11E-05	2.52	3 71E-05	4 08E-08	1 1453E+10	3 30E+08	0.029
нсно	31.42	1.74E-05	1.96	4 34E-05	3.52E-08	1.1541E+10	1.00E+09	0.087
СНЗСНО	34.76	1.64E-05	2.02	4.24E-05	3.59E-08	1 1488E+10	3.60E+09	0.313
(CH3)3COH	68.14	1.10F-05	2.02	3 70E-05	4 10F-08	1.1457E+10	6.00E+08	0.052
носноон	45.38	1.40E-05	2.55	4 00E 05	3 77E 08	1.1410E+10	7.60E±08	0.067
СИЗСНОНОН	44.76	1.40E-05	2.21	4.00E-05	3.76E-08	1.1410E+10	7.80E+08	0.068
HO(CH2)2OH	44.70	1.41E-05	2.20	4.01E-05	3.74E.08	1.1412E+10	1 70E+08	0.149
CH3COCHO	48.04	1.44E-05	2.16	3.05E-05	3.82E.08	1.1417E+10	6.49E±08	0.057
СИЗСОСОСИЗ	66.82	1.12E-05	2.20	3 71E 05	4.08E.08	1.1450E+10	1.70E+08	0.015
СИОСОСИЗ	54.22	1.12E-05	2.32	3.71E-05	4.08E-08	1.1450E+10	5.00E±08	0.013
СИЗСОСОСИЗ	55 22	1.20E-05	2.33	3.80E-03 3.84E-05	3.91E-08	1.140/E+10 1.1400E+10	3.90E+08	0.032
HOOCCUPCOOU	55.55	1.25E-05	2.30	3.64E-05	3.93E-08	1.1409E+10	1.70E+08	0.013
CH2CICOOH	56.00	1.10E-05	2.34	3.09E-03	4.10E-08	1.1400E+10	2.40E+07	0.002
UOCUECOOU	50.75	1.23E-05	2.38	3.82E-05	3.95E-08	1.1412E+10	4.30E+07	0.004
CICU2CU2OU	51.15	1.22E-05	2.40	3.81E-05	3.90E-08	1.1413E+10	0.00E+08	0.033
CICH2CH2OH	58.75	1.20E-05	2.41	3.80E-05	3.9/E-08	1.1418E+10	9.50E+08	0.083
CBCH20H	59.75	1.19E-05	2.43	3.79E-05	3.99E-08	1.1421E+10	4.20E+08	0.037
F3CH2OH	60.75	1.18E-05	2.44	3.78E-05	4.00E-08	1.1424E+10	2.30E+08	0.020
F3CCHCI2	61./5	1.1/E-05	2.45	3.76E-05	4.01E-08	1.1428E+10	1.30E+07	0.001
H2C=CH2	39.19	1.53E-05	2.11	4.12E-05	3.6/E-08	1.1442E+10	4.40E+09	0.385
H2C=CHCH3	30.00	1.59E-05	2.06	4.19E-05	3.62E-08	1.1465E+10	5.40E+09	0.471
H2C=C(CH3)2	60.42	1.18E-05	2.43	3.78E-05	4.00E-08	1.1423E+10	7.00E+09	0.613
H2C=CHCH2CH3	68.55	1.10E-05	2.54	3.69E-05	4.10E-08	1.1459E+10	6.00E+09	0.524
H2C=CHCH2OH	48.88	1.34E-05	2.27	3.94E-05	3.83E-08	1.1404E+10	8.50E+08	0.075
H2C=CHCOCH3	48.23	1.35E-05	2.26	3.95E-05	3.82E-08	1.1405E+10	7.00E+09	0.614
H2C=CHCl	41.73	1.47E-05	2.15	4.07E-05	3.71E-08	1.1425E+10	6.80E+09	0.595
H2C=CHCl2	61.95	1.17E-05	2.45	3.76E-05	4.02E-08	1.1429E+10	7.30E+09	0.639
CIHC=CHCl(cis)	68.95	1.10E-05	2.54	3.69E-05	4.11E-08	1.1461E+10	5.00E+09	0.436
ClHC=CHCl(trans)	50.59	1.31E-05	2.29	3.91E-05	3.86E-08	1.1404E+10	5.00E+09	0.438
HCIC=CCI2	82.06	9.89E-06	2.70	3.58E-05	4.26E-08	1.1542E+10	4.00E+09	0.347
CI2C=CCI2	88.58	9.45E-06	2.77	3.54E-05	4.33E-08	1.1588E+10	2.80E+09	0.242
H2C=CHCOOH	67.21	1.11E-05	2.52	3.71E-05	4.08E-08	1.1452E+10	1.50E+09	0.131

Table 3.7: Calculated diffusion coefficients, molecular radii, and diffusion rate constants

* obtained by B3LYP/6-311++(3df,3pd)

 $D_{\rm H0\bullet} = 2.60 \times 10^{-6} \, {\rm cm}^2/{\rm s}$

 $\lambda_{H0} = 1.56 \times 10^{-8} \text{ cm}$

Once the LFERs were established, we predicted the reaction rate constants of Hatom abstraction for 14 compounds with multiple functional groups (i.e., oxygenated and halogenated compounds). Figure 3.7 compares the predicted HO• rate constants with the literature-reported experimental values. Of the 14 predicted rate constants, 4 (29% of predicted rate constants) and 13 (93% of predicted rate constants) are within $0.5 < k_{pred}/k_{exp} < 2.0$ and $0.2 < k_{pred}/k_{exp} < 5.0$, respectively. 1,1-dichloro-2,2,2-fluoroethane is the only compound outside the range of difference of factor of 5. If this compound is eliminated, the SD values would be 1.38, 1.45 and 1.45 by G3, G2 and G1 with COSMO-RS, respectively.

Figure 3.7: Plot of predicted HO• rate constants versus the literature-reported experimental rate constants. The error bar represents the range of the latter.

A limited number (37) of literature-reported experimental ΔG_{rxn}^{act} values have been estimated for oxygenated compounds from Arrehnius activation energy and frequency factor (Figure 3.4) by assuming the equilibrium at transition state. When these values are compared with the theoretically calculated values for compounds with both single- and multiple-functional groups, the calculated $\Delta G^{\neq}_{rxn,aq}$ are within ±4 kcal/mol. These errors should be within the errors derived from the quantum mechanical calculations and experiments. Typical errors (i.e., range of 95% of confidence value) in calculating aqueous phase free energy of activation based on experiments are reported in the range from 2 kcal/mol to 4 kcal/mol. For example, Ervens et al. (2003) experimentally obtained 5.25 kcal/mol, 4.78 ± 2.87 kcal/mol, 6.21 ± 4.78 kcal/mol and 5.73 ± 3.10 kcal/mol for the reaction of HO• with methanol, ethanol, acetone and propionic acid. Although great uncertainty remains particularly in calculating the aqueous phase free energy at transition state, typical errors that are caused by calculating gaseous phase free energy and free energy of solvation is approximately ± 2.0 kcal/mol and ± 1.0 kcal/mol, respectively. For example, the errors for the gaseous phase molecular atomization energies calculated by G3, G2 and G1 are reported within 2.0 kcal/mol (Pople et al., 1989; Curtiss, 1991; Curtiss et al., 1998). Although there is ongoing discussion regarding the free energy of solvation, the observed error for the aqueous phase free energy of solvation is within 1.0 kcal/mol (Klamt et al., 2009; Cramer and Truhlar, 2009). The SD for 17 calculated aqueous phase free energy of activation of compounds with both singleand multiple-functional groups are 0.61, 0.71 and 0.55, respectively, for G3, G2, and G1 with COSMO-RS. Notably, 1 kcal/mol of difference in $\Delta G^{\neq}_{rxn,aq}$ causes 5.4 times difference in the rate constant according to the TST equation (3.12):

$$\Delta G_{\rm rxn}^{\rm act,TST} = -RT \ln \left(k_{\rm exp} \frac{h}{\gamma T} \right)$$
(3.12)

Although absolute prediction of reaction rate constants is not feasible, the LFERs that areestablished based on our theoretical calculations follow a trend in reactivity consistent with the experimental values, as shown in Figure 3.4.

Another validation for our theoretically calculated values is to compare them with the estimated $\Delta G_{rxn}^{act, TST}$ derived from TST (Eyring, 1938), as shown in equation (3.12). When compared to this $\Delta G_{rxn}^{act, TST}$, our theoretically calculated $\Delta G_{rxn,aq}^{\neq}$ gives SD of 0.33, 0.61 and 0.32 by G3, G2 and G1 with COSMO-RS, respectively (*N*=40). Although the TST does not thoroughly represent the aqueous phase reaction mechanisms (Kraut, 1988), this comparison proves the validity of our theoretically calculated $\Delta G_{rxn,aq}^{\neq}$. For the 1,1-dichloro-2,2,2-fluoroethane, the $\Delta G_{rxn,aq}^{\neq}$ is 8.48 kcal/mol, 6.49 kcal/mol and 8.50 kcal/mol by the G3, G2 and G1 with the COSMO-RS, respectively, and is close to the 8.91 kcal/mol of the $\Delta G^{act,tst}$. Because the reported rate constant is extremely low, 1.3 × $10^7 \text{ M}^{-1}\text{s}^{-1}$ (Lal et al., 1988), which is close to the lower limit in the pulse radiolysis approach, the reported rate constant might have been significantly underestimated.

Despite the overall errors from the calculations, the theoretically calculated free energy of activation in the aqueous phase is within the errors derived from the gaseous phase quantum mechanical and free energy of solvation calculations. In addition, if uncertainty in the literature-reported experimental errors is accounted for, the LFERs should be acceptable for predicting the reaction rate constants of unknown compounds that have not been experimentally examined. Consequently, this approach may be applicable to other reaction mechanisms to establish a library of reaction rate constant predictors for mechanistic modeling.

112

3.6 Acknowledgement

This work was supported by the National Science Foundation Award 0854416 from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors appreciate the support from the Hightower Chair and the Georgia Research Alliance at the Georgia Institute of Technology. Authors also appreciate Dr. Matthew Wolf at the College of Computing in Georgia Tech for the high performance and clustered computing resources. We gratefully acknowledge the contribution of Linly Hall and Mary Kate Varnau for her editorial assistance.

3.7 Appendices

Appendix D includes all calculated data for HOMO and SOMO energy gap.

Appendix E includes the optimized structures and their z-matrices of coordinates.

3.8 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Adamson, A.W. A Textbook of Physical Chemistry, 2nd edition., Academic Press, New York. 1979.

Ahlrichs, R; M. Bär, M.; Häse, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system TURBOMOLE. *Chem. Physcs. Lett.* 1989, *162*(3), 165-169.

Andzelm, J.; Wimmer, E. Density functional gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies, *J. Phys. Chem.*, 1992, 96, 1280-1303.

Ashcraft, R.W.; Raman, S.; Green, W.H. Ab initio aqueous thermochemistry: Application to the oxidation of hydroxylamine in nitric acid solution. *J. Phys. Chem. B.* 2007, *111*, 11968-11983.

Atadinc, F.; Selcuki, C.; Sari, L.; Aviyente, V. Theoretical study of hydrogen abstraction from dimethyl ether and methyl tert-butyl ether by hydroxyl radical. *Phys. Chem. Chem.*

Ayala, P.Y.; Schlegel, H.B. A combined method for determining reaction paths, minima, and transition state geometries. *J.Chem.Phys.* 1997, *107*(2), 375-384.

Bacskay, G.B. A Quadratically Convergent Hartree-Fock (QC-SCF) Method. Application to Closed Systems. *Chem. Phys.* 1981, 61, 385-404.

Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. *J.Phys. Chem. A*, 1998, *102*, 1995-2001.

Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. *J. Chem. Phys.* 1997, *107*(8), 3210-3221.

Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

Ben-Naim, A. Molecular Theory of Solutions; Oxford University Press Inc.: New York, 2006.

Ben-Naim, A. Solvation Thermodynamics; Plenum Press: New York, 1987.

Boese, A.D.; Martin, J. M.L. Development of density functional for thermochemical kinetics. *J. Chem. Phys.* 2004, *121*(8), 3405-3416.

Bonifačić, M.; Möckel, H.; Bahnemann, D.; Asmus, K-D. Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. *J. Chem. Soc. Perkin I.* 1975, 675-685.

Brezonik, P.L. Chemical kinetics and process dynamics in aqueous systems. Lewis Publishers. 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O⁻) in aqueous solution. *J. Phys. Chem. Ref. Data.* 1988, *17* (2) 513-795.

Chandra, A. K.; Uchimaru, T.; Sugie, M., Kinetics of hydrogen abstraction reactions of 1,1- and 1,2-difluoroethane with hydroxyl radical: an ab initio study, *J. Comp. Chem.*, 2000, *21*, 1305-1318.

Chandra, A.K.; Uchimaru, T. Kinetics of hydrogen abstraction from chloromethanes by the hydroxyl radical: A computational study.

Chartfield, D.C.; Friedman, R.S.; Schwenke, D.W.; Truhlar, D.G. Control of chemical reactivity by quantized transition states. *J. Phys. Chem.* 1992, *96*, 2414-2421.

Chen, H., M. Krasowski, and G. Fitzgerald, Density functional pseudo potential studies of molecular geometries, vibrations, and binding energies, *J. Chem. Phys.*, 1993, *98*, 8710-8717.

Čížek, J. On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. *J. Chem. Phys.* 1966, *45*(11), 4256-4266.

Cohen, N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane reaction. *Int. J. Chem. Kinet.* 1991, *23*, 397-417.

Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comp. Chem.* 2003, 24(6), 669-681.

Cramer, C.J. Essential of computational chemistry 2nd ed. John Wiley & Sons. Ltd. England, 2004; Chapter 11.

Cramer, C.J.; Truhlar, D.G. A universal approach to solvation modeling. *Acc. Chem. Res.* 2008, *41*(6), 760-768.

Cramer, C.J.; Truhlar, D.G. Commentary. On the performance of continuum solvation methods. Reply to comment on "A universal approaches to solvation modeling". *Acc. Chem. Res.* 2009, *42*(4), 493-497.

Cramer, C.J.; Truhlar, D.G. In Solvent Effects and Chemical Reactivity; Tapia, O., Bertrán, J., Eds.; Kluwer: Dordrecht, 1996; p1.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for H₂O₂/UV process in a completely mixed batch reactor. *Wat. Res.* 1999, *33*(10), 2315-2328.

Curtiss, L.A. Gaussian-2 theory for molecular energies of first- and second-row compounds, *J. Chem. Phys.* 1991, *94*(11), 7221-7230.

Curtiss, L.A.; Jones, C. Gaussian-1 theory of molecular energies for second-row compounds. *J. Chem. Phys.* 1990, *93*(4), 2537-2545.

Curtiss, L.A.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3(G3) theory for molecules containing first and second-row atoms, *J. Chem. Phys.* 1998, *109*(18), 7764-7776.

DeFrees, D. J., Raghavachari, K.; Schlegel, H. B.; Pople, J. A., Effect of electron correlation on theoretical equilibrium geometries. 2. Comparison of third-order

perturbation and configuration interaction results with Experiment, J. Am. Chem. Soc., 1982, 104, 5576-5580.

DeMatteo, M.P.; Poole, J.S.; Shi, X.; Sachdeva, R.; Hatcher, P.G.; Hadad, C.M.; Platz, M.S. On the electrophicility of hydroxyl radical: A laser flash photolysis and computational study. *JACS*. 2005, *147*, 7094-7109.

Dunning, Jr. T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90(2), 1007-1023.

Eckert, F and Klamt, A. COSMO*therm*, Version C2.1, Release 01.08; COSMO*logic* GmbH & Co. KG, Leverkusen, Germany, 2006.

Eisenberg, D.; McLachlan, A.D. Solvation energy in protein folding and binding. *Nature*, 1986, *319*, 199-203.

Ellingson, B.A.; Pu, J.; Lin, H.; Zhao, Y.; Truhlar, D.G. Multicoefficient Gaussian-3 calculation of the rate constant for the OH+CH4 reaction and its 12C/13C kinetic isotope effect with emphasis on the effects of coordinate system and torsional treatment. *J. Phys. Chem. A.*, 2007, *111*, 11706-11717.

Elliot, A.J.; Geertsen, S.; Buxton, G.V. J. Oxidation of thiocyanate and iodide ions by hydrogen atoms in acid solutions. *Chem. Soc. Faraday Trans.* 1988, 1, 84, 1101-1112.

Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. *Phys. Chem. Chem. Phys.*, 2003, *5*, 1811-1824.

Espinosa-García, J.; Coitino, E.L.; González-Lafont, A.; Lluch, J.M. Reaction-path and dual-level dynamics calculations of the CH3F + OH reaction. *J.Phys.Chem.A.* 1998, *102*, 10715-10722.

Eyring, H. The calculation of activation energies. Reaction Kinetics. 1938. 3-11.

Eyring, H.; Cershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. *J. Chem. Phys.* 1935, *3*, 786-796.

Eyring, H.; Gershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. *J. Chem. Phys.* 1935, *3*, 786-796.

Fittschen, C.; Hippler,H.; Viskolcz, B. The β C-C bond scission in alkoxy radicals: thermal unimolecular decomposition of *t*-butoxy radicals. *Phys. Chem. Chem. Phys.* 2000, *2*, 1677-1683.

Fontana, G.; Causa, M; Gianotti, V.; Marchionni, G., Computational studies of the reaction of the hydroxyl radical with hydroflurocarbons (HFCs) and hydrofluoroethers (HFEs), *J. Fluorine Chem.*, 2001, *109*, 113-121.

Foreman, J.B.; Frisch, E. Exploring chemistry with electronic structure methods. 2nd ed. Gaussian, Inc. Pittsburgh, PA.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision E. 01; Gaussian, Inc.: Wallingford, CT, 2003.

Fukui, K.; Yonezawa, Y.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. *J.Chem.Phys.* 1952, *20*(4), 722-725.

Gonzalez-Lafont, A.; Lluch, J. M., Espinosa-Garcia, J., Variational transition state calculations of the CH2F2 + OH hydrogen abstraction reaction, *J. Phys. Chem. A*, 2001, *105*, 10553-10561.

Hayduk, W.; Laudie, H. Prediction of diffusion coefficients for non-electrolytes in dilute aqueous solutions. *AIChEJ*., 1974, *20*(3), 611-615.

Headlam, H.A.; Davies, M.J. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. *Free Radical Biol & Med.* 2002, *32*(11), 1171-1184.

Henon, E.; Canneaux, S.; Bohr, F.; Dobe, S. Features of the potential energy surface for the reaction of OH radical with acetone. *Phys. Chem. Chem. Phys.* 2003, *5*, 333-341.

Hermann, R.B. Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water s with solvent cavity surface area. J. Phys. Chem. 1972, 76, 2754.

Higashi, M.; Marenich, A. V.; Olson, R. M.; Chamberlin, A. C.; Pu, J.; Kelly, C. P.; Thompson, J. D.; Xidos, J. D.; Li, J.; Zhu, T.; Hawkins, G. D.; Chuang, Y.-Y.; Fast, P. L.; Lynch, B. J.; Liotard, D. A.; Rinaldi, D.; Gao, J.; Cramer, C. J.; Truhlar, D. G. GAMESSPLUS – version 2008–2, University of Minnesota, Minneapolis, 2008, based on the General Atomic and Molecular Electronic Structure System (GAMESS) as described in Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery J. A. *J. Comput. Chem.* 1993, *14*, 1347.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-871.

Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. *Environ. Sci. Technol.* 2003, *37*, 1016-1024.

Huynh, L.K.; Ratkiewicz, A.; Truong, T.N. Kinetics of the hydrogen abstraction $OH + alkane \rightarrow H2O + alkyl reaction class: An application of the reaction class transition state theory. J. Phys. Chem. A. 2006, 110, 473-484.$

Huynh, L.K.; Truong, T.N. Kinetics of the hydrogen abstraction CHO + alkane \rightarrow HCH alkyl reaction class: An application of the reaction class transition state theory. *Theor. Chem. Acc.* 2007

Huynh, L.K.; Zhang, S.; Truong, T.N. Kinetics of hydrogen abstraction O(3P) + alkane \rightarrow OH + alkyl reaction class: An application of the reaction class transition state theory. *Combustion and Flame*, 2008, 152, 177-185.

Irikura, K. K., Fruruip, D. J., Computational thermochemistry: Prediction and estimation of molecular thermodynamics, 1998, American Chemical Society.

Izgorodina, E.I.; Brittain, D.R.B.; Hodgson, J.L.; Krenske, E.H.; Lin, C.Y.; Namazian, M.; Coote, M.L. Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions? *J.Phys.Chem. A.* 2007, *111*, 10754-10768.

Izgorodina, E.I.; Brittain, D.R.B.; Hodgson, J.L.; Krenske, E.H.; Lin, C.Y.; Namazian, M.; Coote, M.L. Should contemporary density functional theory methods be used to study the thermodynamics of radical reactions? *J.Phys.Chem. A*. 2007, *111*, 10754-10768.

Jursic, B.S. Computing transition state structure and estimating reaction barriers with complete basis set ab initio method. *J. Mol. Structure (Theochem)*, 2000, 499, 223-231.

Kasai, P.H.; Meyers, R.J. J. Chem. Phys. 1959, 30, 1096

Klamt, A. COSMO-RS from Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. 2005 Elservier. Amsterdam.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. *Chemosphere*. 1996, *32*(4), 717-726.

Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and parametrization of COSMO-RS. *J.Phys.Chem. A*. 1998, *102*, 5074-5085.

Klamt, A.; Mennucci, B.; Tomasi, J.; Barone, V.; Curutchet, C.; Orozco, M.; Luque, F.J. Commentary. On the performance of continuum solvation methods. A comment on "Universal approaches to solvation modeling". *Acc. Chem. Res.* 2009, *42*(4), 489-492.

Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. *Phys. Rev.* 1965, *140*, A1133-1138.

Kraut, J. How do enzymes work? Science. 1988, 242, 533-540.

Kungwan, N.; Truong, T.N. Kinetics of the hydrogen abstraction •CH3 + alkane \rightarrow CH4 + alkyl reaction class: An application of the reaction class transition state theory? *J. Phys. Chem. A.* 2005, *109*, 7742-4450.

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Rate constants for the reaction of halogenated organic radicals. *Int. J. Radiat. Biol.* 1988, *54*, 773-785.

LeBas The Molecular Volumes of Liquid Chemical Compounds. 1915, Longmans, London.Ferrell and Himmelblau 1967 Diffusion coefficients of nitrogen and oxygen in water. *J. Chem. Eng. Data*, *12*, 111-115.

Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B.*, 1988, *37*, 785-789.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. *Environ. Sci. Technol.* 2009, *43*, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H₂O₂ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. *Wat. Res.* 2008, *42*(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/H₂O₂ advanced oxidation process: product study and kinetic modeling. *Environ. Sci. Technol.* 2007, *41*, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. *Environ. Sci. Technol.* 2004, *38*, 6685-6693.

Lien, P-Y.; You, R-M.; Hu, W-P. Theoretical modeling of the hydrogen abstraction reaction of fluoromethane by the hydroxyl radical. *J.Phys.Chem.A*, 2001, *105*, 2391-2400.

Liptak, M. D.; Shields, G. C. Accurate p*K*a Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. *J. Am. Chem. Soc.* 2001, *123*, 7314-7319.

Louis, F.; Gonzalez, C.A.; Huie, R.E.; Kurylo, M.J. An ab initio study of the kinetics of the reactions of halomethanes with the hydroxyl radical. 2. A comparison between theoretical and experimental values of the kinetic parameters for 12 partially halogenated methanes. *J. Phys. Chem. A*. 2000, *104*, 8773-8778.

Louis, F.; Gonzalez, C.A.; Huie, R.E.; Kurylo, M.J. An ab initio study of the kinetics of the reactions of halomethanes with the hydroxyl radical. 2. A comparison between theoretical and experimental values of the kinetic parameters for 12 partially halogenated methanes. *J. Phys. Chem. A*. 2000, *104*, 8773-8778.

Lynch, B.J.; Truhlar, D. G. How well can hybrid density functional methods predict transition state geometries and barrier heights? *J. Phys. Chem. A.* 2001, *105*, 2936-2941.

Mader, E.A.; Davidson, E.R.; Mayer, J.M. Large ground-state entropy changes for hydrogen atom transfer reactions of iron complexes. *J.A.C.S.* 2007, *129*, 5153-5166.

Maity, D.K.; Duncan, W.T.; Truong, T.N. Direct ab inito dynamics studies of the hydrogen abstractions of hydrogen atom with fluoromethanes. *J. Phys. Chem. A.* 1999, 103, 2152-2159.

Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.; Chambers, C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G. *Minnesota Solvation Database – version 2009*, University of Minnesota, Minneapolis, 2009.

Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Perspective on foundations of solvation modeling: The electrostatic contribution to the free energy of solvation. *J. Chem. Theory Comput.* 2008, *4*, 877-887.

Martin, J. M. L.; Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry – W1 and W2 theory. *J. Chem. Phys.* 1999, 1843-1856.

Masgrau, L., Gonzalez-Lafont, A.; Lluch, J. M., The reactions CHnD4-n + OH -? P and CH4 + OD -> CH3 + HOD as a test of current dynamics computational methods to determine variational transition-state rate constants, *J. Chem. Phys.*, 2001, *114*, 5, 2154-2165.

Melissas, V. S., Truhlar, D. G., Interpolated variational transition state theory and tunneling calculations of the rate constant of the reaction OH + CH4 at 223-2400 K, *J. Chem. Phys*, 1993, 99, 2, 1013-1027.

Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. *J. Chem. Phys.* 1997, *106*, 5151-5158.

Méreau, R.; Rayez, M-T.; Caralp, F.; Rayez, J-C. Theoretical study of alkoxyl radical decomposition reactions: structure-activity relationship. *Phys. Chem. Chem. Phys.* 2000, *2*, 3765-3772.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. *Environ. Sci. & Technol.* 2009, *43*, 6220-6227.

Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. *Phys. Rev.* 1934, *46*, 618-622.

Montgomery, J.A.; Frisch, M.J. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. *J. Chem. Phys.* 1999, *110*(6), 2822-2827.

Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W. A complete basis set model chemistry. VII. Use of the minimum population localization method. *J. Chem. Phys.* 2000, *112*(15), 6532-6542.

Nicolaescu, A.R.; Wiest, O.; Kamat, P. Mechanistic pathways of the hydroxyl radical reactions of quinoline. 2. Computational analysis of hydroxyl radical attack at C atoms. *J. Phys. Chem. A*. 2005, *109*, 2829-2835.

Nyden, M.R.; Perterson, G.A. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. *J. Chem. Phys.* 1981, 75(4), 1843-1862.

Ochterski J.W.; Peterson, G.A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. *J. Chem. Phys.* 1996, *104*(7), 2598-2619.

Ochterski, J. W., Thermochemistry in Gaussian, Gaussian, Inc., 2000. on workstation computers: The program system Turbomole. *Chem. Phys. Lett.*, 1989, *162*(3), 165-169

Papasavva, S.; Illinger, K. H.; Kenny, J. E., Ab initio calculations on fluoroethanes: Geometries, dipole moments, vibrational frequencies, and infrared intensities, *J. Phys. Chem.*, 1996, *100*, 10100-10110.

Parkinson, C. J., P. M. Mayer, and L. Radom, An assessment of theoretical procedures for the calculation of reliable radical stabilization energies, *J. Chem. Soc., Perkin Trans.* 2, 1999, 2305-2313.

Parthiban, S.; Martin, J. M. L. Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. *J. Chem. Phys.* 2001, *114*(14), 6014-6029.

Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. *J. Comp. Chem. 1996, 17, 49-86.*

Peng, C.; Schlegel, H.B. Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States. *Israel J. Chem.* 1993, *33*, 449-54.

Pfaendtner, J.; Broadbelt, L. J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. *Chem. Eng. Sci.* 2007, *62*, 5232-5239.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autooxidation of decane and octane. *Ind. Eng. Chem. Res.* 2008, *47*, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. *Ind. Eng. Chem. Res.* 2008, *47*, 2886-2896.

Pitzer, K.S.; Gwinn, W. Energy levels and thermodynamic functions for molecules with internal rotation. *J. Chem. Phys.* 1942, *10*, 428-440.

Pople, J. A.; Scott, A.P.; Wong, M.W.; Radom, L., Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31g* and MP2/6-31g* harmonic frequencies, *Is. J. Chem.*, 1993, *33*, 345-350.

Pople, J.A.; Gordon, M.H.; Fox, D.J. Gaussian-1 theory: A general procedure for prediction of molecular energies. *J. Chem. Phys.* 1989, *90*(10), 5622-2629.

Pramod, G.; Prasanthkumar, K.P.; Mohan, H.; Manoj, V.M.; Manoj, P.; Suresh, C.H.; Aravindakumar, C.T. Reaction of hydroxyl radicals with azacytosines: A pulse radiolysis and theoretical study. *J. Phys. Chem. A.* 2006, *110*, 11517-11526.

Pu, J.; Gao, J.; Truhlar, D.G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. *Chem. Rev.* 2006, *106*, 3140-3169.

Purvis III, G.D.; Bartlett, R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. *J. Chem. Phys.* 1982, *76*(4), 1910-1918.

Rauk,A.; Boyd, R.J.; Boyd, S.L.; Henry, D.J.; Radom, L. Alkoxy radicals in the gaseous phase: β-scission reactions and formation by radical addition to carbonyl compounds. *Can.J.Chem.* 2003, *81*, 431-442.

Richardson, S. D. Water Analysis: Emerging contaminants and current issues. *Anal. Chem.*, 2009, *81*, 4645-4677.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. *Environ. Sci. Technol.* 2004, *38*, 5476-5483.

Saeys, M.; Reyniers, M-F.; Marin, G.B.; Speybroeck, V.V.; Waroquier, M. Ab initio calculations for hydrocarbons: Enthalpy of formation, transition state geometry, and activation energy for radical reactions. *J. Phys. Chem. A.* 2003, *107*, 9147-9159.

Schlegel, H.B. Optimization of equilibrium geometries and transition structures. *J. Comp. Chem.* 1982, *3*(2), 214-218.

Sheng, L.; Li, Z.-S.; Xiao, J.-F.; Liu, J.-Y.; Huang, X.-R.; Sun, C.-C., Direct ab initio dynamics studies on hydrogen-abstraction reactions of 1,1,1-trifluoroethane with hydroxyl radical, *Chem. Phys.*, 2002, *282*, 1-8.

Štefanić, I.; Ljubić, M.; Bonifačić, M.; Sabljić, A.; Asmus, K.-D. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals. *Phys. Chem. Chem. Phys.* 2009, *11*, 2256-2267.

Still, W.C.; Tempczyk, A.T.; Hawley, R.C.; Hendrickson, T. Semianalytical treatment of solvation for molecular mechanics and dynamics. *J. Am. Chem. Soc.*, 1990, *112*(16), 6127-6129.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 1: H abstraction from alkanes by H and CH3. *J. Phys. Chem. A.* 2001, *105*, 6910-6925.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 2: H abstraction from alkanes, alkynes, alcohols, aldehydes, and acid by H atoms. *J. Phys. Chem. A.* 2001, *105*, 8969-8984.

Sumathi, R.; Carstensen, H.-H.; Green, Jr. W.H. Reaction rate prediction via group additivity part 3: Effect of substituents with CH2 as the mediator. *J. Phys. Chem. A.* 2002, *106*, 5474-5489.

Sun, W.; Saeys, M. First principles study of the reaction of formic and acetic acids with hydroxyl radicals. J. Phys. Chem. A. 2008, 112, 6918-6928.

Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. *Chem. Rev.* 2005, *105*, 2999-3093.

Truhlar, D.; Garrett, B.C. Variational transition-state theory. *Acc.Chem.Res.* 1980, *13*, 440-448.

Truong, T. N., Truhlar, D. G., Ab initio transition-state theory calculations of the reaction-rate for OH + CH4 -> H2O + CH3, *J. Chem. Phys.*, 1990, *93*, 3, 1761-1769.

Truong, T.N. Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test cases. *J. Chem. Phys.* 2000, *113*(12), 4957-4964.

Truong, T.N.; Duncan, W.T.; Tirtowidjojo, M. A reaction class approach for modeling gas phase reaction rates. *Phys, Chem. Chem. Phys.*, 1999, *1*, 1061-1065.

Tzima, T.D.; Papavasoleiou, K.D.; Papayannis, D.K.; Melissas, V.S. Theoretical kinetic study of the CH3Br + OH atmospheric system. *Chem. Phys.* 2006, *324*, 591-599.

Urata, S., Takada, A.; Uchimaru, T.; Chandra, A. K., Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals, *Chem. Phys. Lett.*, 2003, *368*, 215-223.

Van Cauter, K.; Van Speybroeck, V.; Vansteenkiste, P.; Reyniers, M. F.; Waroquier, M. Ab initio study of free-radical polymerization: Polyethylene propagation kinetics. *Chem. Phys. Chem* 2006, *7*, 131-140.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. *Environ. Sci. Technol.* 2005, *39*, 6649-6663.

Wigner, E. Z. f. physic. Chemie B19, 203, 1932.

Wilke, C.R.; Chang, P.C. Correlation of diffusion coefficients in dilute solutions. *AIChEJ.*, 1955, *1*, 264-270.

Wong, M. W., Vibrational frequency prediction using density functional theory, *Chem. Phys. Lett.*, 1996, 256, 391-399.

Wood, G.P.F.; Easton, C.J.; Rauk, A.; Davies, M.; Radom, L. Effect of side chains on competing pathways for β -scission reactions of peptide-backbone alkoxyl radicals. *J.Phys.Chem. A.* 2006, *110*, 10316-10323.

Wood, G.P.F.; Rauk, A.; Radom,L. Modeling β-scission reactions of peptide backbone alkoxy radicals: Backbone C-C bond fission. *J.Chem. Theory Comput.* 2005, *1*, 889-899.

Xu, S.; Lin, M.C. Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH. *Proceedings of the combusion institute*. 2007, *31*, 159-166.

Zhang, X..-H. Ding, Z.-S. Li, X.-R. Huang, and C.-C. Sun, Accurate ab initio calculations on the rate constants of the direct hydrogen abstraction reaction C2H + H2-> C2H2 + H, *J. Phys. Chem. A*, 2000, *104*, 8375-8391.

Zheng, X.; and Blowers, P., The application of composite energy methods to n-butyl radical β -scission reaction kinetic estimations, *Theor. Chem. Acc.*, 2007, *117*, 207-212.

Zheng, X.; Blowers, P. A first principle kinetic modeling of the 1-chloroethyl unimolecular decomposition reaction, *Industrial & Engineering Chemistry Research*, 2006, *45*, 2981-2985.

Zheng, X.; Blowers, P. The investigation of hydrocarbon cracking reaction energetics with composite energy methods, *Molecular Simulation*, 2005, *31*(14-15), 979-986.

Zhong, X. and J. W. Bozzelli, Thermochemical and kinetic analysis on the addition reactions of H, O, OH, and HO2 with 1,3-cyclopentadiene, *Int. J. Chem. Kinet.*, 1997, 29, 893-913.

Zhu, L., J. W. Bozzelli, and W.-P. Ho, Reaction of OH radical with C2H3Cl: rate constant and reaction pathway analysis, *J. Phys. Chem. A*, 1999, *103*, 7800-7810.

Zhu, T.; Li, J.; Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Density functional solvation model based on CM2 atomic charges. *J. Chem. Phys.* 1998, *109*(20), 9117-9133.

CHAPTER 4

Quantitative Understanding of Aqueous Phase Hydroxyl Radical

Reactions with Haloacetate Ions:

Experimental and Theoretical Studies

†work from this chapter will be presented and plan to be published in the following citation:

Minakata, D.; Crittenden, J. Linear Free Energy Relationship (LFER) for the Aqueous Phase Hydroxyl Radical (HO•) Reactions with Ionized Species: Experimental and Theoretical Studies. 240th American Chemical Society (ACS) National Meeting & Exposition, Boston, Massachusetts. August 22-26, 2010.

Minakata, D.; Li, K.; Crittenden, J.C. Rational Design of Advanced Oxidation Processes using Computational Chemistry. The 16th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil (AOTs-16). November 15-18, 2010. San Diego, California.

Minakata, D.; Song, W.; Crittenden, J.C. Temperature-dependent aqueous phase hydroxyl radical reaction rate constants with ionized compounds: Experimental and theoretical studies. *Environ. Sci.Technol.* 2010. In preparation.

Minakata, D.; Song, W.; Crittenden, J.C. Group Contribution Method for Aqueous Phase Hydroxyl Radical Reaction Rate Constant Prediction: Update and Experimental Verification. *Environ. Sci. Technol.* 2010. In preparation.

4.1 Abstract

Hydroxyl radical (HO•) is a highly reactive electrophile that potentially leads to complete mineralization of emerging contaminants in aqueous phase advanced oxidation processes (AOPs). Widespread usage and adverse human and ecological effect of halogenated and carboxylic compounds are of great concern. These compounds are major intermediates and byproducts from the reactions of HO• with many organic contaminants and indicate lower reactivity with HO• in aqueous phase AOPs. As a consequence, quantitative understanding in their reactions is necessary. In addition, considering deprotonated ionized state of these carboxylic compounds at around neutral pH, we need to verify if our previously established linear free energy relationships for neutral compounds can be applied to ionized compounds for our ultimate goal of establishing a mechanistic model.

We measured temperature-dependent aqueous phase HO• reaction rate constants for a series of halogenated acetates using electron-pulse radiolysis technique and calculated thermochemical properties from Arrhenius activation energies and frequency factors. We developed linear free energy relationships from logarithms of the HO• reaction rate constants and free energies of activation that were obtained at several temperatures. The free energy of activation was compared to quantum mechanically calculated values that were obtained by *Ab initio* quantum mechanical calculations using G4 with the SMD solvation model. Theoretical investigations based on quantum mechanical methods provide quantitative understandings of effects that result from halogenated functional groups and hydrogen bonding in the process of solvation. We found that quantum mechanical calculations can predict the aqueous phase free energies

127

of activation accurately and this may allow us to predict reaction rate constants for unknown compounds that have not been examined experimentally.

4.2 Introduction

The hydroxyl radical (HO•) is a highly reactive electrophile that reacts rapidly and nonselectively with most electron-rich sites on organic contaminants. The HO• potentially leads to complete mineralization of emerging contaminants in advanced oxidation processes (AOPs) (e.g., O₃/H₂O₂, UV/H₂O₂, UV/TiO₂) and natural waters (Westerhoff et al., 2005; Huber et al., 2003; Rosenfeldt and Linden, 2004). Among emerging contaminants, halogenated compounds are of serious concern (Eljarrat and Barceló, 2003; Woo et al., 2002; Eisenberg and Mckone, 1998) due to the widespread usage in industries and unknown adverse human and ecological effects. In particular, halogenated acetates are one of the major intermediates and byproducts that are appeared in AOPs at around neutral pH because of their lower reactivity with active radical species. However, due to the lack of understandings in detailed reactivity of these compounds with HO• (Fliount et al., 1997) and almost no experimental studies in examining Arrhenius kinetic parameters, there is no tool to predict the intermediates and products, and assess their human health effects based on thermochemical property and reaction kinetics. Accordingly, there is a need to investigate the detailed reactivity and develop a mechanistic model (Pfaendtner and Broadbelt, 2008) that can quickly assess their removal efficacy by AOPs.

A mechanistic model to evaluate the performance in AOPs includes the three critical components: (1) numerical methods that solve ordinary differential equations (ODEs), (2) algorithms that can predict reaction pathways, and (3) algorithms that can

128
predict reaction rate constants. The DGEAR algorithm (Hindmarsh and Gear, 1974) successfully solved the ODEs for the UV/ H_2O_2 kinetic models (Li et al., 2008; 2007; 2004; Crittenden et al., 1999). A reaction pathway generator for the aqueous phase AOPs was developed (Li and Crittenden, 2009). A group contribution method (GCM) has been recently developed (Minakata et al., 2009) to predict the aqueous phase HO• reaction rate constants for compounds with a wide range of functional groups in the datasets.

Because the GCM assumes that a functional group has approximately the same interaction properties under a given molecule, it disregards the changes of the functional group properties that can arise from the intramolecular environment by electronic pushpull effects, or by intramolecular hydrogen bond formation, or by steric effects. It is expected that these intramolecular electron-interactions might be very different between the gaseous and aqueous phases, and therefore, solvation effect that results from the surrounding water molecules should be considered for the aqueous phase reactions. Accordingly, it is customary to seek a linear relation between a reaction energy accounting solvation and the logarithm of the rate constant for reaction (Partington, 1951; Beckwith et al., 1992; Wold and Sjöström, 1978). We have developed linear free energy relationships (LFERs) between logarithms of the literature-reported HO• reaction rate constants and quantum mechanically calculated aqueous phase free energies of activation for neutral compounds for H-atom abstraction by HO• from a C-H bond and HO• addition to unsaturated C=C double bond (Minakata and Crittenden, 2010). The calculated free energies of activation in the aqueous phase were within ± 4.0 kcal/mol of those that were estimated from experimentally obtained Arrhenius activation energy and frequency factors.

129

When it comes to ionized compounds for aqueous phase molecular modeling, one must notice that the magnitudes of solvation free energies are much larger than those for the neutral compounds (Liu et al., 2010; Marenich et al., 2009; Kelly et al., 2006). The majority of the free energy of solvation is dominated by large electrostatic contributions (Marenich et al., 2009). In particular, the polarizability that results from the charge distribution at the transition state significantly changes the dipole moment and affects the process of solvation as compared to the viscosity or internal pressure (Tanko and Suleman, 1996). The large electrostatic contribution includes short-range and nonbulk electrostatics, as well as cavitation, exchange repulsion, dispersion, and disruption or formation of the nearby solvent structure (Marenich et al., 2009). Accordingly, entropy changes that arise from the solvent structure effect may be significant (Warren and Mayer, 2010; Mader et al., 2007). Because a pure dielectric continuum model (Cossi et al., 2003; Tomasi and Persico, 1994) includes only long range solute-solvent interaction in the bulk phase (Marenich et al., 2009) but the short-range and nonbulk electrostatics, the dielectric continuum model do not treat satisfactorily with the solvation process for ionized compounds.

Figure 4.1: Schematic picture of waters distributed in the cavity, first solvation shell and bulk phase for transition state for the reaction of HO• with acetate. Dotted line represents the hydrogen bond.

In addition to the difficulties in molecular modeling for the ionized compounds, the effects of functional groups (e.g., halogen atoms and deprotonated carboxylate) are not thoroughly elucidated yet (Aquino et al., 2002). For example, because of their strong electron-withdrawing ability and larger atom size of halogen atoms, there is a qualitative agreement that the halogenated functional groups decrease the overall reactivity of HO• in particular for the H-atom abstraction from a C-H bond (Minakata et al., 2009; Lal et al., 1988; Neta et al., 1969). For the carboxylic functional groups in the aqueous phase, formation of H-bond (i.e., short-range intermolecular interactions between water molecules and carboxylate functional group) can be expected to affect the overall reactivity significantly.

Not many experimental efforts have investigated the effect of solvation associated with the reaction energy and validate the quantum mechanically calculated thermochemical properties. Hermann's group and Monod et al. (2005) have reported the temperature-dependent aqueous phase HO• rate constants and thermochemical properties for various oxygenated compounds (Gligorovski, et al., 2009; Gligorovski and Herrmann, 2004; Herrmann et al., 2003, Ervens et al., 2005). Their data compilation is for atmospheric chemistry, and therefore, there is a significant lack of data for the aqueous phase contaminants (e.g., halogenated compounds, and ionized compounds). Fliout et al (1997) experimentally investigated the fate of halogenated acetate radicals (•CBr₂COOand •CCl₂COO-) and reactivity with other carbon centered radicals. They did not examine the thermochemical properties for these reactions. It is noted that the Arrhenius activation energy is obtained by the slope of logarithm of the reaction rate constant as a function of an inverse of temperature. Accordingly, obtaining the accurate thermochemical properties based on the Arrhenius parameters requires one careful investigation in the temperature using reliable methodology. It is commonly observed that the literature-reported E_a and A are scarce due to the diversity of the methodologies (Buxton et al., 1988).

In this study, temperature-dependent HO• reaction rate constants in the aqueous phase will be measured to obtain thermochemical properties for a series of halogenated acetates. Theoretical studies based on quantum mechanical methods will be conducted to reveal the function of halogenated functional groups toward the HO• reactivity and hydrogen bonding in the combination of explicit and implicit solvation model. The

132

experimentally obtained thermochemical properties will be compared with those that will be calculated based on the *Ab initio* quantum mechanical approaches.

4.3 Methods

4.3.1 Experimental

It is known that electron-pulse radiolysis coupled with standard time-resolved detection method is able to deliver reproducibility a short burst of energy as a function of nano- to micro-seconds that induces ionization and excitation among fast-kinetic studies in chemistry (von Sonntag and Schuchmann, 1997). In the past several decades, electron-pulse radiolysis has been used for measuring the uni-/bi-molecular reaction rate constants for various reactions that are induced by radical compounds (Buxton et al., 1988; Bielski and Cabelli, 1991). Followings are descriptions about the linear accelerator for the electron-pulse radiolysis, setup and experimental procedure.

4.3.1.1 Linear Accelerator (LINAC)

The linear accelerator (LINAC) electron pulse radiolysis system at the Radiation Laboratory, University of Notre Dame (NDRL) (Whitman et al., 1995) was used for determining all HO• reaction rate constants. Figure 4.2 represents the overall system of the LINAC that is comprised of electron accelerator, light source, sample flow cell, sample solution and data acquisition computer.

Figure 4.2: Overall system of Linear Electron Accelerator (LINAC)

This system has the following features (Whitman et al., 1995): (1) the system is designed to have very repeatable shot with low pre and post pulse radiation and give reproducible data, (2) the system has a ceramic envelope that is capable of withstanding 150 kV DC in air, stainless steel electrodes and vacuum parts, (3) the injector gun is followed by a high vacuum tee with ion pump, and isolation vacuum valve and a fast beam current monitor, (4) the accelerator is a 2 pi/3 mode, temperature stabilized guide with a tapered velocity buncher, (5) in order to maintain dose repeatability with $\pm 1\%$ between single pulse taken up to 30 minutes apart, the electron gun HV and control voltages and the PFN firing level are stabilized prior to triggering the pulse, (6) a water cooling system is employed to maintain the beam centerline components at $40\pm4°$ C. This system is also able to remove the heat from the klystron, modulator, and magnetic. The specification of the system is 2586 mHz of frequency and 18 mW maximum of input power. For the steady state operation, the system has 1.5 second of beam pulse width, 2 A of peak beam current and 6 MeV of energy. For the stored energy operation, the system ranges from 2 ns to 10 ns of beam pulse width, 4 A of beam current, 8 MeV of energy, less than 10 pC of dark current, ± 100 pS of pulse jitter and $\pm 1\%$ of dose stability (i.e., pulse to pulse) (Hug et al., 1999; Asmus 1984; von Sonntag and Schuchmann 1997). The accuracy of an individual radiation chemical experiment is generally considered to be about plus and minus 10%. Numerical values for a specific yield or rate constant are always obtained for at least three different scavenger concentrations. Error margins for the mean of such a serides of single measurements never exceed 3% (von Sonntag, 1987).

4.3.1.2 Flow Cell

The 10 mm of quartz flow cell is located at the center of electron beam. The flow rate can be adjusted from 1 mL/min to 10 mL/min. Through the experiments the setup of the flow rate was 3 mL/min. Each pulse radiation was 2 ns and the spectra were recorded up to 100 μ s. The flux of the solution was 3 cm/min. The solution moved 5×10^{-6} cm in 100 μ s. When comparing to the electron irradiation diameter (i.e., 0.5 cm), we assumed that the solution was not replaced during the 100 μ s of pulse radiation. All experimental data were taken by averaging 15 replicate pulses. The interval time of every pulse was 1.0 min, and therefore, the degradation products should be removed at the 3 ml/min of flow rate.

4.3.1.3 Radiolysis of Water

When water is irradiated by a fast electron injected from an accelerator, water is ionized immediately at approximately 10⁻¹⁶ seconds followed by the subsequent reactions (Buxton et al., 1988; Spinks and Woods, 1964; Schwarz, 1962):

$$H_2O \xrightarrow{\text{ionization}} H_2O^{\bullet \oplus} + e^{-}$$

$$(4.1)$$

$$\mathrm{H}_{2}\mathrm{O}^{\bullet}^{\oplus} \to \mathrm{HO}^{\bullet} + \mathrm{H}^{\oplus} \tag{4.2}$$

$$e^{-} \xrightarrow{\mathrm{H}_{2}\mathrm{O}} e_{aq}^{-} \tag{4.3}$$

$$H_2O^* \to H \bullet + HO \bullet \tag{4.4}$$

$$\mathbf{H} \bullet + \mathbf{H} \bullet \to \mathbf{H}_2 \tag{4.5}$$

$$e_{aq}^{-} + e_{aq}^{-} \rightarrow \mathrm{H}_{2} + 2\mathrm{HO}^{-} \tag{4.6}$$

$$\mathrm{HO}\bullet + \mathrm{HO}\bullet \to \mathrm{H}_2\mathrm{O}_2 \tag{4.7}$$

$$e_{aq}^{-} + O_2 \to O_2 \bullet^{-} \tag{4.8}$$

$$\mathrm{H}\bullet + \mathrm{O}_2 \to \mathrm{HO}_2 \bullet \tag{4.9}$$

Initial radiolysis products are produced via spur expansion and reactions. With expansions of spur via diffusion, a fraction of the compounds reacts together. In water, 10^{-7} second is the lifetime of a radical reacting at the diffusion-controlled state when the concentration of the solute is 10^{-3} mole/L. The overall stoichiometry (Buxton et al., 1988; Spinks and Woods, 1964) at 10^{-5} second (for the pH range from 3 to 11) is shown in equation.

$$H_{2}O \xrightarrow{\text{ionization}} 0.27 e_{aq}^{-} + 0.06 \,\mathrm{H}^{\oplus} + 0.28 \,\mathrm{HO} + 0.05 \,\mathrm{H}_{2} + 0.07 \,\mathrm{H}_{2}O_{2} + 0.27 \,\mathrm{H}_{3}O^{\oplus}$$
(4.10)

The numbers are the *G* values for species production and the *G* is defined in μ mol/J. Total radical concentrations that are produced by the pulse radiolysis are typically 2-4 μ M. To exclude the other radical species but HO• at near neutral pH, all solutions are saturated with gaseous N₂O (~ 24.5 mM) to quantitatively convert the hydrated electrons and hydrogen atoms that are formed into this radical (Buxton et al., 1988):

$$e_{(aq)}^{-} + N_2O + H_2O \rightarrow N_2 + OH^{-} + HO \bullet$$
 (4.11)

$$H\bullet + N_2 O \to HO\bullet + N_2 \tag{4.12}$$

Reaction rate constants for reactions (4.11) and (4.12) are 9.1×10^9 M⁻¹s⁻¹ and 2.1×10^6 M⁻¹s⁻¹, respectively (Buxton et al., 1988). At around neutral pH, the reaction (4.12) is several magnitude of order slower than other reactions, and therefore, is not complete on typical measurement timescales. Furthermore, hydrogen atom also reacts with the added SCN⁻ ($k = 2.3 \times 10^8$ M⁻¹s⁻¹, $t_{1/2} \approx 90$ µs, Mezyk and Bartels, 2005) to produce H(SCN)₂⁻⁺ (Elliot et al., 1988) following by CN• at around neutral pH and (SCN)₂⁺⁻ (Martin et al., 2008). However, while these reactions occur, the reaction (4.12) (i.e., N₂O pathway) is dominant and constant fraction (8-10%, Martin et al., 2008) of the initially produced hydrogen atoms are ensured to be converted to HO•. Accordingly, these side reactions should not affect main reactions for competition kinetics (see below) significantly.

The advantage of radiolysis method over other methods results in the fact that there is proportional relationship between the amount of energy absorbed by any component of the system and its electron fraction. As a result, in the dilute aqueous solution, all the energy is absorbed by the water and the yields of the primary radicals are always confirmed.

4.3.1.4 Competition Kinetics

Competition kinetics was used in pulse radiolysis when neither the primary radical nor the reaction product can be obtained directly. In two separate solutions, HO• reacts with each solution producing its product:

$$HO \bullet + S_1 \xrightarrow{k_1} P_1 \tag{4.13}$$

$$HO \bullet + S_2 \xrightarrow{k_2} P_2 \tag{4.14}$$

From each reaction, the decay of the solution S_1 and S_2 can be expressed as below:

$$-\frac{d[\mathbf{S}_1]}{dt} = k_1[\mathbf{S}_1][\mathbf{HO}\bullet]$$
(4.15)

$$-\frac{d[\mathbf{S}_2]}{dt} = k_2[\mathbf{S}_2][\mathrm{HO}\bullet]$$
(4.16)

Integration of equations (4.15) and (4.16) from time 0 to time t yields:

$$\int_{0}^{t} \frac{d[S_{1}]}{[S_{1}]} = \int_{0}^{t} \frac{k_{1}}{k_{2}} \frac{d[S_{2}]}{[S_{2}]}$$
(4.17)

$$\Leftrightarrow \ln\left(\frac{[\mathbf{S}_1]_0}{[\mathbf{S}_1]_t}\right) = \frac{k_1}{k_2} \ln\left(\frac{[\mathbf{S}_2]_0}{[\mathbf{S}_2]_t}\right)$$
(4.18)

When the HO• reaction rate constant with S_2 , k_2 , is known, k_1 will be obtained by plotting the decay of both S_1 and S_2 concentration.

In practical manner, if there is no significant transient absorbance over the range from 250 - 800 nm, competition kinetics with use of thiocyanate ion (SCN⁻) is effective. SCN⁻ ion reacts with HO• forming radical ion (SCN)₂[•]. The reactions that are involved in the competition kinetics are as below:

$$HO\bullet + X \rightarrow products \tag{4.19}$$

$$\mathrm{HO}^{\bullet} + \mathrm{SCN}^{-} \to (\mathrm{HOSCN})^{\bullet}$$

$$(4.20)$$

$$(\text{HOSCN})^{\bullet} \to \bullet \text{SCN} + \text{OH}^{\bullet} \tag{4.21}$$

•SCN + SCN⁻
$$\rightarrow$$
 (SCN)₂⁻ (4.22)

 $(SCN)_2^{\bullet}$ indicates the strong absorbance at wavelength of 472 nm (Milosavljevic et al., 2005). The second order reaction rate constant of hydroxyl radical with $(SCN)_2^{\bullet}$ is known as 1.05×10^{10} M⁻¹s⁻¹ (Buxton et al., 1988). We can obtain the following relations from the reaction rates:

$$[HO\bullet + SCN^{-}] : [HO\bullet + X] = k_2 [SCN^{-}] : k_1 [X] = A_{[SCN^{-}]+[X]} : (A_{[SCN^{-}]} - A_{[SCN^{-}]+[X]}) (4.23)$$

$$\frac{1}{A_{[SCN^{-}]+[X]}} = \frac{1}{A_{[SCN^{-}]}} + \frac{k_{1}[X]}{A_{[SCN^{-}]}k_{2}[SCN^{-}]}$$

$$\Leftrightarrow \frac{A_{[SCN^{-}]}}{A_{[SCN^{-}]+[X]}} = 1 + \frac{k_{1}[X]}{k_{2}[SCN^{-}]}$$
(4.24)

Therefore, the following relationship can be obtained:

$$\frac{\left[(\text{SCN})_{2}^{\bullet}\right]_{0}}{\left[(\text{SCN})_{2}^{\bullet}\right]} = 1 + \frac{k_{1}[X]}{k_{2}[\text{SCN}^{\bullet}]}$$
(4.25)
where $\left[(\text{SCN})_{2}^{\bullet}\right]_{0}$ is the absorbance of blank solution. $\left[(\text{SCN})_{2}^{\bullet}\right]$ is the absorbance
obtained in the presence of compound *X*. The [X] is the concentration of compound *X*.
[SCN⁻] is the concentration of thiocyanate ion.

4.3.1.5 Procedures

All chemicals that were used for the reaction rate constant measurements were of the highest purity available (>99%) and used as received. Solutions of these chemicals were made by a Millipore Milli-Q system. All solutions were continuously sparged with high-purity N_2O gas to remove dissolved oxygen. The SCN⁻ solution that was used for all experiments was 0.3 mM with 20 mM of buffer solution at pH = 6.9-7.0. The

temperature of solution was severely controlled using water baths that have the heating unit, and both solution and water bath temperatures were continuously monitored with the thermostat during the experiments. The measurements were repeated 15 times to obtain each absorbance at each dose. At each concentration, the 15 times measurement at the same dose was repeated 4 times to obtain average value.

4.3.1.6 Thermochemical Properties

According to the transition state theory (TST) (Eyring, 1935), the reaction rate constant can be expressed in equation (4.24) using thermochemical properties at the transition state (i.e., free energy, entropy, and enthalpy of activation, respectively).

$$k = \frac{\kappa T}{h} \exp\left(\frac{-\Delta G_{\rm rxn}^{\rm act}}{RT}\right) = \frac{\kappa T}{h} \exp\left(\frac{-\Delta S_{\rm rxn}^{\rm act}}{R}\right) \exp\left(\frac{-\Delta H_{\rm rxn}^{\rm act}}{RT}\right)$$
(4.26)

where *k* is reaction rate constant, $M^{-1}s^{-1}$, κ is Boltzman constant, *T* is absolute temperature, *h* is plank constant, *R* is universal gas constant, and ΔG_{rxn}^{act} , ΔS_{rxn}^{act} and ΔH_{rxn}^{act} are free energy, entropy and enthalpy of activation (Pu et al., 2006) that are obtained from the experiments, respectively. The equation (4.26) above represents the difference in the respective thermodynamic properties between the transition state and the reactants, when all are in their standard states (i.e., at unit concentration). It should be noted that the thermodynamic properties associated with the transition state are more numerous and complicated. Putting logarithm of both side of equation (4.26) yields the equation (4.27), and the left side of this equation equals to E_a/RT from the Arrhenius equation.

$$\ln k = \ln \frac{\kappa}{h} + \ln T + \ln K^{\neq}$$
(4.27)

According to the Clapeyron equation shown in the equation (4.28), the experimental Arrhenius activation energy, E_a , relates to the internal energy of activation ΔE^{act} and enthalpy of activation ΔH^{act}

$$\frac{d\ln k}{dT} = \frac{1}{T} + \frac{d\ln K^{\neq}}{dT}$$
(4.28)

$$E_a = \Delta E^{\rm act} + RT \tag{4.29}$$

Because the internal energy, ΔE , is expressed in equation (4.30), the internal energy of activation can be approximately equal to the enthalpy of activation assuming that the volume of activation, ΔV^{act} , is nearly zero in solution.

$$\Delta E = \Delta H - P \Delta V = \Delta H - \Delta n R T \tag{4.30}$$

As a consequent, experimental Arrhenius activation energy can be expressed in equation (4.31):

$$E_a = \Delta H_{\rm rxn}^{\rm act} + RT \tag{4.31}$$

From the equation (4.31) and Arrhenius expression, the Arrhenius frequency factor can be expressed in the following equation (4.32):

$$A = \frac{e\kappa T}{h} \exp\left(\frac{-\Delta S_{\rm rxn}^{\rm act}}{R}\right)$$
(4.32)

where e = 2.72

The $\Delta G_{\rm rxn}^{\rm act}$, can be calculated as below:

$$\Delta G_{\rm rxn}^{\rm act} = \Delta H_{\rm rxn}^{\rm act} - T \Delta S_{\rm rxn}^{\rm act} \tag{4.33}$$

4.3.2 Group Contribution Method

The detailed descriptions of group contribution method (GCM) can be found in our previously published paper (Minakata et al., 2009). In short, according to the GCM, the rate constant for H-atom abstraction, k_{abs} , can be written in equation (4.34)

$$k_{\rm abs} = 3\sum_{0}^{I} k_{\rm prim}^{0} X_{\rm R_{1}} + 2\sum_{0}^{J} k_{\rm sec}^{0} X_{\rm R_{1}} X_{\rm R_{2}} + \sum_{0}^{K} k_{\rm tert}^{0} X_{\rm R_{1}} X_{\rm R_{2}} X_{\rm R_{3}} + k_{\rm R_{4}}$$
(4.34)

where, *I*, *J*, and *K* denote the number of the fragments CH_3R_1 , CH_2R_2 , and $CHR_1R_2R_3$, respectively, k_{prim}^0 , k_{sec}^0 , and k_{tert}^0 are the group rate constants that represent H-atom abstraction from the primary, secondary, and tertiary C-H bond as expressed in equations (4.35)-(4.37).

$$k_{\rm prim}^{0} = A_{\rm prim}^{0} e^{-\frac{E_{a,\rm prim}^{0}}{RT}}$$
(4.35)

$$k_{\rm sec}^{0} = A_{\rm sec}^{0} e^{\frac{E_{a,\rm sec}^{0}}{RT}}$$
(4.36)

$$k_{\text{tert}}^0 = A_{\text{tert}}^0 e^{-\frac{E_{a,\text{tert}}^0}{RT}}$$
(4.37)

 k_{R_4} is defined for the HO• interaction with the functional group R₄ (e.g., -OH and -COOH). The group contribution factor, X_{R_i} , that represents the influence of functional group R_i is defined in equation (4.38).

$$X_{\rm R_i} = e^{\frac{E_{a,\rm abs}^{\rm R_i}}{RT}}$$
(4.38)

and $E_{a,abs}^{R_i}$ is the contribution of the functional groups and is defined as a group contribution parameter due to the functional group R_i for H-atom abstraction. In this study, we will calibrate new group rate constants (k_{Br} , k_I , $k_{CH3COO-}$) and group contribution factors (X_{-COO-} , X_{-F} , X_{-I} , X_{-CF2-}) that were not determined due to the lack of literaturereported experimental rate constants. The objective function (OF) in equation (4.39) was minimized using the genetic algorithms (Goldberg, 1989; Charbonneau and Knapp, 1995).

$$OF = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{k_{\exp,i} - k_{cal,i}}{k_{\exp,i}} \right]^2}$$
(4.39)

Here $k_{exp,i}$ and $k_{cal,i}$ are the experimental and calculated reaction rate constant of compound *i*, respectively, and *N* is the number of the rate constants.

4.3.3 Theoretical Basis

The Ab initio molecular orbital and density functional theory (DFT) based on quantum mechanical calculations were performed using Gaussian09 (Frisch et al., 2009). The Berny geometry optimization algorithm (Schlegel, 1982) using GEDIIS (Li and Frisch, 2006) in redundant internal coordinate optimized the geometry of reactants, complex compounds and products. Transition states were found as first-order saddle points on the potential energy surface (PES). The quadratic synchronous transit method (QST) (Peng and Schlegel, 1993; Peng et al., 1996) was used to locate many of the transition states. All transition states were verified by a single negative frequency. It is known that the harmonic oscillator approximation incorrectly treats low-frequency torsional modes due to the internal rotation (Pitzer and Gwinn, 1942). However, it has recently been shown that the internal rotation correction has a very minor effect on the activation energy, even for molecules with many dihedrals (Pfaendtner and Broadbelt, 2007; Cauter et al., 2006). Additionally, low-frequency vibrational modes contribute little to the vibrational contribution to the internal energy. Therefore, the contribution of anhamonicity from hindered rotors can be neglected for studies in which the free energy

of activation is the only property desired (Pfaendtner and Broadbelt, 2008). Basis set superposition error (BSSE) was not considered because of the following reasons: 1) the BSSE may not be too large as compared to the transition state calculations, 2) methods for the BSSE correction are still controversial, and 3) the BSSE corrections by the counterpoise require the additional expensive calculations. The effect of tunneling was included using the Wigner's equation (Wigner, 1932).

For the aqueous phase, universal solvation model, SMD (Marenich et al., 2009), was used for calculating the aqueous phase free energy of activation. SMD includes two components: 1) the bulk electrostatic contribution that results from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics associated with the integral equation-formalism polarizable continuum model (IEF-PCM) and 2) the contribution that arises from short-range interactions between the solute and solvent molecules in the first solvation shell. The atomic radii used the SMD-Coulomb for the polarizable continuum model calculations, which is called the intrinsic Coulomb radii. The van der Waals surface was used for the cavity formation using the GePol algorithms (Pascual-Ahuir and Silla, 1990). The default settings were used for the GePol algorithms.

Three High Performance and Cluster Computing Resources were used: (1) IBM BladeCenter H (16 blades × 2 sockets × Core2 Quad) with Red Hat Enterprise Linux 5 of Operation System; (2) Dell PowerEdge 1850 (2×3.2 GHz Pentium4 Xenon EMT64) with Red Hat Enterprise Linux 5 of Operation System and (3) 6 Core-AMD Opteron 8431 processors Atlus 2704 (24×2.34 GHz) with Red Hat Enterprise Linux 5. First two systems are maintained by College of Computing at Georgia Institute of Technology and third system is by Office of Information Technology at Georgia Tech. In addition to these computing resources, we used a user-based workstation: Intel Core i7-960 3.2GHz Quad-Core with Red Hat Enterprise Linux 5 of OS.

4.3.4 Linear Free Energy Relationships

LFERs bridge kinetics and thermochemical properties. The kinetic information is the experimentally obtained or literature-reported HO• reaction rate constants, while the thermochemical properties are quantum mechanically calculated free energies of activation. According to LFERs, log of the rate constant and log of the equilibrium constant should be linearly related (Brezonik, 2002). Transition state theory (TST) (Eyring et al., 1935) states that log of rate constant and free energy of activation are linearly related. For the same reaction mechanisms, free energies of activation and rate constants for an arbitrary and a reference reaction are related by equation (4.40):

$$\log_{10} k_{\rm I} - \log_{10} k_{\rm R} = -\rho \left(\Delta G_{\rm rxn,I}^{\rm act} - \Delta G_{\rm rxn,R}^{\rm act} \right) + \sigma \tag{4.40}$$

where $k_{\rm I}$ and $k_{\rm R}$ are the reaction rate constants, M⁻¹s⁻¹, for an arbitrary reaction, I, and a reference reaction, R, respectively; ρ denotes coefficients for the difference in the free energy of activation; σ is a constant; and $\Delta G_{\rm rxn,I}^{\rm act}$ and $\Delta G_{\rm rxn,R}^{\rm act}$ are the free energies of activation, kcal/mol, (Pu et al., 2006) for reactions I and R, respectively.

The quantum mechanically calculated free energy of activation in the aqueous phase, $\Delta G^{\neq}_{rxn,aq}$, which is defined as a quasithermodynamic molar free energy of activation (Pu et al., 2006) at a given temperature *T*, is given by

$$\Delta G_{\rm rxn,aq}^{\neq} = G_{\rm aq}^{\neq} - G_{\rm reactants,aq} \tag{4.41}$$

where G_{aq}^{\neq} is a quasithermodynamic quantity, kcal/mol, that indicates the free energy of

the transition state, and $G_{\text{reactants,aq}}$ is the molar free energy of reactants, kcal/mol. $\Delta G_{\text{rxn}}^{\text{act}}$ can be related to $\Delta G^{\neq}_{\text{rxn,aq}}$ using the extrathermodynamic contribution to the free energy of activation (Pu et al., 2006), ΔG_{extra} , kcal/mol, as shown in equation (4.42):

$$\Delta G_{\rm rxn}^{\rm act} = \Delta G^{\neq}_{\rm rxn,aq} + \Delta G_{\rm extra} \tag{4.42}$$

where

$$\Delta G_{\text{extra}} = -RT \ln\gamma(T) \tag{4.43}$$

 $\gamma(T)$ is a transmission coefficient that represents the effect of tunneling at temperature T. When a hydrogen atom is involved in a reaction, nuclear quantum effects, in particular quantized vibrations and tunneling, become important. Tunneling takes place when some systems pass through the transition state with less than the quantized energy. It should be noted that because the transition state is a metastable, it does not have quantized energy levels. To a good approximation, however, all bound modes of a potential energy surface can be assumed to have a quantized energy requirement (Wigner, 1932), and this is validated by accurate quantum dynamics (Chartfield et al., 1992). The free energy change associated with moving from a gaseous phase of 1 atm to an aqueous phase concentration of 1 M (i.e., 1.89 kcl/mol (Liptak and Shields, 2001)) was included. The solvent cage effects were included according to the corrections that were proposed by Okuno (1997), taking into account the free volume (FV) theory (Benson, 1982). These corrections are in good agreement with those independently obtained by Ardura et al (2005) and have been successfully used by other authors. The $\Delta G^{\neq}_{rxn,aq}$ decreases by 2.96 kcal/mol for a bimolecular reaction at 298K, with respect to the gaseous phase free energy of activation. This lowering is expected because the cage effects of the solvent reduce the entropy loss associated with any addition reaction or transition state formation

in reactions with molecularity equal to or greater than 2. Therefore, if the translational degrees of freedom in solution are treated as they are in the gaseous phase, the cost associated with their loss when two or more molecules from a complex system in solution is overestimated in case of the implicit continuum solvation model, and consequently, these processes are kinetically overpenalized in solution, leading to rate constants that are artificially underestimated. The Gaussian-4 theory (G4) (Curtiss et al., 2007) using the SMD solvation model (Marenich et al., 2009) was used for calculating $\Delta G^{\neq}_{rxn,aq}$ and ΔG_{extra} . The G4 theory includes the geometry optimization at the B3LYP/6-31G(2df,p), 0.9854 of a scaled factor for the zero-point energy (ZPE) frequency calculations, and several combinations of high level complementary single-point energy calculations.

4.4 Results and Discussion

4.4.1 Experimental Section

4.4.1.1 Hydroxyl Radical Reaction Rate Constants

The rate constants, Arrhenius parameters, and calculated thermochemical properties are summarized in Table 4.1. Typical kinetic data for chloroacetate that were obtained at 475 nm of wavelength and room temperature (22°C) are shown in Figure 4.3. An increased in the maximum (SCN)₂⁻ absorption intensity was observed when chloroacetate was diluted by the SCN⁻ solution. The transformed plot shown in Figure 4.3 gives a weighted linear fit corresponding to a reaction rate constant of $k = (1.61 \pm 0.07) \times 10^8 \text{ M}^{-1}\text{s}^{-1}$. Figure 4.4 compares the kinetic data of chloroacetate, dichloroacetate, and trichloroacetate. The observed errors are within ±10%, which arises from the measurement precision (e.g., electron beam stability from the LINAC) and the chemical solution (e.g., purity, dilution).

	temp,	k, 1111	referece	E.v.	A,	ΔS^{act}_{EXI}	AH ^{act} NU 10 10 10	ΔG^{act}_{E00}	$\Delta G^{*}_{ren, sq}$
	ې	M -8		kJ/mol (Kcal/mol)	M s	J/(mol·K) [cal/(mol·K)]	kJ/mol (kcal/mol)	kJ/mol (kcal/mol)	kJ/mol (kcal/mol)
	23.0	$(1.61\pm0.07) \times 10^8$		14.1 ± 0.2 (3.37 ± 0.05)	$(5.20\pm0.26)\times10^{10}$	-48.1 ± 0.40 (-11.5 ± 0.10)	11.6 ± 0.20 (2.77 ±0.05)	25.9±0.08 (6.19±0.02)	31.0 (7.4)
	30.0	$(2.07\pm0.03) \times 10^8$	this stude.						
000115000	40.0	$(2.36\pm0.06) \times 10^8$	finnis erin						
	50.0	$(2.66\pm0.08)\times10^8$							
	22.5	$(1.33\pm0.08) \times 10^{8}$		20.1 ± 0.4 (4.80±0.10)	$(4.98\pm0.39)\times10^{11}$	$-29.3\pm0.64(-7.00\pm0.15)$	17.6 ± 0.35 (4.20 ±0.08)	26.3±0.16 (6.28±0.04)	n.a.
00000110	30.0	$(1.91\pm0.08) \times 10^8$	akia amedo						
CI ⁵ HCCOO	40.0	$(2.13\pm0.20)\times10^{8}$	finns strind						
	50.0	$(2.82\pm0.08) \times 10^8$							
	22.5	$(5.50\pm0.03) \times 10^7$		33.3±0.1 (7.95±0.02)	$(4.84\pm0.21)\times10^{13}$	8.76 ± 0.34 (2.09 ±0.08)	30.8±0.07 (7.36±0.02)	28.2±0.04 (6.73±0.01)	97.1 (23.2)
.0000	30.0	$(1.09\pm0.03) \times 10^8$	at is such.						
ci ³ ccoo	40.0	$(1.27\pm0.03) \times 10^8$	this study						
	50.0	$(1.94\pm0.02) \times 10^8$							
	23.0	$(1.85\pm0.06) \times 10^8$		23.6 ± 0.03 (5.64 ±0.01)	$(2.87\pm0.15)\times10^{12}$	-14.7 ± 0.41 (-3.51 ± 0.10)	21.1±0.03 (5.04±0.01)	25.5±0.1 (6.09±0.02)	22.6 (5.4)
-000011 4	30.6	$(2.66\pm0.10)\times10^8$							
Br2HLLUU	40.0	$(3.35\pm0.20)\times10^8$	truis strudy						
	51.0	$(4.34{\pm}0.12)\times10^8$							
	23.0	$(1.48\pm0.06) \times 10^{8}$		22.7±0.33 (5.42±0.08)	$(1.63\pm0.14)\times10^{12}$	-19.4 ± 0.70 (-4.63 ± 0.17)	20.2±0.33 (4.82±0.08)	26.0±0.12 (6.21±0.03)	53.2 (12.7)
.00000 4	30.6	$(2.31\pm0.10) \times 10^8$							
Biscou	40.0	$(2.70\pm0.10) \times 10^8$	truis study						
	50.0	$(3.35\pm0.10)\times10^{8}$							
	23.0	$(2.89\pm0.50) \times 10^7$		53.3±2.61 (12.7±0.62)	$(8.38\pm4.95)\times10^{16}$	70.7±3.86 (16.9±0.92)	50.9±2.61 (12.2±0.62)	30.0±1.45 (7.11±0.35)	36.8 (8.8)
F ₂ HCCOO ⁻	30.0	$(6.30\pm1.10) \times 10^7$	this study						
	40.0	$(9.63\pm1.06)\times10^7$							
	22.5	$(4.11\pm0.10) \times 10^9$		29.5±0.59 (7.05±0.14)	$(6.52\pm1.86)\times10^{14}$	30.4±2.09 (7.26±0.50)	27.0±0.59 (6.45±0.14)	18.0 ± 0.03 (4.30±0.01)	
ICH COO.	30.0	$(5.11\pm0.02) \times 10^{9}$	this study						
10112000	40.0	$(7.03\pm0.10) \times 10^9$	famile errn						
	50.0	$(1.16\pm0.05) \times 10^{10}$							
HCOO-	25.0	$(2.4\pm0.4) \times 10^{9}$	Ervens et al., 2003	9±5 (2.15±1.19)	$(7.9\pm0.7)\times10^{10}$	-45 ± 4 (-10.7 ± 0.96)	7 ± 4 (1.67 ±0.96)	20±13 (4.8±3.1)	10.8 (2.57)
		3.1×10^9	Chin and Wine, 1994	10 (2.39)	2.0×10^{11}	-37 (-8.84)	7.5 (1.79)	18.5 (4.4)	
		4.3×10^9	Elliot et al., 1990	4 (0.96)	2.2×10^{10}	-55 (-13.1)	1.5 (0.48)	18.0(4.3)	
		3.8×10^9	Elliot and Simsons, 1994	8.5 (2.03)	1.3×10^{11}	-40 (-9.55)	6 (1.43)	18.1 (4.3)	
CH3COO-	25.0	7.0×10^{7}	Chin and Wine, 1984	15 (3.58)	2.8×10 ¹⁰	-53 (-12.7)	13 (3.10)	28 (6.7)	31.1 (7.44)
CH3CH2COO-	25.0	$(7.2\pm0.4) \times 10^{8}$	Ervens et al., 2003	$15\pm4(3.58\pm0.96)$	$(3.2\pm0.2)\times10^{11}$	-33±2 (-7.88±0.48)	13±3 (3.10±0.72)	22±7 (5.3±1.7)	13.0 (3.11)
HOOCCH2COO-	25.0	$(6\pm 1) \times 10^7$	Ervens et al., 2003	11±5 (2.93±1.19)	$(3.2\pm0.4)\times10^{9}$	-72±9 (-17.2±2.15)	9±4 (2.15±0.96)	30±17 (7.2±4.1)	25.7 (6.15)
-00C(CH2)2C00-	25.0	$(5.0\pm0.5) \times 10^{8}$	Ervens et al., 2003	11±5 (2.93±1.19)	$(5.0\pm0.4)\times10^{10}$	-48±4 (-11.5±0.96)	9±4 (2.15±0.96)	23±12 (5.5±2.9)	15.1 (3.60)
CHOCOO-	25.0	$(2.6\pm0.9) \times 10^{9}$	Ervens et al., 2003	36±8 (8.60±1.91)	$(6.0\pm0.4)\times10^{15}$	-48±3 (-11.5±0.72)	34±7 (8.12±1.67)	19±5 (4.5±1.2)	n.a.
CH3COCOO-	25.0	$(7\pm 2) \times 10^{8}$	Ervens et al., 2003	$19\pm4(4.54\pm0.96)$	$(1.3\pm0.1)\times10^{12}$	-21±2 (-5.02±0.48)	17±3 (4.06±0.72)	23±7 (5.5±1.7)	28.2 (6.73)
CH3CH(OH)COO-	22.2	$(7.77{\pm}0.50)\times10^8$	Martin et al., 2008	10.8±0.35 (2.57±0.08)	6.1×10^{10}	-46.8 (-11.2)	8.28 (1.98)	22.2 (5.31)	

Table 4.1: Experimentally obtained temperature-dependent HO• rate constants and

Figure 4.3: Kinetics of $(SCN)_2^{\bullet}$ formation at 472 nm for N₂O saturated 3.00×10^{-4} M KSCN solution containing 0 (\blacksquare), 1.56 (\diamondsuit), 2.41(\triangledown), 3.48(Δ), and 5.01 (\bigcirc) mM ClCH₂COO⁻

Figure 4.4: Competition kinetics plots for hydroxyl radical reaction with chloroacetate, dichloroacetate and trichloroacetate, respectively, using SCN⁻ as a standard. The error bar represents 95% of confidential values

4.4.1.2 Arrhenius Parameters

Figure 4.5 plots logarithms of k versus inverse of temperature for each compound. For all compounds that were investigated in this study, linear increases of the logarithms of reaction rate constants with the increase of inverse of the temperature were observed. The Arrhenius parameters, A and E_a , are obtained from the values on the y-axis and the slope of these linear relationships, respectively, and summarized in Table 4.1.

The experimentally obtained Arrhenius parameters are consistent with the general electron withdrawing ability of halogenated functional groups. For example, the experimentally obtained E_a for mono-, di- and tri-chloroacetate were 14.1±0.2, 20.1±0.4 and 33.3 \pm 0.1 kJ/mol, respectively. As the increase of chlorine atoms, the E_a increases due to the stronger influence of electron-withdrawing ability that is derived from the chlorine functional group, and hence the rate constant decreases. When comparing E_a of di-fluoro, di-chloro and di-bromo acetate, the experimentally obtained E_a were 53.3±2.61, 20.1±0.4 and 23.6±0.03 kJ/mol, respectively. Although the obtained temperaturedependent reaction rate constants were consistent with the trend of electron-withdrawing ability (i.e., $k_{\text{F2HCCOO-}} < k_{\text{Cl2HCCOO-}} < k_{\text{Br2HCCOO-}}$), the trend of E_a is not consistent with the Taft constants (i.e., $\sigma^* = 3.19$, 2.94 and 2.80 for fluorine, chlorine and bromine, respectively (Karelson, 2000)) that represent the electron-withdrawing ability of functional group. This inconsistency probably results from the underestimation of the E_a for di-chloroacetate. If the impact of single chlorine atom to reduce the overall E_a is proportional to number of chlorine atoms, the E_a for di-chloroacetate would be approximately 24 kcal/mol. Accordingly, this would lead to the consistent relation with the E_a for di-fluoro and di-bromo acetates.

Figure 4.5: Plot of logarithm of *k* versus inverse of temperature

A comparison of obtained *A* values gives an insight of reaction mechanisms. Under the same reaction mechanism, it is typical that the *A* is within the close range of magnitude. We obtained the *A* for mono-chloro, di-chloro, di-bromo and tri-bromo acetate in the range from 10^{10} to 10^{12} M⁻¹s⁻¹, while the *A* for tri-chloro and iodo-acetate ions is several orders of magnitude larger than this. This is probably because the former is H-atom abstraction reaction and the latter is electron transfer reaction mechanisms. Evans et al (2003) examined the *A* in the range of magnitude from 10^{10} to 10^{12} for H-atom abstraction from a C-H bond of the linear aliphatic oxygenated compounds. They excluded compounds that had 10^{14} - 10^{15} of *A* because of electron-transfer reactions. The

4.4.1.3 Thermochemical Properties of Reactions

Table 4.1 includes the ΔG_{rxn}^{act} , ΔH_{rxn}^{act} and ΔS_{rxn}^{act} for those reactions that are calculated based on the experimentally obtained E_a and A. Thermochemical properties that are obtained from the experiments give interesting insights. A linear relation is observed between the logarithms of the obtained reaction rate constants and the free energies of activation, ΔG_{rxn}^{act} , for ionized compounds (Figure 4.6) as we previously observed for the neutral compounds (Minakata and Crittenden, 2010). A least-square fit provides the LFER: $\log k_{\rm I} - \log k_{\rm R} = -0.741$ ($\Delta G^{\rm act}_{\rm I} - \Delta G^{\rm act}_{\rm R}$) + 0.0001 (N=13, r^2 =0.978), whereas the LFER for neutral compounds was $\log k_{\rm I} - \log k_{\rm R} = -0.542$ ($\Delta G^{\rm act}_{\rm I} - \Delta G^{\rm act}_{\rm R}$) + 1.074 (N=37, r^2 =0.817) (Minakata and Crittenden, 2010). The reference reaction for the LFER of ionized compounds was the reaction of HO• with acetate.

____ K,.....

Figure 4.6: LFERs obtained from experiments, calculations at G4 and the SMD solvation model, and calculations that include two explicit water molecules. 1: formate; 2: propionate; 3: malonate; 4: succinate; 5: chloroacetate; 6: difluoroacetate; 7: dibromoacetate; 8: pyruvate; 9: dichloroacetate; 10: acetate; 11: glyoxylate; 12: trichloroacetate; 13: tribromoacetate; 14: iodoacetate; 15: lactate (note that the compound *#* is consistent for other Figures though this chapter).

The enthalpy of activation, ΔH_{rxn}^{act} , for halogenated acetates are in the range from 2.8 kcal/mol to 12.2 kcal/mol, which is relatively larger than those that are obtained from the literature-reported experimental values for the various acetates. This is probably because the halogenated functional groups that represent strong electron-withdrawing effect raises the barrier height. It is commonly assumed that for the same reaction group, the change of entropy is little so that the enthalpies are often used as thermodynamic properties that relate to Arrhenius activation energy (Pfaendtner and Broadbelt, 2008) using the Evans-Polanyí relation (Evans and Polanyí, 1938). However, when the entropy

contribution is significant (see isokinetic relation in Figure 2) due to the solvent effect and for the reactions that are involved in ionized compounds causing tighter binding of nearby solvent molecules, and polar molecules that results from the electrostatic contribution and loss of entropy, free energy change should be considered. This is verified for H-atom abstraction reactions of iron complexes (Mader et al., 2007). Detailed examination of the source of entropic contribution will be given in the theoretical section.

Figure 4.7: Isokinetic relation between the experimentally obtained enthalpy and entropy of activation.

4.4.2 Update of Group Contribution Method

The experimentally obtained reaction rate constants in this study are used to

recalibrate the group rate constants and group contribution factors that were not

determined in the previous study (Minakata et al., 2009). New group rate constants and

group contribution factors are calibrated and summarized in Table 4.2. The molecules that were used for the calibration are summarized along with the experimental and calculated rate constants in Table 4.3. All calibrated rate constants except propionate are within the $0.5 \le k_{cal}/k_{exp} \le 2.0$. When compared to the group rate constant for the carboxylic functional group (i.e., k_{COOH}), the k_{COO} is two magnitude of order larger. The magnitude of k_{COO} can be verified with the rate constant of oxalate ion di-anion $(k=1.6\times10^8 \text{ M}^{-1}\text{s}^{-1}$ (Ervens et al., 2003)) and mono-anion $(k=1.9\times10^8 \text{ M}^{-1}\text{s}^{-1}$ (Ervens et al., 2003)). The calibrated group rate constants are consistent with the general electrondonating and withdrawing ability (i.e., Taft constant).

Once group rate constants and group contribution factors are calibrated, they are used to predict the rate constants that are obtained in this study. Table 4.3 includes the predicted rate constants for halogenated acetates and acetate ions. The SD is 0.318. A total of three compounds such as CHOCOO⁻, CH₃COCOO⁻ and CHCl₂COO⁻ are out of our error goal (i.e., $0.5 \le k_{cal}/k_{exp} \le 2.0$).

Group rat	Group rate constant $(\times 10^{-7} \text{ M}^{-1} \text{s}^{-1})$								
k I	360								
k coo-	3.97								
k Br	0.362								
Group contribution factor, X									
-COO-(ion)	0.184								
-F	0.119								
-I	0.166								
-CF2-	0.00003								

Table 4.2: Calibrated group rate constants and group contribution factors

group		formula	compound	kexp	kcal	((k exp-k cal)/k exp)2	$k \operatorname{cal}/k \exp$
halogenated acetate	435	I2-CH2	diiodomethane	6.30E+09	7.23E+09	0.02170	-0.15
	436	I-CH2-COO-	iodoacetate	4.11E+09	3.67E+09	0.01142	0.11
	437	ICH2C1	chloroiodomethane	4.00E+09	3.63E+09	0.00838	0.09
	438	CH3COO-	acetate	7.30E+07	1.05E+08	0.18640	-0.43
	439	CH3CH2COO-	propionate	7.20E+08	3.15E+08	0.31651	0.56
	440	F-CH2-COO-	fluoroacetate	2.89E+07	2.24E+07	0.05104	0.23
	441	CI3CCOO-	trichloroacetate	5.50E+07	3.97E+07	0.07768	0.28
	442	CF3-CHC1Br	Halothane	1.30E+07	1.49E+07	0.02070	-0.14
	443	CHF2-O-CF2-CHCIF	Enflurane	9.50E+06	1.01E+07	0.00442	-0.07
	444	CF3-CHC1-O-CHF2	Isoflurane	2.40E+07	2.44E+07	0.00031	-0.02
	445	H3C-O-CF2-CHC12	Methoxyflurane	8.30E+07	1.35E+08	0.38627	-0.62
	446	Br3CCOO-	tribromoacetate	1.48E+08	1.48E+08	0.00001	0.00

Table 4.3: Molecules and rate constants that were used for the calibration

4.4.3 Theoretical

4.4.3.1 Ab initio Quantum Mechanical Approach

There is a tradeoff between computational accuracy and demand. To seek reasonable approach, we compared a limited number of methods and basis sets for HO• reactions in both gaseous and aqueous phases. Table 4.4 summarizes quantum mechanically calculated gaseous and aqueous phase barrier height and free energy of activation for reaction of HO• with acetate. The observed gaseous phase reactions are exergonic (i.e., $\Delta G^{\neq}_{rxn,gas} < 0$). This is consistent with the results from the reaction energies of HO• with glycine anions (Štefanić et al., 2009). The agreement among G4, CCSD(T)/6-31++G(d,p) and QCIST(T)/6-31++G(d,p) for the gaseous phase reactions is encouraging. The G4 theory significantly reduces the computational cost with the similar accuracy to the coupled cluster and configuration interaction methods in calculating the thermochemical properties. Aqueous phase reactions are found to be exergonic (i.e., $\Delta G^{\neq}_{rxn,gas} > 0$). G4 and M05-2X/6-31+G(d,p) give similar values to the experimentally obtained literature-reported value (Chin and Wine, 1994). It was found that our previously established approach (i.e., G3 with COSMO-RS) (Klamt, 1996 and Klamt et al., 1998) significantly overestimates the aqueous phase free energy of activation. To confirm this, we calculated ground state free energy of solvation for ionized compounds and compared with the literature values (Marenich et al., 2009). The free energies of solvation of ionized compounds that are calculated by COSMO-RS are far from the experimental values (Figure 4.8). For the example, we obtained -94.5 kcal/mol, -74.0 kcal/mol, 65.8 kcal/mol and -57.6 kcal/mol of free energy of solvation for CH₃COO-, ClH₂CCOO-, Cl₂HCCOO- and F₃CCOO-, respectively, as compared to the experimental values -77.6 kcal/mol, -62.30 kcal/mol and -59.3 kcal/mol (Marenich et al., 2009). It is anticipated that the free energy of solvation for transition state may be overestimated by COSMO-RS.

Figure 4.8: Comparison of calculated and experimental free energy of solvation for ionized compounds

SMD includes nonelectrostatic interactions (e.g., short range interaction) in addition to long range solute-solvent interaction in bulk phase, whereas CPCM does not include nonelectrostatic term. In addition, SMD is based on the polarized continuous quantum mechanical charge density of the solute (Marenich et al., 2009) and seems to be reasonable to represent the large electrostatic interactions that arise from ionized compounds and water molecules. As a consequent, SMD was chosen to calculate the aqueous phase free energy of activation. It is noted that G4 optimizes the geometry of molecules at B3LYP/6-31G(2df,p) that does not include diffuse functions. Although the inclusion of diffuse function for the ionized compounds is recommended (Cramer, 2004), it is speculated that the use of diffuse functions often decreases accuracy due to outlying charge in the SMD model (Liu et al., 2010). Therefore, we use the default method for G4 upon the geometry optimization.

			Exp. [Chin and Wine, 1994]		6.7
			G4 (gas) + COSMO-RS		26.3
			G4 SMD	0.99	7.4
			G09 M05-2X/ 6-31+(d,p) SMD		9.9
			MP2/Aug-cc-pVTZ SMD //MP2/Aug-cc-pVDZ SMD *scale=0.9598	3.56	9.6
	I		MP2/Aug-cc-pVDZ SMD *scale=0.9615	3.62	9.7
MP2/cc-pVTZ// MP2/aug-cc-pVDZ *scale=0.9561	-10.1	-0.80	MP2/Aug-cc-pVDZ CPCM *scale=0.9615	9.20	14.4
$\begin{array}{l} QCISD(T)/6-31 \leftrightarrow G(d,p) / \\ mp2(full)/6-31G(d) \end{array}$	-9.78	-1.18	G3 (gas) + COSMO-RS		21.2
CCSD(T)/6-31++G(d,p)//mp2(full)/6-31G(d)	-9.91	-1.02	MP2(full)/6-311++G(d,p) CPCM //MP2/aug-cc-pVDZ CPCM	8.33	14.6
G3	-11.1	-3.87	MP2/6-311+G(3d,p) CPCM //MP2/aug-cc-pVDZ cPCM *scale=0.9570	7.33	13.6
64	-11.8	-1.76	MP2/Aug-cc-pVDZ CPCM *scale=0.9615	6.87	12.3
	$\Delta E^{ \pm}_{ { m rxn,gas}}$	$\Delta G^{ \neq}_{ m rxn, gas}$		$\Delta E^{ \pm}_{ m ixn, aq}$	$\Delta G \stackrel{\neq}{}_{\rm rxn,aq} + \Delta G \stackrel{\neq}{}_{\rm extra}$
;	Vacuo		Water		

Table 4.4: Calculated gaseous and aqueous phase barrier height and free energy of activation

4.4.3.2 Optimized Structure of Stationary, Pre-reactive Complex and Transition States

Tables 4.5-4.7 and Figures 4.9-4.11 summarize aqueous phase optimized stationary structures of HO•, H₂O and a series of halogenated acetates as well as prereactive complexes and transition state structures. Several gaseous phase optimized structures are given as a comparison. When the gaseous phase optimized structures are compared to the aqueous phase ones, it is found that there are a few structural differences associated with the length of bonds, angle and dihedral. For the stationary equilibrium structures of halogenated acetates, pre-reactive complexes and transition state, the effects of halogen atoms to the optimized structure are substantial due to the larger size of their atoms. For example, the bond length of carbon-halogen atom, l(C-R) (where R = F, Cl, Br) of dehalogenated acetate are 1.365 Å, 1.803 Å and 1.971 Å, respectively. Despite the presence of the halogen atoms, the bond length of carbon-hydrogen, l(C-H), that is subject to be attacked by HO• does not differ. When it comes to the pre-reactive complex and transition state structures, the hydrogen bonds between the H-atom of the HO• and the oxygen of carboxylic functional group are produced. This hydrogen bond is approximately 1.6-1.7 Å and 1.8-1.9 Å for the pre-reactive complex and transition state, respectively, for the halogenated acetates. Because of this hydrogen bond, the angle \angle HOH at the transition state is smaller (<90 degree) for the halogenated acetates than typical angle (\approx 90 degree (Minakata et al., 2010)). The angle \angle CHO of the abstracted H-atom becomes larger as the halogenated atoms become larger. One of the distinctive differences in the transition state structures when the halogenated atoms are employed is the length of the oxygen of the HO• and the abstracted hydrogen (i.e., l(O-H)). For

161

example, the l(O-H) is 1.358 Å for acetate while it is 1.450 Å and 1.464Å, respectively, for difluoroacetate and dibromoacetate.

		O-H, Å	< HOH, degree
НО.	vacuo	0.976	
110•	water	0.977	
Щ О	vacuo	0.962	103.726
П2О	water	0.964	102.918

Table 4.5: Geometry of HO• and H₂O

Figure 4.9: Schematic picture of acetate with R functional group

			СЦÅ	СРÅ	<hcc,< th=""><th>< RCC,</th><th>< OCC,</th><th>< 0C0,</th></hcc,<>	< RCC,	< OCC,	< 0C0,
	C-C, A	C=0, A	С-п, А	С-к, А	degree	degree	degree	degree
CH ₃ COO-	1.538	1.262	1.093/1.097	11	1.454/107.5	544	117.033	125.913
CH ₂ ClCOO-	1.548	1.256	1.089	1.830	112.143	109.405	116.160	127.681
CHCl ₂ COO-	1.566	1.244/1.251	1.085	1.803/1.815		112.020	117.653	129.751
Cl ₃ CCOO-	1.608	1.240		1.796/1.813		112.492/106.547	114.278	131.387
CHF ₂ COO-	1.552	1.252	1.097	1.365	111.564	111.039	115.446	129.041
CHBr ₂ COO-	1.563	1.242/1.254	1.085	1.971/1.969	112.085	110.879/111.540	112.305	129.547
Br ₃ CCOO-	1.609	1.240		1.966/1.985		112.729/106.263	114.344	131.274

Table 4.6: Geometry of acetate and halogenated acetate

Figure 4.10: Schematic picture of pre-reactive complex between HO• with acetate, R is functional group

Figure 4.11: Schematic picture of transition state between HO• with acetate, R is functional group

1000 ± 1000 ± 1000 \pm 1000 ± 1000 ± 1000 ± 1000 ± 1000 \pm 1000 ± 1000 ± 1000 \pm 1000 ± 1000 \pm 1000 ± 1000 \pm 1000 ± 1000 \pm 1000 \pm 1000 \pm 10000

	H-bond		bond		Abstracted H-atom				H-CR ₂ COO-			
		ОЦÅ	Dihedral	C H(P) Å		< CH(R)O,	< H(R)OH,	0.0.1	C-0 Å	< HCC,	< OCO,	
		0-п, А	H-O-H-O	С-п(к), А	0-п(к), А	degree	degree	U-U, A	C=0, A	degree	degree	
	vacuo	1.915	-0.004	1.221	1.346	158.276	85.376	1.551	1.251/1.250	107.703	129.448	
11011Cli2C00-	water	1.896	-1.763	1.209	1.358	156.416	87.246	1.528	1.255/1.261	108.139	126.483	
	vacuo			1.150	1.547	151.046	90.718	1.609	1.230/1.242	108.881	134.663	
11011enece00-	water	1.929	4.014	1.188	1.395	151.648	88.277	1.549	1.261/1.243	105.759	128.447	
HOHCCh2COO-	water											
HOClCCl ₂ COO-	water			2.233	1.922	173.330	99.168	1.595	1.238	96.884	132.364	
HOHCF ₂ COO-	water	1.923	-1.850	1.174	1.450	154.948	87.701	1.570	1.252/1.243	108.453	130.194	
HOHCBr ₂ COO-	water	1.874	2.218	1.155	1.464	155.259	87.622	1.574	1.254/1.238	109.639	129.701	
HOBrCBr ₂ COO-	water			2.315	2.030	162.343	100.687	1.588	1.240	101.334	131.465	

4.4.3.3 Linear Free Energy Relationships

As was previously observed for neutral compounds (Minakata and Crittenden, 2010), we obtained a linear correlation: $\log k_{\rm I} - \log k_{\rm R} = -0.272 (\Delta G^{\rm act}_{\rm I} - \Delta G^{\rm act}_{\rm R}) + 0.062$ (N=8, r^2 =0.817). The reaction of HO• with acetate was used for the reference reaction. The LFER includes the literature-reported HO• reaction rate constants including formate, acetate, propionate, malonate, succinate and lactate as well as our experimentally obtained rate constants for a series of halogenated acetates (i.e., chloroacetate, difluoroacetate, dibromoacetate). All free energies of activation for these acetates are quantum mechanically calculated in this study and summarized in Table 4.1. Transition state for dichloroacetate could not be located. It is anticipated that quantum mechanically calculated free energy of activation for pyruvate and the reported rate constants might have been overestimated. We are able to identify three transition states for the reaction of HO• with pyruvate and all free energies of activation are similar (i.e., 9.7 kcal/mol, 12.0 kcal/mol, and 12.1 kcal/mol). These calculated values seem to be reasonable if compared to the structurally-similar compounds. In contrast, Ervens et al (2003) reported five temperature-dependent HO• reaction rate from 288K to 328 K using a laser photolysis technique. It is not clear whether the different techniques produce different rate constants. Yet, we did not include the pyruvic acetate for the correlation.

Our quantum mechanically obtained free energies of activation for various carboxylic acetates turn to be acceptable. Eight out of 10 compounds indicate that the calculated aqueous phase free energies of activation are within ± 2.0 kcal/mol as compared to those that are obtained from the experiments, while the calculated aqueous phase free energy of activation for formate and propionate show 2.23 kcal/mol and 2.19 kcal/mol of difference from the experimental values. Considering the general error

164
arising from the G4 gaseous phase calculations (i.e., 0.83 kcal/mol, Curtiss et al., 2007) and uncertainty for calculating free energy of transition state, these results should be within the reasonable range. Sample deviation (SD) that is obtained from equation (4.44) is 0.27 for 10 ionic compounds (N=10).

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(\frac{\Delta G_{rxn}^{act,i} - \left(\Delta G_{rxn,aq}^{\neq,i} + \Delta G_{extra}^{i} \right)}{\Delta G_{rxn}^{act,i}} \right)^{2}}$$
(4.44)

We have shown that G4 with the SMD model calculates the acceptable aqueous phase free energy of solvation. From next sections, we will examine significant contribution of the free energy of solvation, in particular for the ionized compounds: 1) entropic contribution and 2) electrostatic contribution.

4.4.3.4 Entropy Contribution

The entropic contribution to the free energy of activation is significant for ionic compounds because solvent is re-organized after significant change in the interactions (i.e., hydrogen-bonding) between ionized compounds and implicitly expressed water molecules. Nonelectrostatic interactions represent cavity formation, dispersion interactions, and changes in solvent structure (Marenich et al., 2009) between solute and water molecules. The nonelectrostatic energies of activation (ΔE_{non-ES}^{act}) that are calculated at G4 with the SMD model for the reactions of HO• with halogenated acetates range from -0.84 to -0.14 kcal/mol (Table 4.8). Although these interactions are smaller contribution to free energies of activation, this is due to significant cancellation between enthalpic and entropic contributions (Ashcraft et al., 2007). As Ashcraft et al. (2007) addressed, for example, neglecting nonelectrostatic energies would introduce 4.45 kcal/mol of entropic term (i.e., entropy of cavitation) of water. Accordingly, the entropic

contribution should be considered independently by assuming that the dispersion interaction is enthalpic, and the cavity formation and the changes in solvent structure are completely entropic. It is noted that the nonelectrostatic enrgy of activation as well as the change in cavity volume weakly correlated with the experimentally obtained entropy of activation (see Figure 4.12).

The entropic contribution that arises from the cavity formation examines the effect of confining the solute in the accessible free volume of the solution and can be estimated using a methodology outlined by Pierotti (Pierotti, 1963; Hofinger and Zerbetto, 2003) as shown in equation (4.45). This approach has been shown to work for calculating cavitation entropy by Ashcraft et al. (2007).

$$\Delta G_{\text{cav}} = K_0 + K_1 r_{\text{cav}} + K_2 r_{\text{cav}}^2 + K_3 r_{\text{cav}}^3 \qquad (4.45)$$

$$K_0 = RT \left[-\ln(1-y) + \frac{9}{2} \left(\frac{y}{1-y}\right)^2 \right] - \frac{4\pi r_{\text{water}}^3 P}{3}$$

$$K_1 = -\frac{RT}{2r_{\text{water}}} \left[6 \left(\frac{y}{1-y}\right) + 18 \left(\frac{y}{1-y}\right)^2 \right] + 4\pi r_{\text{water}}^2 P$$

$$K_2 = \frac{RT}{4r_{\text{water}}^2} \left[12 \left(\frac{y}{1-y}\right) + 18 \left(\frac{y}{1-y}\right)^2 \right] + 4\pi r_{\text{water}} P$$

$$K_3 = \frac{4\pi P}{3}$$

$$y = \frac{4\pi \rho r_{\text{water}}^3}{3}$$

where r_{water} is the hard-sphere radius of a water molecule and taken to be 1.35 Å that is approximately half the distance to the first peak in the experimental oxygen-oxygen radial distribution function for water (Ashcraft et al., 2007; Narten and Levy, 1971), ρ is the number density of the solvent, molecules/Å³, *P* is the pressure (1 atm = 0.01458 cal/mol·Å³), *R* is the gas constant, and *T* is the temperature. The cavity radius is estimated from the volume of cavity that is calculated at G4 with SMD. The entropy of cavitation can relate to the free energy through a temperature derivative as shown in equation (4.46):

$$\Delta S_{\rm cav} = -\left(\frac{\partial \Delta G_{\rm cav}}{\partial T}\right)_P \tag{4.46}$$

Table 4.8: Calculated cavitation entropy of activation, change in cavity volume, nonelectrostatic energy of activation and experimentally obtained entropy of activation

	ΔS^{\neq}_{cav}	$\Delta V^{\not=}$	$\Delta E_{\text{non-ES}}^{\text{act}}$	ΔS^{act}_{rxn}
	cal/mol K	Å ³	kcal/mol	cal/mol K
HCOO-	-17.38	-2.38	-0.80	-10.7±0.96 ^a
CH3COO-	-14.32	-4.03	-0.71	-12.7 ^a
CH3CH2COO-	-8.58	-4.72	-0.78	-7.88±0.48 ^a
HOOCCH2COO-	-5.61	-2.53	-0.45	-17.2±2.15 ^a
-OOC(CH2)2COO-	6.57	-3.82	-0.76	-11.5±0.96 ^a
CH3COCOO-	-7.92	-4.18	-0.84	-5.02 ± 0.48^{a}
CH2CICOO-	3.33	-4.31	-0.74	-11.50
CHCl2COO-	9.45		n.a.	-7.00 ± 0.15
F2HCCOO-	-9.30	-3.72	-0.69	16.9±0.92
Br2HCCOO-	n.a.	-5.43	-0.69	-3.51 ± 0.10

a: Ervens et al., 2003

Table 4.8 summarizes the calculated cavitation entropy of activation, the change in cavity volume, and nonelectstatic energy of activation and experimentally obtained entropy of activation. The calculated cavitation entropy is consistent with the values that were obtained by Ashcraft et al. (2007). Aqueous phase entropy contains solvent ordering entropy (Leung et al., 2004) in addition to the cavity entropy. Ashcraft et al. (2007) estimated the typical solvent ordering entropy of ground sate molecules from -2 to +5 cal/mol K that were obtained by fitting empirical parameters with a few available experimental entropy data. However, this approch is not feasible for transition state due to the lack of experimental values. Nevertheless, the cavitation entropy of activation turns out to be dominant in the entropy of activation.

Figure 4.12: Experimentally obtained free energies of entropies versus quantum mechanically calculated change in cavity, ΔV_{cav} , $Å^3$ (top), and non-electrostatic energy of activation (bottom) at G4 with the SMD model for series of acetate

4.4.3.5 Charge Distribution and Reaction Mechanisms

The analysis of atomic charge distributions on each element enables one to understand the effects of different functional groups to the molecular reactivity in progression from reactants \rightarrow transition state \rightarrow products. In Figures 4.13 and 4.14, the charges obtained from a natural population analysis (NPA) (Foster and Weinhold, 1980) at MP2/aug-cc-pVTZ//B3LYP/6-31G(2df,p) with the SMD model for the reactions of HO• with CH₃COO⁻ in the gaseous and aqueous phases and a series of halogenated acetates in the aqueous phase, respectively.

For the reactions of HO• with CH₃COO⁻, the analysis confirms that as the abstracted hydrogen of acetate becomes more positive at the transition state and the oxygen of HO• becomes more negative at the transition state. The negative charge on the oxygen of hydroxyl radical indicates that this oxygen can be a hydrogen bond acceptor. This development of negative charge on the oxygen of the HO• affords the opportunity for the solvent to stabilize the transition state through its polarity and/or ability to participate in hydrogen bonding. In contrast, the hydrogen on the hydroxyl radical (not involved in the reaction) bears substantial positive charge in the reactant, transition state, and product. Although this hydrogen can also participate in hydrogen bonding, this interaction does not affect the relative energies because the charge on this hydrogen remains almost constant in the progression from reactant to transition state to product. In the aqueous phase, the degree of the polarizability at the transition state is less substantial, which implies that smaller barrier height and faster reactions. The carboxylic functional group is known to manifest the inductive effects of electrons from the C-H bond due to electron-withdrawing properties of oxygen, although the resonance stabilization afforded by the lone pair of electrons offset this inductive effect. Because

170

oxygen is more electronegative than carbon and hydrogen, in the transition state for hydrogen abstraction, electron density is pulled toward the oxygen of the hydroxyl radical, giving it a partial negative charge and a partial positive charge on the alkyl portion of the transition state. The carboxylic functional group in the aqueous phase becomes less negative due to the impact of surrounding continuum water molecules, whereas little change in charge distribution of carboxylic functional group in the gaseous phase is observed.

vacuo:

Figure 4.13: Charge distributions of reactants, transition states and products for the gaseous and aqueous phases HO• reactions with acetate

Figure 4.14 compares the charge distributions of halogenated acetates in the aqueous phase. Halogenated atoms (i.e., F, Cl, and Br) significantly affect the charge distributions and hence the activation energies and reaction rates. When the electron-negative halogenated functional groups are accommodated besides carboxylic functional groups, the transition state is less polarized because the functional group competes for electron density; there is less transfer of negative charge to the oxygen of the hydroxyl

radical and hydrogen bonding interactions are expected to be weaker. Fluorine atom that has more negative charge produces the least positive charge on the abstracted hydrogen, and the largest barrier height and smallest rate constant is obtained. Bromine affects the charge distribution in the process from reactant to transition state to product in the same manner as is observed for acetate. The abstracted hydrogen becomes slightly positive and the oxygen of hydroxyl radical becomes more negative than the reactants that have chlorine and fluorine. Nevertheless, the significant large rate constants for dibromoacetate suggest the electron-transfer reaction between the bromine atom and hydroxyl radical to produce a $2\sigma/1\sigma^*$ two-center–three-electron (2c-3e) adduct containing two bonding σ and one antibonding σ^* electrons (Asmus and Bonifačič, 1999)

Figure 4.14: Charge distributions of reactants, transition states and products for the aqueous phases HO• reactions with halogenated acetate

To investigate the dominant reaction mechanisms, we examine spin populations from the natural population analysis (NPA) at MP2/aug-cc-pVTZ//B3LYP/6-31G(2df,p) with the SMD model. For the H-atom abstraction, the spin populations that are shown in the parentheses at the transition state are concentrated on the two atoms which undergo the H exchange, while the transition states of Cl₃CCOO⁻ and Br₃CCOO⁻ locate the spin populations mainly on one of the garments. The former indicates the three-center threeelectron bond and corresponds to H-atom abstraction. The latter indicates the electron transfer as was observed by for iodine and bromine-atom-containing compounds. Such electron transfer interaction may take place both by inter- and intra-molecular coordination through overlap of p-orbitals. In general, fully halogenated compounds are practically inert toward the HO• (Lal et al., 1988). Nevertheless, we observe significant temperature-dependent reactivity for perhalocarbons such as Cl₃CCOO- and Br₃CCOO-. These perhalocarbons are good halogen donors to chlorine and bromine radical under the abstraction of halogen atom (Kerr, 1973). Fliount et al (1997) concluded that HO• at least indirectly particulate in the degradation mechanism (equation (4.47)), which is induced by the reaction with bromide liberated in the H \bullet and e_{aq} induced processes. $HO \bullet + 2Br \rightarrow Br_2 \bullet + OH$ (4.47)

The Br₂•- compounds are in equilibrium state with bromine radical in equation (4.48) Br₂•⁻ \leftrightarrow Br• + Br⁻ (4.48)

Accordingly, Br• induces either Br⁻ atom abstraction from the Br₃CCOO⁻ or oxidize the carboxyl function in a one-electron transfer process (Fliount et al., 1997).

$$Br \bullet + Br_3CCOO - \to Br_2 + \bullet Br_2CCOO \tag{4.49}$$

 $Br \bullet + Br_3CCOO \bullet \to Br - + Br_3CCOO \bullet$ (4.49)

However, at neutral pH and in the N_2O saturated solution, all e_{aq}^{-} is supposed to be converted into hydroxyl radicals according to the following equation and the reaction forming H• in equation is not present at neutral pH but in very acidic condition.

$$e_{aq} + N_2O + H_2O \rightarrow HO \bullet + OH + N_2$$

$$(4.50)$$

$$\mathrm{H}^{+} + \mathrm{e}_{\mathrm{aq}}^{-} \to \mathrm{H}^{\bullet} \tag{4.51}$$

Therefore, we exclude the possibility of the reactions involving Br⁻ substitutions. Accordingly, it is very likely that HO• reacts with one of the halogenated atoms in perhalocarbons via electron-transfer.

4.4.3.6 Addition of Explicit Water Molecules

It is reported that water molecule is able to stabilize the developing negative charge on the hydroxyl radical in the transition state by acting as a hydrogen bond donor (Mitroka et al., 2010; Vöhringer-Martinez et al, 2007). An addition of explicit water molecules to the implicit polarizable continuum model has been reported to predict the absolute solvation free energies more accurately for a series of charged ions by considering short-range interactions between solvent and solute (Kim et al., 2009; Jaque et al., 2007; Pliego and Riveros, 2001). The SMD model that is used for this study includes the short-range interaction. However, the SMD does not include the explicit nonbulk electrostatic contribution that represents the deviation of short-range electrostatics from bulk electrostatics (Liu et al., 2010). Accordingly, we included a limited number of explicit water molecules ($n=1\sim3$) upon the transition state search and see differences in calculating the free energies of activations. As Mitroka et al. (2010) observed for the barriers of reaction of HO• with CH4, addition of explicit water molecule(s) significantly decreases the barrier height of the reactions of HO• with a

175

series of halogenated acetates (Figure 4.15). The effect of individual water molecules appear to be additive. Three conformations of explicit one water molecule are found (Figure 4.16). Hydrogen of all explicit water molecules forms a hydrogen-bond with either oxygen of hydroxyl radical or carboxylic functional group. A total of two hydrogen bonds are observed for each configuration. When two and three explicit water molecules are added, carboxylic functional groups produce two and three hydrogen bonds, respectively, with hydrogen of hydroxyl radical and hydrogen of water molecules.

Figure 4.15: Comparison of observed barrier height for the reactions of HO• with a series of halogenated acetates in the absence of presence of explicit water molecule(s). Note that the transition state of the reaction of HO• with $CHCl_2COO^-$ could not be located.

Figure 4.16: Optimized transition state for the reaction of HO• with chloroacetate in the presence of explicit water molecule(s). The dotted line represents hydrogen bond.

Addition(s) of explicit water molecules significantly change the charge distributions when compared to the case obtained from the absence of water molecules. Regardless several configurations of explicit water molecule(s), the charge distributions (Figure 4.17) revealed that the abstracted hydrogen-atom becomes less positive as

increasing explicit water molecules and the transition state becomes less polarized. As a result of this, the barrier heights become smaller with an increase of explicit water molecules. The presence of an explicit water molecule decreases the negative charges of a carboxylic functional group as well as a chlorine atom by almost half due to a hydrogen bond. When two or three water molecules are added, the degree of polarizability of transition state does not appear to be as much distinctive as the degree where one implicit water molecule is employed.

We establish the LFER using the calculated free energy of activation that is obtained by including explicit water molecules (Figure 4.1). The clear linear relation becomes closer to the LFER that is obtained from the experimental investigation. This observation suggests that the inclusion of explicit water molecule in addition to the SMD solvation model provides the actual solvation phenomena and the calculated free energies of activation that is a driving force can be quantum mechanically calculated. This approach may be used for the other reaction mechanisms to establish a library of reaction rate constants for a mechanistic modeling in AOPs.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0.449 \cdot 0.449 \\ 0.0449 \cdot 0.449 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0.449 \cdot 0.449 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.291 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.007 \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.103 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.0105 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.0105 \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} 0.0105 \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \left(\begin{array}{c} 0.0103 \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \left(\begin{array}{c} 0.0103 \\ \end{array} \\ \left(\begin{array}{c} 0.0067 \\ \end{array} \\ \left(\begin{array}{c} 0.0105 \\ \end{array} \\ \left(\begin{array}{c} 0.005 \\ \end{array} \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \right \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \right \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \right \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \right \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \\ \left(\begin{array}{c} 0.0258 \\ \end{array} \right \right \right \right$$
 \right \right)

$$\rightarrow \bullet \stackrel{_{-0.147}}{\mathrm{C}} \stackrel{_{0.192}}{\mathrm{H}} \stackrel{_{0.000}}{\mathrm{Cl}} \underbrace{\mathrm{COO}}_{_{-0.98}}^{-} + \underbrace{\mathrm{H}}_{_{0.000}}^{-} \stackrel{_{0.498}}{\mathrm{H}} \stackrel{_{0.499}}{\mathrm{H}}$$

Figure 4.17: Charge distributions of reactants, transition states and products for the aqueous phases HO• reactions with chloroacetate in the absence and presence of explicit water molecule(s). The transition state in the presence of one explicit water molecule shows three conformations

4.5 Conclusions

Temperature-dependent aqueous phase HO• reaction rate constants enables us to obtain Arrhenius parameters and calculate thermochemical properties of activation. With the experimentally obtained free energies of activation and logarithms of the reaction rate constants, we established linear free energy relationships (LFERs) for a series of halogenated acetates. The experimentally obtained free energies of activation are compared with quantum mechanical calculations that utilize *Ab initio* quantum mechanical approaches and the SMD solvation model. Quantum mechanical calculations revealed that effects that arise from halogenated functional groups and hydrogen bonding in process of solvation. We found that an addition of explicit water molecule(s) to implicit SMD solvation model provides the LFER that is consistent with that is established from the experiments.

4.6 Acknowledgement

This work was supported by the National Science Foundation Award 0854416 from the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the supporting organizations. Authors appreciate the support from the Hightower Chair and the Georgia Research Alliance at the Georgia Institute of Technology. Authors also appreciate Dr. Matthew Wolf at the College of Computing in Georgia Tech and Dr. Ron Huchinsons at Office of Information Technology for the high performance and clustered computing resources. We gratefully acknowledge the contribution of Mary Kate Varnau for her editorial assistance.

4.7 Appendices

Appendic F contains all optimized structures for reactants, transition states,

complex and products at G4 with SMD.

4.8 Literature Cited

A division of the American Chemical Society. CAS (Chemical Abstract Service). http://www.cas.org/expertise/cascontent/index.html (accessed June 12, 2009).

Aquino, A.J.A.; Tunega, D.; Haberhauer, G.; Gerzaberk, M.H.; Lischka, H. Solvent effects on hydrogen bonds – A theoretical study. *J. Phys. Chem. A*. 2002, *106*, 1862-1871.

Ardura, D.; López, R.; Sordo, T.L. Relative gibbs energies in solution through continuum models: Effect of the loss of translational degrees of freedom in bimolecular reactions on gibbs energy barriers. J. Phys. Chem. B. 2005, 109, 23618-23623.

Asmus, K.-D.; Bonifačič, M. In Sulfur-Centered Reactive Intermediates as Studied by Radiation Chemical and Complementary Techniques; Chapter 5. 141-191. Alfassi, Z. B. Eds. The Chemistry of Free Radicals S-Centered Radicals. 1999. Chichester, U.K.

Beckwith, A.L.J.; Bowry, V.W.; Ingold, K.U. Kinetics of nitroxide radical trapping. 1. Solvent effects. J. Am. Chem. Soc. 1992, 114, 4983-4992. Benson, S.W. The Foundations of Chemical Kinetics. McGraw-Hill: New York. 1982.

Bielski, B.H.J.; Cabelli, D.E. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. *Int. J. Radiat. Biol.* 1991, *59*(2), 291-319.

Brezonik, P.L. Chemical kinetics and process dynamics in aqueous systems. Lewis Publishers. 2002.

Buxton, V. B.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O⁻) in aqueous solution. *J. Phys. Chem. Ref. Data.* 1988, *17* (2) 513-795.

Charbonneau, P.; Knapp, B. 1995, A User's guide to PIKAIA 1.0, *NCAR Technical Note* 418+IA, National Center for Atmospheric Research, Boulder.

Chartfield, D.C.; Friedman, R.S.; Schwenke, D.W.; Truhlar, D.G. Control of chemical reactivity by quantized transition states. *J. Phys. Chem.* 1992, *96*, 2414-2421.

Chin, M.; Wine, P.H. Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp and D.G. Crosby (eds.), CRC Press, Inc., Boca Raton, FL, 1994, p.85-96.

Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J. Comp. Chem.* 2003, *24*(6), 669-681.

Cramer, J.C. Essentials of Computational Chemistry. Theories and Models. 2nd ed. John Wiley & Sons, Ltd. 2004. England.

Crittenden, J.C.; Hu, S.; Hand, D.W.; Green, S.A. A kinetic model for H₂O₂/UV process in a completely mixed batch reactor. *Wat. Res.* 1999, *33*(10), 2315-2328.

Curtiss, L.A. Gaussian-2 theory for molecular energies of first- and second-row compounds, *J. Chem. Phys.* 1991, *94*(11), 7221-7230.

Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys., 2007, 126, 084108.

Curtiss, L.A.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3(G3) theory for molecules containing first and second-row atoms, *J. Chem. Phys.* 1998, *109*(18), 7764-7776.

Eisenberg, J.N.S.; Mckone, T.E. Decision tree method for the classification of chemical pollutants: Incorporation of across-chemical variability and within-chemical uncertainty. *Environ. Sci. Technol.* 1998, *32*, 3396-3404.

Eljarrat, E.; Barceló, D. Priority lists for persistent organic pollutants and emerging contaminants based on their relatice toxic potency in environmental samples. *Trends in Analytical Chem.* 2003, *22*(10), 655-665.

Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. *Phys. Chem. Chem. Phys.*, 2003, *5*, 1811-1824.

Eyring, H.; Gershinowitz, H.; Sun, C.E. The absolute rate of homogeneous atomic reactions. *J. Chem. Phys.* 1935, *3*, 786-796.

Evans, M.; Polanyı', M. Inertia and driving force of chemical reactions. *Trans. Faraday Soc.* 1938, *34*, 11-29.

Fliount, R.; Makogon, O.; Guldi, D.M.; Asmus, K-D. Radical-mediated degradation mechanisms of tribromo- and other trishalogenated acetic acids in oxygen-free solutions as studied by radiation chemistry methods. J. Chem. Soc., Perkin Trans. 2. 1997, 1535-1545.

Foester, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211-7218.

Galano, A.; Macías-Ruvalcaba, N.A.; Campos, O.N.M.; Pedraza-Chaverri, J. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: A combined theoretical and experimental study. J. Phys. Chem. B. 114, 6625-6635.

Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. Gligorovski, S.; Herrmann, H. Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. *Phys. Chem. Chem. Phys.* 2004, *6*, 4118-4126.

Gligorovski, S.; Rousse, D.; George, C.H.; Herrmann, H. Rate constants for the OH reactions with oxygenated organic compounds in aqueous solution. *Int. J. Chem. Kinet.* 2009, *41*, 309-326.

Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Company, INC. Massachusetts, U.S.A. 1989.

Herrmann, H. Kinetics of aqueous phase reactions relevant for atmospheric chemistry. *Chem. Rev.* 2003, *103*, 4691-4716.

Hindmarsh, A.C.; Gear, C.W. Ordinary differential equation system solver. UCID-30001 Rev. 3 Lawrence Livermore Laboratory, Livermore, Ca. 1974.

Hofinger, S.; Zerbetto, F. On the cavitation energy of water. Eur. J. Chem. 2003, 9, 566.

Huber, M.M.; Canonica, S.; Park, G-Y.; Von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. *Environ. Sci. Technol.* 2003, *37*, 1016-1024.

Hug, G.L.; Wang, Y.; Schöneich, C.; Jiang, P.-Y.; Fessenden, R.W. Multiple time scales in pulse radiolysis. Application to bromide solutions and dipeptides. Rad. Phys. Chem. 1999, 54, 559-566.

Jaque, P.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Computational electrochemistry: The aqueous Ru3+|Ru2+ reduction potential. *J. Phys. Chem. C.* 2007, *111*, 5783-5799.

Karelson, M. Molecular Descriptors in QSAR/QSPR. John Wiley & Sons, INC. New York, 2000.

Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Aqueous solvation free energies of ions and ion –water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. *J. Phys. Chem. B.* 2006, *110*, 16066-16081.

Kim, Y.; Marenich, A.V.; Zheng, J.; Kim, K-H.; Kolodziejska-Huben, M.; Rostkowski, M.; Paneth, P.; Truhlar, D.G. Mechanistic analysis of the base-catalyzed HF elimination from 4-fluoro-4-(4'-nitrophenyl)butane-2-one based on liquid-phase kinetic isotope effects calculated by dynamic modeling with multidimensional tunneling. *J. Chem. Theory Comput.* 2009, *5*, 59-67.

Klamt, A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. *Chemosphere*. 1996, *32*(4), 717-726.

Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J.C.W. Refinement and parametrization of COSMO-RS. *J.Phys.Chem. A.* 1998, *102*, 5074-5085.

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Rate constants for the reaction of halogenated organic radicals. *Int. J. Radiat. Biol.* 1988, *54*, 773-785.

Leung, B. O.; Reid, D. L.; Armstrong, D. A.; Rauk, A. Entropies in solution from entropies in the gas phase. *J. Phys.Chem. A*. 2004, *108*, 2720-2725.

Li, K.; Crittenden, J.C. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase Advanced Oxidation Processes. *Environ. Sci. Technol.* 2009, *43*, 2831-2837.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H₂O₂ processes for methyl tert-butyl ether and tertiary butyl alcohol removal. *Wat. Res.* 2008, *42*(20), 5045-5053.

Li, K.; Stefan, M.I.; Crittenden, J.C. Trichloroethene degradation by UV/H₂O₂ advanced oxidation process: product study and kinetic modeling. *Environ. Sci. Technol.* 2007, *41*, 1696-1703.

Li, K.; Stefan, M.I.; Crittenden, J.C. UV photolysis of trichloroethylene: Product study and kinetic modeling. *Environ. Sci. Technol.* 2004, *38*, 6685-6693.

Li, X.; Frisch, M.J. Energy-represented DIIS within a hybrid geometry optimization method. *J. Chem. Theory and Comput.* 2006, 2, 835-839.

Liptak, M. D.; Shields, G. C. Accurate p*K*a Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. *J. Am. Chem. Soc.* 2001, *123*, 7314-7319.

Liu, J.; Kelly, C.P.; Goren, A.C.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G.; Zhan, C-G. Free energies of solvation with surface, volume, and local electrostatic effects and atomic surface tensions to represent the first solvation shell. *J. Chem. Theory. Comput.* 2010, *6*, 1109-1117.

Mader, E.A.; Davidson, E.R.; Mayer, J.M. Large ground-state entropy changes for hydrogen atom transfer reactions of iron complexes. *JACS*. 2007, *129*, 5153-5166.

Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.; Chambers, C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G. *Minnesota Solvation Database – version 2009*, University of Minnesota, Minneapolis, 2009.

Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B.* 2009, *113*, 6378-6396.

Mezyk, S.P.; Bartels, D.M. Rate constant and activation energy measurement for the reaction of atomic hydrogen with thiocyanate and azide in aqueous solution. *J. Phys. Chem. A.* 2005, *109*, 11823-11827.

Milosavljevic, B.H.; LaVerne, J.A. Pulse radiolysis of aqueous thiocyanate solution. J. *Phys. Chem. A*. 2005, *109*, 165-168.

Minakata, D.; Crittenden, J.C. Linear free energy relationships between the aqueous phase hydroxyl radical reaction rate constants and the free energy of activation. *Environ. Sci. & Technol.* 2010 Submitted.

Minakata, D.; Li, K.; Westerhoff, P.; Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. *Environ. Sci. & Technol.* 2009, *43*, 6220-6227.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, structure-activity relationships and atmospheric implications. *Atmos. Environ.* 2005, *39*, 7667-7688.

Narten, A. H.; Levy, H. A. Liquid water: Molecular correlation functions from X-ray diffraction. *J. Chem. Phys.* 1971, *55*, 2263.

Neta, P.; Simic, M.; Hayon, E. Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids. *J. Phys. Chem.* 1969, *73*(12), 4207-4213.

Okuno, Y. Theoretical investigation of the mechanism of the Baeyer-Villiger reaction in nonpolar solvents. *Chemistry: a European Journal*. 1997, 3, 212.

Partington, J.R. An advanced Treatise on Physical Chemisty, Longmans, Green and Co. London. 1951. Vol.2 pp2. And Vol.5 pp390.

Pascual-Ahuir, J. L.; Silla, E. GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set. *J. Comput. Chem.* 1990, *11*, 1047.

Peng, C.; Ayala, P.Y.; Schlegel, H.B.; Frisch, M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. *J. Comp. Chem. 1996, 17, 49-86.*

Peng, C.; Schlegel, H.B. Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States. *Israel J. Chem.* 1993, *33*, 449-54.

Pfaendtner, J.; Broadbelt, L. J. Elucidation of structure-reactivity relationships in hindered phenols via quantum chemistry and transition state theory. *Chem. Eng. Sci.* 2007, *62*, 5232-5239.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autooxidation of decane and octane. *Ind. Eng. Chem. Res.* 2008, *47*, 2897-2904.

Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 1. Structure-reactivity relationships for free-radical oxidation. *Ind. Eng. Chem. Res.* 2008, *47*, 2886-2896.

Pierotti, R. A. The solubility of gases in liquids. *J. Phys. Chem.* 1963, 67, 1840-1845. Pitzer, K.S.; Gwinn, W. Energy levels and thermodynamic functions for molecules with internal rotation. *J. Chem. Phys.* 1942, *10*, 428-440.

Pliego, J.R.; Riveros, J.M. The cluster-continuum model for the calculation of the solvation free energy of ionic species. *J. Phys. Chem. A*. 2001, *105*, 7241-7247.

Pople, J.A.; Gordon, M.H.; Fox, D.J. Gaussian-1 theory: A general procedure for prediction of molecular energies. *J. Chem. Phys.* 1989, *90*(10), 5622-2629.

Pu, J.; Gao, J.; Truhlar, D.G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. *Chem. Rev.* 2006, *106*, 3140-3169.

Richardson, S. D. Water Analysis: Emerging contaminants and current issues. *Anal. Chem.*, 2009, *81*, 4645-4677.

Rosenfeldt, E.J.; Linden, K.G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. *Environ. Sci. Technol.* 2004, *38*, 5476-5483.

Schlegel, H.B. Optimization of equilibrium geometries and transition structures. J. Comp. Chem. 1982, 3(2), 214-218.

Schwarz, H. A determination of some rate constants for the radical processes in the radiation chemistry of water. 1962, *66*, 255-262.

Spinks, J. W. T.; Woods, R. J. *An Introduction to Radiation Chemistry*: John Wiley & Sons: New York, 1964; Chapter 8, pp 237-308.

Štefanić, I.; Ljubić, M.; Bonifačić, M.; Sabljić, A.; Asmus, K.-D. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals. *Phys. Chem. Chem. Phys.* 2009, *11*, 2256-2267.

Tanko, J. M.; Suleman, N. K. Solvent Effects in the Reactions of Neutral Free Radicals. In Energetics of Organic Free Radicals; Martinho Simo^{es}, J. A., Greenburg, A., Liebman, J. F., Eds.; SEARCH Series 4; Blackie: Glasgow, 1996; pp 244-293. Van Cauter, K.; Van Speybroeck, V.; Vansteenkiste, P.; Reyniers, M. F.; Waroquier, M. Ab initio study of free-radical polymerization: Polyethylene propagation kinetics. *Chem. Phys. Chem.* 2006, *7*, 131-140.

Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J.S.; Troe, J.; Abel, B. Water catalysis of a radical-molecule gas-phase reaction. *Science*. 2007, *315*, 497-501.

von Sonntag, C.; Schuchmann, H.-P. In., Alfassi, Z. B. *Peroxyl Radicals*; John Wiley and Sons Ltd.: New York, 1997; p 173.

Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. *Environ. Sci. Technol.* 2005, *39*, 6649-6663.

Whitman, K.; Lyons, S. Miller, R.; Nett, D.; Treas, P.; Zante, A.; Fessenden, R. W.; Thomas, M. D.; Wang, Y. In *Proceedings of the '95 Particle Accelerator Conference and International Conference on High Energy Accelerators*, Dallas, Texas, May 1-5, 1995.

Wigner, E. Z. f. physic. Chemie B19, 203, 1932.

Wold, S.; Sjöström, M. Liner Free Energy Relationships as Tools for Investigating Chemical Similarity- Theory and Practice. 1-54 in Chapman, N.B.; Shorter, J. Correlation Analysis in Chemistry Recent Advances. Plenum Press New York and Longdon, 1978.

Woo, Y-T.; Lai, D.; McLain, J.L.; Manibusan, M.L.; Dellarco, V. Use of mechanismbased structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ. Health Perspectives. 2002, 110, 75-87.

CHAPTER 5

Implications and Future Studies

The GCM is innovative because it is the first comprehensive tool to predict the aqueous phase HO• reaction rate constant and it includes a wide range of functional groups and four reaction mechanisms: 1) H-atom abstraction by HO•, 2) HO• addition to alkenes, 3) HO• addition to aromatic compounds, and 4) HO• interactions with S-, N-, or P-atom-containing compounds. The GCM's predictability (i.e., $0.5 \le k_{cal}/k_{exp} \le 2.0$) is an acceptable range in terms of predicting reaction rate constants. The GCM provides a user-friendly Microsoft excel spread sheet and an executed FORTRAN program named GCM Identifier.f90. These tools enable one to calculate the aqueous phase HO• reaction rate constants with a minimum input of structural information of a compound of interest. This will help researchers and water treatment engineers estimate the "reactivity" when coming across a new chemical compound in application of AOPs. With newly obtained HO• reaction rate constants, we should be able to update the GCM to include missing functional groups that have not been employed in the original GCM.

The LFERs that have been developed using sophisticated quantum mechanical approaches bridge kinetic information that is obtained from experiments with theoretically calculated thermochemical properties (i.e., free energy of activation). The application of the LFERs to chemical reactivity is a new concept. The theoretically calculated free energy of activation was validated with those that were obtained from the experimental investigations. Aqueous phase molecular modeling using quantum mechanical approaches is a challenging task due to water molecules. Nevertheless, our

188

methodologies that utilize combinations of gaseous phase Ab initio quantum mechanical calculations with implicit solvation model have been shown to calculate aqueous phase free energy of activation with acceptable errors as compared to those that were obtained from experiments. This proof of concept study should be applied to other reaction mechanisms where few experimental reaction rate constants are available. Figures 5.1-5.3 demonstrate the aqueous phase free energy profiles that are calculated at G3 and COSMO-RS for the HO• induced reactions with methane. Figure 5.1 includes the hydrogen-atom abstraction by HO•, oxygen addition followed by peroxy radical reaction mechanisms that are predicted by the reaction pathway generator. Figure 5.2 shows 1.2-H shift of oxyl radical in the absence and presence of a water molecule. Figure 5.3 shows the hydrolysis reactions of formaldehyde with one and two water molecules assisted. These energy profiles are in good agreement with the gaseous phase potential energy profiles for the reaction of HO• with methane (Green, 1994), although he did not locate transition states for any reactions. For example, Green (1994) obtained approximately 30 kcal/mol of gaseous phase reaction energy for $CH_3 + O_2 \rightarrow CH_3OO \bullet$ while we obtained 30.0 kcal/mol of aqueous phase free energy of reaction for this exorthermic reaction. Furthermore, he calculated approximately 60 kcal/mol of reaction energy for the gaseous phase uni-molecular reaction of CH₃OO• \rightarrow CH₃O• + O, whereas we obtained 53.7 kcal/mol of aqueous phase free energy of reaction. The similar agreements were observed for other reactions for CH₃OO• \rightarrow H₂C•OOH and H₂C•OOH \rightarrow CH₂O + HO. Although these free energy profiles are limited to the HO• induced reactions with methane, same procedures should be applied for other reactions to build LFERs and establish a library of rate constant predictions for the reactions that take place in AOPs.

189

Figure 5.1: Aqueous phase free energy change profiles for the reactions that are initiated by HO•

Figure 5.2: Aqueous phase free energy change profiles for 1,2-H shift reaction of oxyl radical in the absence or presence of a water molecule

Figure 5.3: Aqueous phase free energy change profiles for hydrolysis reaction of formaldehyde with one and two water molecules assisted

There are significant differences in basic principle, theory, approach, and reaction mechanism that are applied between the GCM and LFERs. While the GCM shows the predicatability: $0.5 \le k_{cal}/k_{exp} \le 2.0$ (i.e., difference of factor 2), the LFER indicates: $0.2 \le$ $k_{\text{cal}}/k_{\text{exp}} \leq 5.0$ (i.e., difference of factor 5). The GCM includes a wide range of functional groups and four HO• reaction mechanisms (i.e., H-atom abstraction, HO• adition to alkenes and aromatic compounds, and HO• interaction with S-, N-, or P-atom-containing compounds). The LFERs include aliphatic hydrocarbons, oxygenated and halogenated compounds for H-atom abstraction from C-H bond and HO• addition to alkenes. While the GCM utilizes overall reaction rate constant using Benson's thermochemical and rate constant additivity, the LFERs consider the lowest energy point of aqueous phase free energy of activation among different transition states and conformers. The GCM does not include electron-electron interactions in the process from reactants to transition state, whereas the LFERs consider transition state energy based on Ab initio quantum mechanical calculations. Both the GCM and LFERs used single-functional-group compounds for calibration and multi-functional-group compounds for prediction. The GCM shows applicability of predicting rate constant for a limited number of emerging contaminants, whereas the LFERs do not because of many possible transition states and conformers. The largest molecules that the LFERs include are HOOCCH₂COOH for neutral, and Br_2HCCOO^- and $-OOC(CH_2)_2COO^-$ for ionized compounds. These aliphatic saturated compounds would be comprised of 8 equivalent carbon-atoms if all elements are carbons and hydrogens. Considerable efforts have to be made to deal with emerging contaminant using the LFERs. Although the GCM shows better predicatability of aqueous phase HO• reaction rate constants for compounds with multi-functional-groups

than the LFERs, the LFERs can be applied to other reaction mechanisms based on *Ab initio* reaction rate constant predictions. As a consequence, the LFERs approach should be used for the reaction rate constant predictors of mechanistic modeling in aqueous phase AOPs.

Application of computational chemistry using quantum mechanical approaches to water treatment engineering is not common. With recent improvement in high performance computing resources, aqueous phase molecular simulations in relatively larger molecules become feasible. The proof of concept approach using the LFERs implicates the validity of application of computational chemistry to chemical reactivity that is observed in water treatment engineering. The LFERs may be applied not only AOPs technology but also other oxidation and disinfection processes (e.g., chlorination, ozonation, manganese).

To apply water treatment, mechanics modeling must include the effect of natural organic matter (NOM). Our modeling only represents a starting point by developing the theoretical approach and modeling framework in water containing only the target compound. NOM reactions with radical species are complex (Westerhoff et al., 1999; von Gunten, 2003) and they could be added in the future, if the knowledge-base on the structural and chemical characteristics of NOM become available. To date, the impact of NOM on target compound destruction has been considered by accounting for NOM quenching of hydroxyl radical (Westerhoff et al., 2007; 1999; Elovitz et al., 2000) and UV light absorption (Li et al., 2008; Weishaar et al., 2003). This approach could also be applied to the by-products that are formed. However, a considerable amount of effort

193

remains to understand the byproduct formation of target compounds in the presence of NOM (Weber et al., 2005).

A contribution of this dissertation to engineering field is significant. This dissertation shows an application of existing scientific disciplines to water treatment engineering field by shedding light on developing tools to predict aqueous phase HO• reaction rate constants for aqueous phase AOPs. In general, when a ciritical chemical contaminant is identified, it is typical to measure the rate constant with chemical oxidant experimentally or estimate the rate constant on the basis of structurally similar compounds. For engineering design, an over-design is a typical strategy using a safety factor. This approach is also applied for intermediates and byproducts by extending retention time and scaling reactor volume. However, considering a number of chemical contaminants that emerge in industries, this approach is not practical in particular for fate of intermediate and byproducts. The reaction rate constant predictors that have been developed in this study enable water treatment engineers to screen reactivity of a new contaminant in the application of AOPs. Once the mechanistic model is developed based on a library of reaction rate constant predictors, it will be used to help engineers assess the treatment efficiency of a parent contaminant and evaluate the fate of intermediate and byproducts in aqueous phase AOPs.

Literature Cited

Elovitz, M. S.; von Gunten, U; Kaiser H-P. Hydroxyl radical/ozone ratios during ozonationprocesses. II. The effect of temperature, pH, alkalinity, and DOM properties. *Ozone. Sci. Eng.* 2000, *22*, 123-150.

Li, K.; Hokanson, D.R.; Crittenden, J.C.; Trussell, R.R.; Minakata, D. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatment options and light sources. *Wat. Res.* 2008, 42, 5045-5053.

von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. *Wat. Res.* 2003, *37*, 1443-1467.

Weber, J.R. W.; Huang, Q.; Pinto, A. Reduction of disinfection byproduct formation by molecular reconfiguration of the fulvic constituents of natural background organic mater. *Environ. Sci. Technol.* 2005, *39*, 6446-6452.

Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. *Environ. Sci. Technol.* 2003, *37*, 4702-4708.

Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. *Wat. Res.* 1999, *33* (10), 2265-2276.

Westerhoff, P.; Mezyk, S.P.; Cooper, W.J.; Minakata, D. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. *Environ. Sci. & Technol.* 2007, *41*, 4610-4646.

APPENDIX A: GENETIC ALGORITHM

MODULE Genetic_Algorithm IMPLICIT NONE

Common block to make iseed visible to minit (and to save

it between calls) ! COMMON /rnseed/ iseed

INTEGER, SAVE :: iseed

CONTAINS

SUBROUTINE pikaia(ff,n,ctrl,x,f,STATUS)

! Code converted using TO_F90 by Alan Miller ! Date: 2001-07-09 Time: 15:54:13

! Optimization (maximization) of user-supplied "fitness" function ff

- over n-dimensional parameter space x using a basic genetic algorithm method.
- Paul Charbonneau & Barry Knapp
- High Altitude Observatory
- National Center for Atmospheric Research Boulder CO 80307-3000
- USA
- <paulchar@hao.ucar.edu>
 <knapp@hao.ucar.edu>

Web site: ! http://www.hao.ucar.edu/public/research/si/pikaia/pikaia.html

- ! Version 1.0 [1995 December 01]
- ! Genetic algorithms are heuristic search techniques that incorporate in a ! computational setting, the biological notion of evolution by means of
- natural selection. This subroutine implements the three basic operations
- of selection, crossover, and mutation, operating on "genotypes" encoded as strings

! References

Charbonneau, Paul. "Genetic Algorithms in Astronomy and Astrophysics." Astrophysical J. (Supplement), vol 101, in press (December 1995)

- Goldberg, David E. Genetic Algorithms in Search, Optimization, & Machine Learning. Addison-Wesley, 1989
- Davis, Lawrence, ed. Handbook of Genetic Algorithms.
- Van Nostrand Reinhold, 1991.

! USES: ff, urand, setctl, report, rnkpop, select, encode, decode, cross, mutate, genrep, stdrep, newpop, adjmut

INTEGER, INTENT(IN) :: n REAL, INTENT(IN OUT) :: ctrl(12) REAL, INTENT(OUT) :: x(n) REAL, INTENT(OUT) :: f INTEGER, INTENT(OUT) :: STATUS

INTERFACE INTERFACE FUNCTION ff(n, x) RESULT(fn_val) IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL, INTENT(IN) :: x(:) REAL :: fn_val END FUNCTION ff

END INTERFACE

! EXTERNAL ff

! Input:

- ! o Integer n is the parameter space dimension, i.e., the number of adjustable parameters.
- o Function ff is a user-supplied scalar function of n variables, which must have the calling sequence f = ff(n,x), where x is a real parameter
- array of length n. This function must be written so as to bound all parameters to the interval [0,1]; that is, the user must determine
- a priori bounds for the parameter space, and ff must use these bounds to perform the appropriate scalings to recover true parameter values in
- the a priori ranges.
- By convention, ff should return higher values for more optimal
- parameter values (i.e., individuals which are more "fit")

For example, in fitting a function through data points, ff could return the inverse of chi**2.

In most cases initialization code will have to be written (either in a driver or in a separate subroutine) which loads in data values and communicates with ff via one or more labeled common blocks. An example exercise driver and fitness function are provided in the accompanying file, xpkaia.f.

! Input/Output:

! o Array ctrl is an array of control flags and parameters, to control the genetic behavior of the algorithm, and also printed output. A default value will be used for any control variable which is supplied with a value less than zero. On exit, ctrl contains the actual values used as control variables. The elements of ctrl and their defaults are:

- ctrl(1) number of individuals in a population (default is 100)
- ctrl(2) number of generations over which solution is to evolve (default is 500)
- ctrl(3) number of significant digits (i.e., number of genes) retained in chromosomal encoding (default is 6) (Note: This number is limited by the machine floating point precision. Most 32-bit floating point representations have only 6 full digits of precision. To achieve greater precision this routine could be converted to double precision, but note that this would also require a double precision random number generator, which likely would not have more than 9 digits of precision if it used 4-byte integers internally.)

- ctrl(4) crossover probability; must be <= 1.0 (default is 0.85) ctrl(5) mutation mode; 1/2=steady/variable (default is 2) ctrl(6) initial mutation rate; should be small (default is 0.005) (Note: the mutation rate is the probability that any one gene locus will mutate in any one generation.)
- ctrl(7) minimum mutation rate; must be ≥ -0.0 (default is 0.0005) ctrl(8) maximum mutation rate; must be ≤ -1.0 (default is 0.25) ctrl(9) relative fitness differential; range from 0

- (none) to 1 (maximum). (default is 1.) ctrl(10) reproduction plan; 1/2/3=Full generational replacement/Steady-state-replace-random/Steady-
- state-replace-worst (default is 3) ctrl(11) elitism flag; 0/1=off/on (default is 0)
- (Applies only to reproduction plans 1 and 2) ctrl(12) printed output 0/1/2=None/Minimal/Verbose (default is 0)

! Output:

- ! o Array x(1:n) is the "fittest" (optimal) solution found, i.e., the solution which maximizes fitness function ff
- ! o Scalar f is the value of the fitness function at x
- ! o Integer status is an indicator of the success or failure of the call to pikaia (0=success; non-zero=failure)

1 Constants

INTEGER, PARAMETER :: nmax = 200, pmax = 128, dmax = 6

- ! o NMAX is the maximum number of adjustable parameters (n <= NMAX)
- ! o PMAX is the maximum population $(ctrl(1) \le PMAX)$
- ! o DMAX is the maximum number of Genes (digits) per Chromosome segement (parameter) (ctrl(3) <= DMAX)
- Local variables **INTEGER** :: np, nd, ngen, imut, irep, ielite, ivrb, k, ip, ig, ip1, & ip2, NEW, newtot
- REAL :: pcross, pmut, pmutmn, pmutmx, fdif
- REAL :: ph(nmax,2), oldph(nmax,pmax), newph(nmax,pmax)

INTEGER :: gn1(nmax*dmax), gn2(nmax*dmax) INTEGER :: ifit(pmax), jfit(pmax) REAL :: fitns(pmax)

! User-supplied uniform random number generator

! REAL :: urand ! EXTERNAL urand

! Function urand should not take any arguments. If the user wishes to be able ! to initialize urand, so that the same sequence of random numbers can be ! repeated, this capability could be implemented with a separate subroutine, ! and called from the user's driver program. An example urand function SUBROUTINE setctl(ctrl,n,np,ngen,nd,pcross,pmutmn,pmutmx,pmut, & imut,fdif,irep,ielite,ivrb,STATUS) ! (and initialization subroutine) which uses the function ran0 (the "minimal ! standard" random number generator of Park and Miller [Comm. ACM 31, 1192-! 1201, Oct 1988; Comm. ACM 36 No. 7, 105-110, July 1993]) is provided. Set control variables and flags from input and defaults Set control variables from input and defaults CALL setctl(ctrl, n, np, ngen, nd, pcross, pmutmn, pmutmx, pmut, imut, fdif, & irep, ielite, ivrb, STATUS) Input IF (STATUS /= 0) THEN WRITE (*, *) ' Control vector (ctrl) argument(s) invalid' Input/Output **REAL**, **INTENT**(IN OUT) :: ctrl(12) **INTEGER**, **INTENT**(IN) :: n RETURN END IF Output ! Make sure locally-dimensioned arrays are big enough IF (n > mmax OR np > pmax OR nd > dmax) THEN WRITE (*, *) 'Number of parameters, population, or genes too large' STATUS = -1 INTEGER, INTENT(OUT) :: np INTEGER, INTENT(OUT) :: ngen INTEGER, INTENT(OUT) :: nd REAL, INTENT(OUT) :: peross REAL, INTENT(OUT) :: pmutm RETURN :: pmutmn END IF REAL, INTENT(OUT) :: pmutmx REAL, INTENT(OUT) :: pmut INTEGER, INTENT(OUT) :: imut Compute initial (random but bounded) phenotypes **REAL, INTENT**(OUT) :: fdif **INTEGER, INTENT**(OUT) :: rep **INTEGER, INTENT**(OUT) :: ielite **DO** ip = 1, np **DO** k = 1, noldph(k,ip) = urand() INTEGER, INTENT(OUT) :: ivrb INTEGER, INTENT(OUT) :: STATUS END DO fitns(ip) = ff(n, oldph(:,ip))END DO Rank initial population by fitness order Local INTEGER :: i REAL, SAVE :: dfault(12) = (/ 100., 500., 5., .85, 2., .005, .0005, .25, & CALL rnkpop(np,fitns,ifit,jfit) Main Generation Loop 1., 1., 1., 0. /) **DO** ig = 1, ngen **DO** i = 1, 12 **IF** (ctrl(i) < 0.) ctrl(i) = dfault(i) **END DO** Main Population Loop newtot = 0**DO** ip = 1, np / 2 np = ctrl(1)1. pick two parents ngen = ctrl(2)CALL select(np,jfit,fdif,ip1) 30 CALL select(np,jfit,fdif,ip2) IF (ip1 == ip2) GO TO 30 nd = ctrl(3)pcross = ctrl(4)imut = ctrl(5)pmut = ctrl(6)pmutmn = ctrl(7)2. encode parent phenotypes CALL encode(n,nd,oldph(1,ip1),gn1) CALL encode(n,nd,oldph(1,ip2),gn2) pmutmx = ctrl(8)fdif = ctrl(9) irep = ctrl(10)3. breed CALL cross(n,nd,pcross,gn1,gn2) ielite = ctrl(11)ivrb = ctrl(12)CALL mutate(n,nd,pmut,gn1) STATUS = 0 CALL mutate(n,nd,pmut,gn2) Print a header IF (ivrb > 0) THEN 4. decode offspring genotypes CALL decode(n,nd,gn1,ph(1,1)) WRITE (*,5000) ngen, np, n, nd, pcross, pmut, pmutmn, pmutmx, fdif IF (imut == 1) WRITE (*,5100) 'Constant' IF (imut == 2) WRITE (*,5100) 'Variable' CALL decode(n,nd,gn2,ph(1,2)) 5. insert into population IF (irep == 1) THEN IF (irep == 1) WRITE (*,5200) 'Full generational replacement' IF (irep == 2) WRITE (*,5200) 'Steady-state-replace-random' CALL genrep(nmax,n,np,ip,ph,newph) IF (irep == 3) WRITE (*,5200) 'Steady-state-replace-worst' ELSE CALL stdrep(ff,nmax,n,np,irep,ielite,ph,oldph,fitns,ifit, jfit,NEW) newtot = newtot + NEW END IE ! Check some control values
IF (imut /= 1 .AND. imut /= 2) THEN END IF End of Main Population Loop WRITE (*,5300) END DO STATUS = 5END IF if running full generational replacement: swap populations
IF (irep == 1) CALL newpop(ff,ielite,nmax,n,np,oldph,newph,ifit, &
jfit,fitns,newtot) IF (fdif > 1.) THEN WRITE (*,5400) STATUS = 9 adjust mutation rate? END IF IF (imut == 2) CALL adjmut(np,fitns,ifit,pmutmn,pmutmx,pmut) IF (irep /= 1 .AND. irep /= 2 .AND. irep /= 3) THEN WRITE (*,5500) print generation report to standard output? IF (ivrb > 0) CALL report(ivrb,nmax,n,np,nd,oldph,fitns,ifit,pmut,ig,newtot) STATUS = 10END IF End of Main Generation Loop IF (pcross > 1.0 .OR. pcross < 0.) THEN WRITE (*,5600) END DO STATUS = 4Return best phenotype and its fitness **DO** k = 1, nx(k) = oldph(k,ifit(np))END IF IF (ielite /= 0 .AND. ielite /= 1) THEN WRITE (*,5700) STATUS = 11 END DO f = fitns(ifit(np))

RETURN

END SUBROUTINE pikaia

END IF

IF (irep == 1 .AND. imut == 1 .AND. pmut > 0.5 .AND. ielite == 0) THEN WRITE (*,5800) END IF IF (irep == 1 .AND. imut == 2 .AND. pmutmx > 0.5 .AND. ielite == 0) THEN WRITE (*,5900) END IF IF (fdif < 0.33 .AND. irep /= 3) THEN WRITE (*,6000) END IF **IF** (MOD(np,2) > 0) **THEN** np = np - 1 WRITE (*,6100) np END IF RETURN KE LUKN 5000 FORMAT (/' ', 60('*') / & ' *', t16, 'PIKAIA Genetic Algorithm Report ', t60, '*' / & '', 60('*') // & '', 60(**)// &
' Number of Generations evolving: ', i4 / &
' Individuals per generation: ', i4 / &
' Number of Chromosome segments: ', i4 / &
' Length of Chromosome segments: ', i4 / &
' Crossover probability: ', 19.4 / &
' Initial mutation rate: ', 19.4 / &
' Minimum mutation rate: ', 19.4 / &
' Maximum mutation rate: ', 19.4 / &
' Relative fitness differential: ', 19.4 / &
' Relative fitness differential: ', 19.4 / &
 S100 FORMAT (
 Mutation Mode: / a)

 5200 FORMAT ('
 Reproduction Plan: / a)

 5300 FORMAT ('
 ERROR: illegal value for imut (ctrl(5))')

 5400 FORMAT ('
 ERROR: illegal value for fdif (ctrl(9))')
 5500 FORMAT (' ERROR: illegal value for irep (ctrl(10))') 5600 FORMAT (' ERROR: illegal value for pcross (ctrl(4))') 500 FORMAT ('ERROR: illegal value for ielite (ctrl(1))') 5800 FORMAT ('WARNING: dangerously high value for pmut (ctrl(6));' / & '(Should enforce elitism with ctrl(11)=1.)') 5900 FORMAT (' WARNING: dangerously high value for pmutmx (ctrl(8));'/ & '(Should enforce elitism with ctrl(11)=1.)')
 6000 FORMAT ('WARNING: dangerously low value of fdif (ctrl(9))')
 6100 FORMAT ('WARNING: decreasing population size (ctrl(1)) to np='/ i4) END SUBROUTINE setctl SUBROUTINE report(ivrb, ndim, n, np, nd, oldph, fitns, ifit, pmut, ig, nnew)

Input: ! input: INTEGER, INTENT(IN) :: ivrb INTEGER, INTENT(IN) :: ndim INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: nd INTEGER, INTENT(IN) :: nd REAL, INTENT(IN) :: didph(ndim, np) REAL, INTENT(IN) :: didph(ndim, np) INTEGER, INTENT(IN) :: fitns(np) REAL, INTENT(IN) :: pmut INTEGER, INTENT(IN) :: ig INTEGER, INTENT(IN) :: nnew

! Write generation report to standard output

! Output: none

Local **REAL**, **SAVE** :: bestft = 0.0, pmutpv = 0.0INTEGER :: ndpwr, k LOGICAL :: rpt

rpt = .false

IF (pmut /= pmutpv) THEN pmutpv = pmut

rpt = .true.

END IF

IF (fitns(ifit(np)) /= bestft) THEN bestft = fitns(ifit(np)) rpt = .true. END IF

IF (rpt .OR. ivrb >= 2) THEN

Power of 10 to make integer genotypes for display ndpwr = nint(10.**nd)

WRITE (*, '(/i6, i6, f10.6, 4f10.6)') ig, nnew, pmut, &

fitns(ifit(np)), fitns(ifit(np-1)), fitns(ifit(np/2)) **WRITE** (*, '(22x, 3i10)') nint(ndpwr*oldph(k, ifit(np))), & nint(ndpwr*oldph(k, ifit(np-1))), nint(ndpwr*oldph(k, ifit(np/2))) END DO END IF RETURN END SUBROUTINE report ***** GENETICS MODULE . GEN !********** _L \$*********************************** ***** ENCODE: encodes phenotype into genotype called by: PIKAIA DECODE: decodes genotype into phenotype called by: PIKAIA CROSS: Breeds two offspring from two parents called by: PIKAIA MUTATE: Introduces random mutation in a genotype called by: PIKAIA ADJMUT: Implements variable mutation rate called by: PIKAIA 1***** **SUBROUTINE encode**(n, nd, ph, gn) encode phenotype parameters into integer genotype ph(k) are x, y coordinates [0 < x, y < 1]INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: nd REAL, INTENT(IN OUT) :: ph(n) INTEGER, INTENT(OUT) :: gn(n*nd) ! Inputs: ! Output: Local: INTEGER :: ip, i, j, ii REAL :: z z = 10, ** nd ii = 0**DO** i = 1, n ip = INT(ph(i)*z) **DO** j = nd, 1, -1gn(ii+j) = MOD(ip, 10)ip = ip / 10 END DO ii = ii + ndEND DO RETURN END SUBROUTINE encode !***** ***** **SUBROUTINE decode**(n, nd, gn, ph) decode genotype into phenotype parameters ph(k) are x, y coordinates [0 < x, y < 1] INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: nd INTEGER, INTENT(IN) :: gn(n*nd) REAL, INTENT(OUT) :: ph(n)

! Inputs:

! Output:

! Local: INTEGER :: ip, i, j, ii REAL :: z

 $\begin{array}{l} z = 10. ** (-nd) \\ ii = 0 \\ \mathbf{DO} \quad i = 1, n \\ ip = 0 \\ \mathbf{DO} \quad j = 1, nd \\ ip = 10 * ip + gn(ii+j) \\ \mathbf{END DO} \\ ph(i) = ip * z \\ ii = ii + nd \\ \mathbf{END DO} \end{array}$

RETURN END SUBROUTINE decode

SUBROUTINE cross(n, nd, pcross, gn1, gn2)

breeds two parent chromosomes into two offspring chromosomes breeding occurs through crossover starting at position ispl

USES: urand

! Inputs: INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: nd REAL, INTENT(IN) :: pcross

! Input/Output: INTEGER, INTENT(IN OUT) :: gn1(n*nd) INTEGER, INTENT(IN OUT) :: gn2(n*nd)

! Local: INTEGER :: i, ispl, t

! Function ! REAL :: urand ! EXTERNAL urand

! Use crossover probability to decide whether a crossover occurs **IF** (urand() < pcross) **THEN**

Compute crossover point ispl = INT(urand()*n*nd) + 1

! Swap genes at ispl and above $DO \ i = ispl, n * nd$ t = gn2(i) gn2(i) = gn1(i) gn1(i) = tEND DO END IF

RETURN END SUBROUTINE cross

. . . .

SUBROUTINE mutate(n, nd, pmut, gn)

Mutations occur at rate pmut at all gene loci

! USES: urand

! Input: INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: nd REAL, INTENT(IN) :: pmut

! Input/Output: INTEGER, INTENT(IN OUT) :: gn(n*nd)

! Local: INTEGER :: i

! Function: ! REAL :: urand ! EXTERNAL urand

! Subject each locus to mutation at the rate pmut DO i = 1, n * nd IF (urand() < pmut) THEN gn(i) = INT(urand()*10.) END IF END DO

RETURN END SUBROUTINE mutate

·····

SUBROUTINE adjmut(np, fitns, ifit, pmutmn, pmutmx, pmut)

dynamical adjustment of mutation rate; criterion is relative difference in absolute fitnesses of best and median individuals

! Input: INTEGER, INTENT(IN) :: np REAL, INTENT(IN) :: fitns(.) INTEGER, INTENT(IN) :: ifit(.) REAL, INTENT(IN) :: pmutmn REAL, INTENT(IN) :: pmutmx

! Input/Output: REAL, INTENT(IN OUT) :: pmut

! Local: REAL :: rdif REAL, PARAMETER :: rdiflo = 0.05, rdifhi = 0.25, delta = 1.5

rdif = ABS(fitns(ifit(np)) - fitns(ifit(np/2))) / (fitns(ifit(np))) + & fitns(ifit(np/2))) IF (rdif <= rdiflo) THEN pmut = MIN(pmutmx, pmut*delta) ELSE IF (rdif >= rdifloi) THEN pmut = MAX(pmutmn, pmut/delta) END IF

RETURN END SUBROUTINE adjmut

REPRODUCTION MODULE

! SELECT: Parent selection by roulette wheel algorithm ! called by: PIKAIA

! RNKPOP: Ranks initial population ! called by: PIKAIA, NEWPOP

GENREP: Inserts offspring into population, for full
 generational replacement
 called by: PIKAIA

! STDREP: Inserts offspring into population, for steady-state reproduction ealled by: PIKAIA calls: FF

NEWPOP: Replaces old generation with new generation
 called by: PIKAIA
 calls: FF, RNKPOP

. . .

SUBROUTINE select(np, jfit, fdif, idad)

Selects a parent from the population, using roulette wheel algorithm with the relative fitnesses of the phenotypes as the "hit" probabilities [see Davis 1991, chap. 1].

! USES: urand

! Input: INTEGER, INTENT(IN) ::: np INTEGER, INTENT(IN) ::: jfit(np) REAL, INTENT(IN) ::: fdif

! Output: INTEGER, INTENT(OUT) :: idad ! Local: INTEGER :: np1, i REAL :: dice, rtfit

! Function: ! REAL :: urand ! EXTERNAL urand

 $\begin{array}{l} npl = np + 1 \\ dice = urand() * np * npl \\ rtfit = 0. \\ DO i = l, np \\ rtfit = rtfit + npl + fdif * (npl-2*jfit(i)) \\ IF (rtfit >= dice) THEN \\ idad = i \\ GO TO 20 \\ END IF \\ END DO \\ ! \quad Assert: loop will never exit by falling through \\ ! \quad Assert: loop will never exit by falling through \\ \end{array}$

20 RETURN

END SUBROUTINE select

SUBROUTINE rnkpop(n, arrin, indx, rank)

Calls external sort routine to produce key index and rank order of input array arrin (which is not altered).

! USES: rqsort

! Input INTEGER, INTENT(IN) :: n REAL, INTENT(IN) :: arrin(:)

! Output INTEGER, INTENT(OUT) :: indx(:) INTEGER, INTENT(OUT) :: rank(:)

! Local INTEGER :: i

! External sort subroutine ! EXTERNAL rgsort

! Compute the key index CALL rqsort(n, arrin, indx)

! ...and the rank order DO i = 1, n rank(indx(i)) = n - i + 1 END DO RETURN END SUBROUTINE rnkpop

SUBROUTINE genrep(ndim, n, np, ip, ph, newph)

I full generational replacement: accumulate offspring into new population array

! Input: INTEGER, INTENT(IN) :: ndim INTEGER, INTENT(IN) :: n INTEGER, INTENT(IN) :: np INTEGER, INTENT(IN) :: ip REAL, INTENT(IN) :: ph(ndim, 2)

! Output: **REAL**, **INTENT**(OUT) :: newph(ndim, np)

! Local: INTEGER :: i1, i2, k

! Insert one offspring pair into new population i1 = 2 * ip - 1i2 = i1 + 1**DO** k = 1, n

```
newph(k, i1) = ph(k, 1)
newph(k, i2) = ph(k, 2)
END DO
RETURN
END SUBROUTINE genrep
.
*****
SUBROUTINE stdrep(ff, ndim, n, np, irep, ielite, ph, oldph, fitns, ifit, jfit, nnew)
     steady-state reproduction: insert offspring pair into population only if they are fit enough (replace-random if irep=2 or
     replace-worst if irep=3).
1
   USES: ff. urand
! Input:
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
INTEGER, INTENT(IN)
                                      :: ndim
                                      :: n
                                      :: np
                                      :: irep
INTEGER, INTENT(IN)
REAL, INTENT(IN)
                                      :: ielite
                                  :: ph(ndim, 2)
! Input/Output:

REAL, INTENT(IN OUT) :: oldph(ndim, np)

REAL, INTENT(IN OUT) :: fitns(np)
INTEGER, INTENT(IN OUT) :: ifit(np)
INTEGER, INTENT(IN OUT) :: jfit(np)
! Output:
INTEGER, INTENT(OUT) :: nnew
INTERFACE
FUNCTION ff(n, x) RESULT(fn_val)
   IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x(:)
REAL :: fn_val
END FUNCTION ff
END INTERFACE
! EXTERNAL ff
     Local:
INTEGER :: i, j, k, i1, if1
REAL :: fit
    External function
 ! REAL :: urand
! EXTERNAL urand
nnew = 0
loop70: DO j = 1, 2
       1. compute offspring fitness (with caller's fitness function)
 fit = ff(n, ph(:, j))
       2. if fit enough, insert in population
 DO i = np, 1, -1

IF (fit > fitns(ifit(i))) THEN
     make sure the phenotype is not already in the population IF \ (i \leq np) \ THEN
      DO k = 1, n
       IF (oldph(k, ifit(i+1)) /= ph(k, j)) GO TO 20
      END DO
     CYCLE loop70
END IF
            offspring is fit enough for insertion, and is unique
1
    (i) insert phenotype at appropriate place in population
20 IF (irep == 3) THEN
     i1 = 1
ELSE IF (ielite == 0.OR. i == np) THEN
     i1 = INT(urand()*np) + 1
ELSE
i1 = INT(urand()*(np-1)) + 1
     END IF
     if1 = ifit(i1)
fitns(if1) = fit
     \frac{\mathbf{DO} \ \mathbf{k} = 1, \mathbf{n}}{\mathbf{oldph}(\mathbf{k}, \mathbf{if1}) = \mathbf{ph}(\mathbf{k}, \mathbf{j})}
     END DO
```

! (ii) shift and update ranking arrays IF (i < i1) THEN
```
shift up
     END DO
      ifit(i+1) = if1
    ELSE
1
             shift down
      jfit(if1) = np - i + 1
DO k = i1 + 1, i
       jfit(ifit(k)) = jfit(ifit(k)) + 1
ifit(k-1) = ifit(k)
      END DO
    ifit(i) = if1
END IF
    nnew = nnew + 1
CYCLE loop70
 END IF
END DO
END DO loop70
RETURN
END SUBROUTINE stdrep
SUBROUTINE newpop(ff, ielite, ndim, n, np, oldph, newph, ifit, jfit, fitns,
nnew)
1___
    replaces old population by new; recomputes fitnesses & ranks
! USES: ff, rnkpop
    Input:
INTEGER, INTENT(IN) :: elite
INTEGER, INTENT(IN) :: ndim
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: np
! Input/Output:
REAL, INTENT(IN OUT) :: oldph(ndim, np)
REAL, INTENT(IN OUT) :: newph(ndim, np)
    Output:
INTEGER, INTENT(OUT) :: ifit(np)
INTEGER, INTENT(OUT) :: ifit(np)
REAL, INTENT(OUT) :: ifitns(np)
INTEGER, INTENT(OUT) :: nnew
INTERFACE
INTERFACE
FUNCTION ff(n, x) RESULT(fn_val)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: x(:)
REAL :: fn_val
END FUNCTION ff
END INTERFACE
! EXTERNAL ff
! Local:
INTEGER :: i, k
nnew = np
    if using elitism, introduce in new population fittest of old population (if greater than fitness of the individual it is
     to replace)
IF (ielite == 1 .AND. ff(n, newph(:, 1)) < fitns(ifit(np))) THEN
 DO k = 1, n
   newph(k, 1) = oldph(k, ifit(np))
 END DO
 nnew = nnew - 1
END IF
! replace population
DO i = 1, np
DO k = 1, n
   oldph(k, i) = newph(k, i)
 END DO
! get fitness using caller's fitness function
fitns(i) = ff(n, oldph(:, i))
END DO
! compute new population fitness rank order
```

```
CALL rnkpop(np. fitns. ifit, ifit)
RETURN
END SUBROUTINE newpop
FUNCTION urand() RESULT(fn val)
! Return the next pseudo-random deviate from a sequence which is
! uniformly distributed in the interval [0, 1]
! Uses the function ran0, the "minimal standard" random number
generator of Park and Miller (Comm. ACM 31, 1192-1201, Oct 1988;
! Comm. ACM 36 No. 7, 105-110, July 1993).
! Input - none
   Output
REAL :: fn_val
   Local
! INTEGER :: iseed
! REAL :: ran0
! EXTERNAL ran0
    Common block to make iseed visible to minit (and to save
! it between calls)
! COMMON /rnseed/ iseed
fn val = ran0()
RETURN
END FUNCTION urand
SUBROUTINE rninit(seed)
   Initialize random number generator urand with given seed
! Input
INTEGER, INTENT(IN) :: seed
! Output - none
! Local
! INTEGER :: iseed
   Common block to communicate with urand
! COMMON /rnseed/ iseed
! Set the seed value
iseed = seed
IF (iseed <= 0) iseed = 123456
RETURN
END SUBROUTINE minit
****
FUNCTION ran0() RESULT(fn_val)
  "Minimal standard" pseudo-random number generator of Park and Miller.
  Returns a uniform random deviate r s.t. 0 < r < 1.0.
Set seed to any non-zero integer value to initialize a sequence, then do
! not change seed between calls for successive deviates in the sequence.
  References:

    Park, S. and Miller, K., "Random Number Generators: Good Ones
are Hard to Find", Comm. ACM 31, 1192-1201 (Oct. 1988)
    Park, S. and Miller, K., in "Remarks on Choosing and Implementing
Random Number Generators", Comm. ACM 36 No. 7, 105-110 (July 1993)

! *** Declaration section ***
! Output:
REAL :: fn_val
1 Constants
INTEGER, PARAMETER :: a = 48271, m = 2147483647, q = 44488, r = 3399
REAL, PARAMETER :: scale = 1./m, eps = 1.2E-7, rnmx = 1. - eps
```

! Local: INTEGER :: j ! *** Executable section *** $\begin{array}{l} j = iseed \ / \ q \\ iseed = a * (iseed - j * q) - r * j \\ \textbf{IF} (iseed < 0) iseed = iseed + m \\ fn_val = MIN(iseed*scale, mmx) \end{array}$ RETURN END FUNCTION ran0 ····· . ***** SUBROUTINE rqsort(n, a, p) Return integer array p which indexes array a in increasing order.
 Array a is not disturbed. The Quicksort algorithm is used. ! B. G. Knapp, 86/12/23 ! Reference: N. Wirth, Algorithms and Data Structures/ ! Prentice-Hall, 1986 INTEGER, INTENT(IN) :: n **REAL, INTENT**(IN) :: a(:) **INTEGER, INTENT**(OUT) :: p(:) ! Constants INTEGER, PARAMETER :: lgn = 32, q = 11 ! (LGN = log base 2 of maximum n; ! Q = smallest subfile to use quicksort on) ! Local: REAL :: x INTEGER :: stackl(lgn), stackr(lgn), s, t, l, m, r, i, j ! Initialize the stack stackl(1) = 1stackr(1) = ns = 1! Initialize the pointer array **DO** i = 1, np(i) = i END DO **20 IF** (s > 0) **THEN** l = stackl(s) r = stackr(s)r = stackr(s)s = s - 1**30 IF** ((r-l) < q) **THEN** Use straight insertion **DO** i = l + 1, r t = p(i) $\begin{aligned} t &= p(t) \\ x &= a(t) \\ \textbf{DO} &= j = i - 1, l, -1 \\ \textbf{IF} &(a(p(j)) <= x) \textbf{ GO TO } 50 \\ p(j+1) &= p(j) \end{aligned}$

END DO j = 1 - 1**50** p(j+1) = tEND DO ELSE Use quicksort, with pivot as median of a(l), a(m), a(r) m = (l+r) / 2 1 **IF** (a(t) > a(p(r))) **THEN** p(m) = p(r)p(m) = p(r)t = p(m)IF (a(t) < a(p(1))) THENp(m) = p(1)p(l) = tt = p(m)THENp(m) = p(1)p(l) = tt = p(m)THENp(m) = p(r)t = p(r)p(r) = tt = p(m)t = p(r)p(r) = tt = p(m)p(m) = p(r)t = p(r)t = p(r)t = p(m)p(m) = p(r)t = p(m)t = pt = p(m)END IF END IF Partition $\begin{array}{l} x = a(t) \\ i = l + 1 \end{array}$ j = r - 1 70 IF (i <= j) THEN 80 IF (a(p(i)) < x) THEN i = i + 1 GO TO 80 END IF 90 IF (x < a(p(j))) THEN j = j - 1GO TO 90 END IF **END IF IF** $(i \le j)$ **THEN** t = p(i) p(i) = p(j) p(j) = t i = i + 1 j = j - 1 **END IF END IF GO TO** 70 END IF Stack the larger subfile 1 s = s + 1IF (j-l > r-i) THEN stackl(s) = 1stackr(s) = jl = i ELSE stackl(s) = i stackr(s) = r r = j END IF GO TO 30 END IF GO TO 20 END IF RETURN END SUBROUTINE rqsort

END MODULE Genetic_Algorithm

APPENDIX B: SURVEY OF LITERATURE-REPORTED

EXPERIMENTAL AQUEOUS PHASE HYDROXYL RADICAL

REACTION RATE CONSTANTS

During the past three decades, the HO• rate constants with a number of organic compounds were experimentally investigated. There is currently one critical review available on the HO• rate constants (Buxton et al., 1988). However, there is no comprehensive report available to cover the experimental data which have been reported since 1988. One of the main objectives for this survey of the experimentally reported HO• rate constants is for the group contribution method to predict HO• rate constant with emerging contaminants. For the accurate parameter calibration, selection and critical review of the original data is inevitable. The data used here were referred to Buxton et al (1988), University Notre Dame, The Radiation Chemistry Data Center (RCDC) (http://www.rad.nd.edu/rcdc/index.html), and each literature on the peer-reviewed paper.

				experimental	evaluation			k _{H0} . (cm3 molecules ⁻¹ s ⁻¹)	Exp. Solvation free energy (kJ/mol)	Exp. Solvation free energy (kcal/mol)
chemcial formura	compound	k _{HO} , (M-1 s-1)	references	method	method	pH	Temp. (K)	in gas at 298K	at 298 K	at 298K
CH4	methane	1.20E+08	Getoff 1989	pulse radiolysis	C.K.		N.R.	8.50E+09	8.37	2.00
		1.00E+08	Hickel, 1975	pulse radiolysis	D.K.		298.0			
		1.20E+08	Stevens et al., 1972	pulse radiolysis	D.K.	5.5	N.R.			
CH3-CH3	ethane	1.40E+09	Getoff 1989	pulse radiolysis	C.K.		N.R.	3.40E+11	7.66	1.83
		1.80E+09	Hickel, 1975	pulse radiolysis	C.K.	4.4	298.0			
CH3-CH2-CH3	n-propane	2.30E+09	Getoff 1989	pulse radiolysis	C.K.	7.5-8.5	N.R.	1.26E+12	8.21	1.96
		3.60E+09	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-(CH2)2-CH3	n -butane	2.90E+09	Getoff 1989	pulse radiolysis	C.K.	7.5-8.5	N.R.	2.56E+12	8.71	2.08
		4.60E+09	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-(CH2)3-CH3	n-pentane	5.40E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		4.06E+12	9.76	2.33
CH3-(CH2)4-CH3	n -hexane	6.60E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		5.55E+12	10.43	2.49
CH3-(CH2)5-CH3	n -heptane	7.70E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		7.18E+12	10.97	2.62
CH3-(CH2)6-CH3	n -octane	9.10E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		8.86E+12	12.10	2.89
CH3-CH(CH3)-CH3	2-methylpropane	4.60E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		2.67E+12	9.71	2.32
CH3-CH2-CH(CH3)-CH3	2-methylbutane	5.20E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		3.87E+12		
CH3-CH2-CH(CH2-CH3)-CH2-CH3	3-ethylpentane	5.90E+09	Rudakov 1981	Fenton reaction	steady-state	2.0				
CH3-C(CH3)2-CH2-CH(CH3)-CH3	2,2,4-Trimethylpentane	6.10E+09	Rudakov 1981	Fenton reaction	steady-state	2.0		3.90E+12	11.93	2.85

	Table A-B1:	Survey	of HO• r	ate constants	with alkane
--	-------------	--------	----------	---------------	-------------

Table A-B2:	Survey	of HO•	rate	constants	with	alcohol
-------------	--------	--------	------	-----------	------	---------

				experimental	evaluation			Exp. Solvation free energy (kJ/mol)	Exp. Solvation free energy (kcal/mol) at
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH		at 298 K.	298K
CH3-OH	methanol	9.70E+08	Buxton 1988				selected values	-21.39	-5.11
						7.5			
		8.30E+08	Motohashi and Saito, 1993	y radiolysis	C.K.	293-298 K			
			Elliot and McCracken, 1989	Pulse radiolysis	C.K.		Ea = 4.8 kJ/mol, log(A)=9.856, T = 293-353 K.		
		1.00E+09					T=293 K		
		1.10E+09					303 K.		
		1.20E+09					313 K		
		1.30E+09					323 K		
		1.40E+09					333 K		
		1.40E+09					343 K.		
		1.50E+09					353 K		
		1.00E+09	Wolfenden and Willson, 1982	Pulse radiolysis	C.K.	6.0	temperature: N.D.		
		9.70E+08	Willson et al., 1971	Pulse radiolysis	C.K.				
		9.50E+08	Baxendale and Khan, 1969	Pulse radiolysis	C.K.				
		8.30E+08	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		k reference = 5.9E9		
		8.30E+08	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		k reference = 2.6E9		
		8.30E+08	Neta and Dorfman, 1968	Pulse radiolysis	C.K.		k reference = 7.9E9		
		8.80E+08	Adams et al., 1965	Pulse radiolysis	C.K.	10.7	<i>lc</i> reference = 3.9E8		
		7.80E+08	Adams et al., 1965	Pulse radiolysis	C.K.	7.0	$k_{\text{reference}} = 1.1\text{E}10$		
		1.20E+09	Adams et al., 1965	Pulse radiolysis	D.M	2.0			
		8.00E+08	Adams et al., 1965	Pulse radiolysis	D.M	7.0			

CH3-CH2-OH	ethanol	1.90E+09	Buxton 1988				selected values	-20.98	-5.01
						7.5			
		2.20E+09	Motohashi and Saito, 1993	γ radiolysis	C.K.	293-298 K			
		1.90E+09	Wolfenden and Willson 1982	Pulse radiolysis	C.K.	9.0	temperature: N.D.		
		1.90E+09	Matheson et al., 1973	Pulse radiolysis	C.K.	298 K.			
		2.10E+09	Willson et al., 1971	Pulse radiolysis	C.K.				
		2.10E+09	Buxton, 1970	Pulse radiolysis	C.K.	11.0			
		1.60E+09	Baxendale and Khan, 1969	Pulse radiolysis	C.K.		1 2 0 2 0		
		1.80E+09	Neta and Dortman, 1968	Pulse radiolysis	C.K.		R reference = 7.9E9		
		1.80E+09	Neta and Dortman, 1968	Pulse radiolysis	C.K.		K reference = 2.0E9		
		2.00E+09	Hackel at al. 1965	Pulse radiolysis	C.K.		K reference = J.9E.9		
		2.20E+09	Adams et al. 1965	Pulse radiolysis	C.K.				
		2.80E+09	Matthews and Sangster, 1965	y radiolysis	C.K.	3-10.5, N.R.			
		1.80E+09	Adams et al., 1965	Pulse radiolysis	C.K.	7.0			
		1.90E+09	Adams et al., 1965	Pulse radiolysis	C.K.	7, 10.7			
		2.80E+09	Adams et al., 1965	Pulse radiolysis	C.K.	2.0			
		1.90E+08	Adams et al., 1965	Pulse radiolysis	C.K.	7.0 208 K	$E_0 = 10+5$ trimel A = (1.0+0.1) e11 M to 1		
		1.60E+09	Ervens et al., 2005	Lasei-photolysis	U.K.	298 K	Ea = 10±5 k3/mol, A = (1.0±0.1)e11 M-15-1		
		1.70E+09				288 K.			
		2.10E+09				298 K.			
		2.40E+09				308 K.			
		2.40E+09				318 K			
		2 10E+09	Monod et al. 2005	Photo-fenton	CK	208 K	$F_{a} = 6.9 \pm 1.2 \text{ kJ/mol}$ A = (3.2 ±) e11 M-1s-1		
		1.80E+09	Monou et al., 2005	1 noto-tenton	0.10.	276 K	24 0.5=12.65.000,11 (5.2=)011.0115-1		
		1.70E+09				285 K.			
		2.10E+09				298 K.			
		2.60E+09				328 K.			
CH3-(CH2)2-OH	1-propanol	2.80E+09	Buxton 1988 Willson et al. 1071	Pulsa radiatasi-	CV		average of 3 values	-20.22	-4.83
		2.90E+09	Adams et al. 1971	Pulse radiolysis	C.K.	10.7			
		2.50E+09	Adams et al., 1965	Pulse radiolysis	C.K.	7.0			
						pH = 6.0			
		3.20E+09	Ervens et al., 2003	Laser-photolysis	C.K.	298 K	Ea = (8±6) kJ/mol, A = (5.6±0.6)e10 M-1 s-1		
		3.30E+09				288 K			
		5.20E+09 4.20F+09				296 K 308 K			
		4.30E+09				318 K			
		4.40E+09				328 K.			
						pH 1-2			
		2.70E+09	Monod et al., 2005	Photo-fenton	C.K.	298 K.	Ea = 6.5±1.7 kJ/mol, A = 4.4e10 M-1s-1		
		2.80E+09				276.0			
		2.70E+09				298.0			
		4.20E+09				339.0			
CH3-(CH2)3-OH	1-butanol	4.20E+09	Buxton 1988				average of 3 values	-19.76	-4.72
		4.50E+09	Willson et al., 1971	Pulse radiolysis	C.K.				
		4.30E+09	Adams et al., 1965	Pulse radiolysis	C.K.	7.0	k reference = 3.9E8		
		3.70E+09	Adams et al., 1965	Pulse radiolysis	C.K.	7.0	k reference = 1.1E10		
		4.20E+09	Monod et al., 2005	Photo-tenton	C.K.				
						0438			
		4 10E+09	Envens et al. 2003	Laser photolysis	CK	208 K	$F_{a} = (8+1) kT(mol A = (1.0+0.1)e11 M_{-1}e_{-1}$		
CH3-(CH2)4-OH	1-pentanol	4.10E+09 3.70E+09	Ervens et al., 2003 Reuvers 1973	Laser photolysis Pulse radiolysis	C.K.	pH 5.8 298 K	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 Kraterara = 1.1E10	-18.71	-4.47
CH3-(CH2)4-OH	1-pentanol	4.10E+09 3.70E+09 4.00E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973	Laser photolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K.	рН 5.8 298 К	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 k reference = 1.1E10 k reference = 1.0E10	-18.71	-4.47
CH3-(CH2)4-OH CH3-(CH2)5-OH	1-pentanol 1-hexyanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967	Laser photolysis Pulse radiolysis Pulse radiolysis y radiolysis	C.K. C.K. C.K. C.K.	рН 5.8 298 К -2.0	$\begin{split} Ea = (\$\pm 1) \; kJ/mol, \; A = (1.0\pm 0.1)e11 \; M\text{-}1s\text{-}1 \\ & k \text{ reference} = 1.1E10 \\ & k \text{ reference} = 1.0E10 \end{split}$	-18.71	-4.47
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH	1-pentanol 1-hexyanol 1-heptanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967	Laser photolysis Pulse radiolysis Pulse radiolysis γ radiolysis γ radiolysis	C.K. C.K. C.K. C.K. C.K.	-2.0 -2.0	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 k reference = 1.1E10 k reference = 1.0E10	-18.71 -18.25 -17.75	-4.47 -4.36 -4.24
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-hexyanol 1-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988	Laser photolysis Pulse radiolysis Pulse radiolysis γ radiolysis γ radiolysis	C.K. C.K. C.K. C.K. C.K.	PH 5.8 298 K -2.0 -2.0	Ea = (8±1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & ntmrcs = 1.1E10 & ntmrcs = 1.0E10 selected values	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-hexyanol 1-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.60E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993	Laser photolysis Pulse radiolysis Pulse radiolysis γ radiolysis γ radiolysis	C.K. C.K. C.K. C.K. C.K.	PH 5.8 298 K -2.0 -2.0 7.5 293-298 K	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 & https://doi.org/10.1011 M-1s-1 & https://doi.org/10.1011 & https://doi.org/10.1011 & selected values	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-hexyanol 1-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.60E+09 2.30E+09	Ervens et al., 2003 Returers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984	Laser photolysis Pulse radiolysis Pulse radiolysis y radiolysis y radiolysis y radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K.	PH 5.8 298 K -2.0 -2.0 7.5 293-298 K 292 K	Ea = (8=1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 k _{rdence} = 1.1E10 k _{rdence} = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10 256, T = 292-352 K	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	I-pentanol I-hexyanol I-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.60E+09 2.30E+09 1.90E+09	Ervens et al., 2003 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1984	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K. C.K. C.K.	рн 5.8 298 К -2.0 -2.0 7.5 293-298 К 292 К 6.0	Ea = (8+1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & network = 1.1E10 & network = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292.352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-hexyanol 1-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09	Ervens et al., 2003 Reuvers 1973 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K. C.K. C.K.	PH 3.8 298 K -2.0 -2.0 7.5 293-298 K 292 K 6.0	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 & reternors = 1.1E10 & reternors = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10 256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-hexyanol 1-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.60E+09 2.30E+09 1.90E+09 2.30E+09 1.90E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Smisons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K. C.K. C.K.	PH 3.8 298 K -2.0 -2.0 7.5 293-298 K 292 K 6.0 2.0-10.0	Ea = (8+1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 & naterics = 1.1E10 & naterics = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
СН3-(СН2)4-ОН СН3-(СН2)5-ОН СН3-ССН2)5-ОН СН3-СН2)5-ОН СН3-СН(ОН)-СН3	1-pentanol 1-heyyanol 1-heytanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1984 Wullson et al., 1971 Greenstock et al., 1968	Laser photolysis Pulse radiolysis Pulse radiolysis y radiolysis y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	С.К. С.К. С.К. С.К. С.К. С.К. С.К. С.К.	PH 3.8 298 K -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	Ea = (8+1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & ndmrcs = 1.1E10 & ndmrcs = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-bezvanol 1-beptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09	Ervens et al., 2003 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Button 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965	Laser photolysis Pulse radiolysis Pulse radiolysis γ radiolysis γ radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	С.К. С.К. С.К. С.К. С.К. С.К. С.К. С.К.	PH 3.8 298 K -2.0 -2.0 7.5 293-298 K 292 K 6.0 2.0-10.0 7.0 298 K PH 1-2	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R _{adence} = 1.1E10 R _{adence} = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3	l-peritanol I-heyyanol I-heptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.00E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Mortohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K. C.K. C.K.	PH 3.8 298 K -2.0 7.5 293-298 K 292 K 6.0 2.0-10.0 7.0 298 K PH 1-2 298 K	Ea = (8+1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 & naterics = 1.1E10 & naterics = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3	1-pentanol 1-heyyanol 1-heytanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.40E+09 7.40E+09 1.60E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elikot and Simsons, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1984 Wullson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005	Laser photolysis Pulse radiolysis Pulse radiolysis γ radiolysis γ radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K. C.K. C.K. C.K. C.K.	рн 5.8 298 К 293 - 2.0 -2.0 7.5 293-298 К 292 К 6.0 2.0-10.0 7.0 298 К рН 1-2 298 К рН 5.8	Ea = (8+1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & ndmrcs = 1.1E10 & ndmrcs = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D.	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3	1-pentanol 1-heryanol 1-herptanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1994 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	PH 3.8 298 K 298 K 293 298 K 293 298 K 292 K 6.0 2.0-10.0 7.0 298 K PH 1-2 298 K PH 1-2 298 K PH 1-2 298 K	Ea = (8±1) kJ/mol, A = (1.9=0.1)e11 M-1s-1 R _{adence} = 1.1E10 R _{pdence} = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1=0.3)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3	1-peritanol 1-heyyanol 1-heytanol 2-propanol 2-propanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Mortohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis	CK.	pH 3.8 298 K -2.0 -2.0 7.5 293-298 K 6.0 2.0-10.0 7.0 298 K 298 K 298 K 298 K 298 K 7.0 298 K	Ea = (8±1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & naterics = 1.1E10 & naterics = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1=0.3)e10 M-1s-1 & naterics = 1.1E10	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3	1-pentanol 1-heyanol 1-heytanol 2-propanol 2-propanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elikot and Simsons, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1985 Monod et al., 1965 Frvens et al., 2005 Ervens et al., 2003 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Pulse radiolysis	СК. СК. СК. СК. СК. СК. СК. СК. СК. СК.	pH 3.8 298 K -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0	Ea = (8=1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & network = 1.1E10 & network = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8=2) kJ/mol, A = (6.1=0.3)e10 M-1s-1 & network = 1.1E10 Ea = (8=3) kJ/mol, A = (.6.1=0.3)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH3-CH3	1-pentanol 1-heryanol 1-herptanol 2-propanol 2-butanol 3-pentanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 4.10E+09 3.10E+09	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Paulse radiolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 292 X 293-298 K 293-298 K 292 X 60 0 2.0-10.0 7.0 2.98 K 298 K 200 K 200 K 200 K 20	Ea = (8±2) kJ/mol, A = (1.9=0.1)e11 M-1s-1 R _{adence} = 1.1E10 R _{adence} = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1=0.3)e10 M-1s-1 R _{adence} = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4=0.3)e11 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-0H CH3-(CH2)-0H CH3-(CH2)-0H CH3-CH(OH)-CH3 CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)-C-OH	1-peritanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Morobashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Fenton reaction	СК. СК. СК. СК. СК. СК. СК. СК. СК. СК.	pH 3.3 298 K 298 K 292 K 6.0 2.0-10.0 7.0 2.0-10.0 7.0 2.0-10.0 7.0 2.98 K PH 1.5 298 K 7.0 PH 5.8 298 K 2.98 K -1.8	Ea = (8±1) kJ/mol, A = (1.0=0.1)e11 M-1s-1 & network = 1.1E10 & network = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292.352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 & network = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 (CH3)5-COH	1-pentanol 1-heyanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E+09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+09 2.10E+09 3.50E+08 3.50E+	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elikot and Simsons, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1984 Wullson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Ervens et al., 2003 Snook and Hamilton, 1074 Elikot and Simons, 1989 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Laser photolysis	CK.	pH 3.3 298 K 298 K 293 298 K	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R ndmncs = 1.1E10 R ndmncs = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R ndmncs = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (0±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)4-C-OH	1-pentanol 1-heytanol 1-heytanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Smisons, 1984 Wolfenden and Willson, 1962 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Adams et al., 1965 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Fenton reaction Laser photolysis	CK. CK.	pH 3.3 298 K 293 X 293 298 K 293 298 K 293 298 K 293 298 K 293 298 K 298 K	Ea = (8±1) kJ/mol, A = (1.9=0.1)e11 M-1s-1 R _{therence} = 1.1E10 R _{therence} = 1.0E10 	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH(2H2)-OH CH3-CH(0H)-CH3 CH3-CH(0H)-CH3-CH3 CH3-CH2-CH(0H)-CH3-CH3 (CH3)3-C-OH	1-peritanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.50E+09 2.30E+09 3.50E+00 3.50E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Morobashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Hamilton, 1974 Elliot and Hamilton, 1974 Elliot and Hamilton, 1974	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Fenton reaction Laser photolysis	CK.	pH 3.3 298 K 208 K 208 K 208 K 208 K 208 K 209 K 209 K 209 K 208 K 2	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R enterics = 1.1E10 R interics = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1=0.3)e10 M-1s-1 R enterics = 1.1E10 Ea = (8±2) kJ/mol, A = (7.4=0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3=0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)5-C-OH	1-pentanol 1-heyanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E-09 7.00E-09 7.00E-09 1.90E-09 1.90E-09 1.90E-09 2.30E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 3.10E-09 3.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 3.10E-09 2.10E-09 3.10E-	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elilot and Simsons, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1984 Wullson et al., 1971 Greenstock et al., 1965 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Snook and Hamilton, 1074 Elilot and Simons, 1989 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis Laser photolysis Laser photolysis	CK.	pH 3.3 298 K 293 K 293 298 K 293 298 K 293 298 K 293 292 K 293 293 293 K 293 294 294 294 294 294 294 294 294 294 294	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R detence = 1.1E10 R detence = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R detence = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (0±3) kJ/mol, A = (6.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (6.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)5-C-OH	1-peritanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1906 Informas, 1965 Monod et al., 2005 Ervens et al., 2003 Snook and Hamilton, 1974 Ellot and Simons, 1989 Ervens et al., 2003	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Fenton reaction Laser photolysis	CK.	pH 3.3 298 K 208 K 208 K 209 K 2010 7.5 293-298 K 292 K 6.0 2.0-100 7.0 298 K 298 K 29	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R enternes = 1.1E10 R internes = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH2OH2-CH3 CH3-CH3-CH2OH2-CH3 CH3-CH3-CH2OH2-CH3 CH3-CH3-CH2OH2-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	1-peritanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 2.30E+09 2.30E+09 3.00E+08 3.00E+08 3.00E+08 3.00E+09 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Morobashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Kimons, 1989 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Fenton reaction Laser photolysis	CK.	pH 3.3 208 208 208 208 208 208 209 209 209 209 209 209 209 209	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R enterics = 1.1E10 R interics = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enterics = 1.1E10 Ea = (8±2) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)5-C-OH	1-pentanol 1-heyanol 1-heytanol 2-propanol 2-propanol 3-pentanol tert-butanol	4.10E-09 3.70E-09 7.00E-09 7.00E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 1.90E-09 2.30E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.10E-09 2.30E-	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1984 Wulfson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1929 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis Laser photolysis Laser photolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 293 L 293 298 K 293 298 K 293 292 K 20 20 100 7.5 293 298 K 293 29 K 94 5.8 298 K 298 K	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R detence = 1.1E10 R detence = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R detence = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (6.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)-OH CH3-(CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH	1-peritanol 1-heyyanol 1-heytanol 2-propanol 2-propanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.20E+09 3.20E+09 3.20E+09 3.20E+09 3.20E+09 3.20E+09 3.30E+09 2.30E+09 3.30E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1944 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis Easer photolysis Laser photolysis Photo-fenton	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 208 K 208 K 208 K 208 K 208 K 208 K 209 K 200 K 2	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R nternes = 1.1E10 R nternes = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R nternes = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2)5-OH CH3-CH2)OH)-CH3 CH3-CH2OH)-CH3-CH3 CH3-CH2OH)-CH3-CH3 CH3-CH2OH)-CH3-CH3 (CH3)3-C-OH	1-peritanol 1-hezyanol 1-hezyanol 2-propanol 2-propanol 2-butanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 2.30E+09 3.30E+09 2.30E+09 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Morobashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Snook and Hamilton, 1974 Eliot and Saiton, 1974 Eliot and Saiton, 1974 Eliot and Saiton, 1974 Eliot and Saiton, 1974	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis Easer photolysis Laser photolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis	СК. СК. СК. СК. СК. СК. СК. СК. СК. СК.	pH 3.3 298 K 298 K 293 293 K 293 293 K 293 293 K 293 293 K 293 293 K 293 293 K 293 K	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R enterence = 1.1E10 R interence = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R énternce = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-(CH2)6-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)4-C-OH	1-pentanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+00 3.10E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1978 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1962 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Adams et al., 1965 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Monod et al., 2005 Ervens et al., 2003 Monod et al., 2005 Ervens et al., 2003 Monod et al., 2005 Ervens et al., 2005 Ervens et al., 2005 Ervens et al., 2005 Ervens et al., 2005 Logan, 1989 Motohashi and Saito, 1993 Willson et al., 1991	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Photo-fenton	CK CK CK CK CK CK CK CK CK CK CK CK CK C	pH 3.3 298 K 292 K 293 298 K 293 298 K 293 292 K 293 292 K 293 292 K 293 293 K 293 293 K 293 K 298 K	Ea = (8±2) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R detence = 1.1E10 R detence = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R detence = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)-OH CH3-(CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH	1-peritanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.30E+09 2.30E+09 3.30E+09 2.30E+09 3.30E+09 2.30E+09 3.30E+09 2.30E+09 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+00 3.30E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Saiton, 1974 Elliot and Saiton, 1974 Elliot and Saito, 1993 Monod et al., 2005 Logan, 1989 Motohashi and Saito, 1993 Willson et al., 1971 Buxton et al., 1971	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis Easer photolysis Easer photolysis Pulse radiolysis Pulse radiolysis Photo-fenton	CK.	pH 3.3 298 K 208 K 208 K 209 K 201 C 20 C 20 C 20 C 20 C 20 C 20 C 20 C 20	Ea = (8±1) kJ/mol, A = (1.0±0.1) e11 M-1s-1 R nternes = 1.1E10 R nternes = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292.352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R nternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)-C-OH (CH3)3-C-OH	1-pentanol 1-heyanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 5.90E+08 4.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+09 7.20E+08 7.20E+09 7.20E+09 7.20E+08 7.20E+09 7.20E+08 7.20E+	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1984 Wolfenden and Willson, 1985 Thomas, 1965 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elbit and Simons, 1989 Ervens et al., 2003 Motohashi and Saito, 1993 Willson et al., 1991 Motohashi and Saito, 1993 Willson et al., 1981	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Easer photolysis Laser photolysis Fenton reaction Laser photolysis Pulse radiolysis Fenton reaction Laser photolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 298 K 291 293 K 293 K 298 K 298 K 298 K 298 K 298 K	Ea = (8±2) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R reference = 1.1E10 R reference = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R reference = 1.1E10 Ea = (8±3) kJ/mol, A = (0.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (0.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (0.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)5-OH CH3-CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)-C-OH	1-peritanol 1-heytanol 2-propanol 2-propanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 2.30E+09 3.10E+09 3.00E+08 3.00E+	Ervens et al., 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1978 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1962 Willson et al., 1971 Gremstock et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Bibliot and Simons, 1989 Ervens et al., 2003 Monod et al., 2005 Logan, 1989 Motohashi and Saito, 1993 Willson et al., 1981 Wolfenden and Willson, 1982 Gordon et al., 1981	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Photo-fenton	CK CK CK CK CK CK CK CK CK CK CK CK CK C	pH 3.3 298 K 292 X 293 298 K 293 298 K 293 292 X 60 0 2.0-100 7.0 2.9-100 7.0 7.0 2.9-100 7.0 7.0 2.9-100 7.0 7.0 7.0 2.9-100 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R enternes = 1.1E10 R internes = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)-OH CH3-(CH2)-OH CH3-CH(0H)-CH3 CH3-CH(0H)-CH3-CH3 CH3-CH(0H)-CH2-CH3 CH3-CH(0H)-CH2-CH3 CH3-CH(0H)-CH2-CH3 CH3-CH(0H)-CH2-CH3	I-peritanol I-heyvanol I-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 4.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.30E+09 2.40E+09 3.30E+09 2.40E+09 3.30E+09 2.40E+09 3.30E+09 2.40E+09 3.30E+09 2.40E+09 3.30E+09 2.40E+09 3.30E+09 3.30E+09 2.40E+09 3.30E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 International Context (Scholer 1971) Greenstock et al., 1963 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Saiton, 1974 Elliot and Saiton, 1974 Elliot and Saito, 1993 Wolfondet al., 2005 Logan, 1989 Wolfenden and Willson, 1982 Gordon et al., 1987 Buxton et al., 1971 Buxton et al., 1971	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis Easer photolysis Fenton reaction Laser photolysis Photo-fenton	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 208 K 208 K 209 K 201 C 20 C 20 C 20 C 20 C 20 C 20 C 20 C 20	Ea = (8±1) kJ/mol, A = (1.0+0.1) e11 M-1s-1 R nterner = 1.1E10 R nterner = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292.352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R nterner = 1.1E10 Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 Ea = (0±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1 recommended values selected values	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH205-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH (CH3)3-C-OH	1-pertanol 1-heyanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pertanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 5.90E+08 4.80E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Morobachi and Saito, 1993 Elliot and Simoson, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Ervens et al., 2003 Unitson, 1974 Elliot and Saito, 1993 Willson et al., 1971 Buxton et al., 1988 Wolfenden and Willson, 1988 Motohashi and Saito, 1997 Buxton et al., 1977 Buxton 1988	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis Laser photolysis Pulse radiolysis Pulse radiolysis Laser photolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	CK CK CK CK CK CK CK CK CK CK CK CK CK C	PH 3.3 298 K 298 K 291 293 K 293 293 K 298 K 298 K	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R enterence = 1.1E10 R interence = 1.0E10 selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enterence = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 selected values	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)-S-OH CH3-CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)-S-COH (CH3)-S-COH	1-peritanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.00E+08 3.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Gremstock et al., 1905 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Biston and Simons, 1989 Ervens et al., 2003 Ervens et al., 2005 Logan, 1989 Motohashi and Saito, 1993 Buxton et al., 1978 Buxton et al., 1978 Buxton et al., 1978 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1981	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Photo-fenton Laser photolysis Photo-fenton	CK CK CK CK CK CK CK CK CK CK CK CK CK C	PH 3.3 298 K 208 K 208 K 209 K	Ea = (8±1) kJ/mol, A = (1.0+0.1) e11 M-1s-1 R enternes = 1.1E10 R internes = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 selected values selected values Ea = 10 kJ/mol, log(A)=10.609, T = 392-352 K	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)OH CH3-(CH2)-5-OH CH3-(CH2)-6-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH2-CH(OH)-CH2-CH3 (CH3)-5-C-OH	1-peritanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-peritanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 2.30E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 4.00E+08 4.00E+08 6.00E+08 4.30E+08 6.00E+08	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Monod et al., 2005 Logan, 1989 Motohashi and Saito, 1993 Buxton 1988 Motohashi and Willson, 1984 Wolfenden and Willson, 1984	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Fenton reaction Laser photolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	PH 1-3 298 K 2010 2010 2010 2010 2010 2010 2010 201	Ea = (8±1) kJ/mol, A = (1.0±0.1) e11 M-1s-1 R enterics = 1.1E10 R interics = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3) e10 M-1s-1 R enterics = 1.1E10 Ea = (8±2) kJ/mol, A = (7.4±0.3) e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3) e11 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1) e10 M-1s-1 selected values selected values Ea = 10 kJ/mol, log(A)=10.609, T = 292-352 K	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH	1-pertanol 1-heyanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.00E+08 3.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Buxton 1978 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1962 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Adams et al., 1965 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Biston and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Motohashi and Saito, 1993 Willson et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Cordon et al., 1977	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Fenton reaction Laser photolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Photo-fenton Laser photolysis Pulse radiolysis Photo-fenton Phot	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 298 K 293 L 293 L 294 L 298 K 298 K 2	Ea = (8±2) kJ/mol, A = (1.0±0.1) e11 M-1s-1 R reterner = 1.1E10 R reterner = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R reterner = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)-OH CH3-(CH2)-OH CH3-CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH(OH)-CH2-CH3 (CH3)-C-OH (CH3)-C-OH	1-pertanol 1-heyyanol 1-heytanol 2-propanol 2-propanol 3-pentanol tert-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.00E+08 5.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1965 Envens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Elliot and Simons, 1989 Motohashi and Saito, 1993 Willson et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1982	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	PH 3.3 298 K 208 K 208 K 209 C 200 200 200 200 200 200 200 200 200 20	Ea = (8±1) kJ/mol, A = (1.0+0.1) e11 M-1s-1 R enternes = 1.1E10 R internes = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (6.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH(0H)-CH3 CH3-CH(0H)-CH3-CH3 CH3-CH(0H)-CH2-CH3 CH3-CH(0H)-CH2-CH3 CH3-CH2-CH(0H)-CH2-CH3 CH3-CH2-CH(0H)-CH3-CH3 CH3-CH2-CH2-CH3 CH3-CH2-CH2-CH3-CH3 CH3-CH3-CH3-CH3-CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	1-pertanol 1-heyvanol 1-heytanol 2-propanol 2-propanol 2-butanol 3-pentanol tert-butanol 2-methyl-2-butanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.60E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 4.00E+08 4.00E+08 6.00E+08 6.00E+08 4.00E+08 4.00E+08 6.00E+08 4.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1963 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Elliot and Simons, 1989 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Barten et al., 2005 Logan, 1989 Wolfenden and Willson, 1982 Gordon et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Wolfson et al., 1971 Adams et al., 1965 Adpbar 1966	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Fenton reaction Laser photolysis Pulse radiolysis Pu	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	PH 1-3 298 K 298 K 292 K 60 K 201 C 201 C 201 C 202 C 202 C 202 C 202 C 202 C 202 C 202 C 203 C 20	Ea = (8±1) kJ/mol, A = (1.0+0.1) e11 M-1s-1 R enterics = 1.1E10 R interics = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enterics = 1.1E10 Ea = (8±2) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1)e10 M-1s-1 Ea = 10 kJ/mol, log(A)=10.609, T = 292-352 K	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH (CH3)3-C-OH CH3-CH2OH)-CH2-CH3 CH3-CH2OH (CH3)3-C-OH	1-pertanol 1-hezyanol 1-hezyanol 2-propanol 2-propanol 2-pertanol tert-butanol tert-butanol 2-methyl-2-butanol 2-methyl-1-propanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 4.00E+08 4.80E+08 6.00E+08 6.00E+08 6.00E+08 4.80E+08 6.00E+08 6.00E+08 4.20E+08 6.00E+08 5.90E+08 4.20E+08 6.00E+08 5.90E+08 4.20E+08 6.00E+08 5.90E+08 4.20E+08 6.00E+08 5.90E+08 4.20E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1962 Wullson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Adams et al., 1965 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Motohashi and Saito, 1989 Ervens et al., 2003 Motohashi and Saito, 1993 Willson et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Buxton 1988	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Fenton reaction Laser photolysis Pulse radiolysis Y aradiolysis Y	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 298 K 291 293 K 292 X 292 X 201 20 201 20	Ea = (8±2) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R reference = 1.1E10 R reference = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R reference = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (2.3±0.1)e10 M-1s-1 Ea = 10 kJ/mol, A = (2.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2)-OH CH3-CH2OH)-CH3 CH3-CH2OH)-CH2-CH3 CH3-CH2-CH2OH)-CH2-CH3 (CH3)-5-COH CH3-CH2-CH2OH CH3-CH2-CH2OH)-CH2-CH3 CH3-CH2-CH2OH)-CH3-CH3 CH3-CH2-CH2OH)-CH3-CH3-CH3-CH3-CH3-CH2-OH	I-peritanol I-heyyanol I-heytanol Z-propanol Z-propanol Z-putanol definition definition definition definition definition definition Z-methyl-2-butanol Z-methyl-1-propanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 5.00E+08 4.20E+08 5.00E+08 6.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1965 International et al., 2003 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Ervens et al., 2003 Degan, 1989 Motohashi and Saito, 1993 Willson et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1982 Motohashi and Saito, 1993 Elliot and Simons, 1982 Motohashi and Saito, 1993 Elliot and Simons, 1982 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Butoton 1988 Reuvers 1973	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis	CK CK CK CK CK CK CK CK CK CK CK CK CK C	PH 3.3 298 K 208 K 208 K 209 C 20 C 20 C 20 C 20 C 20 C 20 C 20 C 20	Ea = (8±1) kJ/mol, A = (1.0+0.1)e11 M-1s-1 R enternes = 1.1E10 R internes = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enternes = 1.1E10 Ea = (8±3) kJ/mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (6.3±0.1)e10 M-1s-1	-18.71 -18.25 -17.75 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)5-OH CH3-(CH2)5-OH CH3-CH(2H2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 CH3-CH2-CH(OH)-CH3-CH3 CH3-CH2-CH(OH)-CH3-CH3 CH3-CH2-CH2-OH	1-pertanol 1-hexyanol 1-heytanol 2-propanol 2-propanol 2-propanol 3-pentanol tert-butanol 4	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.60E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 4.00E+08 4.00E+08 6.00E+08 6.00E+08 4.00E+08 6.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simsons, 1984 Wolfenden and Willson, 1982 Thomas, 1965 Monod et al., 2005 Ervens et al., 2003 Adams et al., 1965 Elliot and Simons, 1989 Ervens et al., 2003 Snook and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Genode et al., 2005 Logan, 1989 Ervens et al., 2003 Biologia and Saito, 1993 Wolfenden and Willson, 1982 Gordon et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Wullson et al., 1971 Buxton 1968 Motohashi and Saito, 1993 Elliot and Simons, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Wullson et al., 1971 Adams et al., 1965 Aubat 1966 Buxton 1968 Reuvers 1973 Reuvers 1973	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Laser photolysis Laser photolysis Laser photolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	PH 3.3 298 K 298 K 293 X 293 X 298 X 7.0 298 X 298 X 299 X 200 X 2	Ea = (8±1) kJ/mol, A = (1.0±0.1) e11 M-1s-1 R entence = 1.1E10 R intence = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3) e10 M-1s-1 R entence = 1.1E10 Ea = (8±2) kJ/mol, A = (7.4±0.3) e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3) e11 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1) e10 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1) e10 M-1s-1 Ea = (10±3) kJ/mol, A = (5.3±0.1) e10 M-1s-1 Ea = 10 kJ/mol, a = (3.3±0.1) e10 M-1s-1 Ea = 10 kJ/mol, a = (3.3±0.1) e10 M-1s-1 Ea = 10 kJ/mol, log(A)=10.609, T = 292-352 K average of 3 values k retures = 1.0E10 R retures = 1.0E10	-18.71 -18.25 -17.75 -19.93 -19.93 -19.93	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)4-OH CH3-(CH2)5-OH CH3-CH2)5-OH CH3-CH2OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3)3-C-OH (CH3)3-C-OH CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-C(CH3)(OH)-CH3- CH3-CH2-CH2-C(CH3)(OH)-CH3- CH3-CH2-CH2-C(CH3)(OH)-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH2-CH3- CH3-CH3- CH3-CH2-CH3- CH3- CH3-CH3- C	1-pertanol 1-hexyanol 1-hetyanol 2-propanol 2-propanol 3-pertanol tert-butanol tert-butanol 2-methyl-2-butanol 2-methyl-1-propanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 7.40E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 4.10E+09 3.00E+09 3.00E+08 3.00E+08 3.00E+08 3.00E+09 3.00E+08 3.00E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Buxton 1978 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1962 Willson et al., 1971 Greenstock et al., 1968 Thomas, 1965 Monod et al., 2003 Ervens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Ervens et al., 2003 Biston Adamson, 1989 Ervens et al., 2003 Gordon et al., 1971 Buxton 1988 Wolfenden and Willson, 1982 Gordon et al., 1973 Buxton 1988 Wolfenden and Willson, 1983 Elliot and Saito, 1993 Elliot and Saito, 1993 Elliot and Saiton, 1984 Wolfenden and Willson, 1982 Gordon et al., 1977 Buxton 1988 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973 Reuvers 1973	Laser photolysis Pulse radiolysis Y radiolysis Y radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Laser photolysis Pulse radiolysis Pulse radiolysis	CK. CK. CK. CK. CK. CK. CK. CK. CK. CK.	pH 3.3 298 K 298 K 291 293 K 292 X 292 X 293 293 K 292 X 293 293 K 293 293 K 293 293 K 298 K 299 K 298 K 299 K 298 K 299 K 299 K 298 K 299 K 290 K 290 K 290 K 290 K 290 K 200 K 20	Ea = (8±1) kJ/mol, A = (1.0±0.1)e11 M-1s-1 R enterics = 1.1E10 R interics = 1.0E10 Selected values Ea = 5 kJ/mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ/mol, A = (6.1±0.3)e10 M-1s-1 R enterics = 1.1E10 Ea = (8±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (7.4±0.3)e11 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = (10±3) kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = 10 kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = 10 kJ/mol, A = (3.3±0.1)e10 M-1s-1 Ea = 10 kJ/mol, log(A)=10.609, T = 292-352 K average of 3 values k-interics = 1.0E10 k-interics = 1.1E10	-18.71 -18.25 -17.75 -19.93 -19.93 -18.85	-4.47 -4.36 -4.24 -4.76
CH3-(CH2)-OH CH3-(CH2)-OH CH3-(CH2)-OH CH3-CH(OH)-CH3 CH3-CH(OH)-CH3-CH3 CH3-CH(OH)-CH2-CH3 (CH3-CH2-CH(OH)-CH2-CH3 (CH3)-C-OH (CH3)-C-OH CH3-CH2-CH(OH)-CH2-CH3 (CH3)-C-OH CH3-CH2-CH2-CH3-CH2-OH CH3-CH2-C(CH3)-CH2-OH CH3-CH2-C(CH3)-CH2-OH CH3-CH2-C(CH3)-CH2-OH CH3-CH2-C(CH3)-CH2-OH CH3-CH2-C(CH3)-CH2-OH CH3-CH2-CH2-CH2-OH CH3-CH2-CH2-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH2-OH CH3-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	I-pertanol I-heyyanol I-heyyanol I-heytanol Z-propanol Z-propanol Z-putanol tert-butanol tert-butanol Z-methyl-2-butanol Z-methyl-1-propanol Z-dimethyl-1-propanol Z-dimethyl-1-propanol	4.10E-09 3.70E+09 4.00E+09 7.00E+09 1.90E+09 1.90E+09 1.90E+09 2.30E+09 1.90E+09 1.90E+09 1.90E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.10E+09 3.00E+08 5.00E+08 4.20E+08 5.00E+08 6.00E+08 5.90E+08 6.00E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+08 6.00E+08 5.90E+	Ervens et al. 2003 Reuvers 1973 Reuvers 1973 Scholes and Willson, 1967 Scholes and Willson, 1967 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simosn, 1984 Wolfenden and Willson, 1982 Willson et al., 1971 Greenstock et al., 1965 Envens et al., 2003 Adams et al., 1965 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Ervens et al., 2003 Ervens et al., 2003 Ervens et al., 2003 Snock and Hamilton, 1974 Elliot and Simons, 1989 Motohashi and Saito, 1993 Wilson et al., 1971 Buxton 1988 Motohashi and Saito, 1993 Elliot and Simons, 1982 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Simons, 1984 Motohashi and Saito, 1993 Elliot and Saiton, 1993 Adams et al., 1965 Buxton 1988 Reuvers 1973 Reuvers 1973 Adams et al., 1975 Buxton 1975	Laser photolysis Pulse radiolysis Pulse radiolysis Y radiolysis Pulse radiolysis	CK CK CK CK CK CK CK CK CK CK CK CK CK C	PH 3.3 298 K 298 K 298 K 293.298 K 293.298 K 293.298 K 293.298 K 293.298 K 298	$E_{a} = (8\pm1) kJ'mol, A = (1.0+0.1)e11 M-1s-1 R_{reference} = 1.1E10 R_{reference} = 1.0E10 selected values Ea = 5 kJ'mol, log(A)=10.256, T = 292-352 K temperature: N.D. Ea = (8±2) kJ'mol, A = (6.1±0.3)e10 M-1s-1 R_{reference} = 1.1E10 Ea = (8±3) kJ'mol, A = (6.1±0.3)e11 M-1s-1 Ea = (10±3) kJ'mol, A = (6.3±0.1)e10 M-1s-1$ Ea = (10±3) kJ'mol, A = (6.3±0.1)e10 M-1s-1 Ea = (10±3) kJ'mol, A = (1	-18.71 -18.25 -17.75 -19.93 -19.93 -18.88	-4.47 -4.36 -4.24 -4.76

	5			1 2			
				experimental	evaluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH	
HO-CH2-OH	dihydroxymethane	7.60E+08	Chin 1994	Flash photolysis	C.K.	297 K	Ea = 8.5 kJ/mol, log(A)=10.37, T = 279-319 K, pH = 1.5-5.7
		1.00E+09	Hart et al., 1964		C.K.		
		1.30E+09	Merz and Waters, 1949	Fenton reaction	C.K.	1.0	
HO-CH2-CH2-OH	ethyleneglycol	2.40E+09	Matheson 1973	Pulse radiolysis	C.K.		
		1.70E+09	Willson et al., 1971	Pulse radiolysis	C.K.		
		1.70E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	$k_{\text{reference}} = 1.0E10$
		1.40E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	$k_{\text{reference}} = 1.1\text{E}10$
HO-(CH2)3-OH	1,3-propanediol	2.50E+09	Anbar 1966	γ radiolysis	C.K.	9.0	
HO-(CH2)4-OH	1.4-butanedio1	3.20E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	
HO-(CH2)5-OH	1,5-pentanedio1	3.60E+09	Anbar 1966	γ radiolysis	C.K.	9.0	
HO-(CH2)6-OH	1,6-hexyanedio1	4.70E+09	Anbar 1966	γ radiolysis	C.K.	9.0	
CH3-CH(OH)2	1,1-ethanedio1	1.20E+09	Shuchmann 1988	Pulse radiolysis	C.K.		
CH3-CH(OH)-CH2-OH	1,2-propanediol	1.70E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	
CH3-CH(OH)-CH2-CH2-OH	1,3-butanedio1	2.20E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	
CH3-CH(OH)-CH(OH)-CH3	2,3-butanedio1	1.30E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	
CH3-CH(OH)-CH2-CH(OH)-CH3	2,4-pentanedio1	2.30E+09	Ulanski 1994	Pulse radiolysis	C.K.		
HO-CH2-CH(OH)-CH2-OH	glycerol	2.00E+09	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1E10$
		1.80E+09	Reuvers 1973	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.0E10$
		2.10E+09	Willson et al., 1971	Pulse radiolysis	C.K.		
		1.90E+09	Adams 1965	Pulse radiolysis	C.K.	10.7	
		1.50E+09	Adams 1965	Pulse radiolysis	C.K.	7.0	
		2.10E+09	Adams 1965	Pulse radiolysis	C.K.		contains 0.04 M NasCO3-
HO-CH2-[CH(OH)]3-CH2-OH	arabinitol	1.80E+09	Moore 1979	Pulse radiolysis	C.K.	7.0	
HO-CH2-[CH(OH)]4-CH2-OH	mannitol	1.70E+09	Buxton 1988	Fenton reaction	C.K.	7.4	T = 310 K
		1.40E+09	Ching et al., 1993	Fenton reaction	C.K.	7.4	T = 310 K.
						7.5	
		1.90E+09	Motohashi and Saito, 1993	y radiolysis	C.K.	293- 298 K	
C(CH2OH)4	pentaerythritol	3.30E+09	Anbar 1966	y radiolysis	C.K.	9.0	
CH2OH-CHOH-CHOH-CH2OH	erythritol	1.50E+09	Moore 1979	Pulse radiolysis	C.K.	7.0	
HOCH2COOH	glycolic acid	5.40E+08	Scholes 1967				

Table A-B3: Survey of HO• rate constants with poly-alcohol

Table A-B4: Survey of HO• rate constants with ether

chemcial formura	compound	к _{но} . (М-1 s-1)	references	experimental method	evaluation method	pH		Exp. Solvation free energy (kJ/mol) at 298K	Exp. Solvation free energy (kcal/mol) at 298K
CH3-O-CH3	dimethylether	1.00E+09	Eibenberger 1980	Pulse radiolysis	C.K.			-8.04	-1.92
CH3-CH2-O-CH2-CH3	diethylether	2.90E+09	Eibenberger 1980	Pulse radiolysis	C.K.			-7.37	-1.76
(CH3)3-C-O-CH3	tert-butyl-methyl-ether (MTBE)	1.60E+09	Eibenberger 1980	Pulse radiolysis	C.K.			-9.25	-2.21
(CH3)3-C-O-CH2-CH3	tert-butyl-ethyl-ether (ETBE)	1.80E+09	Mezyk 2001	Pulse radiolysis	C.K.	pH 2.0 295±2 K			
			10 10 10 10 10 10 10 10 10 10 10 10 10 1	- 10 00		pH 1-2	Ea = 4.8±4 7kJ mol.		
		1.50E+09	Monod et al., 2005	Photo-fenton	C.K.	298 K.	A = 1.2e10 M-1s-1		
		1.70E+09				279			
		1.50E+09				286.0			
		1.50E+09				297.0			
		1.30E+09				309.5			
		2.40E+09				320			
		2.30E+09				333			
(CH3)2-HC-O-CH-(CH3)2	dasopropyl ether (DIPE)	2.49E+09	Mervk 2001	Pulse radiolysis	T.S.	pH 2.0 295±2 K			
		3.70E-09	Schuchmann and von Sonntag, 1987	Pulse radiolysis	c.K.	N.D.			
	tert-amyl methyl ether					pH 2.0			
C ₂ H ₃ C(CH ₃) ₂ OCH ₃	(TAME)	2.37E+09	Mezyk 2001	Pulse radiolysis	T.S.	295±2 K			
CH2(OCH3)2	dimethoxymethane	1.20E+09	Eibenberger 1980	Pulse radiolysis	C.K.				
CH3CH(OCH3)2	1,1-dimethoxyethane	2.20E+09	Eibenberger 1980						
CH2(OC2H5)2	diethoxymethane	1.60E+09	Anbar 1966	y radiolysis	C.K.	9.0			
CH3-O-CH2-O-CH3		3.20E+08	Neta						
CH3-O-CH2-CH2-OH	2-methoxyethanol	1.30E+09	Anbar 1966	y radiolysis	C.K.	9.0			
C2H5-O-CH2-CH2-OH	2-ethoxyethanol	1.70E+09	Anbar 1966	y radiolysis	C.K.	9.0			
CH3-O-CH2-CH2-O-CH3	ethylene glycol dimethyl ether	1.60E+09	Anbar 1966	y radiolysis	C.K.	9.0			
CH3CH2-O-CH2CH2-O-CH2CH3	ethylene glycol diethyl ether	2.30E+09	Anbar 1966	y radiolysis	C.K.	9.0			
CH3CH2-O-CH2CH2-CH2CH2-O-CH2CH3	diethylene glycol diethyl ether	3.20E+09	Anbar 1966	y radialysis	C.K.	9.0			
HO-CH2-CH2-O-CH2-CH2-OH	diethylene glycol	2.10E+09	Anbar 1966	y radiolysis	C.K.	9.0			
CH3-C(CH3)(OCH3)CH2-OH	2-methyl-2-methoxy propanol	\$.40E+0\$	Meryk 2004						

chemcial formura	compound	k _{HO} . (M-1 s-1)	references	experimental method	evaluation method	pH	
HCOO-CH2-CH3	ethyl formate	3.90E+08	Adams 1965	Pulse radiolysis	C.K.		
		3.30E+08	Giigorovski and Hermann, 2004	Photo-fenton	C.K.	298 K	$ \begin{split} & \text{Ea} = 10 \pm 4 \text{kJ/mol}, \text{A} = 1.8 \pm 0.1 \text{e10} \text{M} \text{-} \\ & 1 \text{s} \text{-} 1 \\ & 288 - 328 \text{K} \\ & \text{G}^{**} = 24 \pm 11 \text{kJ/mol} \\ & \text{H}^{***} = 7 \pm 3 \text{kJ/mol} \\ & \text{S}^{**} = -(57 \pm 4) \text{kJ/mol} \end{split} $
CH3-COO-CH3	methyl acetate	1.20E+08	Adams 1965	Pulse radiolysis	C.K.	2.0	
CH3-COO-CH2-CH3	ethyl acetate	4.00E+08	Adams 1965	Pulse radiolysis	C.K.		
CH3-COO-CH2-CH2-CH3	propyl acetate	1.40E+09	Adams 1965	Pulse radiolysis	C.K.		
CH3-COO-(CH2)3-CH3	n-butylacetate	1.80E+09	Monod et al., 2005	Photo-fenton	C.K.	298 K	Ea = 8.3±1.7kJ/mol, A = 5.3e10 M-1s-1
		1.30E+09				278	
		1.80E+09				288.0	
		1.00E+09				297.0	
		2.30E+09				318.0	
CH3-COO_CH(CH3)2	iso-pronyl acetate	4 50F+08	Adams 1965	Pulse radiolysis	СК	2.0	
CH3-CH2-COO-CH3	methyl propionate	4 50E+08	Buxton 1988	Pulse radiolysis	CK	2.0	
	incut, i proprotitate	3 20E+08	Biro and Woinarovits 1992	Pulse radiolysis	CK		
CH3-CH2-COO-CH2-CH3	ethyl propionate	8.70E+08	Adams 1965				
CH3-(CH2)2-COO-CH3	methyl butyrate	1.70E+09	Adams 1965	Pulse radiolysis	C.K.		
CH3-(CH2)2-COO-CH2-CH3	ethyl butyrate	1.60E+09	Adams 1965	Pulse radiolysis	C.K.		
CH3-COO-CH2CH2OH	2-hydroxyethyl acetate	9.10E+08	Matsusige et al., 1975	Pulse radiolysis	C.K.	T = 293 K	
CH3CH2-O-CO-CH2-COO-CH2CH3	diethyl malonate	6.50E+08	Adams 1965	Pulse radiolysis	C.K.		
CH3CH2-O-CO-(CH2)2-COO-CH2CH3	diethylsuccinate	7.80E+08	Adams 1965	Pulse radiolysis	C.K.		
CH3-O-CH2-COO-CH3	methyl methoxy acetate	1.80E+09	Massaut 1988	Pulse radiolysis	C.K.	-7.0	

Table A-B5: Survey of HO• rate constants with ester

Table A-B6: Survey of HO• rate constants with aldehyde

				experimental	evaluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH	
HCHO	form aldehyde	1.00E+09					
			Schuchmann and			pH = 5.0	
CH3-CHO	acetaldehyde	3.60E+09	von Sonntag, 1988	Pulse radiolysis	C.K.	'- 293 K	
		9.50E+08	Merz and Waters, 1949	Fenton reaction	C.K.	1.0	
CH3-CH2-CHO	propionaldehyde	2.20E+09	Mezyk 1994	Pulse radiolysis	ск	pH =5.2 T = 298 K	Fa = 28 kJ/mol Log(A)=14 207 T=276-313 K
	<i>p p</i>					pH =6.0	
		2.80E+09	Hesper and Hermann	Photo-fenton	C.K.	298 K	Ea = 11±3 kJ/mol, A = 2.6±0.1 e11 M-1s-1
CH3-CH2-CH2-CHO	butyraldehyde	3.90E+09	Adams 1965	Pulse radiolysis	C.K.	2.0	
						pH =5.9	
		3.90E+09	Hesper and Hermann	Photo-fenton	C.K.	298 K	Ea = 8±3 kJ/mol, A = 8.1±0.3 e10 M-1s-1
		2.005+00	Ci. 1. 111 2004	DI 4 C 4	0 K	200 1/	Ea = 6±3 kJ/mol, A = 3.0±0.1 e10 M-1s-1 288-328 K G** = 19±10 kJ/mol H** = 3.3±1.7 kJ/mol
(CH3)2-CH-CHO	isobutyl aldenyde	2.90E+09	Gigorovski and Hermann, 2004	Photo-renton	C.K.	298 K	S*** = -(55±5) kJ/mol
сно-сно	giyoxai	0.00E+07	Draganic and Marcovic	Radiolysis	U.K.	1.5	Ea = 15 1
CH3-CO-CHO	methyl glyoxal	5.30E+08	Monod et al., 2005	Photo-fenton	C.K.	298 K	Ea = 9.1±2.5kJ/mol, A = 2.0e10 M-1s-1
		5.30E+08				276.0	
		3.10E+08				276.0	
		5.30E+08				288.0	
		4.80E+08				288.0	
		5.30E+08				298.0	
		4.60E+08				298.0	
		7.00E+08				318.0	
		6.70E+08				318.0	
(CH3)3-C-O-CHO	tertbutylformate (TBA)	4.10E+08	Onstein 1999	UV/H2O2	C.K.	pH = 7.0 T = 298 K	
CH3-C(CH3)(OCH3)-CHO	2-methyl-2-methoxy-propanal	3.99E+09	Mezyk 2004				
HO-C(CH3)2-CHO	hydroxy-iso-butylaldehyde	3.00E+09	Acero 1991				

chemcial formura	compound	k no- (M-1 s-1)	references	experimental method	evaluation method	pH		Exp. Solvation free energy (kJ/mol) at 298K.	Exp. Solvation free energy (kcal/mol) at 298K
CH3.CO.CH3	acetone	1.10E+08	Buston et al. 1988					-16.12	.1.85
		1.30E+08	Wolfenden and Willson, 1982	Pulse radiolysis	CK	6.0			
		1.40E+08	Willson et al. 1971	Pulse radiobusis	CK				
		8 30E+07	Thomas 1965	Pulse radiolysis	CK				
		0.705+07	Adams 1965	Pulse radiolysis	C.F.				
		3 1/15-00	Enterna et al. 2002	Lasse abatabasis	CY	200 1	$P_{m} = (10, 110) \text{ k l/mol}$ A = (3.410 d)a11 M.4e.1		
		1.205-00	Ervens et al., 2005	Laser prototysis	v.n.	302 1	20 - (10 1 () Marina, 25 - (3 410 4/6 () m 13 (
		1.302-08				203 1			
		1.20E+V8				200 1			
		2.102-00				290 K			
		2.202+08				308 K			
		2.708#08				318 K			
		1 107-00	Manual 2005	24	0.2	pH 1-2	To all definition to a fight the test		
		1.102-03	Stonod et al., 2005	Photo-tenton	C.A.	298 6	La = 11.0146/mol, A = 1.01/e1/ M-15-1		
		8,00E+07				2/6.0			
		1.10E+08				298.0			
		1.20E+0S				298.0			
		1.30E+08				301.0			
		1.30E+05				317.0			
		1.70E+08				323.0			
						pH=0.0			
		1.30E+05	Hesper and Hermann	Photo-fenton	C.K.	298 K	Ea = 16±3 kJ/mol, A = 8,4±0.4 e10 M-1s-1		10000
CH3-CH2-CO-CH3	2-butanone	6.60E+08	Meryk 1994	Pulse radiolysis		5.2, T=297K	Ea = 12 kJ/mol, Log(A)=11.009, T = 275-340 K	-15.24	-3.64
		9.00E+08	Adams 1963	Pulse radiolysis	C.K.				
						pH 1-2			
		8.10E+08	Monod et al., 2005	Photo-fenton	C.K.	298 K	Ea = 13.3±2 5kJ/mol, A = 26.2e11 M-1s-1		
		5.30E+08				276.0			
		7.80E+08				276.0			
		7.40E+08				288.0			
		8.10E+08				298.0			
		9.00E+08				298.0			
		1.03E+09				318.0			
		1.02E+00				178.0			
		1 SOF-09	Gigarovski and Hermann 2004	Photo-featon	CK	208 K	Ea = 15±8 kJ imol, A = 5.1±0.6 e11 M-1s-1 278-348 K G** = 21±13 kJ/mol H** = 13±6 kJ/mol S** =C9±3 kJ/mol		
		1.80E+09	George et al. 2003	Teflon wavelength			Fa = 31+6kJ/mol A = 4103 eld Malsal		
CH3-CH2-CH2-CO-CH3	2.pentapone	1 90E+09	Adams 1965	Pulse radiolysis	CK.			-14.78	.3.53
cito cita cita co cito	2 permanone	1.704 07	Addinis 1993	T MIDE HEMIOTY STD	U.R.	pH 1.7			2.22
(CH3)2-CH-CH2-CO-CH3	methyl-iso-butyl ketone	2.10E+09 2.10E+09	Monod et al., 2005	Photo-fenton	C.K.	298 K 276.0	Ea = 10±2.5kJ/mol, A = 1.3e11 M-1s-1		
		2.10E+09				298.0			
		3 S0E+09				323.0			
		4 40E+09				339.0			
CHI CHI CO CHI CHI	3 pantanone	1.105+00	A dame 1065	Poles endiaborie	CV	000.0		13.29	2.81
CHI CO CO CHI	2.3 but ma for	1.705-09	136- 1040	Pulse and about	0.1			-14.20	-2.41
	2,0 ⁻⁰ 11,000 (1000)	2.80E+08	Gligorovska and Hermann, 2004	Photo-fenton	C.K.	298 K.	$ \begin{split} E_8 = 24 \pm 5 \ kJ \ mol, \ A = 4.3 \pm 0.3 \ e11 \ M-1s-1 \\ 288-328 \ K \\ G^{B^+} = 25 \pm 7 \ kJ \ mol \\ H^{++} = 22 \pm 4 \ kJ \ mol \\ S^{++} = -(1\pm 1) \ kJ \ mol \end{split} $		
CH3-CO-CH2-CO-CH3	2.4-pentanone	9.90E+09	Broszkiewicz 1982	Pulse radiolysis	C.K.	6.4			
CH3-CO.CH2CH2-CO.CH3	acetonyl acetone	7.60E+08	Ginorovski and Hermann 2003	Photo-fenton	ск	293 K	$E_8 = 12\pm 5$ kJ/mol, $A = 1.1 \pm 0.1$ e11 M-1s-1 288-328 K $G^{**} = 22\pm 10$ kJ/mol $H^{**} = 10\pm 4$ kJ/mol $S^{**} = -10\pm 4$ kJ/mol		
CH3-CO.CH(OH) CH3	3.hvdro.2.hutanone	1 20E+09	Lube 1952	Pulse radiobusis	CK				
ens-co-en(on)-ens	- iyuv-z-vulanotie	6 SOT -00	Adams at al 1044	Pulse radiohysis	CK	20			
		2.000-00	Mannas et al., 1900	Photo funtor	C.K.	pH =508	For the Street A = 20401 at 125 to 1		
CUI CO CUO	mathad abunal	1.10E+00	Encore and Hermann	I noto-tenton	CF	290 2	$E_{0} = 1123 \text{ K/mol} A = 1.920.1 \text{ e11 M-13-1}$		
CHSCOLINO	metnyi giyotai	1.105-00	Ervens et al., 2005	Laser photodysis	U.A.	298 K	Por - (12 zol koluno), W - (5 azo 2)611 M-18-1		
		1.105+09				288 K			
		1.10E+09				298 K			
		1.50E+09				308 K			
		1.80E+09				318 K			
		2.00E+09				328 K			

Table A-B7: Survey of HO• rate constants with carbonyl

Table A-B8:	Survey of	f HO• rate	constants wit	th carboxyli	c acid

	0.00 Males - 21			experimental	evaluation			Exp. Solvation free energy (kJ/mol) at	Exp. Solvation free energy (kcal/mol) at
chemcial formura	compound	≈н⊃ (M-I s-1)	references	method	method	pH		2981	298K
H-COOH	forme acid	1.30E+08	Buston 1988				average of 2 values		
		1.40E+08	Thomas 1965	Pulse radiolysis	C.K.				
		1.30E+08	Adams et al., 1900	Pulse radiolysis	C.K.	1.0			
110.0.0		1.00E+08	Chun and Wine, 1994	Flush photolysis	C.K.	1=297 K	Ea = 3.2 kJ/mol, Log(A)=9.469, T=2/9-319K, pH=0.3-1.0		
HCOO	formate ion	3.20E+09	Button 1955				selected value		
		3.10E+09	Chin and Wine, 1994	Flush photolysis	С.К.	T = 297 K pH = 5.7	Ea = 10 kJ/mol, Log(A)=11.3, T=279-319K, pH=0.3-1.0		
		3 205+09	Matabashi and Saita 1003	v radiobreis	CK	203, 208 K			
		4 305+09	Elliot et al. 1990	Pulse radiolysis	CK	T = 792 K	Ea = 4.0 kJ/mol. log(A)=10.335. T=293.473 K		
				Flash photolysis/					
		5.10E+09	Logan, 1989	oudative quenching	CK.	9.0			
		3.80E+09	Elhot and Simsons, 1984	Pulse radiolysis	C.K.	T=292 K	Ea = 8.5 kJ/mol. log(A)=11.101. T=292.352 K		
		3 50E+09	Wolfenden and Willson 1982	Pulse radiolysis	CK	6.0			
		3.20E+09	Willson et al. 1971	Pulse radiolysis	CK				
		2 20E+09	Baxendale and Khan 1959	Pulse radiobusis	CK				
		4 10E+09	Bunton, 1969	Pulse radiolysis	CK	11.0	oH 11 and 13		
		2.60E+09	Thomas 1965	Pulse radiolysis	CK.	7.0	4 TO 1 TO		
						pH = -1.\$			
CH3-COOH	acetic acid	1./0E+07	Chin 1994	r lash photolysis	C.K.	1 = 297 K	La = 11kJ/mol, Log(A)= 9.18, T = 279-319 K	-28.05	-6.70
		9.20E+06	Thomas 1965	Pulse radiolysis	DK.	1.0			
		1.50E+07	Thomas 1963	Pulse radiolysis	C.K.	1.0			
		2.30E+07	Adams et al., 1963	Pulse radiolysis	CK				
CH1 000	Anatat- in-	7 205-07	Chin and Wine 1884	flack at such as	C.V.	pH=d.J	En = 15 blimet Log(A)=10.45 T= 370 Brow		
013-000-	acetate ton	7.408+07	Schular 1081	Palsa radiabasis	CK	10.7	En = 1.3 K3 mol, Log(/A)=10.43, 1= 2/9-319 K		
		1.005-00	Fisher and Hamilt 1073	Pulse reduction	CK	10.7			
		7 905+07	Willson et al. 1971	Pulsa rachobicis	CK				
		2 505+07	William at at 1021	Pulse radiotysis	PPV				
CHLCHLCOOH	promonic acid	6 205+08	Scholas 1967	v radioly sis	CX	.2.0		.27.00	6.47
chi chi coon	propronie acia	3 205+02	Merz and Waters, 1919	Fenton reaction	CK	1.0			192.47
		3 205+08	Ervens et al. 2003	Laser photobytis	CK	208 K	Eq = (10+8) kilmol A = (7.6+0.9)a11 M-1a-1		
		2 90E+08		auser prototy at	e.s.	288 K			
		3.20E+08				298 K			
		4.70E+08				308 K			
		5.20E+0S				318 K			
		7.70E+08				328 K			
				Flash photolysis/					
CH3CH2-COO-	propionate	1.20E+09	Logan, 1989	oxidative quenching	C.K.	9.0			
		\$ 20E+08	Anbar et al., 1966	y radialysis	C.K.	9.0			
		7.20E+08	Ervens et al., 2003	Laser photolysis	C.K.	298 K	Ea = (15±4) kJ/mol, A = (3.2±0.2)e11 M-1s-1		
		6.60E+08				288 K			
		7.20E+08				298 K			
		8.90E+08				308 K			
		1.102+09				318 K			
CH3 /CH232 COOM	huturic and	3 305+09	Scholas 1067	v radiabreiz	stants state method	20 1		_	
CHI CHI CHI COO	buttype deta	2.005.00	Apharatal 1965	v radiobreis	CK CK	0.0			
CH1/CH2/6-COOH	capadic acid	4 90E+09	Scholas 1967	y radiolysis	stem, state method	.20			
CH3/CH2)7/COOH	Azelaic acid	5 40E+09	Scholes and Willson 1967	y radiolysis	steav-state method	.20			
(CH3)2CHCH2COOH	3-methylbutyric acid	1.40E+09	Merz and Waters, 1949	Fenton reaction	C.K.	1.0			
(CH3)3-C-COOH	tri-methyl-acetic acid	6.50E+08	Nauser 1994	Pulse radiolysis	C.K.				
(CH3)-C-COO-	tri-methyl-acetate ion	6.50E+08	Buchanan et al., 1976	fenton reaction	steay-state method	-2.0			
		1.50E+09	Anbar et al., 1965	y radiolysis	steay-state method	9.0			
CH1.C(CH3)(OCH3).COOH	2.methyl.2.methoxy.propanoic acid	7 73E+08	Maryle 2004	2000					
CH3-CH(OH)-COOH	lactic acid	4.30E+08	Adams 1965						
		5.24E+08	Martin et al., 2008	pulse radiolysis	C.K.		24C, Ea = 9.31+-0.45 kJ/mole, pH = -6		
and the second se	lactate ion	7.70E+08			C.K.		22.2C, Ea = 10.76+-0.35 kJ/mole, pH = - 3.6		
CH3CH2CH(OH)COOH	2-hydroxybutyric acid	1.30E+09	Merz 1949	Fenton reaction	C.K.	1.0		-	
HO-CH2-(CHOH)4-COOH	glucuronic acid	1.30E+09	Phillips 1970	Pulse radiolysis	C.K.		M		
HOCH2COOH	glycolic acid	5.40E+0\$	Scholes 1967	y radiolysis	steay-state method	-2.0	pKa = 3.83	_	
CHOCOON	glyoxylic acid	3.00E+08	Livens et al., 2003	Laser phototysis	C.K.	295 K	2a = (010) KU/mol, A = (8.120.4)e9 M-19-1		
		3.302+08				288 K			
		4 205-08				295 K			
		4 505-00				310 1			
		5.10E+08				328 K			
CHOCOO-	givoxvlate	2.60E+09	Ervens et al., 2003	Laser photolysis	C.K.	298 K	Ea = (36±8) kJ/mol, A = (6.0±0.4)e15 M-1s-1		
		1.90E+09				288 K	(
		2.60E+09				298 K			
		5.00E+09				308 K			
		7.60E+09				318 K			
	200000000000000	1.10E+10				328 K			
CH3COCOOH	pyruvic acid	1.20E+08	Ervens et al., 2003	Laser photolysis	C.K.	298 K	Ea = (23 ±4) kJ/mol, A = (1 0±0 1)e12 M-1s-1		
		9.00E+07				288 K			
		1.20E+08				298 K			
		1.50E+08				308 K			
		2.10E+08				318 K			
C11100000		2.SUE+0S	Entropy at al. 2002	Landahatab	C.F.	328 K	Fr = (10+4) is limited in = (1,2+0,1)=12 14 4- 4		
CH3C0C00-	pyruvate	1.00E+08	Ervens et al., 2003	Laser photolysis	U.K.	298 K	.ca = (19/14) KJ/mol, A = (1.310.1)812 M-19-1		
		1 00E+08				288 K			
		0.002+08				308 F			
		1 205+00				319 2			
		1.505+09				328 K			
		3.60E+08	Merz and Waters, 1949	Fenton reaction	steay-state method	1.0			

				experimental	evaluation		
chemcial formura	compound	k HO. (M-1 s-1)	references	method	method	pН	
HOOC-COOH	oxalic acid	1.40E+06	Getoff 1971	pulse radiolysis	СК	0.0	$p_{\rm Ka} = 1.25 \pm 4.28$
H000-000H	ovalate ion hydrogen	4 70E+07	Getoff et al. 1971	pulse radiolysis	C.K.	3 ()
-000-0001	oxulate lon, nyalogen	4.702.107	octon ct al., 1971	pulse radiolysis	0.10.	nH=3	
		1 005+08	Envens et al. 2003	Laser photolygic	CK	208 K	$E_{\alpha} = (22 \pm 4) \text{ k l/mol}$ A = (2.5 \pm 0.1) e1 M-1e-1
		1.2002-08	Livens et al., 2005	Laser photolysis	0.14.	290 K	20 - (20 14) Komiol, A - (2.010, 1)61 M-18-1
		1.00E+08				200 K	
		1.90E+08				298 K	
		2.00E+08				308 K	
		3.20E+08				518 K	
		4.50E+08				528 K	
-00C-C00-	oxalate 10m	7.70E+06	Getoff et al., 19/1	pulse radiolysis	C.K.	6.0	
						pH = 8	
		1.60E+08	Ervens et al., 2003	Laser photolysis	C.K.	298 K	Ea = (36±10) kJ/mol, A = (4.6±0.5)e14 M-1s-1
		1.10E+08				288 K	
		1.60E+08				298 K	
		3 30E+08				200 K	
		5.000-08				210 V	
		J.00E+08				220 K	
11000 (111) (0001		0.40E±03	TT-80- 1076	C	C V	328 K	-16
HOOC-CH2-COOH	malonic acid	1.60E+07	Walling 19/5	fenton reaction	C.K.	1.0) pKa = 2.85, 5.69
		2.40E+07	Scholes and Willson, 196/	γ radiolysis	steay-state method	-2.0	pK.a= 2.8, 5.7
				flash photolysis/			
-00C-CH2-COO-	malonate ion	2.40E+08	Logan, 1989	oxidative quenching	C.K.	9.0	
						pH = 9	
		8.00E+07	Ervens et al., 2003	Laser photolysis	C.K.	298 K	$Ea = (38 \pm 19) \text{ kJ/mol}, A = (2.1 \pm 0.6) \text{e}9 \text{ M-1s-1}$
						pH = 8	
HOOC-CH2-COO-	malonate ion	6.00E+07	Ervens et al., 2003	Laser photolysis	C.K.	298 K	$Ea = (11 \pm 5) \text{ kJ/mol}, A = (3.2 \pm 0.4) \text{e9 M-1s-1}$
		3.00E+07				283 K	
		3.80E+07				288 K	
		6.00E+07				298 K.	
		3.60E 07				308 K.	
		4.50E+07				318 K.	
		3.00E+08	Adams 1965	pulse radiolysis	C.K.		
HOOC-(CH2)2-COOH	succinic acid	3.10E+08	Cabelli 1985	pulse radiolysis	P.B.K.		pKa= 4.16, 5.61
						pH = 8	
		1.10E+08	Ervens et al., 2003	Laser photolysis	C.K.	298 K.	Ea = (11±6) kJ/mol, A = (8±1)e9 M-1s-1
		4.00E+08				288 K	
		5.00E+08				298 K.	
		5.10E+08				308 K.	
		6.70E+08				318 K.	
		7.30E+08				328 K	
				flash photolysis/			
-OOC-(CH2)2-COO-	succinate ion	7.60E+08	Logan, 1989	oxidative quenching	C.K.	9.0)
						pH = 8	
		5.00E+08	Ervens et al., 2003	Laser photolysis	C.K.	298 K.	Ea = (11±5) kJ/mol, A = (5±0.4)e10 M-1s-1
		9.90E+07				288 K	
		1.10E+08				298 K	
		1.30E+08				308 K.	
		1.30E+08				318 K.	
		1.80E+08				328 K.	
HOOC-(CH2)3-COOH	glutaric acid	8.30E+08	Scholes and Willson, 1967	y radiolysis	steay-state method	-2.0	
HOOC-(CH2)4-COOH	adipic acid	2.00E+09	Scholes and Willson, 1967	y radiolysis	steay-state method	-2.0	
HOOC-(CH2)6-COOH	saberic acid	4.80E+09	Scholes and Willson, 1967	y radiolysis	steay-state method	-2.0	
HOOC-(CH2)7-COOH	azelaic acid	5.40E+09	Scholes and Willson, 1967				
HOOC-(CH2)8-COOH	sabacic acid	6.40E+09	Scholes and Willson, 1967				
HOOC-CH(OH)-COOH	tartoronic acid	1.70E+08	Schuchmann 1995	y radiolysis	steay-state method	-2.0	
				flash photolysis/			
	tartarate ion	1.40E+09	Logan 1989	oxidative quenching	C.K.	9.0	
		6.80E+08	Kraliic, 1967	v radiolysis	C.K.	9.0	
HOOC-CH2-CH(OH)-COOH	malic acid	8.20E+08	Cabelli 1985	1			
HOOC-CH(OH)-CH(OH)-COOH	tartaric acid	7.00E+08	Scholes 1967				
HOOC-CH2-C(COOH)(OH)-CH2-COOH	citric acid	5 00E+07	Adams 1965	pulse radiolysis	СК	1.0	$pKa = 3.08 \ 4.74 \ 5.40$
						A-1	

Table A-B9: Survey of HO• rate constants with poly-carboxylic acid

Champiel Formura	Campaund	kun (Masa)		experimental method	evaluation method	all	Exp. Solvation free energy (kJ/mol) at 298K	Exp. Solvation free energy (kcal/mol) at 298K
Chemiciai Folintara	Compound	~ H()* (141-1 3-1)	Terefences	meaned	methou	pii	27010	27012
CI-CH2-COOH	chloroacetic acid	4.30E+07	Adams 1965					
		2.75E+07	Mao et al., 1991	TiO2/UV	C.K.			
CH3-C1	monochloromethane	5.50E+07	Milosavljevic et al., 2005	Pulse radiolysis	C.K.		-2.34	-0.56
						pH = 8.5		
C12-CH2	dichloromethane	9.00F+07	Haag and Yao 1992	Chemical reaction	CK	T = 297 K	-5.69	-1.36
010 0110	activitement		mag and rus, 1992	onemica reaction	0.10.	nH = 8.6	2.07	1.00
		0.000+07	Gataff 1001	Putes redistruis	CV	T = 202 V		
		9.00E+07	Geton, 1991	Fuse factorysis	C.R.	1 = 303 K		
		5.80E+07	Emmi et al., 1985	Pulse radiolysis	P.B.K.	pH = -10		
		1.00E+08	Cohen and Benson, 1987					
						pH = 8.5		
Br2-CH2	dibromomethane	9.00E+07	Haag and Yao, 1992	Chemical reaction	C.K.	T = 297 K.		
						pH = 3		
		9.90E+07	Haag and Yao, 1992	Chemical reaction	C.K.	T = 297 K		
BrCl2CH	bromodichloromethane	7 10E+07	Mezyk et al. 2006	Pulse radiolysis	CK			
CHBr2C1	chlorodibromomethane	8 30E+07	Mervik et al. 2006	Pulse radiolysis	CK			
CHENEON	chiefeduerentententane	0.502.07	Micelyk et al., 2000	T disc radioty sis	0.40.	pH = 2.8		
CUCI2	ablarafarm	5.000+07	Hang and Van. 1992	Photolynia	CV	T - 207 V	4.49	1.07
CHUD	chiororonn	3.00ET0/	maag anu 1ao, 1992	Photolysis	C.K.	1 - 29/ K	-4.40	-1.0/
		/.40E+00	Cnutny, 1900	Radiolysis	C.K.			
		9.50E+06	Bednar and Teply, 1960	fenton reaction	C.K.	pH = 0.4		
		1.80E+07	Bednar and Teply, 1960	Beta-radiolysis	C.K.	pH = 0.4		
		1.40E+07	Anbar et al., 1966	gamma-radiolysis	C.K.	pH = 9.0		
					P.B.K in N2O saturated			
12-CH2	diiodomethane	2.10E+09	Mohan and Moorthy, 1990	Pulse radiolysis	solution	pH = 6.0		
		6.30E+09	Mohan and Moorthy, 1990	Pulse radiolysis	P.B.K.	pH = 1.5		
		6.00E+09			P.B.K.	pH = 3.0		
BrC1CH2	bromochloromethane	2.50E+09	Maity et al., 1995	Pulse radiolysis	P.B.K.	PH <0, acid catalyzed		
CIICH2	chloroiodomethane	4.00E+09	Mohan and Mittal, 1992	Pulse radiolysis	T.S.			
CHBr3	tribromomethane	1.50E+08	Mezvk 2006					
		1.00E+08	Lal and Mahal 1992	Pulse radiolysis	CK	pH = 7.0		
CICH2-CH2Br	1-bromo-2-chloroethane	4 50E+09	Maits: et al. 1995	Pulse radiolysis	PRK	PH <0 acid cataluzed		
CU3 CU2Br	bromoethane	1.30E+09	Lat and Mahat 1992	Pulse radiobreis	CK	-II = 7.0		
спо-спаві	1.2 dibramasthana	1.502108	Lai aliu Maliai, 1992	1 uise radiorysis	C.K.	p11-7.0		
B-CH2 CH2D-	(1.2 DDD)	2.607.108	L -1 4 3 5-11, 1000	Deter a distante	OF	-11 - 7.0		
BrCH2-CH2Br	(1,2-DBE)	2.00E+08	Lai and Manai, 1992	Puise radiolysis	C.K.	pH = 7.0		
		2.10E+08	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0		
Br2CH-CHBr2	1,1,2,2-tetrabromoethane	2.20E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	pH = 7.0		
	1,1-dichloroethane							
CH3-CHC12	(1,1-DCE)	1.30E+08	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0		
		1.30E+08	Milosavljevic et al., 2005	Pulse radiolysis	C.K.			
	1,2-dichloroethane							
CH2C1-CH2C1	(1,2-DCE)	7.90E+08	Getoff 1990	Pulse radiolysis	C.K.	pH = -6.5		
		2.00E+08	Lat et al. 1988	Pulse radiolysis	C.K.	pH = 7.0		
		2 20E+08	Milosavlievic et al. 2005	Pulse radiolysis	CK			
	1.1.2 trichloroethane	2.202.00	inacourijene et al, 2005	T disc rudicity sis	0.14			
CICH2 CUCI2	(112 TCE)	1 10F±09	Latet at 1000	Pulsa radiatusi-	CV	pH = 7.0	8 16	1.05
00012-011012	(1,1,2-10E)	1.102708	Lat et 21, 1965	r use radiorysis	U.K.	pri = 7.0	-0.10	-1.90
		0.007.00				pri = 2.8		
		5.00E+08	Haag and Yao, 1992	Photolysis	C.K.	1 = 297 K		
		3.00E+08	Milosavljevic et al., 2005	Pulse radiolysis	C.K.			
	1,1,1-trichloroethane							
CC13-CH3	(1,1,1-TCE)	1.00E+08	Getoff 1989	Photolysis	C.K.	pH = 6.7	-1.05	-0.25
		4.00E+07	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0		
	1,1,1-2-tetrachloroethane					-		
CI3C-CH2CI	1.1.1.2-TetCE	1.80E+07	Mao et al., 1991	TiO2/UV	C.K.		-4.81	-1.15
		1.00E+07	Milosavlievic et al. 2005	Pulse radiolysis	CK			
	1122 tatrashlara sthans	1.002107	mato surgerie et al., 2005	a use radiorysis	C.R.			
OTION OTION	1,1,2,2-tetracmoroetnane	2.507.00	Milesenting of 2005	Datas C. C. C.	07			
CHCI2-CHCI2	(1,1,2,2-1 etCE)	2.30E+08	ivinosavijevic et al., 2005	ruise radiolysis	C.K.			
	pentachloroethane							
C13C-CHC12	(PCE)	1.00E+07	Mao et al., 1991	TiO2/UV	C.K.			
CC13-CHO		3.10E+09	Ross 1977					
CF3-CHC12	2,2-dichloro-1,1.1-trifluoroethane	1.30E+07	La1 1988					
CH3CH2CH2-Br	1-bromopropane	1.70E+08	Lal and Mahal 1992	Pulse radiolysis	CK	pH = 70		
CH3CH2CH2 CI	1-chloropropane	2 50E+00	Getoff 1001	Pulse radiotysis	CK	pH = 75.85	-1.12	_0.27
011001120112-01	1-chiotopropane	2.302709	Get041 1771	1 mae radiorysis	U.R.	p11 - 7.5-6.5	-1.13	-0.21
CHCI CHCI CHOD	1.2 4-4-1 2.1	7.207 - 00	Hann and West 1000	Discontinuity	0.17	pri = 2.8		
CHCI-CHCI-CH2Br	1,2-dichloro-3-bromopropane	/.50E+08	Haag and Yao, 1992	Photolysis	C.K.	1 = 297 K		
						pH = 2.8		
CH2CI-CHCI-CH3	1,2-dichloropropane	2.00E+00	Haag and Yao, 1992	Photolysis	C.K.	T = 297 K		
CH2(Cl)-CH2-CH2(Br)	1-bromo-3-chloropropane	2.00E+09	Maity et al., 1995	Pulse radiolysis	P.B.K.	PH <0, acid catalyzed		
(CH3)3-C-Br	2-methyl-2-bromopropane	2.20E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	pH = 7.0		
C1-CH2CH2CH2-I	1-chloro-2-iodo-propane	4.70E+09	Mohan and Mittal, 1992	Pulse radiolysis	T.S.			
CH2Br-CH2-CH2Br	1,3-dibromopropane	4.10E+09	Mohan 1993					

Table A-B10: Survey of HO• rate constants with alkyl halides

CH3-(CH2)3-Br	1-bromobutane	1.50E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	pH = 7.0	
CH3-CH2-CHBr-CH3	2-bromobutane	1.50E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	pH = 7.0	
CH3-(CH2)3-C1	1-chlorobutane	3.40E+09	Getoff, 1991	Pulse radiolysis	C.K.	T = 303 K	
						PH <0, acid catalyzed	
Br-(CH2)4-Br	1,4-dibromobutane	6.50E+09	Mohan et al, 1993	Pulse radiolysis	P.B.K.	T = 298 K.	
CH3-(CH2)4-Br	1-bromopentane	1.20E+08	Lal and Mahal, 1992	Pulse radiolysis	C.K.	pH = 7.0	
						PH <0, acid catalyzed	
Br-(CH2)5-Br	1,5-dibromopentane	8.50E+09	Mohan et al, 1993	Pulse radiolysis	P.B.K.	T = 298 K.	
						PH <0, acid catalyzed	
Br-(CH2)6-Br	1,6-dibromohexane	1.70E+10	Mohan et al, 1993	Pulse radiolysis	P.B.K.	T = 298 K	
						pH = 2.8	
Br-CH2-CH2-OH	2-bromoethanol	3.50E+08	Haag and Yao, 1992	Photolysis	C.K.	T = 297 K.	
C1-CH2-CH2-OH	2-chloroethanol	9.50E+08	Anbar and Neta, 1967	Gamma-radiolysis	C.K.	pH = 8.5	
CC13-CH2-OH	2,2,2-trichloroethanol	4.20E+08	Walling et al., 1974	Fenton		pH <2	
CF3-CH2-OH	2,2,2-trifluoroethanol	2.30E+08	Walling et al., 1974	Fenton		pH <2	
CC13-CH(OH)2	chloral hydrate	3.10E+09	Erikson et al., 1973	Pulse radiolysis	C.K.		
C1-CH2-CH(OCH3)2	2-chloro-1,1-dimethoxyethane	1.50E+09	Eibenberger 1980	Pulse radiolysis	R.M.		
CCI3-CN		3.90E+07	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0	
CF3-CHCIBr	Halothane	1.30E+07	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0	
CHF2-O-CF2-CHCIF	Enflurane	9.50E+06	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0	
CF3-CHC1-O-CHF2	Isoflurane	2.40E+07	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0	
H3C-O-CF2-CHCl2	Methoxyflurane	8.30E+07	Lat et al, 1988	Pulse radiolysis	C.K.	pH = 7.0	
ICH2COOH	Iodoacetic acid	5.70E+09	Gilbert et al., 1974	Pulse radiolysis	C.K.	pH = 1.0	
						pH = 9.0	
NH2C1		5.20E+08	Poskrebyshev et al., 2003	Pulse radiolysis	C.K.	T = 295 K.	

Table A-B11: Survey of HO• rate constants with nitro compounds

								Exp.	Exp.
								Solvation	Solvation
								free energy	free energy
				experimental	evaluation			(kJ/mol)	(kcal/mol)
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH		298K	298K
CH3-CH2-CH2-NO2	1-nitropropane	2.50E+08	Bors et al., 1993	Pulse radiolysis	C.K.		k _{reference} = 1.3E10	-13.98	-3.34
(CH3)2-CH-NO2	2-nitropropane	8.00E+07	Bors et al., 1993	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.3\text{E}10$	-13.15	-3.14
						pH = 7.0			
CH2CINO2	chloronitromethane	1.94E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 293 K			
						pH = 7.0			
CHC12NO2	dichloronitromethane	5.12E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 293 K			
						pH = 7.0			
CH2BrNO2	bromonitromethane	8.36E+07	Cole et al., 2006	Pulse radiolysis	C.K.	T = 293 K			
						pH = 7.0			
CHBr2NO2	dibromonitromethane	4.75E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 293 K			
CHBrC1NO2	bromochloronitromethane	4.20E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	N.R.			
C13C-NO2	chloropicrim	4.97E+07	Cole et al., 2006	Pulse radiolysis	C.K.				
CH2-NO2-	aci-Nitromethane anion	8.50E+09	Asmus and Taub, 1968	Pulse radiolysis	P.B.K.	10.5			

Table A-B12: Survey of HO• rate constants with nitrile

							Exp.	
							Solvation	Exp. Solvation
							free energy	free energy
				experimental	evaluation		(kJ/mol)	(kcal/mol)
chemcial formura	compound	k _{HO} . (М-1 s-1)	references	method	method	pH	298K	298K
CH3-CN	acetonitrile	2.20E+07	Neta 1975	Pulse radiolysis	D.M.	3.5		
CN-CN	cyanogen	<1.0E7	Draganic et al., 1971	Pulse radiolysis	T.S.			
CH3-CH2-CN	propionitrile	9.30E+07	Draganic et al., 1973	γ radiolysis	C.K.		-16.12	-3.85
NC-CH2-CH2-CN	succino nitrile	3.00E+07	Draganic et al., 1973	y radiolysis	C.K.			
CC13CN	trichloroacetonitrile	3.90E+07						
H2N-CN	cyanamide	8.70E+06	Draganic et al., 1979	γ radiolysis	C.K.			
H-CN	hydrogen cyanide	6.00E+07	Buechler et al., 1976	Pulse radiolysis	P.B.K.	3.5		

chancial formura	comound	8 up. (M-1 s-1)	references	esperimental method	evaluation method	oH		Exp. Solvation free energy (kJ/mol) at 298K	Exp. Solvation free energy (kcal/mol) at 298K
						pH=8.0			
NH2-OH	hydroxy amine	9.50E+09	Simic and Hayon, 1971	Pulse radiolysis	C.K.	T = 295 K pH = 9.0	k reference = 1.1E10		
		9.50E+09	Poskrebyshev et al., 2003	Pulse radiolysis	C.K.	T = 295 K pH = 4.0			
NH3OH+	hydroxyl ammonium ion	<3.088	Simic and Hayon, 1971	Pulse radiolysis	C.K.	T = 295 K	k reference = 1.1E10	_	
CH3-NH2	methyl amine	1.80E+09	Getoff and Schwoerer, 1971	Pulse radiolysis	c.ĸ.	295 K	pH=2.0-13.1	-19.09	-4.56
		4.10E+09	Getoff and Schwoerer, 1971	Pulse radiolysis	C.K.	295 K	pH= 9.7-12.8		
		5.70E+09	Wigger et al., 1969	Pulse radiolysis	C.K.				
CH3-NH3+	methyl ammonium ion	3.50E+07	Getoff and Schwoerer, 1970	Pulse radiolysis	ск	295 K	pH = 2.0 and 7.0		
		9.10E+07	Wigger et al., 1969	Pulse radiolysis	C.K.		- 12		
CH3-CH2-NH2	ethyl amine	6.40E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 8.5	Ac entirence = 3.9E9	-18.84	-4.30
		6.40E+09	Octoff and Schwoerer, 1973	Pulse radiolysis	C.K.		Rentiranza = 1.1E10		
A111 A111 MILL.		1.30E+10	Sumic et al., 1971	Pulse radiolysis	C.K.				
CH3-CH2-SH3+	etnyi animonium ion	3.90E+08	Getoff and Schwoerer, 1973	Pulse radiotysis	C.K.	pri = 15	< reference = 1.1E10		
		3.30E+05	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 15	K reference = 3.9E9		
C111 C113 C113 3713	and other	3.00E+08	Simic et al., 19/1	Pulse radiolysis	C.K.	3.1	Kraterance = 1.1E10	10.20	1.20
CH3-CH2-CH2-NH2	propyl anuse	1_30E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.		K reference = 1.1E10	-18.38	-4.39
0111 (01111) 2111	and an and the second sec	5.80E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	-17 - 12	K reference = 3.9E9		
CH3-(CH2)2-NH3+	propyl amnonium ion	8.20E+08	Getoff and Schwoerer, 1973	Pulse radiolysis	CK	pH = 13	R reference = 3.9E9		
		1.40E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	CA	p21 = 13	K reference = 1.1210		
		7.50E+08	Getoff and Schwoerer, 1970	Pulse radiolysis	C.K.		K reference = 1.1E10		
CHD-(CH2)3-NH2	N-butyl amine	\$.20E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 8.5	R raterance = 3.9E9	-17.96	-4.29
			Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 8.5	K referance = 1.1E10		
		1.000.10	Pramaruck and		0.12	1.0			
C01 (C03) 505	V and ania	1.002+10	Coteff and Schwarzen 1072	Penton reaction	C.K.	- 270A	Kinderance = 1.22.00		
Cris(Criz)+Miz	ss-annys annine	0.005-00	Getoff and Schwoerer, 1973	Pulse radiotysis	C.R.	pri = 0.5	K reference = 3.92.9		
		9,002-09	Getoff and Schwoerer, 1973	Pulse radiotyses	C.K.	pm= 0.5	K reference = 1.12.10		
		0.905+0A	Detoff and Schwoerer, 1975	Pulse radiolysis	U.N.	per # 8.5	K rataranca = 1.0£10		
CHL/CHD/SNHD	Wandamina	1115+10	Bhattacharyya 1985	Fanton reaction	CK	2928	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
en (en jordin	and a second sec	1.516 11	Pramanick and	1 100101 11010101		1.0	TO REPORT OF LODGERY		
CH3-(CH2)7-NH2	N-octylamine	1.46E+10	Bhattacharyya, 1985	Fenten reaction	CK	2935	Kunteren = 1.2E10		
N-C4H9-NH3+	butylammonium ion	3.20E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	CK.	pH = 8-13.1	& otherace = 1.0E10		
		2 50E+09	Getoff and Schweerer, 1973	Pulse radialysis	CK	Service Services	Kuture = 3.959		
		3.10E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	CK	oH=\$.13.1	Kohone = 1.1E10		
						4	- martine - martine		
		5.50E+09	Getoff and Schwoerer, 1970	Pulse radiolysis	C.K.	295 K	Restructs = 1.1E10		
						10			
H2N-CH2-CH2-NH2	ethylenediamine	5.50E+09	Lati and Meyerstein, 1972	Pulse radiolysis	C.K.	pH 8.0, 8.5, 9.0	Restructer = 1.1E10		
(CH3)3-C-NH2	tert-butyl amine	6.00E+09	Simic et al., 1971	Pulse radiolysis	C.K.		Renterence = 1.1E10		
(CH3)3-C-NH3+	tert-butyl ammonium ion	7.00E+08	Simic et al., 1971	Pulse radiolysis	C.K.	3.2	& reference = 1.1E10		
						+			
		2.40E+08	Getoff and Schwoerer, 1970	Pulse radiolysis	C.K.	295 K	Restructs = 1.1E10		
N-C5H11-NH3+	anyl annonium ion	4.70E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 8-13.1	Restructs = 1.1E10		
		6.30E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	CK	pH=8.13.1	& reference = 1.0E10		
		3.40E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH = 8-13.1	K subrance = 3.9E9		
		9.20E+09	Getoff and Schwoerer, 1973	Pulse radiolysis	C.K.	pH=8.13.1	kreitenze = 1.1E10		
(CH3)2-CH-NH2	iso-propyl amine	1.30E+10	Somic et al., 1971	Pulse radiolysis	C.K.		k reference = 1.1E10		
(CH3)2-CH-NH3+	iso-propyl ammonium ion	5.00E+08	Simic et al., 1971	Pulse radiolysis	C.K.	3.0	& reference = 1.1E10		
		111122-002-002-001	There is a strategy of the strategy of	and the second second	100001	4	100000000000000000000000000000000000000		
100000000000000000000000000000000000000	11.6	4.70E+08	Getoff and Schwoerer, 1970	Pulse radiolysis	C.K.	295 K	K reference = 1.1E10		
(CH3)2-N-NH2	1,1-dimethyl hydrazine	1.60E+10	Hayson and Smic, 1972	Pulse radiolysis	C.K.	9.7	R reference = 1.1E10		
CHUND OUT	dimethylamine (DX f A)	8 905-09	Longet at 2002	nhotologie	C.V.	nH=70 10 11 5		17.06	.1.30
CHLNW-CHL	dimethyl appropriate ion	6.00F+07	Lee et al. 2007	photohysis	CK	pH = 7.0 10, 11.5		-17,90	-4.27
CHINHNHORI	1.2. Amethyd bydearine	1.40E+10	Hayson and Simic, 1972	Pulse radialusis	CK	10.1	k reference = 1 1E10		
CH3-(CH2)3-NH-(CH2)3-CH3	dibuty1 amine	1.81E+10	Pramamick 1986						
(C2H5)2-N-OH	N,N-diethyl hydroxyl amine	1.30E+09	Saunders and Gorse, 1979	Pulse radiolysis	P.B.K.	9.0			
C. Manual	and the second second second					pH =9.1			
CH3-O-NH2	O-methyl hydroxy amine	1.40E+10	Simic and Hayon, 1971	Pulse radiolysis	C.K.	T = 295 K	Restructer = 1.1E10		
CH3-O-NH3+	O-methyl hydroxyl ammonium amine	<4.0E\$	Simic and Hayon, 1971	Pulse radiolysis	C.K.	4.5	Restrance = 1.1E10		
			Pramamick and			1.0			
(CH3(CH2)3)3-N	tributy! amine	1.67E+10	Bhattacharyya, 1986	Fenton reaction	CK.	298K	Restruct = 1.2E10		
(C2H5)3-N	triethy1 amine	1.00E+10	Simic et al., 1971	Pulse radiolysis	C.K.		Restructe = 1.1E10		
(C2H5)3-NH+	triebyl ammonium ion	3.50E+08	Simic et al., 1971	Pulse radiolysis	C.K.	3.6	Restructs = 1.1E10		
(CH3)3-N	trimethyl amine	1.30E+10	Sunic et al., 1971	Pulse radiolysis	C.K.		Restructs = 1.1E10	-13.52	-3.23
(CH3)3-NH+	Trimethyl ammonium ion	4.00E+08	Simic et al., 1971	Pulse radiolysis	C.K.	7.5	& reference = 1.1E10		
(CH3)2-N-CHO	Dimethyl formanide	1.70E+09	Simic et al., 1971	Pulse radiolysis	C.K.		& reference = 1.1E10		
	Dimethylethanolamine	100 000 0000							
(CH3)2-N-CH2CH2-OH	(DMEA)	6.50E+09	Lee et al., 2007	photolysis	C.K.	pH = 7.0, 10, 11.5			
	Dimethylethanol ammonium ion	4,70E+08	Lee et al., 2007	photolysis	CK.	pH = 7.0, 10, 11.5			
(HO-CH2-CH2)3-N	tnethanolamine	8.008+09	Schwarz 1982	Pulse radiolysis	CK		Kreikranza = 1.1E10		
(CH2COOH)3-N	Nitniotnacetic acid	2.10E+09	Borggaard 1972	Fenton reaction	CK.	0.0	K mitmas = 5.9E9		
(HOCH2CH2)3-N	Nitrilotristhanol	\$.00E+09	Schwarz 1982	Pulse radiolysis	C.K.		26.04		
HOOC-CH2-NH-CH2-COOR	Immodracetic acid	4.90E+07	shattacharyya and Saha, 1976	y radiolysis	C.K.	1.0	2.5, 9.4		
(HO,CH2)SC,SH2	2.2-cos(nydrotymetnyt)-2.2.2 -miniotinethanol	1.5002+09	East 19/5	Pulse radiolysis					
(COOH_CH2.N(CH2)COOH_CH202	Ethylenediamine tetra acetic and	2.00E+09	Berned and yon Sonntag 1002	a dise racionysis					
H2N-C(#NHLNHLCN	dicvandiamide	7,20E+06	Draganic et al. 1979	y radiobrais	CK	5.0	& otherware = 3,759		
(CH3)2 N.CS.S.	dimaths (this cash amate	4 205+00	Lee et al. 2007	v radiobrais	CK	nH = 10	Contract		

Table A-B13: Survey of HO• rate constants with amine

5						
				experimental	evaluation	
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH
	N-nitrosodimethylamine					pH = 7.0
(CH3)2-N-NO	(NDMA)	4.30E+08	Mezvk et al., 2006	Pulse radiolysis	C.K.	T = 294 K
						pH =
		4.50E+08	Lee et al., 2007	O3/H2O2	C.K.	294 K
						pH = 7.0
(CH3-CH2)2-N-NO	N-nitrosodiethylamine	6 99E+08	Mezyk et al. 2006	Pulse radiolysis	СК	T = 294 K
			11102911 00 12., 2000	1 400 14401, 515		pH = 7.0
(CH3-CH2-CH2)2-N-NO	N-nitrosodipropylamine	2.30E+09	Landsman et al. 2007	Pulse radiolysis	СК	T = 292 K
	1. muese apropytamine	2.502.05	2414051141 01 41, 2007	1 dise iddeij sis	0.22.	pH = 7.0
(CH3-CH2-CH2-CH2)2-N-NO	N-nitrosodibutylamine	4 71E+09	Landsman et al 2007	Pulse radiolysis	СК	T = 292 K
						nH = 7.0
(CH3-CH2)(CH3)-N-NO	N-nitrosomethylethylamine	4 95E+08	Mezyk et al. 2006	Pulse radiolysis	СК	T = 294 K
(012 012)(012)1110	1. muesementytentytamie		11223/11 01 11., 2000	1 4000 14400 300		pH = 7.0
(CH3-CH2-CH2-CH2)(CH3-CH2)-N-NO	N-nitrosoethylbutylamine	3 10E+09	Landsman et al 2007	Pulse radiolysis	СК	T = 292 K
0=N-N 0						pH = 7.0
	N pitracomombolina	1.758+00	Londomon et al. 2007	Putes radiatusis	CV	T = 202 V
0. ~	IN-Indosomorphomie	1./JE+09	Landsman et al., 2007	r uise radiolysis	U.K.	1 - 252 K
N-N						pH = 7.0
	N-nitrosopyrrolidine	1.75E+09	Landsman et al., 2007	Pulse radiolysis	C.K.	T = 292 K
0						-11 - 7.0
N-N	N. alter a subscription	2.097.100	I f1 -2007	Data and states in	C.V.	pr = 7.0
	N-nitrosopipendine	2.98E+09	Landsman et al., 2007	Pulse radiolysis	U.K.	1 = 292 K
N ^N O						
						pH = 7.0
	N-nitrosohexamethyleneimine	4.35E+09	Landsman et al., 2007	Pulse radiolysis	C.K.	T = 292 K
						pH = 7.0
(CH3)2-N-NO2	dimethylnitramine	5.44E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 294 K
						pH = 7.0
(CH3)(CH3CH2)-N-NO2	methyl ethyl nitramine	7.60E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 294 K
						pH = 7.0
(CH3-CH2)2-N-NO2	diethyl nitramine	8.67E+08	Mezyk et al., 2006	Pulse radiolysis	C.K.	T = 294 K

Table A-B14: Survey of HO• rate constants with NDMA and related compounds

Table A-B15: Survey of HO• rate constants with amide

					experimental	evaluation		
	chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pН	
Г	H2N-CN	cyanamide	8.70E+06	Draganic et al., 1978	γ radiolysis	C.K.		k reference =1.9E9
	CH3-CO-NH2	acetamide	1.90E+08	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1E10$
	CH3-CO-NH-C-(CH3)3	N-tert-butyl-acetamide	1.10E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1\text{E}10$
	CH3-CO-N-(CH3)2	N,N-dimethyl acetamide	3.50E+09	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1E10$
	H-CO-N-(CH3)2	N,N-dimethyl formamide	1.70E+09	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1\text{E}10$
	(CH3)3-C-CO-N-(CH3)2	N,N-dimethyl pivalamide	3.90E+09	Hayon et al., 1971	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1E10$
	H2N-CH2-CO-NH2	2-aminoacetamide	2.80E+09	Rao and Hayon, 1975	Pulse radiolysis	P.B.K.	10	
	HO-CH2-CO-NH2	glycolamide	1.10E+09	Bell et al, 1975	Pulse radiolysis	C.K.	8.5	$k_{\text{reference}} = 1.1E10$
	HO-CH(CH3)-CO-NH2	2-hydroxypropionamide	1.30E+09	Bell et al, 1975	Pulse radiolysis	C.K.	4.5	$k_{\text{reference}} = 1.3\text{E9}$
	(CH3)2-CH-CO-NH2	2-methylpropionamide	1.60E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	CH3-CO-NH-CH3	N-methylacetamide	1.60E+09	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1E10$
	H-CO-NH-CH3	N-methyl-formamide	1.20E+09	Hayon et al., 1970	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1E10$
	(CH3)2-CH-CO-NH-CH3	N-butylformamide	1.90E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	(CH3)3-C-CO-NH-CH3	N-methyl-pivalamide	2.40E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	CH3-CH2-CO-NH-CH3	N-methyl-propionamide	1.40E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	C2H5-CO-NH2	propionamide	7.00E+08	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	(CH3)3-CO-NH2	trimethylacetamide	1.50E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$
	H2N-CH2-CO-NH2	glycinamide	2.80E+09	Rao and Hayon, 1975	Pulse radiolysis	P.B.K.	10	
	(CH3)2-CH-CO-NH2	isobutyramide	1.60E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1\text{E}10$
	(CH3)2-CH-CO-NH-CH3	N-methylisobutyramide	1.90E+09	Hayon et al., 1971	Pulse radiolysis	C.K.	5.0-6.0	$k_{\text{reference}} = 1.1E10$

				experimental	evaluation			exp. solvation	exp. solvation
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH		kJ/mol	kcal/mol
H3C-S-CH3	dimethyl sulfide	1.90E+10	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.			-6.45	-1.54
					P.B.K.				
H3C-S-S-CH3	di-methyl-di-sulfides	1.70E+10	Bonifacic et al., 1975	Pulse radiolysis	R.T.	-4.0		-7.66	-1.83
H3C-CH2-S-CH2-CH3	di-ethyl-sulfides	1.40E+10	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.			-5.99	-1.43
					P.B.K.				
H3C-CH2-S-S-CH2-CH3	di-ethyl-di-sulfides	1.40E+10	Bonifacic et al., 1975	Pulse radiolysis	R.T.	-4.0		-6.82	-1.63
(CH3)2-CH-S-S-CH-(CH3)2	di-ethyl-methyl-di-sulfides	2.00E+10	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.	-4.0			
					P.B.K.				
(CH3)3-C-S-S-C-(CH3)3	di-tert-butyl-sulfides	6.50E+09	Bonifacic et al., 1975	Pulse radiolysis	R.T.	-4.0			
CH3-S-CH2-CH2-OH	2-methylthio-ethanol	7.90E+09	Schoeneich and Bobrowski, 1993	Pulse radiolysis	P.B.K.	T=298 K			
H3C-S-CH2-CH2-CHO	methional	8.20E+09	Bors et al., 1976	Pulse radiolysis	C.K.				
HO-CH2-CH2-S-CH2-CH2-OH	2,2'-thiodiethanol	1.40E+10	Mohan and Mittal, 1991	Pulse radiolysis	P.B.K.	6.0			
		8.10E+09	Schoeneich and Bobrowski, 1993	Pulse radiolysis	P.B.K.	T =298 K.			
		2.00E+10	Mohan and Mittal, 1991	Pulse radiolysis	C.K.	6.0	$k_{\text{reference}} = 1.1\text{E}10$		
HO-CH2CH2CH2-S-CH2CH2CH2-OH	3,3'-thiodiethanol	1.40E+10	Mohan and Mittal, 1991			6.0			
						pH = 6.0			
	3,3'-thiodipropanol	1.40E+10	Mohan and Mittal, 1991	Pulse radiolysis	P.B.K.	T =296 K			
HOOC-CH2-S-CH2-COOH	thiodiacetic acid	6.00E+09	Adams et al., 1965						
S=C=S	carbon disulfides	8.00E+09	Roebke et al., 1973	Pulse radiolysis	C.K.	7.6	$k_{\text{reference}} = 1.1\text{E}10$		

Table A-B16: Survey of HO• rate constants with sulphide

Table A-B17: Survey of HO• rate constants with sulfoxide

				experimental	evaluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH	
CH3-SO-CH3	di-methyl-sulfoxide	6.50E+09	Milne 1989	Flash photolysis	C.K.	4.0-5.0	
						pH = 2.0	
		7.00E+09	Veltwisch et al., 1980	Pulse radiolysis	C.D.	R.T.	
		5.80E+09	Reuvers et al., 1973	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1\text{E}10$
		7.00E+09	Meissner et al., 1967	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1\text{E}10$
						pH = 2.0	
CH3-CH2-SO-CH2-CH3	di-ethyl-sulfoxide	6.50E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
CH3-CH2-CH2-SO-CH2-CH2-CH3	di-propyl-sulfoxide	6.30E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
(CH3)2CH-SO-CH(CH3)2	di(1-methyl-ethyl)sulfoxide	6.80E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
(CH3-CH2-CH2-CH2)2-SO	di-butyl-sulfoxide	8.00E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
(CH3)3-C-SO-C-(CH3)3	di-tert-butyl-sulfoxide	5.30E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
CH3-SO-CH2-S-CH3	methyl methyl thiomethyl sulfoxide	4.80E+09	Sumiyoshi 1982	Pulse radiolysis	P.B.K.		
						pH = 2.0	
HO-CH2CH2-SO-CH2CH2-OH	di(2-hydroxyethyl) sulfoxide	5.30E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
(CH3)2-CH-SO-CH-(CH3)2	diisopropyl sulfoxide	6.80E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	
						pH = 2.0	
C4H8OS	tetramethylene sulfoxides	7.00E+09	Veltwisch et al., 1980	Pulse radiolysis	D.K.	R.T.	

Table A-B18: Survey of HO• rate constants with thiol

				experimental	evaluation			
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH		
HS-CH2-CH2-OH	mercaptoethanol	6.80E+09	Jayson et al., 1971	Pulse radiolysis	C.K.	6.5	$k_{\text{reference}} = 1.0E10$	
-S-CH2-CH2-OH	2-hydroxyethylsulfide ion	4.00E+09	Karmann et al., 1969	Pulse radiolysis	P.B.K.	11		
HS-CH2-COOH	mercaptoacetic acid	1.20E+09	Merz and Waters, 1949	Fenton reaction	C.K.	1	$k_{\text{reference}} = 4.3\text{E8}$	
CH3-CH(SH)-COO-	2-mercaptopropionate ion	1.70E+10	Hoffman and Hayon, 1973	Pulse radiolysis	R.M.	7.2	$k_{\text{reference}} = 1.1\text{E}10$	pKa = 4, 10.7
		1.60E+10			R.M.	10.8		
HS-CH2-CH2-COOH	3-mercaptopropionate ion	3.00E+10	Hoffman and Hayon, 1973	Pulse radiolysis	R.M.	6	$k_{\text{reference}} = 1.1\text{E}10$	pKa= 4.3, 10.3
		2.10E+10				10.7		
HS-CH2-COOCH3	methyl thioglycolate	2.10E+10	Hoffman 1973	Pulse radiolysis	C.K.	5.1	$k_{\text{reference}} = 1.1\text{E}10$	pKa = 7.8
		1.80E+10				10.6		
HS-CH2-CH(OH)-CH(OH)-CH2-SH	dithiothreitol	1.50E+10	Akhlaq and von Sonntag, 1987	Pulse radiolysis	P.B.K.	4		
	glutatione	2.30E+10	Misik et al., 1993	photolysis	C.K.	6.8	$k_{\text{reference}} = 4.3E9$	
						pH = 8.0		
		9.00E+09	Liphard et al., 1990	Pulse radiolysis	C.K.	T = 291 K.	$k_{\text{reference}} = 5.2\text{E9}$	
		1.30E+10	Eriksen and Fransson, 1988			7.8	$k_{\text{reference}} = 1.1E10$	pKa = 2.5, 3.7, 9.2, 9.5
		4.00E+10				10.6		
		1.30E+10	Quintiliani et al., 1977	Pulse radiolysis	C.K.	5.5	$k_{\text{reference}} = 1.1\text{E}10$	pH 8 and 9.2
		1.40E+10	Adams et al., 1965	Pulse radiolysis	C.K.	1	$k_{\text{reference}} = 1.1\text{E}10$	pKa = 2.12, 3.53, 8.66, 9.62

				experimental	evaluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH	
H2N-CS-NH2	thiourea	1.20E+10	Wang et al., 1999	pulse radiolysis	B.D.K		
H2N-CO-NH2	urea	7.90E+05	Masuda et al., 1980	γ radiolysis	C.K.		$k_{\text{reference}} = 1.2\text{E10}$
(CH3)2N-CS-N(CH3)2	tetramethyl thiourea	8.00E+09	Wang et al., 1999	pulse radiolysis	B.D.K		
CH3-NH-CS-NH-CH3	1,3-dimethyl thiourea	1.20E+09	Fessenden 1981	pulse radiolysis	P.B.K.		
CH3-NH-CO-NH-CH3	1,3-dimethylurea	2.60E+09	Fessenden 1981	pulse radiolysis	C.K.		$k_{\text{reference}} = 1.9\text{E9}$
CH3-NH-CO-NH2	methylurea	2.00E+09	Miller and Cornwell, 1998	chemical reaction	C.K.		
(CH3)2-N-CO-N-(CH3)2	tetramethyl urea	5.20E+09	Liphard et al., 1990	pulse radiolysis	C.K.	pH = 8.0 T = 291 K	k reference = 1.1E10
	Linuron	5.60E+09	Benitez et al., 2007	photo Fenton	C.K.	T = 293 K pH = 3.3	
	diuron	7.10E+09	Benitez et al., 2007	photo Fenton	C.K.	T = 293 K pH = 3.3	
H ₁ C H ₁ C	isoproturon	5.70E+09	Benitez et al., 2007	, photo Fenton	C.K.	T = 293 K pH = 3.3	
		7.500+00	Busites et al. 2007	abote Franker	CV	T = 293 K	
	critorioluron	7.50E+09	Definitez et al., 2007	photo Fenton	U.K.	pri = 5.5	

Table A-B19: Survey of HO• rate constants with urea

Table A-B20: Survey of HO• rate constants with phosphate-containing compounds

chemcial formura	compound	k _{HO} . (M-1 s-1)	references	experimental method	evaluation method	pH
H ₃ C ²⁰ P ⁰ CH ₃	dimethyl methylphosphonate (DMMP)	2.00E+08	Aguila et al., 2001	Pulse radiolysis	C.K.	pH = 7.0 298 K
H _s C 0 0=P-CH _s 0 CH _s	Diethyl methylphosphonate (DEMP)	6.00E+08	Aguila et al., 2001	Pulse radiolysis	С.К.	pH = 7.0 298 K
	trimethyl phosphate	1.20E+08	von Sonntag et al., 1972	Pulse radiolysis	C.K	
	triethyl phosphate	2.90E+09	Greenstock and Shierman, 1975	gamma-radiolysi	s C.K	. pH = -7.0
	tributyl phosphate	1.00E+10	Clay and Witort, 1974	gamma-radiolysi	s C.K	. pH = 1.2

1		1. 011-D		experimental	evaluation			k HO gas
chemcial formura	compound	K HO. (M-1 S-1)	references	method	method	рн		(cm5/molecule-sec)
H2C=CHCH2OH	allyl alcohol	5.90E+09	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	k reference = 1.1E10	2.59E-11
H2C=CHCH2CN	allyl cyanide	6.90E+09	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text{reference}} = 1.1\text{E}10$	
CH3CH=CHCHO	crotonaldehyde	5.80E+09	Lilie 1970	Pulse radiolysis	СК		k antenno = 1.1E10	3.60E-11
CH3CH2CH=CH2	1-butene	7 00E+09	Thomas 1967	Pulse radiolysis	СК		k of second seco	3.14E-11
H2C=CHCOCH3	1-butene-3-one	8 50E+09	Lilie 1970	Pulse radiolysis	СК		k	
	r outere o one	8 50E+08	Kumar et al 1990	Pulse radiolysis	CK	6.8	A TELETERICE TITLET	
		0.002		1 400 14400,000		4.0-10.5		
Cis HOOC-CH=CH-COOH	maleic acid	6.00E+09	Cabelli 1985	Pulse radiolysis	P.B.K.	298K		
						4.0-10.5		
Trans HOOC-CH=CH-COOH	fumaric acid	6.00E+09	Cabelli 1985	Pulse radiolysis	P.B.K.	298K	pKa = 3.03, 4.44	
H2C=CHCN	acrilonitrile	5.30E+09	Kumar 1988	Pulse radiolysis	C.K.	-7.0	$k_{\text{reference}} = 1.1E10$	1.99E-11
		5.20E+09	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text{reference}} = 1.1\text{E}10$	
		2.80E+09	Buxton et al., 1979	Pulse radiolysis	C.K.	10.9	$k_{\text{reference}} = 3.9\text{E8}$	
H2C=CHCHO	acrolein	7.00E+09	Lilie 1970	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1E10$	1.99E-11
H2C=CHCONH2	acrylamide	5.90E+09	Buxton et al., 1988				average of 4 values	
		5.80E+09	Kumar et al., 1988	Pulse radiolysis	C.K.	7.0	$k_{\text{reference}} = 1.1\text{E}10$	
		4.70E+09	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	$k_{\text{reference}} = 1.1E10$	
		5.30E+09	Willson et al., 1971	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.0E10$	
		6.80E+09	Willson et al., 1971	Pulse radiolysis	P.B.K.			
		6.60E+09	Chambers et al., 1970	Pulse radiolysis	C.K.	-12.0	k reference = 3.9E8	
H2C=CH-OH	vinyl alcohol	1.50E+08	Ulanski, 1994	Pulse radiolysis	C.K.		$k_{\text{reference}} = 1.1E10$	
H2C=CHCOOH	acrylic acid	1.50E+09	Walling 1973	Fenton reaction	C.K.	1.0	$k_{\text{reference}} = 9.7\text{E8}$	
H2C=CHCH=CH2	butadiene	7.00E+09	Thomas 1967	Pulse radiolysis	C.K.	298 K.	$k_{\text{reference}} = 1.1\text{E}10$	6.66E-11
trans CICH=CHC1	trans 1,2-dichloroethylene	7.30E+09	Koester and Asmus, 1971	Pulse radiolysis	P.B.K.	-6.5		
		7.30E+09	Koester and Asmus, 1971	Pulse radiolysis	C.K.	-6.5	$k_{\text{reference}} = 1.1E10$	
CICH=CHC1	dichloroethylene	3.80E+09	Getoff 1991	Pulse radiolysis	C.K.	8.6	$k_{\text{reference}} = 1.1E10$	1.09E-11
		5.00E+09	Koester and Asmus, 1971			-6.5		
		4.40E+09	Koester and Asmus, 1971			-6.5		
NCN=C(NH2)2	dicyandiamide		Draganic et al., 1979	γ radiolysis	C.K.	5	k reference = 3.9E9	
H3C-C=CH-HC=CH-CH2OH	2,4-hexadien-1-ol	9.80E+09	Simic 1973	Pulse radiolysis	P.B.K.	7.0		
CH2=CHCOOCH2CH2OH	2-hydroxyethyl acrylate	1.10E+10	Safrany 1993	Pulse radiolysis	C.K.		k reference = 1.1E10	
(CH3)2C=CH2	isobutylene	5.40E+09	Thomas 1967	Pulse radiolysis	C.K.	298 K	k reference = 1.1E10	5.14E-11
H2C=C(CH3)CN	methacrylonitrile	1.20E+10	Kumar et al., 1988	Pulse radiolysis	C.K.	-7.0	k reference = 1.1E10	2.60E-11
		1.10E+10	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	k reference = 1.1E10	
H2C=C(CH3)COOCH3	methyl methacrylate	1.10E+10	Kumar 1988	Pulse radiolysis	C.K.	-7.0	k reference = 1.1E10	
		1.20E+10	Maruthamuthu 1980	Pulse radiolysis	C.K.	-7.0	k reference = 1.1E10	
H2C=CH-CH(OH)-CH=CH2	1,4-pentadien-3-ol	1.00E+10	Simic 1973	Pulse radiolysis	P.B.K.	7.0		
CH3CH=CH2	propylene	7.00E+09	Thomas 1967	Pulse radiolysis	C.K.			2.63E-11
CICH=CC12	trichloroethylene	2.90E+09	Getoff 1991	Pulse radiolysis	C.K.	8.6	/c reference = 1.1E10	2.36E-12
		3.30E+09	Getoff 1989	Pulse radiolysis	C.K.		/c reference = 1.1E10	
		4.00E+09	Koester and Asmus, 19/1	Pulse radiolysis	P.B.K.		1 1 1710	
0000 0000		4.30E+09	Koester and Asmus, 19/1	Puise radiolysis	C.K.		/Creference = 1.1E10	1.477.40
020=0012	tetrachloroethylene	2.00E+09	Getoff 1991	Pulse radiolysis	C.K.	8.0	/C reference = 1.1E10	1.0/E-13
		4.90E+08	Getoff 1990	Pulse radiolysis	C.K.		/c reference = 1.1E10	
		2.80E+09	Koester and Asmus, 19/1	Pulse radiolysis	C.K.	-6.5	/c reference = 1.1E10	
1120 01101		2.30E+09	Koester and Asmus, 19/1	Pulse radiolysis	P.B.K.	-6.5	1 1 1 1 1 1 1	(O(T 1)
H2C=CHCI	vinyi chionde	1.20E+10	Koester 19/1	Pulse radiolysis	C.K.	-0.0	/C reference = 1.1E10	0.90E-12
H2C=CCl2	vinylidine chloride	6.80E+09	Koester 19/1	Pulse radiolysis	C.K.	-6.5	AC reference = 1.1E10	
H2C=C(CH3)-CO-NH2	methyl acrylamide	1.30E+10	Kumar et al., 1988	Pulse radiolysis	C.K.	-7.0	/c reference = 1.1E10	
(U)C=CU)2601	crocetin	2.30E+10	Bors et al., 1982	Pulse radiolysis	D.K.	5.9		
(120-01)2302	vinyi suitone	4.10E+09	Kumar et al 1990	Pulse radiolysis	PRK	6.9		
H2C=CH2	ethvlene	4.40E+09	Thomas 1967	Pulse radiolysis	CK	0.0	k atom = 1 1E10	8 52F-12
1120 0112	curyrene	1.70E+09	Cullis et al 1967	Pulse radiolysis	CK		k nemes = 1 1F10	0.722-12
NCN=C(NHa)a	devandiamide	7.20E+06	Draganic et al 1070	v radiolysis	CK	5.0	k reserved = 3 2F0	
1011-0(1112)2	ucyanuannue	7.202.00	Diagane et al., 1979	r radioty sis	U.N.	5.0	A reterence - 5.223	
	2,5-dimethyl-3-							
	hexyne-2,5-diol	3.30E+09	Walling 1973	Fenton reaction	C.K.	1.0	$k_{reference} = 9.7E8$	

Table A-B21: Survey of HO• rate constants with unsaturated alkene

-1		In Alter		experimental method	evaluation		1.110
chemicial formura	compound	R HO: (IVI-I S-I)	references	metriod	method	рн	K HO gas
COHO	benzene	7.60E+09	B - 11 1000	D. f C. f	DD V		1.23E-12
COHD-CH3	toluene	3.10E+09	Roder et al., 1990	Puise radiolysis	P.B.K.		5.90E-12
CEUS CUICUS	othribonzono	3.00E+09	Schooted and Halaman 1070	Pulse radiolysis	F.D.K.	pH = 3.0	7 105 12
C6H5 OH	phenol	6.60E+09	Field et al. 1097	Pulse radiolysis	PRK	pH = 7.0	2.63E 11
Cons-on	phenor	1.40E+10	Land and Ebert 1967	Pulse radiolysis	PBK	pH = 7.0	2.05E-11
		1.90E+10	Adamas at al. 1965	Pulse radiolysis	CK	pH=67	
C6H5 F	fluorobenzene	5 70E+00	Mohan and Mittal 1905	Pulse radiolysis	PRK	pH = 7.0	6 00E 13
Comst	Indotobelizelle	1.00E+10	Koester and Asmus 1973	Pulse radiolysis	CK	p11 - 7.0	0.9012-13
C6H5C1	chlorobenzene	5.60E+09	A shtop et al. 1995	Pulse radiolysis	PBK	T = 203 K	7 70E-13
comper	chioropenizene	4 30E+09	Kochany and Bolton 1992	Photolysis	CK	pH = 3.5, 7.0	1.102-15
		4.50E+09	Shevchuk et al. 1969	v-radiolysis	C.K.	pH = 9.0	
		6 50E+09	Matthews and Sangster 1065	v radiolysis	C.K.	pH = 10.7	
C6H5 Br	bromobenezene	5 20E+09	Mohan and Mittal 1005	Pulse radiolysis	PBK	pH = 7.0	7 70E 13
COID-DI	bromobenezene	7.40E+09	Mohan and Mittal 1995	Pulse radiolysis	CK	pH = 7.0	1.102-15
		1.00E+10	Mohan and Mittal 1995	Pulse radiolysis	PRK	pH <0	
		2.00E+10	Mahan and Mittal, 1995	Pulse radiolysis	P.D.K.	pH <0	
		4.40E+09	Marga et al. 1004	Pulse radiolysis	P.D.K.	pH <0	
		4.40E+09	Kashany and Paltan 1002	Photobusis	CV	pH = 7.0	
		4.90E+09	Kochany and Bolton, 1992	Photolysis	C.K.	pri = 5.5	
CGUS I	in distances of	4.00E+09	Kochany and Bolton, 1992	Photolysis	C.K.	pri = 7.0	1.107.10
ConD-1	lodobenzene	5.20E+09	Kochany and Bolton, 1992	Photolysis	C.K.	pri = 5.5	1.10E-12
		3.30E+09	Kochany and Bolton, 1992	Photolysis	C.K.	pri = 7.0	
		3.10E+09	Mohan and Moorthy, 1989	Pulse radiolysis	C.K.		
		5.00E+09	Shevchuk et al., 1969	γ-radiolysis	C.K.	pH = 9.0	
C6H5-CN	benzonitnle	3.90E+09	Chutny and Swallow, 19/0	Pulse radiolysis	C.K.		3.30E-13
		4.90E+09	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	pH = 7.0	
C6H5-NO2	nitrobenzene	3.90E+09	Buxton et al., 1988			selected values	1.40E-13
		4.00E+09	Ashton et al., 1995	Pulse radiolysis	P.B.K.		
		3.20E+09	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	pH = 7.0	
		4.70E+09	Asmus et al., 1967	Pulse radiolysis	P.B.K.		
		3.50E+09	Asmus et al., 1967	Pulse radiolysis	P.B.K.		
C6H5-NH2	aniline	1.70E+10					
C6H5-CHO	benzaldehyde	4.40E+09	Shevchuk et al., 1969	γ-radiolysis	C.K.	pH = 9.0	1.29E-11
C6H5-COOH	benzoic acid	1.80E+09	Ashton et al., 1995	Pulse radiolysis	P.B.K.	T = 293 K.	
		4.30E+09	Wander et al., 1968	Pulse radiolysis	P.B.K.	pH <- 3	
C6H5-COCH3	acetophenone	6.40E+09	Willson et al., 1971	Pulse radiolysis	P.B.K.		2.74E-12
		5.90E+09	Willson et al., 1971	Pulse radiolysis	P.B.K.		
		6.50E+09	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	pH = 7.0	
C6H5-NO	nitrosobenzene	1.80E+10	Asmus et al., 1966	Pulse radiolysis	C.K.	pH = 7.0	
C6H5-CONH2	benzamide	4.60E+09	Anbar et al., 1966	γ-radiolysis	C.K.	pH = 9.0	
		2.90E+09	Merz and Waters, 1949	Fenton reaction	C.K.	pH = 1.0	
C6H5-SOCH3	methyl phenyl sulfoxide	9.70E+09	Veltwish et al., 1980	Pulse radiolysis			
C6H5-CH(CH3)2	cumene	7.50E+09	Sehested and Holcman, 1979	Pulse radiolysis	C.K.	pH = 7.0	6.50E-12
C6H5-CH2OH	benzylalcohol	8.40E+09	Neta and Dorfman, 1968	Pulse radiolysis	P.B.K.	pH = 7.0	2.29E-11
C6H5-NH-CO-CH3	acetanilide	5.20E+09	Anbar et al., 1966	γ-radiolysis	C.K.	pH = 9.0	
C6H5-SO2NH2	benzensulfonamide	2.80E+09	Phillips et al., 1973	γ-radiolysis	C.K.		
		2.90E+09	Anbar et al., 1966	γ-radiolysis	C.K.	pH = 9.0	
C6H5-SO3H	benzenesulfonic acid	2.10E+09	Merz and Waters, 1949	Fenton reaction	C.K.	pH = 1.0	
C6H5-S-CH3	thioanisole	3.50E+09	Mohan and Mittal, 1997	Pulse radiolysis	P.B.K.		
C6H5-NH-OH	phenyl hydroxylamine	1.50E+10	Wigger et al., 1967	Pulse radiolysis	P.B.K.		
C6H5-SO-C2H5	Ethyl phenyl sulfoxide	8.40E+09	Veltwish et al., 1980	Pulse radiolysis			
C6H5-SO-CH(CH3)2	isopropyl phyenyl sulfoxide	1.00E+10	Veltwish et al., 1980	Pulse radiolysis			
C6H5-CH2CH2-C(CH3)2-OH	2-methyl-4-phenyl-2-butanol	5.90E+09	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CHOHCH(CH3)2	2-methyl-1-phenyl-1-propanol	9.50E+09	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CH(OH)C(CH3)3	2.2-dimethyl-1-phenyl-1-propanol	9.90E+09	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CHOHCH3	phenylethanol	1.10E+10	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CH(OCH3)CH(CH3)2	1-methoxy-2-methyl-1-phenylpropane	7.40E+09	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CH(OH)(CH2-CH3)	1-phenyl-1-propanol	1.00E+10	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CH2-CH2OH	1-phenyl-2-propanol	2.10E+10	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
	- F	5.80E+09	Reuvers et al. 1973	Pulse radiolysis	C.K.	F	
		7.00E+09	Reuvers et al. 1973	Pulse radiolysis	C.K.		
C2H5CH-C6H5-OH	2-phenyl-2-propanol	4.60E+09	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-CH2-CH2CH2-CH(OH)-CH3	1-phenyl-3-butanol	2.00E+10	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
C6H5-O-CH3	anisol	5 40E+09	O'Neill et al. 1975	Pulse radiolysis	PBK	pH = 6.5	1.73E-11
(C6H5)2-CO	benzophenone	9 00E+09	Brede et al 1975	Pulse radiolysis	PBK	···	
(0012)2 00	Conceptione	8 70E+09	Land 1968	Pulse radiolysis	PRK		
(C6H5)2-NH	diphenvlamine	1.00E+10	Schmidt et al. 1985	Pulse radiolysis	PRK	pH=3_0	1.94F-10
(0011)/-111	aproxymmite	1 30E+10	Shevchuk et al. 1969	v-radiolysis	CK	pH = 9.0	1.542-10
(C6H5)2 SO	dinhenul sulforide	6 30E+00	Veltwish et al. 1909	Pulse radiolysis	C.R.	P** - 2.0	
(C6H5)2 S	dinhenvisulfides	1 30E+10	Engman et al 100/	Pulse radiolysis	PRV	nH = 7.0	
0.000H	nhanovyacatic acid	1.00E+10	Zona et al. 2002	Pulse radiolysis	PRK	T = 205 V	
CH3_CH(OP) CKPS	1.nhenvl-1.propagal	1.00E+10	Snock and Hamilton 1074	Fenton reaction	1.0.1	nH = 1.9	
0113-011/011/-00113	r-prioryr-r-proparor	1.0020110	SHOOR MAR ADDINUON, 17/4	a cincoli i cacuoli		P111.0	

Table A-B22: Survey of HO• rate constants with benzene and benzene derivatives

1 a 1	TTO 0/771 0770		4.405.40	0 0 1 10000	1 A A A	0.77		1.0000.44
2	HO-C6H4-CH3	o-cresol	1.10E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	pH = 9.0	4.20E-11
	HO-C6H4-CH3	p-cresol	1.20E+10	Feitelson and Hayon, 1973	Pulse radiolysis	C.K.	pH = 5.5	4.70E-11
	H3C-C6H4-CH3	o-xylene	6.70E+09					
	H3C-C6H4-CH3	m-xvlene	7 50E+09					
		n nyiono	7.00E 00					
	noc-con4-cno	p-xyiene	7.00E+09					
	C6H4-C12	1,2-dichlorobenzene	2.50E+09	Merga et al., 1994	Pulse radiolysis	P.B.K.	pH = 7.0	4.20E-13
			3.90E+09	Kochany and Bolton 1992	Photolysis	C.K.	pH = 3.5	
			4 00E+09	Kochany and Bolton 1992	Photolysis	CK	pH=70	
	CETH CD	1.2 district success	5.700 00	Marra et al. 1004	Dedee as distants	DDV	-TI - 7.0	7 207 12
	C0H4-C12	1,5-dichlorobenzene	5.70E+09	Merga et al., 1994	Puise radiolysis	P.B.K.	pH = 7.0	7.20E-15
			5.80E+09	Kochany and Bolton 1992	Photolysis	C.K.	pH = 3.5	
			5.70E+09	Kochany and Bolton 1992	Photolysis	C.K.	pH= 7.0	
	C6H4 C12	1.4 dichlorobenzene	5 30E+00	Kochany and Bolton 1007	Photolysis	CK	nH=35	3 20E 13
	00114-012	1,4-diciliorobelizene	5.100.00	Kotiany and Bolton 1992	Thotory sis	O.K.	pH 5.5	5.202-15
			3.40E+09	Kochany and Bolton 1992	Photolysis	U.K.	рн= 7.0	
	C6H4-(OH)2	1,2-benzenediol	1.10E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	pH = 9.0	1.04E-10
	1.3-C6H4 (OH)2	resorcinol	1.20E+10	Savel'eva et al., 1972	v-radiolysis	C.K.	pH = 9.0	
	НО СКНИ СТ	2 chlorophenol	1 20E+10	Getoff and Solar 1086	Pulse radiolucis	PRK	nH = 65.77	
	110-00114-01	2-chiorophenoi	1.20E 10	Geton and Solar, 1980	i uise lautorysis	I.D.K.	p11=0.5=7.7	
	HO-C6H4-CI	3-chlorophenol	7.20E+09	Savel'eva et al., 19/2	γ-radiolysis	C.K.	pH = 9.0	
	HO-C6H4-C1	4-chlorophenol	9.30E+09	Satafford et al., 1994	Pulse radiolysis	P.B.K.	pH = 6.0	
	H3C-C6H4-OH	2-methyl phenol	1 10F+10	Savel'eva et al. 1972	v-radiolysis	CK	nH = 9.0	4 20E-11
	USC CELL OIL	4 method along al	1.200 10	Exited and Marson 1072	Dutes and intensis	C.V.		4 705 11
	H3C-C0H4-OH	4-metnyi pnenoi	1.20E+10	Feitelson and Hayon, 1975	Pulse radiolysis	U.K.	pH = 5.5	4.70E-11
	HO-C6H4-O-CH3	2,3-methoxyphenol	2.00E+10	O'Neil and Steenken, 1977	Pulse radiolysis	C.K.	pH = 6-7	
	HO-C6H4-O-CH3	3.5-methoxyphenol	3 20E+10	O'Neil and Steenken 1977	Pulse radiolysis	CK	pH = 6-7	
	NO CENTO CAS	2.6 mothorranhonol	2.60E±10	O'Noil and Steanlian, 1077	Pulso radiolysis	CV	eH = 6.7	
	no-con4-o-cn5	2,0-methoxyphenoi	2.00E+10	Olveil and Steenkeri, 1977	Fuise factorysis	U.K.	pri = 0-7	
	H5C2-C6H4-CH(OH)-CH3	2-p-1-(p-ethylphenyl)ethanol	1.30E+10	Snook and Hamilton, 1974	Fenton reaction		pH = -1.8	
	HO-C6H4-NO2	4-nitrophenol	3.80E+09	Cercek and Ebert, 1968	Pulse radiolysis	P.B.K.	pH = 7.0	
	4-CH3-C6H4-CN	4-tolumitrile	1 20F+10	Holeman and Sebested 1979	Pulse radiolysis	PRK	pH = 7.0	
	14.000000000	14 diama 4	7.000.00	Dehiman and Och & T. 15, 1 (27)	Dulas as \$ 4	1 D.K.	P11 - 7.0	
	1,4-C0H4(CN)2	1,4-dicyanobenzene	7.80E+08	Roumson and Schulte-Frohlinde, 19/3	ruise radiolysis	C.K.		
							pH= 7.0	
	4-F-C6H4-CN	p-fluorobenzonitrile	3.50E+09	Klever and Schulte-Frohlinde 1976	Pulse radiolysis	CK	T = 292 K	
	A De CAUA CUICEUN OU	1 (n bramart1)	6 105:00	Speak and U-witten 1074	Fonton months		oU = 10	
	+-DI-COR+-CH(CH3)-OH	1-(p-oromopnenyi)etnanoi	0.102+09	Shook and riamiton, 1974	r enton reaction		pri = -1.8	
	(CH3)3-C-C6H4-OH	tert-butylphenol	1.90E+10	Savel'eva et al., 1972	γ-radiolysis	C.K.	pH = 9.0	
	1,2-C6H4(OH)2	1,2-catechol	1.10E+10	Savel'eva et al., 1972	y-radiolysis	C.K.	pH = 9.0	
	CKUATI	o difluorationana	7 500-00	Koester and Across 1072	Pulsa radiotecio	CV		
	C0114-F2	0-diliuorobelizelle	1.301.109	Koester and Asinus, 1975	Tuse radiorysis	C.K.		
	C6H4-F2	p-difluorobenzene	1.00E+10	Koester and Asmus, 19/3	Pulse radiolysis	C.K.		
	C6H4-(OCH3)2	1,2-dimethoxybenzene	5.20E+09	O'Neill et al., 1975	Pulse radiolysis	P.B.K.	pH = 6.5	
	C6H4-(OCH3)2	1.3-dimethoxybenzene	7 20E+09	O'Neill et al. 1975	Pulse radiolysis	PRK	nH = 6.5	
	C(11+(OC113)2	1,5-dimetrioxyberizerie	7.202.00	011011011010	D 1 1 1 1	DDK.	11 65	
	C6H4-(OCH3)2	1,4-dimethoxybenzene	7.00E+09	O'Neill et al., 1975	Pulse radiolysis	P.B.K.	pH = 6.5	
							pH = -6	
	4-02N-C6H4-NH2	n-nitroaniline	1 40E+10	van der Linde 1977	Pulse radiolysis	CK	T = 295 K	
	CU2 COULCN	n éstemiente	1.000 1.10		,			
	CH3-COH4-CN	p-totumine	1.20E+10					
	4-C1-C6H4NO2	1-chloro-4-nitrobenzene	1.30E+09	Guittonneau et al., 1990	Photolysis	C.K.	pH = 7.5	
	4-02N-C6H4-COCH3	4-nitroacetophenone	3.30E+09	Whillans 1977	Pulse radiolysis	P.B.K.	pH=6.5	
		•	2 80E+00	Michaels et al. 1076	Pulse radiolysis	PRK	nH = 6.6	
			2.002.00	Wienders et al., 1970	1 disc fiddolysis	1.5.1.	p11 0.0	
							pri – -0	
	4-O2N-C6H4NH2	4-nitroaniline	1.40E+10	van der Linde, 1977	Pulse radiolysis	C.K.	T = 295 K	
3	(HO)2-C6H3-C1	4-chlorocatecohol	7.00E+09					
	CELL2 (OID)2	- chiefecticeconor	1.0000100	Wene et al. 1004	Dedage and intervie	DDV	-TT - 5 P	
	C0H3-(OH)3	phiotoglucinoi	1.002+10	Wang et al., 1994	Fuise factorysis	L'D'V'	pri = 5.8	
		1,2,3-trimethyl benzene	7.00E+09					
		1,2,3-trimethyl benzene 1,2,4-trimethyl benzene	7.00E+09 6.20E+09					
		1,2,3-trimethyl benzene 1,2,4-trimethyl benzene	7.00E+09 6.20E+09 6.40E+09					
		1,2,3-trimethyl benzene 1,2,4-trimethyl benzene 1,3,5-trimethyl benzene (mesitylene)	7.00E+09 6.20E+09 6.40E+09			0.7		
	3,4-(HO)2-C6H3-CHO	1,2,3-trimethyl benzene 1,2,4-trimethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzaldehyde	6.20E+09 6.40E+09 8.30E+09	Bors et al., 1979	Pulse radiolysis	C.K.	pH = 7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3	1,2,3-tmmethyl benzene 1,2,4-trimethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10	Bors et al., 1979 Bors et al., 1984	Pulse radiolysis Pulse radiolysis	C.K. C.K.	pH = 7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09	Bors et al., 1979 Bors et al., 1984 Bors et al. 1984	Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K.	pH = 7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3	1,2,3-tmmethyl benzene 1,2,4-trimethyl benzene 1,3,5-tminethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K.	pH = 7.0	
	3,4-(H0)2-C6H3-CHO (H0)2-C6H3-C0CH3 (H0)2-C6H3-C0CH3 (H0)2-C6H3-C0CH3	1,2,3-tmiethyl benzene 1,2,4-tmiethyl benzene 1,3,5-tmiethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. C.K.	pH = 7.0 pH = 7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO)2-C6H3-COCH3	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroamisole	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10 4.00E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	CK. CK. CK. PBK.	pH = 7.0 pH = 7.0	
	3,4-(H0)2-C6H3-CH0 (H0)2-C6H3-C0CH3 (H0)2-C6H3-C0CH3 (H0)2-C6H3-C0CH3 (N02)2-C6H3-C0CH3 C6H3-(OCH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timiethoxybenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10 4.00E+09 7.00E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. P.B.K. P.B.K.	pH = 7.0 pH = 7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-QOCH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzidehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,3-dinitroanisole 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10 4.00E+09 7.00E+09 6.20E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	C.K. C.K. C.K. P.B.K. P.B.K. P.B.K.	pH = 7.0 pH = 7.0 pH=-7.0 pH=-7.0	
	3,4-(H0)2-C6H3-CHO (H0)2-C6H3-COCH3 (H0)2-C6H3-COCH3 (H0)2-C6H3-COCH3 (N02)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 1,2,4-timethoxybenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 8.30E+10 8.00E+10 4.00E+09 7.00E+09 6.20E+09 8.10E+00	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Dors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 (NO2)2-C6H3-COCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10 4.00E+09 7.00E+09 6.20E+09 8.10E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,3,5-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene	7:00E+09 6:20E+09 6:40E+09 8:30E+09 3:00E+10 8:00E+09 1:00E+10 4:00E+09 7:00E+09 6:20E+09 8:10E+09 2:00E+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Dors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H2-CH3O HO-C6H2-CH3O	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,3-dinitroanisole 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 1,3,5-timethoxybenzene 2,3-dimethoxyphenol 2,4-dimethoxyphenol	7/00E+09 6.20E+09 6.40E+09 8.30E+09 3.30E+10 8.30E+09 1.00E+10 4.00E+09 7.00E+09 6.20E+09 8.10E+09 2.00E+10 2.60E+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	С.К. С.К. С.К. С.К. Р.В.К. Р.В.К. Р.В.К.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzidehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timiethoxybenzene 2,3-dimithoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenol 3,5-dimethoxybenol 3,5-dimethoxybenol	7:00E+09 6:20E+09 6:40E+09 8:30E+09 8:30E+09 8:30E+09 1:00E+10 4:00E+09 7:00E+09 8:10E+09 2:00E+10 2:00E+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O E E E	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 1,3,5-timethoxybenzene 2,3-dimethoxyphenol 2,4-dimethoxyphenol 2,4-dimethoxyphenol 1,3,5-dimethoxyphenol 1,3,5-dimethoxyphenol 1,3,5-dimethoxyphenol	7/00E+09 6.20E+09 6.40E+09 8.30E+09 8.30E+09 8.30E+09 1.00E+10 4.00E+09 7.00E+09 6.20E+09 8.10E+09 2.00E+10 2.60E+10 2.60E+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -FFF_	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzidehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimithoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxyphenol 2,4-dimethoxyphenol 3,5-timiorboxyphenol 3,5-timiorboxyphenol 1,3,5-timiorboxyphenol 1,3,5-timiorboxyphenol	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 2.002+10 2.002+10 2.002+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК.	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O -F, -F, -F	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybpenol 2,4-dimethoxyphenol 3,5-dimethoxyphenol 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timburobenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.00E+10 4.00E+09 6.20E+09 8.10E+09 8.10E+09 2.00E+10 2.60E+10 2.60E+10 4.10E+09 3.70E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 (C6H3-(CCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F,-F,-F -F,-F,-F -F,-F,-F	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzidlehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,4-timiethoxybenzene 2,3-dimithoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxyphenol 2,4-dimethoxyphenol 3,5-timfluorobenzene 1,2,3-timfluorobenzene 1,2,4-timfluorobenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 8.30E+09 8.30E+09 1.00E+10 4.00E+09 7.00E+09 8.10E+09 8.10E+09 2.00E+10 2.00E+10 2.00E+10 4.10E+09 3.70E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Dors et al., 1984 Tamming at et al., 1979 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК.	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F, -F, -F -F, -F, -F -F, -F, -F -C, C, C, OH	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,3,5-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybpenol 3,5-dimethoxybpenol 1,3,5-timethoxybpenol 1,3,5-timethoxybpenol 1,3,5-timethoxybpenol 1,3,5-timutorobenzene 1,2,4-timflorobenzene 1,2,4-timflorobenzene 2,4-dichlorobenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 3.00E+10 8.00E+09 1.000E+10 4.00E+09 6.20E+09 8.10E+09 2.00E+10 2.60E+10 2.60E+10 4.10E+09 3.70E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO)2)-C6H3-COCH3 (NO)2)-C6H3-COCH3 C6H3-(CCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -C,-C,-OH OH OW OW	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzidlehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 2,3-dimitroxybenzene 2,3-dimitroxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 2.002+10 2.002+10 4.102+09 3.702+09 3.502+09 7.102+09 8.602+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Cona et al., 2002	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК.	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0 T=295 K	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F, -F, -F -F, -F, -F -F, -F, -F -C, -C, -CH -CH, -CH, -CH -CH, -CH, -CH -CH, -CH, -CH	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,2,4-tifuorobenzene 1,2,4-tifuorobenzene 2,4-dichlorobenzene 1,2,4-tifuorobenzene	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+01 1.002+10 1.002+10 1.002+10 1.002+09 8.102+09 8.102+09 8.102+09 3.702+09 3.702+09 8.602+09 8.602+09 8.602+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975 Zona et al., 2002 Oturan et al., 2002	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. СК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K	
	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO)2)-C6H3-OCH3 (NO)2-C6H3-OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F, F, F -F, F, F -F, F, F -F, F, F -G, C, C, OH -OH, OH, OH -OH, OH, OCH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxybenzidehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timitehoxybenzene 1,2,3-timitehoxybenzene 1,2,4-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenenol 3,5-timitehoxybenenol 3,5-timitehoxybenenol 1,2,4-timethoxybenenol 1,2,4-timethoxybenenol 1,2,4-timethoxybenenol 1,2,4-timethoxybenene 1,2,4-timethoxybenene 1,2,4-timethoxybenene 1,2,4-timethoxybenenel 1,2,4-timethoxbenen	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 1.002+10 8.002+09 7.002+09 8.102+09 8.102+09 8.102+09 2.002+10 2.002+10 2.002+10 3.702+09 3.702+09 8.602+09 8.602+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Zona et al., 2002 Oturan et al., 2002 Oturan et al., 2000	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	CK CK CK PBK PBK PBK PBK CK	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K 5H = 6.8, T = 295	K.
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O C6H3-(CH3)3 HO-C6H3-(CH3)3 C6H3-(CH	1,2,3-timethyl benzene 1,2,4-timethyl benzene (nesitylene) dihydroxybenzaldehyde 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,2,4-timothoxybenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene 1,2,4-timboxbenzene	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 3.302+09 8.602+09 6.302+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975 Zona et al., 2002 Oturan et al., 2002 Dohrmann and Bergmann 1995 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO)2)-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylbenzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 1,3,5-timethoxybenzene 2,4-dimethoxybenzene 1,3,5-timithoxybenzene 2,4-dimethoxybenzene 1,2,3-tifluorobenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,3-tifluorobenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,3-tifluorobenzene 1,2,4-tihydroxybenzene 1,2,3-tifluorobenzene	7.00E+09 6.20E+09 6.20E+09 8.30E+09 8.30E+09 1.00E+10 4.00E+09 7.00E+09 6.20E+09 8.10E+09 6.20E+09 2.00E+10 2.60E+10 4.10E+09 7.10E+09 6.30E+09 6.30E+09 7.20E+09 8.60E+09 7.20E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Zona et al., 2002 Oturan et al., 2000 Dohmann and Bergmann 1995 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК РВК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0	K.
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O -F, -F, -F -F, -F, -F -F, -F, -F -C, -C, -OH -OH, -OH, -OH -OH, -OH, -OH -OH, -OH, -OH -OH, -OH -CH2(CH3)4 C6H2(CH3)4 C6H2(CH3)4	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxybenzäldehyde 2,4-dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybpenol 3,5-dimethoxybpenol 1,3,5-timethoxybpenol 1,3,5-timethoxybpenol 1,3,5-timutorobenzene 1,2,4-timfloorobenzene 1,2,4-timfloorobenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,3,5-tetramethylbenzene 1,2,5-tetramethylbenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 8.30E+09 8.30E+01 1.00E+10 1.00E+10 1.00E+10 4.00E+09 8.10E+09 8.10E+09 8.10E+09 8.30E+09 8.30E+09 8.60E+09 6.30E+09 7.10E+09 7.10E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Zona et al., 2002 Oturan et al., 2002 Oturan et al., 2000 Dohrmann and Bergmann 1995 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Electron-fenton Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. СК. РВК.	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H2(CH3)4 C6H2(CH3)4	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylbenzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,3,5-timethoxybenzene 2,4-dimethoxyphenol 3,5-dimethoxyphenol 3,5-dimethoxyphenol 1,2,3-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,3-tifliourobenzene 1,2,3-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4,5-tetramethylbenzene	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 6.202+09 8.102+09 6.202+09 8.102+09 2.002+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+09 7.102+09 7.102+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 2002 Oturan et al., 2000 Dohmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0 T = 295 K SH = 6.8, T = 295 pH= -7.0 pH= -7.0 pH= -7.0	K.
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(CH3)4 C6H3-(CH3)4 C6H2(CH3)4 C	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxyphenol 2,4-dimethoxyphenol 1,3,5-timethoxybenzene 1,2,3-timfluorobenzene 1,2,4-timfluorobenzene 1,2,4-timfluorobenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-timhydroxybenzene 1,2,4-tertamethylbenzene 1,2,5-teramethylbenzene 1,2,4-timethydbenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene 1,2,4-timethybenzene	7.00E+09 6.20E+09 6.40E+09 8.30E+09 8.30E+09 8.30E+01 1.00E+10 4.00E+09 7.00E+09 8.10E+09 8.10E+09 8.10E+09 8.30E+09 8.30E+09 8.60E+09 8.60E+09 7.10E+09 7.10E+09 7.10E+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Zona et al., 2002 Oturan et al., 2000 Dohrmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК.	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O CH3C(H3)4 C6H2(CH3)4 C6H2(1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylbenzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 1,3,5-timethoxybenzene 2,3-dimethoxyphenol 3,5-dimethoxyphenol 3,5-dimethoxyphenol 1,2,3-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,5-tifliourobenzene 1,2,5-tifliourobenzene 1,2,5-tifliourobenzene 1,2,5-tifliourobenzene 1,2,5-tifliourobenzene 1,2,5-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4,5-tetramethylbenzene 2,4,5-titliourophenol 2,4-dishlorophenol 2,4-dishlorophenol 2,4-dishlorophenol 2,4-dishlorophenol 2,4-dishlorophenol	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 6.202+09 8.102+09 6.202+09 8.102+09 2.002+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+09 8.602+09 7.102+09 7.102+09 7.102+09 1.202+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 2002 Oturan et al., 2000 Dohmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Drager et al., 1989 Zona et al., 2002	Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК РВК РВК РВК	pH = 7.0 pH = 7.0 pH= -7.0 pH= -7.0 T = 295 K 5H = 6.8, T = 295 pH= -7.0 pH= -7.0 pH= -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H-CH3O HO-C6H2(CH3)4 C6H3(CH3)4 C6H2(CH3)4	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 2,3-dimethoxyphenol 3,5-dimethoxyphenol 1,3,5-timethoxybenzene 1,2,3-timfluorobenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,4-timfloxybenzene 1,2,5-tetramethylbenzene 1,2,4-tim	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 8.302+09 8.602+09 6.302+09 7.102+09 7.102+09 7.102+09 7.102+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH = 7.0 pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 SH = 6.8, T = 295 pH = -7.0 pH = -	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-(OCH3)4 C6H3-(OCH3)4 C6H3-(OCH3)4 C6H2(C	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timiethoxybenzene 2,3-dimethoxyphenol 3,5-dimethoxyphenol 3,5-dimethoxyphenol 1,3,5-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,4-tifliourobenzene 1,2,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenol 1,2,4-tifliourobenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 6.202+09 8.102+09 8.102+09 8.102+09 2.002+10 2.002+10 2.002+10 3.702+09 7.102+09 7.202+09 7.102+09 7.102+09 7.102+09 7.102+09 2.102+10	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК РВК РВК РВК РВК РВК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 pH = -7.0 T = 295 K H = 6.8, T = 295 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H3 (CH3) C6H2(CH3)4 C6H2(C	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timfluorobenzene 1,2,4-timthoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,4-timhoxybenzene 1,2,5-tetramethylbenzene 1,2,5-tetramethylbenzene 1,2,4-tichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 8.602+09 8.602+09 7.102+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 pH = -7.0 sH = 6.8, T = 295 pH = -7.0 pH = -0 pH = -0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(CH3)4 C6H2(CH3)	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dihydroxyactophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timiethoxybenzene 2,3-dimethoxybenol 2,4-dimethoxybenol 3,5-dimethoxybenol 1,3,5-timfurobenzene 1,2,3-timfurobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4-timburobenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 6.202+09 8.102+09 8.102+09 8.102+09 2.002+10 2.002+10 2.002+10 3.702+09 7.102+09 7.202+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 2.002+10 2.002+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+10 1.202+000 1.202+000 1.202+0000000000000000000000000000000000	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Draper et al., 2002 Al-Suhyban and Flughes, 1988 Al-Suhyban and Flughes, 1988	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis	СК СК СК РВК РВК РВК РВК РВК РВК РВК РВК РВК РВ	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH	K.
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(CH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O -F, F, F -F, F, F -C1, -C1, -OH -OH, -OH, OH -OH, OH, OH -OH, OH, OH -OH, OH, OH -OH, OH, OH -OH, OH, OH -OH, OH, OH -CH2(CH3)4 C6H2(CH3)5 C6H3(CH3)5 C6H3(CH3)3	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-timethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,3,5-tetramethylbenzene 1,2,5-tetramethylbenzene 1,2,4-tichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 7.102+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 2002 Oturan et al., 2000 Dohmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Gamma-radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3(CH3)4 -C, F, F, F -F, F, F -F, F, F -F, F, F -C, -C, -OH -OH, -OH, -OH -OH, -OH, -OH -OH, -OH, -OH -OH, -OH, -OH -CH3)3 C6H3(CH3)4 -CH2(CH3)4 -C, -C, -O, -OCOH 1,2,4,5-C, OH, OH, CI	1,2,3-tmiethyl benzene 1,2,4-tmiethyl benzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,5-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-tmiethoxybenzene 1,2,3-tminethoxybenzene 1,3,5-tminethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenol 3,5-dimethoxybenol 3,5-dimethoxybenol 1,3,5-tmitourobenzene 1,2,4-tmihuorobenzene 1,2,4-tmihuorobenzene 1,2,4-tmihuorobenzene 1,2,4-tmihuorobenzene 1,2,4-thihuorobenzene 1,2,4-thihuorobenzene 1,2,4-thihuorobenzene 1,2,4-thihuorobenzene 1,2,4-thihuorobenzene 1,2,5-tetramethylbenzen 1,2,5-tetramethylbenzen 2,4-dichlorophenol 2,4-dichlor	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 2.002+10 2.002+10 2.002+10 2.002+10 3.702+09 3.702+09 7.102+09 7.202+09 7.102+09 1.202+10 6.602+09 2.102+10 2.502+10 1.202+10 7.002+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 2002 Oturan et al., 2000 Dohrmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК РВК РВК РВК РВК РВК РВК РВК РВК РВК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0 pH = -0 pH = -0	K.
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(CH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-OH, OH HO-OH, OH HO-OH, OH HO-OH HO-OH, OH HO-OH HO HO HO HO HO HO HO	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timethoxybenzene 1,2,4-dinethoxyphenol 1,3,5-timfurorbenzene 1,2,4-tinfurorbenzene 1,2,4-tinfurorbenzene 1,2,4-tinfurorbenzene 1,2,4-tinfurorbenzene 1,2,3,5-tetramethylbenzene 1,2,3,5-tetramethylbenzene 1,2,4-tichlorophenol 2,4-di	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 7.002+10 8.502+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+10 6.602+09 7.102+10 6.602+09 7.102+10 6.602+09 7.102+10 7.002+09 7.002+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 C6H3-COCH3)3 C6H3-COCH3)3 C6H3-COCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-COCH3)3 C6H3-COCH3)3 C6H3-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3(CH3)4 C6H	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,5-timionobenzene 1,2,5-tetramethybenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,5-dichloropheno	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 2.002+10 2.002+10 2.002+10 2.002+10 2.002+10 2.002+10 3.702+09 3.702+09 7.102+09 7.202+09 7.102+09 1.202+100+100+100+100+100+100+	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fento Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(CH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-CH4-CH3O HO-C6H3 HO-CH3O HO-CH3	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyacetophenone 2,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,4-dihydroxyacetophenone 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-trimethoxybenzene 1,3,5-trimethoxybenzene 1,3,5-trimethoxybenzene 1,3,5-trifluorobenzene 1,2,4-tintydroxybenzene 1,2,4-tintydroxybenzene 1,2,4-tintydroxybenzene 1,2,4-tintydroxybenzene 1,2,5-tetramethylbenzene 1,2,5-tetramethylbenzene 1,2,5-tetramethylbenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenolydroquinone	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+09 7.102+10 6.602+09 7.102+10 6.602+09 7.302+09 7.302+09 7.302+09 7.302+09 7.302+09 7.302+09 7.302+09 7.302+09 7.302+09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Schested et al., 1973	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH=7.0 pH=7.0 pH=7.0 pH=-7.	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 C6H3-COCH3)3 C6H3-COCH3)3 C6H3-COCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-CCH3O HO-C6H4-CH3O C6H3-CH3O HO-C6H4-CH3O C6H3-CH3O HO-C6H4-CH3O C6H3-CH3O HO-C6H4-CH3O C6H3-CH3O HO-C6H4-CH3O C6H3-CH3O C6H3-CH3O C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3)4 C6H3-CH3O HO-C6H-CH3)4 C6H3-CH3)4 C6H3-CH3O HO-C6H3-CH3O C6H3-CH3O HO-C6H3-CH3O C6H3-CH3O C6H3-CH3O HO-C6H4-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3-CH3O HO-C6H3O HO-	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxydectophenone 2,5-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethybenzene 1,2,4,5-tetramethybenzene 1,2,4,5-tetramethybenzene 2,4-dicklorophenol 2,4-dicklorophenol 2,4-dicklorophenol 2,4-dicklorophenol 2,4-dicklorophenol 2,4,5-tetramethybenzene 2,4-dicklorophenol 3,5-dimethylbenzene 4,5-dimethylbenzene 4,5-dimethylbenzene 4,5-dimethylbe	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 2.002+10 2.002+10 2.002+10 2.002+10 2.002+10 2.002+10 2.002+10 3.702+09 3.702+09 7.102+09 7.202+09 7.102+09 1.202+10 2.502+10 1.202+10 2.502+10 1.202+10 3.502+09 7.202+09 7.202+09 1.202+10 2.502+10 1.202+10 3.502+09 1.202+10 3.502+09 1.202+10 3.502+09 1.202+10 3.502+09 1.202+10 3.502+09 1.202+10 3.502+09 1.202+10 3.502+09 1.202+09 3.502+09 1.202+09 3.502+000+0000+000+000+000+000+000+000+000	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 2000 Zona et al., 2000 Dohmann and Bergmann 1995 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 2082 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fento Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(CH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxydectophenone 2,5-dihydroxydectophenone 3,4-dihydroxydectophenone 3,4-dihydroxydectophenone 3,4-dinihydroxydectophenone 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 2,3-dimethoxybenol 3,5-dimethoxybenol 1,3,5-timfluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tihluorobenzene 1,2,4-tichlorophenol 1,2,4-tichluorophenol 1,2,4-tichluorophenol 2,4-dichlorophenoyacetic aid 2,5-dichlorophenol 2,4-dichloropheno	7.002-09 6.202-09 6.202-09 8.302-09 8.302-09 8.302-09 1.002-10 8.002-09 7.002-09 6.202-09 8.102-09 8.102-09 8.102-09 8.102-09 8.102-09 7.002-10 2.002+10 4.102-09 7.102-09 8.602-09 7.102-09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Draper et al., 1089 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Schested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973	Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 C6H3-COCH3) C6H3-COCH3)3 C6H3-COCH3)3 C6H3-COCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-COCH3)3 C6H3-COCH3)3 C6H3-CH3O C6H3-CH3)3 C6H3-CH3)3 C6H3-CH3)3 C6H3-CH3)4 C6H2(CH3)4 C6H2	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dimethoxyphenol 3,5-dimethoxyphenol 1,3,5-timfuorobenzene 1,2,4-dimethoxyphenol 1,2,4-timfuorobenzene 1,2,4-timfuorobenzene 1,2,4-timfuorobenzene 1,2,4-timfuorobenzene 1,2,4-timfuorobenzene 1,2,4-timfuorobenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4,5-tirtamethylbenzene 2,4,5-tirtionophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,5-dichlorohydroquinone hexafluorobydroquinone hexafluorobenzene	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 3.702+09 7.102+09 7.202+10 2.502+10 1.202+10 2.502+10 1.202+10 2.502+10 1.202+10 1.202+10 1.202+10 3.302+09 7.302+09 3.102+09 3.302+000+000+000+000+000+000+000+000+000+	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H3-(CH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-CH3O HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4-CH4 HO-CH4 HO-CH4-CH4 HO-CH4-CH4 HO	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxydectophenone 2,5-dihydroxydectophenone 3,4-dihydroxydectophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timethoxybenzene 1,2,4-timethoxybenzene 2,3-dimethoxybenzene 1,3,5-timethoxybenzene 1,3,5-timthoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-tihlurorbenzene 1,2,4-tihlurorbenzene 1,2,4-tihlurorbenzene 1,2,4-tihlurorbenzene 1,2,4-tihlurorbenzene 1,2,4,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenolyaceiti aid 2,5-dichlorophenolyaceiti aid 2,5-dichlorophenolyaceiti aid 2,5-dichlorophenolyaceiti aid 2,5-dichlorophenolyaceiti aid 2,5-dichlorophenolydroquinone pentafluorobenzene pentafluorobenzene hexamethylbenzene hexamethylbenzene	7.002-09 6.202-09 6.202-09 8.302-09 8.302-09 8.302-09 1.002-10 4.002-09 7.002-09 6.202-09 8.102-09 8.102-09 8.102-09 8.102-09 7.002-10 2.602-10 2.602-10 2.602-10 3.302-09 7.102-09 8.602-09 6.302-09 7.102-09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Schested et al., 1975 Schested et al., 1975 Drager et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Schested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. РВК. РВ	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0 T=295 K SH=6.8, T=295 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3-(OCH3)3 C6H3-(CH3)3 C6H3-(CH3)3 C6H3-(CH3)3 C6H3-(CH3)3 C6H3-(CH3)4 C6H2(CH3)4	1,2,3-timethyl benzene 1,2,4-timethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-timethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 2,4-dichlophenol 1,2,4-timithoxybenzene 1,2,3,5-tetramethybenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,5-dichlorohydroquinone hexafluorobydroquinone hexafluorobenzene pentafluorobenzene pentafluorobenzene	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 3.702+09 3.702+09 7.102+09 7.202+10 6.302+09 7.102+09 1.202+10 1.202+10 1.202+10 7.302+09 3.102+09 3.102+09 3.302+09 7.202+09 1.202+10 1.402+09 3.302+09 7.202+09 1.202+10 1.402+09 3.302+09 7.202+09 1.202+09 3.302+09 7.202+09 3.302+000+000+000+000+000+000+000+00+00+00+	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 2000 Dahman and Bergmann 1995 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-	1,2,3-tmethyl benzene 1,2,4-tmiethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,4-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-tminethoxybenzene 1,2,3-tminethoxybenzene 1,2,3-tminethoxybenzene 2,3-dimethoxybenzene 1,3,5-dimethoxybenzene 1,3,5-dimethoxybenzene 1,2,3-tminethoxybenzene 1,2,4-tihurobenzene 1,2,4-tihurobenzene 1,2,4-tihurobenzene 1,2,4-tihurobenzene 1,2,4-tihurobenzene 1,2,4-tihurobenzene 2,4-dichlrophenol 1,2,4-tihurobenzene 2,4-dichlrophenol 2,4-dichlorophenozeti aid 2,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenozeti aid 2,5-dichlorophenozeti aid 2,5-dichlorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluorobenzene pentafluoroledobenzene pentafluoroledobenzene	7.002-09 6.202-09 6.202-09 8.302-09 8.302-09 8.302-09 1.002-10 4.002-09 7.002-09 6.202-09 8.102-09 8.102-09 8.102-09 8.102-09 7.202-10 2.602-10 2.602-10 2.602-10 2.602-10 3.302-09 7.102-09 6.302-09 7.102-09 7.102-09 1.202-10 1.002-09 3.102-09 3.102-09 1.202-09 1.202-09 1.202-09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Drager et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975 Mohan and Mittal 1995	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-ferton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК. СК. СК. РВК. РВК. РВК. РВК. РВК. РВК. СК. СК. СК. СК. СК. СК. СК. СК. СК. С	pH=7.0 pH=7.0 pH=-7.0 pH=-7.0 T=295 K SH=6.8, T=295 pH=-7.0 pH=-7.0 pH=-7.0 pH=-0 pH=-0 pH=-7.0 pH=-7.0 pH=-7.0 pH=-7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxydectophenone 2,5-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-dimethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timiethoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenol 2,4-dic	7.002+09 6.202+09 6.402+09 8.302+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 7.102+09 7.202+10 2.302+10 8.602+09 7.202+09 7.102+09 1.202+10 2.502+10 1.202+10 2.502+10 1.202+10 3.302+09 7.202+09 7.202+09 1.202+0000+000+0000+0	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-	1,2,3-tmethyl benzene 1,2,4-tmiethyl benzene (mesitylene) dihydroxybenzalehyde 2,4-dihydroxyacetophenone 3,5-dihydroxyacetophenone 3,4-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-tminethoxybenzene 1,2,4-timethoxybenzene 1,3,5-timiethoxybenzene 2,4-dimethoxybenzene 1,3,5-timiethoxybenzene 2,4-dimethoxyphenol 3,5-dimethoxyphenol 1,2,3-trifluorobenzene 1,2,3-trifluorobenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4-tihydroxybenzene 1,2,4,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenoyacetia aid 2,5-dichlorohydroquinone hexafluoroiodobenzene pentafluorobenzene p	7.002-09 6.202-09 6.202-09 8.302-09 8.302-09 8.302-09 8.302-09 1.002-10 4.002-09 6.202-09 8.102-09 8.102-09 8.102-09 8.102-09 8.102-09 7.202-09 7.202-09 7.202-09 7.202-09 7.102-09 7.102-09 7.102-09 7.202-10 7.202-09 7.102-09 7.202-09	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0 pH = -7.0 pH = -7.0 pH = -0 pH = -0 pH = -0.5 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (C6H3-COCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O HO-C6H4-CH3O C6H3(CH3)4 C6H3(CH3)4 C6H3(CH3)4 C6H2(CH	1,2,3-timethyl benzene 1,2,4-timethyl benzene 1,3,5-trimethyl benzene (mesitylene) dihydroxydectophenone 2,5-dihydroxyacetophenone 3,5-dinitroanisole 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,2,3-timiethoxybenzene 1,3,5-timiethoxybenzene 2,3-dimethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,3,5-timiethoxybenzene 1,2,4-dinitroxyphenol 3,5-dimethoxyphenol 1,3,5-timiuroboxybenzene 1,2,3-timiuthoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,3-timiuroboxybenzene 1,2,4-timithoxybenzene 1,2,4-timithoxybenzene 1,2,3,5-tetramethylbenzene 1,2,3,5-tetramethylbenzene 1,2,4,5-tictiorophenol 2,4-dichlorophenol 3,5-dimethylbenzene 4,4-dichlorophenol 4,4-dichlorophenol 4,4-dichlorophenol 4,4-dichlorophenol 4,4-dichlorophenol 4,4-dichlorophenol 4,4-dichlorophenzene 4,4-dichlorop	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 7.002+09 8.102+09 8.102+09 8.102+09 8.102+09 8.302+09 7.102+09 7.302+09 7.202+10 6.302+09 7.102+09 7.102+09 7.102+09 7.202+10 6.602+09 7.202+10 6.602+09 7.202+0000000000000000000000000000000000	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	СК СК СК СК РВК РВК РВК РВК СК СК СК СК СК СК СК СК СК СК СК СК СК	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -0 pH = -0 pH = -0 pH = -0.0 pH = -7.0 pH = -7.0 pH = -7.0	K
4	3,4-(HO)2-C6H3-CHO (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (HO)2-C6H3-COCH3 (NO2)2-C6H3-OCH3 C6H3-(OCH3)3 C6H3-(OCH3)3 HO-C6H4-CH3O HO-C6H4-	1,2,3-tmethyl benzene 1,2,4-tmethyl benzene (mesitylene) dihydroxyactophenone 2,5-dihydroxyactophenone 3,5-dihydroxyactophenone 3,5-dinitroanisole 1,2,3-tminthoxybenzene 1,2,4-tmethoxybenzene 1,2,3-tminthoxybenzene 1,3,5-tminthoxybenzene 2,3-dimethoxyphenol 3,5-dimethoxyphenol 3,5-dimethoxyphenol 1,3,5-tminuthoxybenzene 1,2,4-tmiburobenzene 1,2,4-tmiburobenzene 1,2,4-tmiburobenzene 1,2,4-tmiburobenzene 1,2,4-thiburobenzene 1,2,4-thiburobenzene 1,2,4-thiburobenzene 1,2,4-thiburobenzene 2,4-dichlorophenol 1,2,3-tetramethylbenzene 1,2,4,5-tetramethylbenzene 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,4-dichlorophenol 2,5-dichlorohydroquinone betafluorobenzene pentafluorobenz	7.002+09 6.202+09 6.202+09 8.302+09 8.302+09 8.302+09 8.302+09 1.002+10 4.002+09 6.202+09 8.102+09 8.102+09 8.102+09 2.002+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 2.602+10 3.302+09 7.102+09 8.6602+09 2.102+10 2.502+09 3.302+09 7.202+09 1.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 3.302+09 7.202+09 7.202+09 3.302+09 7.202+002+000+0000+000+0000+0	Bors et al., 1979 Bors et al., 1984 Bors et al., 1984 Tamminga et al., 1984 Tamminga et al., 1979 Sehested et al., 1975 Sehested et al., 1975 Draper et al., 1989 Zona et al., 2002 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Al-Suhyban and Hughes, 1988 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975 Tripathi and Schuler 1983 Shoute and Mittal, 1993 Koester and Asmus, 1973 Sehested et al., 1975 Mohan and Mittal 1995	Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Pulse radiolysis Electron-fenton Pulse radiolysis Pulse radiolysis Pulse radiolysis Gamma-radiolysis Gamma-radiolysis Pulse radiolysis Pulse radiolysis	CK CK CK CK PBK PBK PBK PBK PBK PBK CK CK CK CK CK CK CK CK CK CK CK CK CK	pH = 7.0 pH = 7.0 pH = -7.0 pH = -7.0 T = 295 K SH = 6.8, T = 295 pH = -7.0 pH = -7.0 pH = -7.0 pH = -0 pH = -0 pH = -7.0 pH = -7.0 pH = -7.0 pH = -7.0	K

chemical fermuna compound pc:0141+ reference method pp:14-10 1000000000000000000000000000000000000					experimental	evaluation	
pyndise JOE 490 Siler 41, 1997 Pater analysis Pater pH = 10 1.80E+09 Semic and Devis, 1971 Pater analysis PAL pH = 30 1.80E+09 Semic and Devis, 1971 Pater analysis PAL pH = 70 1.80E+09 Semic and Devis, 1971 Pater analysis PAL pH = 70 1.80E+09 Setter chack 1980 Gemma analysis C.K. pH = 70 2.4.6metryl pyndine JJJE 490 Setter chack 1980 Gemma analysis C.K. pH = 90 2.4.6metryl pyndine JJJE 490 Setter chack 1990 Deta cmack 1991 PAL C.K. pH = 90 2.4.6metryl pyndine JJE 490 Setter chack 1990 Deta cmack 1991 PAL C.K. pH = 91 3.4.6metryl pyndine JJE 490 Setter chack 1990 Demas analysis PAL pH = 10 3.4.6metryl pyndine JJE 490 Setter chack 1990 Gemma analysis C.K. pH = 91 3.4.6metryl pyndine JJE 490 Setter chack 1990 Gemma analysis C.K. pH = 92	chemcial formura	compound	HO. (M-1 s-	- references	method	method	pH
1970 1970 1970 1970 PBR pH = 70 1000 3000 Sector and Deen, 1971 PMR = ndobysis PBR, pH = 70 3000 3000 Cerest and Been, 1971 PMR = ndobysis PLR, pH = 70 3000 3000 Scheenchack 1999 Gamma = adobysis CK, pH = 80 3000 2.4 denotify pyradime 3.000 Path = ndobysis PLR, pH = 70 3.2 denotify pyradime 3.000 Scheenchack 1999 Gamma = adobysis CK, pH = 91 3.2 denotify pyradime 3.000 Scheenchack 1999 Gamma = adobysis PLR, pH = 70 3.2 denotify pyradime 3.000 Scheenchack 1999 Gamma = adobysis PLR, pH = 70 3.2 denotify pyradime 3.000 Scheenchack 1990 Gamma = adobysis CK, pH = 70 3.12 2-pyradime annee 3.000 Scheenchack 1990 Gamma = adobysis CK, pH = 70 3.12 2-pyradime annee 3.000 Scheenchack 1990 Gamma = adobysis CK, pH = 70 3.12 2-pyradime annee 3.0000 Scheenchack 1990 <t< td=""><td></td><td>pyridine</td><td>3.00E+09</td><td>Solar et al. 1993</td><td>Pulse radiolysis</td><td>PBK</td><td>pH = 10</td></t<>		pyridine	3.00E+09	Solar et al. 1993	Pulse radiolysis	PBK	pH = 10
100-99 Sinic and Deut, 197 Date radobyis P.B.K. pH - 7.0 3.0000 3.0000 Certex and Deut, 197 Date radobyis P.S.K. pH - 9.0 3.0000 Sthevchuck 1969 Germa radobyis C.K. pH - 9.0 3.1.4 damshyl pyrafine 3.000-99 Sthevchuck 1969 Germa radobyis C.K. pH - 9.0 3.2.4 damshyl pyrafine 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.3.4.5.4.6.0000 tyrafine 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.3.4.5.4.6.0000 tyrafine 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.3.12 3.4.5 yrafine 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.312 3.4 yrafine sime 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.312 3.4 yrafine sime 3.000-99 Sthevchuck 1969 Germa radobyis P.K. pH - 9.0 3.312 3.4 yrafine sime 3.000-90		pyname	4 50E+09	Cohen and Meverstein 1076	Pulse radiolysis	PBK	pH = 5.9
1000-00 Corest and Dect. [107] PBR: Dectropyreliance pH = 50 (CK, pH = 50) 3-anterly pyreliance 2.000-00 Scher chack. 1990 Camma radiolyrin CK, pH = 50 CK, pH = 50 (CK, pH = 50) 3-4.dmetryly pyreliance 3.000-00 Scher chack. 1990 PM at and/oxin PM = 10 PM = 10 3-4.dmetryly pyreliance 3.000-00 Scher chack. 1990 PM = 10.00 PM = 10.00 3-3.dmetryly pyreliance 3.000-00 Scher chack. 1990 Camma radiolyrin PM = 10.00 CK, pH = 10.00 3-4.dmetryl pyreliance 3.000-00 Scher chack. 1990 Camma radiolyrin PM = 10.000 CK, pH = 10.00 3-5.4 4.pyrelians amine 5.000-00 Scher chack. 1990 Camma radiolyrin CK, pH = 50.00 CK, pH = 50.00 3-1000000000000000000000000000000000000			1.90E+00	Simic and Fhart 1071	Pulse radiolysis	PRK	pH = 7.0
3.methyl pyridine 2.301-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 4.methyl pyridine 5.001-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 2.4.dmastrid pyridine 7.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.5.dmastrid pyridine 7.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.5.dmastrid pyridine 1.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.1.dmastrid pyridine 1.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.VE2 2.pyridina mine 5.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.VE2 2.pyridina mine 5.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.VE2 2.pyridina mine 5.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0 3.VE2 2.pyridina mine 5.011-99 Schwerthaut 189 Gamma-andolysis C.K. pt 1-9.0			2.00E+00	Corpol: and Ebert, 1971	Pulse radiolysis	DDV	pH = 7.0
1 1.5		2 method armidia a	3.00E+09	Salamahuala 1060	Commo redictusio	CV.	pH = 0.0
1 2-density pyname 2-density pyname <t< td=""><td></td><td>2-methyl pyridine</td><td>2.J0E+09</td><td>Schevenuck 1969</td><td>Camma-radiolysis</td><td>C.K.</td><td>pri = 9.0</td></t<>		2-methyl pyridine	2.J0E+09	Schevenuck 1969	Camma-radiolysis	C.K.	pri = 9.0
1 2.4-matryl pyndine 304000 Salit et al., 1930 Pails Amblysis		5-metnyi pynaine	2.40E+09	Schevenuck 1909	Gamma-radiolysis	U.K.	pH = 9.0
1.2.4. materity pythane 2.1.01-09 Schwitzenki (1)09 Calar et al. 109 Pails raddysis P.S. pif = 10 1.3.5.4. materity pythane 2.05-09 Schwitzenki (1)09 Pails raddysis P.S. pif = 10 1.3.5.4. materity pythane 2.05-09 Schwitzenki (1)09 Pails raddysis P.S. pif = 10 2.4.4. transtrig pythane 2.05-09 Schwitzenki (1)09 Gamma-addysis C.K. pif = 50 3.1.2 4.9.9160 mamma-addysis C.K. pif = 50 Schwitzenki (1)09 Gamma-addysis C.K. pif = 50 3.1.2 4.9.9160 mamma-addysis C.K. pif = 50 Schwitzenki (1)09 Gamma-addysis C.K. pif = 50 3.1.2 2.9.9160 mamma-addysis C.K. pif = 50 Schwitzenki (1)09 Gamma-addysis C.K. pif = 50 3.1.2 2.4.90160 mamma-addysis C.K. pif = 50 Schwitzenki (1)09 Gamma-addysis C.K. pif = 50 3.1.2 3.1.2.90160 3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			0.00E+09	Solar et al., 1995	Pulse radiolysis	P.B.K.	pH = 10
Image: Solar et al., 1993 Point et al., 1993 Point et al., 1993 Point et al., 1994		2,4-dimethyl pyridine	3.10E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
3.3.4 3.3.4 3.3.4 5.007-99 Schervlack 1999 Gamma-radiolysis C.R. pif = 10 2.4.6 2.4.6 5.007-99 Z.4.6 T.4.6 D.4.6 <		2,6-dimethyl pyndine	7.30E+09	Solar et al., 1993	Pulse radiolysis	P.B.K.	pH = 10
3.3-demethy syndame 8.000000000000000000000000000000000000			3.00E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
Ale Like Constraint Zalaktor et al., 1993 Gamma-radolysis C.K. pH=10 NH2 2-pyridine amine 8.480+09 Scher et al., 1993 Gamma-radolysis C.K. pH=30 NH2 4-pyridine amine 2.440+09 Scher-chuck 1969 Gamma-radolysis C.K. pH=30 3-bronopyridine 1.450+09 Scher-chuck 1969 Gamma-radolysis C.K. pH=30 3-bronopyridine 1.050+09 Scher-chuck 1969 Gamma-radolysis C.K. pH=30 3-bronopyridine 3.060+09 Nek 1919 Gamma-radolysis C.K. pH=40 3-byrdineric 1.050+09 Scher-chuck 1989 Gamma-radolysis P.B.K. pH=59 3-byrdineric 1.050+00 Nak and Andry 1993 Palie radolysis P.B.K. pH=59 cCOOH 3-pyridineric 1.050+00 Nak and Andry 1935 Pulie radolysis P.B.K. pH=59 cooH 1.050+00 Simic and Beet, 1971 Pulie radolysis P.B.K. pH=59 cooH 1.050+00 Simic and Beet, 1		3,5-dimethyl pyndine	8.00E+09	Solar et al., 1993	Pulse radiolysis	P.B.K.	pH = 10
6:06:+09 Solar et al. 1993 Putter andolysis P.B.K. pH=10 3:N12 4-pyridine mine 5:00:+09 Scher-chuck 1990 Gimma-radolysis C.K. pH=90 3:N12 4-pyridine mine 5:00:+09 Scher-chuck 1990 Gimma-radolysis C.K. pH=90 3:Aromopyridine 1:00:+09 Scher-chuck 1990 Gimma-radolysis C.K. pH=90 4:Athioropyridine 3:10:+09 Scher-chuck 1980 Gimma-radolysis C.K. pH=90 3:Alvotacy produce 3:00:+09 Nake 1199 Gimma-radolysis C.K. pH=90 3:Alvotacy produce 3:00:+09 Nake 1199 Gimma-radolysis C.K. pH=59 4:Alvotacy produce 1:00:+09 Nake and Neyrottin 1976 Pake radolysis P.B.K. pH=59 4:COOH 3:pyridine:atobysis caid 2:00:+01 Simic and Ebert, 1971 Pake radolysis P.B.K. pH=59 4:COH 4:pyridine:atobysis caid 2:00:+03 Simic and Ebert, 1971 Pake radolysis P.B.K. pH=59 4:COH 4		2,4,6-trimethylpyridine	2.50E+09	Zakatova et al., 1969	Gamma-radiolysis	C.K.	pH = 6.5
3.NH2 2-pyrdame amine 8.0H2+09 Sherchack 1499 Gamma-radobysis C.K. pH=9.0 3.NH2 2-bromopyrdame 2.0H2+09 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 3.Leromopyrdame 1.0H2+09 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 4.Ch2Copyrdame 1.0H2+09 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 3byrdamopyrdame 7.0H2+08 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 3-byrdamopyrdame 7.0H2+08 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 3-byrdamopyrdame 7.0H2+08 Scher-chuck 1499 Gamma-radobysis C.K. pH=9.0 4-pyrdamine-caboxysiande 1.0H2+10 Nak and Morthy 199 Thite radobysis P.B.K. pH=9.0 4-pyrdamine-caboxysiande 1.0H2+10 Nak and Morthy 199 Pube radobysis P.B.K. pH=9.1 4-coord 1.0H2+10 Nak and Morthy 199 Pube radobysis P.B.K. pH=9.1 4-coord 1.0H2+10 Scher-chuck 1990 Pather adobysis P.B.K. pH=9.1			6.50E+09	Solar et al., 1993	Pulse radiolysis	P.B.K.	pH = 10
M2 4-pyridine amine 5:00E+09 Schevchuck 1696 Gamma-addotysis C.X. pH = 9.0 3-bromopyridine 1.10E+09 Schevchuck 1696 Gamma-addotysis C.X. pH = 9.0 2-debroopyridine 1.0E+09 Schevchuck 1696 Gamma-addotysis C.X. pH = 9.0 3-byogoryridine 3.0E+09 Schevchuck 1696 Gamma-addotysis C.X. pH = 9.0 3-byogoryridine 3.90E+09 Schevchuck 1696 Gamma-addotysis C.X. pH = 9.0 3-byogindine actioxyridine 1.0E+10 Nak and Morthy 1958 PBasc pH = 9.0 4-pyridine-aboxymide 1.0E+10 Nak and Morthy 1958 PBasc pH = 9.0 4-pyridine-aboxymide 1.0E+10 Nak and Beert, 1971 Puise radotysis PB.X. pH = 9.0 4-pyridine-aboxymide 2.0E+07 Sinic and Beert, 1971 Puise radotysis PB.X. pH = 9.1 4-pyridine-aboxytic acid 2.0E+07 Sinic and Beert, 1971 Puise radotysis P.B.X. pH = 9.1 4-pyridine-darboxytic acid 2.0E+07 Sinic and Beert, 197	-NH2	2-pyridine amine	8.40E+09	Shevchuk et al., 1969	Gamma-radiolysis	C.K.	pH = 9.0
2-bromopyridine 2.40E+09 Schevchuck 1069 Gamma-ndiolysis C.K. pH = 9.0 2-bloropyridine 1.10E+09 Schevchuck 1069 Gamma-ndiolysis C.K. pH = 9.0 3-byromopyridine 7.50E+08 Schevchuck 1069 Gamma-ndiolysis C.K. pH = 9.0 3-byromopyridine 7.50E+08 Schevchuck 1069 Gamma-ndiolysis C.K. pH = 9.0 3-byromopyridine 3.50E+08 Schevchuck 1069 Gamma-ndiolysis C.K. pH = 9.0 3-byromopyridine 1.00E+09 Schevchuck 1069 Gamma-ndiolysis P.B.K. pH = 9.0 4-pyridine 1.00E+09 Schevchuck 1069 Gamma-ndiolysis P.B.K. pH = 9.0 -COOH 3-pyridine 1.00E+09 Cohen and Meyerstein 1976 Pulse radiolysis P.B.K. pH = 9.0 -COOH 3-pyridine-carboxylic acid 2.00E+00 Simic and Deert, 1971 Pulse radiolysis P.B.K. pH = 9.0 -2-pyridine-carboxylic acid 2.00E+00 Simic 1071 Pulse radiolysis P.B.K. pH = 9.0 -2-pyridine-car	-NH2	4-pyridine amine	5.00E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
3-bromopyidne 1.108-09 Schwechuck 1069 Gamma-ndotysis C.K. pH = 9.0 4-chloropyidne 3.108-09 Schwechuck 1069 Gamma-ndotysis C.K. pH = 9.0 3-bydroxy pyidne 3.908-09 Schwechuck 1069 Gamma-ndotysis C.K. pH = 9.0 3-bydroxy pyidne 5.908-09 Nekt 1991 Gamma-ndotysis C.K. pH = 9.0 4-pyidne 1.087-10 Nak and Morthy 1953 Pase radotysis P.S. pH = 9.0 4-pyidne-arboxymic 1.087-10 Nak and Morthy 1953 Pase radotysis P.S. pH = 9.1 -COOH 3-pyidne-arboxymic acid 1.087-10 Nak and Beert, 1971 Palse radotysis P.S. pH = 9.0 -2.007-04 Simic and Beert, 1971 Palse radotysis P.S. pH = -3.0 2.087-60 Simic and Beert, 1971 Palse radotysis P.S. pH = -3.0 -2.pyidne-arboxylic acid 2.005-60 Simic and Beert, 1971 Palse radotysis P.S. pH = -3.0 -2.pyidne-arboxylic acid 2.005-69 Simic and Beert, 1971 Palse radotysis		2-bromopyridine	2.40E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
-2-chloropyridine 1.882-09 Schevchack 1969 Gamma-radiolysis C.K. pH = 9.0 -3-cynanopyridine 7.582-08 Schevchack 1969 Gamma-radiolysis C.K. pH = 9.0 -3-byrdinol 5.402-09 Nek 1991 Gamma-radiolysis C.K. pH = 9.0 -4-pyridinol 1.002-09 Nek 1991 Gamma-radiolysis P.S.K. pH = 5.9 -4-pyridinec:arboxynnide 1.002-09 Cohen and Meyrestein 1976 Pulse radiolysis P.B.K. pH = 5.9 -COOH 3-pyridinenicotineanide 1.402-09 Cohen and Meyrestein 1976 Pulse radiolysis P.B.K. pH = 5.9 -COOH 3-pyridinecarboxylic acid 2.002+07 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH = 5.9 -1050-09 -1050+07 Solar et al., 1991 Pulse radiolysis P.B.K. pH = 9.1 -2.42pyridine carboxylic acid 2.002+07 Solar et al., 1991 PLK. pH = 9.3 -2.44pyridine carboxylic acid 2.002+09 Solar et al., 1901 PLK. pH = 9.3 -2.44pyridine-K-oxoide <td< td=""><td></td><td>3-bromopyridine</td><td>1.10E+09</td><td>Schevchuck 1969</td><td>Gamma-radiolysis</td><td>C.K.</td><td>pH = 9.0</td></td<>		3-bromopyridine	1.10E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
4-cbloropyridne 3.10E-09 Schevchuck 1969 Gamma-radiolysis C.K. pH = 9.0 3-hydrox pyridne 8.90E-09 Nak 1991 mara radiolysis C.K. pH = 9.0 3-hydrox pyridne 8.90E-09 Schevchuck 1969 mara radiolysis P.K. pH = 9.0 4-pyridinol 1.10E+0 Nak 1991 Patte radiolysis P.B.K. pH = 5.8 4-pyridine-radio-ysimide 1.00E+09 Cohen and Meyerstein 1976 Pulse radiolysis P.B.K. pH = 5.9 -COOH 3-pyridine-radio-ysimide 1.00E+09 Cohen and Meyerstein 1976 Pulse radiolysis P.B.K. pH = 5.9 -COOH -10E-07 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH = 9.0 -10E-07 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH = 9.1 -14E-070 Solar 1971 Pulse radiolysis P.B.K. pH = 9.1 -14E-070 Solar et al., 1991 Solar et al., 1991 PLK pH = 3.3 -14E-070 Solar et al., 1991 PLK pH = 3.3 PLK = 3.0 <		2-chloropyridine	1.80E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
instructure 3-cyranopyridine 7.502-08 Schverback 1969 Camma-radiolysis C.K. pH = 9.0 3-byrdinol 5.402-09 Nak 1991 Gamma-radiolysis C.K. pH = 9.0 4-pyridinol 1.002-09 Nak and Morthy 1993 Puta eradolysis PB K. pH = 9.0 1.002-09 Nak and Morthy 1993 Puta eradolysis PB K. pH = 9.0 1.002-09 Nak and Morthy 1993 Puta eradolysis PB K. pH = 9.0 .COOH 3-pyridine-cabroxic acid 2.002-07 Simic and Ebert, 1971 Puta eradolysis PB K. pH = 9.0 .1020-09 Not and Meyerstein 1976 Puta eradolysis PB K. pH = 9.0 .1020-09 Simic and Ebert, 1971 Puta eradolysis PB K. pH = 9.1 .1020-09 Simic and Ebert, 1971 Puta eradolysis PB K. pH = 9.1 .1020-09 Simic and Ebert, 1971 Puta eradolysis PB K. pH = 9.1 .1020-09 Simic and Ebert, 1971 Puta eradolysis PB K. pH = 9.1 .1020-09 Simic and		4-chloropyridine	3.10E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
		3-cyanopyridine	7.50E+08	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
		3-hydroxy pyridine	8.90E+09	Neik 1991			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3-pyridinol	5.40E+09	Schevchuck 1969	Gamma-radiolysis	C.K.	pH = 9.0
Image: containing incommande 1.60E-rop Cohen and Meyerstein 1976 Puise radiolysis P.B.K. pHE-5.9 .COOH 3-pyridinenicotineamide 1.40E-rop Cohen and Meyerstein 1976 Puise radiolysis P.B.K. pHE-5.9		4-pyridinol	1.10E+10	Naik and Morthy 1993	Pulse radiolysis	P.B.K.	pH = 6.8
.COOH 3-pyridinemice 1.00E+09 Cohen and Meyerstein 1976 Pulse radiolysis P.B.K. pH=5.9		4-pyridinecarboxyamide	1.60E+09	Cohen and Meyerstein 1976	Pulse radiolysis	P.B.K.	pH=5.9
.COOH 3-pyridinenicotine anide 1.40E+09 Cohen and Meyerstein 1976 Pulse radiolysis P.B.K. pH=5.9 nicotinic acid 1.50E+09 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=9.0 4 <pyridine acid<="" carboxylic="" td=""> 6.00E+08 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=9.0 2 4<pyridine acid<="" carboxylic="" td=""> 6.00E+08 Dey et al., 1992 Pulse radiolysis P.B.K. pH=3.1 2 4,4* bipyridine 5.30E+09 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=3.3 2,5-pyridine dicarboxylic acid 1.00E+08 Solar et al., 1991 Pulse radiolysis P.B.K. pH=9.3 2,6-pyridine/dicarboxylic acid 3.0E+09 Neta et al., 1990 Pulse radiolysis C.K. pH=6.5 9 pyridine-N-oxide 3.0E+09 Neta et al., 1990 Pulse radiolysis P.B.K. pH=7.0 9 pyridine-N-oxide 3.0E+09 Neta et al., 1990 Pulse radiolysis P.B.K. pH=7.0 9 pyridine-N-oxide 3.0E+09 Neta et al., 1</pyridine></pyridine>		nicotinamide		-			•
100 100 100 100 100 100 (3-pyridine carboxylic acid 200 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=9.0 2.000 4-pyridine carboxylic acid 2000 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=3.1 2.000 4-pyridine carboxylic acid 2000 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=3.3 2.2-bipyridine 5.000 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=9.3 2.2-bipyridine 5.000 Simic and Ebert, 1971 Pulse radiolysis P.B.K. pH=9.3 3.3-pyridine/dicarboxylic acid 1.000 Solar et al., 1991 Gamma-radiolysis P.B.K. pH=7.0 2.6-pyridine/dicarboxylic acid 3.000 Notar et al., 1990 Gamma-radiolysis P.B.K. pH=7.0 3-methylpyridine-N-oxide 4.000 Pulse radiolysis P.B.K. pH=7.0 9 -pyridine-aboxylic acid 3.000 P.D. Pulse radiolysis P.B.K. pH=7.0 9 -pyridine	-COOH	3-pvridinenicotineamide	1.40E+09	Cohen and Meverstein 1976	Pulse radiolysis	P.B.K.	pH=5.9
nicotinic acidDifference<		B	1.50E+09				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		nicotinic acid					
(b) (b) (b) (b) (b) (c) (c) <td></td> <td>(3-pyridinecathoxylic acid)</td> <td>2 20E+07</td> <td>Simic and Fhert 1971</td> <td>Pulse radiolysis</td> <td>PBK</td> <td>nH =9.0</td>		(3-pyridinecathoxylic acid)	2 20E+07	Simic and Fhert 1971	Pulse radiolysis	PBK	nH =9.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		()-pynanceaeosyne aciaj	2.60E+08	Simic and Ebert, 1971	Pulse radiolysis	PBK	pH = 3.1
Hermitian carboxylic acid 2.002+08 Down PA Pulse radiolysis P.B.K. pH=3.8 4.4-bipyridine 5.20E+09 Simic 1971 Pulse radiolysis P.B.K. pH=9.3 2.2-bipyridine/dicarboxylic acid 1.00E+08 Solar et al., 1991 Pulse radiolysis P.B.K. pH=9.3 2.6-bipyridine/dicarboxylic acid 1.00E+08 Solar et al., 1991 C.K. pH=6.5 4-ettyl-5-hydroxy-2-mettylpyridine 1.00E+08 Solar et al., 1990 Gamma-radiolysis P.B.K. pH=6.5 9yridine-N-oxide 3.00E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 4-ettyl-5-hydroxy-2-mettylpyridine-N-oxide 2.00E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 4-attyl-5-hydroxy-2-mettylpyridine 2.00E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 9 4-attyl-5-hydroxy-2-mettylpyridine 3.00E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 9 4-attyl-5-hydroxy-2-mettylpyridine 1.00E+09 Zakatova et al., 1980 Gamma-radiolysis C		4-pyridinecerboyylic acid	6.00E+07	Solar 1991	1 dise rudiery sis	1.2.11.	p
Deprivative bipyridine 2.000 role Doty relative 1972 Pulse radiolysis P.B.K. pH=9.3 2.2° bipyridine 6.20E+09 Simic 1971 Pulse radiolysis P.B.K. pH=9.3 2.2° bipyridine dicarboxylic acid 1.00E+08 Solar et al., 1910 Pulse radiolysis P.B.K. pH=9.3 2.6- pyridine-dicarboxylic acid 5.00E+08 Solar et al., 1910 C.K. pH=9.3 4.ethyl.5-hydroxy-2-methylpyridine 1.40E+09 Zakatova et al., 1960 Gamma-radiolysis P.B.K. pH=7.0 9 Pyridine-N-oxide 3.00E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 9 Pict at al., 1980 Pulse radiolysis P.B.K. pH=7.0 PH=7.0 9 Pict at al., 1980 Pulse radiolysis P.B.K. pH=7.0 PH=7.0 9 Pict at al., 1980 Pulse radiolysis P.B.K. pH=7.0 PH=7.0 9 Pict at al., 1980 Pulse radiolysis P.B.K. pH=7.0 PH=7.0 9 Picrolam 1.40E+09 Zakatova at al., 198		2 puridine carboxylic acid	2.00E+08	Deviat al 1002	Pulsa radiolucia	PRK	pH = 3.8
Approximation Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		4 4' binaridine	5 30E+00	Simic 1071	Pulse radiolysis	PBK	nH=0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2.2' biotraiding	6 20E+00	Simic and Fhort 1071	Pulse radiolysis	PPV	pH-9.3
1.002-103 1.002-103 Solar et al., 1991 2.6.Pyridinedicatorskyik acid 5.002+08 Solar et al., 1991 4.ethyl-5-hydroxy-2-methylpyridine 1.402+09 Zakatova et al., 1960 Gamma-radiolysis C.K. pH=6.5 pyridine-N-oxide 3.002+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 3-methylpyridine-N-oxide 2.802+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 4-methylpyridine-N-oxide 2.802+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 pirclam 4-methylpyridine-N-oxide 2.802+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 pirclam 4-methylpyridine-N-oxide 2.802+09 Neta et al., 1980 Pulse radiolysis C.K. T = 297 K 4-athyl-5-hydroxy-2-methylpyridine 2.302+09 Zakatova t 1969 Gamma-radiolysis C.K. pH = 6.5 2-pyridone 1.102+10 Nak and Moorthy, 1991 Pulse radiolysis C.K. pH = 6.5 2-pyridone 5.302+09 Steenken and ONeill, 1979 Puls		2.2-opynance 2.5 pyridinadicarboxylic acid	1.00E+09	Solar et al. 1991	T disc radiolysis	1.D.K.	piros
2.04 pyriadired attoolydar active3.00 at et al., 1991State et al., 1991State et al., 19914-ethyl-5-hydroxy-2-methylpyridine1.40E+09Zakatova et al., 1980Gamma-radiolysisC.K.pH=6.59pyridine-N-oxide3.00E+09Neta et al., 1980Pulse radiolysisP.B.K.pH=7.0103-methylpyridine-N-oxide2.80E+09Neta et al., 1980Pulse radiolysisP.B.K.pH=7.0114-methylpyridine-N-oxide2.80E+09Neta et al., 1980Pulse radiolysisP.B.K.pH=7.01114picrolam3.40E+09Kata et al., 1980Pulse radiolysisP.B.K.pH=7.01214-methylpyridine1.40E+09Zakatova et al., 1969Gamma-radiolysisC.K.pH = 2.1-3.71214-methylpyridine1.40E+09Zakatova at al., 1969Gamma-radiolysisC.K.pH = 6.8132-pyridone1.10E+10Naik and Moorthy, 1991Pulse radiolysisC.K.pH = 6.7142-pyridone5.30E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH = 6.714-pyridoxine5.30E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH = 3.614-pyridoxine6.30E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH = 3.614-pyridixine1.60E+08Masuda et al., 1975gamma radiolysisC.K.pH = 3.615-pyrimidine1.60E+08Masuda et al., 1975gamma radiolysisP.B.K.p		2.6 pyridinedicarboxylic acid	5.00E±08	Solar et al., 1991			
interference interference<		2,0-pyndifedicarboxylic acid	1.40E+00	Zalastana at al. 1991	Commo no distante	CV	-11-65
pyridine-N-oxide $3.00E+09$ Neta et al., 1980Pulse radiolysisP.B.K.pH=7.03-methylpyridine-N-oxide $4.20E+09$ Neta et al., 1980Pulse radiolysisP.B.K.pH=7.0 $4-methylpyridine-N-oxide2.80E+09Neta et al., 1980Pulse radiolysisP.B.K.pH=7.0picroamicroamicroamicroampH=7.0pH=7.0(4-Amino-3,5,6-trichloro-2-pyridinecarboxylic acid)3.40E+09Haag and Yao, 1992Fenton reactionC.K.T = 2.97.3(4-Amino-3,5,6-trichloro-2-pyridine1.40E+09Zakatova 1969C.K.PH=6.52.4,6-trimethyl-3-hydroxypyridine2.50E+09Zakatova et al., 1969Gamma-radiolysisC.K.pH=6.52.4,6-trimethyl-3-hydroxypyridine2.50E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH=6.52-pyridone5.0E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH=6.7pyridoxine5.30E+09Steenken and ONeill, 1979Pulse radiolysisC.K.pH=6.7pyridoxine6.30E+09Moorthy and Hayon 1975Pulse radiolysisP.B.K.pH=3.6pridoxine6.30E+09Sridhar et al., 1984Pulse radiolysisP.B.K.pH=7.0pridoxine6.0E+09Sridhar et al., 1984Pulse radiolysisP.B.K.pH=7.0pH=0.5pyrimidine6.0E+09Sridhar et al., 1984Pulse radiolysisP.B.K.pH=0.5primidine6.0E+09Sridhar et al., 1984$		4-ethyl-J-nydroxy-2-methylpyndine	1.40E±09	Zakatova et al., 1909	Gamma-radiolysis	U.K.	pri - 0.5
primite-N-oxide 5.00E+09 Neta et al., 1950 Pulse radiolysis P.B.K. pH=7.0 3-methylpyridine-N-oxide 2.80E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 4-methylpyridine-N-oxide 2.80E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 (4-Amino-3,5,6-trichoro-2-pyridinecarboxylic acid) 3.40E+09 Haag and Yao, 1992 Fenton reaction C.K. T = 297 K (4-Amino-3,5,6-trichoro-2-pyridine 1.40E+09 Zakatova et al., 1960 Gamma-radiolysis C.K. pH = 6.5 2,4,6-trimethyl-3-hydroxypyridine 2.50E+09 Zakatova et al., 1969 Gamma-radiolysis C.K. pH = 6.5 2-pyridone 1.10E+10 Naik and Moorthy, 1991 Pulse radiolysis C.K. pH = 6.7 pyridoxine 5.30E+09 Steenken and ONeill, 1979 Pulse radiolysis C.K. pH = 7.2 9 pyridoxine 630E+09 Moorthy and Hayon 1975 Pulse radiolysis C.K. pH = 6.7 9 pyrimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis P.B.		unidia Nanida	2.007.00	Note et al. 1080	Defense at design	DDV	
J-methylpyndine-N-oxide4.20E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $PH=2.1-3.7$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=2.0$ $PH=1.0$ $PH=2.1-3.7$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $PH=1.0$ $PH=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $H=1.0$ $PH=1.0$ $H=1.0$ <		pyndine-N-oxide	3.00E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=/.0
Image: constraint of the second constraint on the seco		3-metnyipyndine-N-oxide	4.20E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=/.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4-methylpyndine-N-oxide	2.80E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=/.0
(4-Amino-5,5,6-trachloro-2-pyndmecarboxylic acid) 3.40E+09 Haag and Yao, 1992 Fenton reaction C.K. T = 297 K 4-ethyl-5-hydroxy-2-methylpyndine 1.40E+09 Zakatova 1969 Gamma-radiolysis C.K. pH = 6.5 2,4,6-trimethyl-3-hydroxypyndine 2.50E+09 Zakatova 1969 Gamma-radiolysis C.K. pH = 6.5 2-pyridone 1.10E+10 Naik and Moorthy, 1991 Pulse radiolysis C.K. pH = 6.7 9 9 Steenken and O'Neill, 1979 Pulse radiolysis C.K. pH = 6.7 9 9 Steenken and O'Neill, 1979 Pulse radiolysis C.K. pH = 6.7 9 pyridoxine 5.30E+09 Steenken and O'Neill, 1979 Pulse radiolysis P.B.K. pH=3.6 6.30E+09 Moorthy and Hayon 1975 Pulse radiolysis P.B.K. pH=7.2 PH=0.5 9 7.40E+09 Moorthy and Hayon 1975 gamma radiolysis C.K. T=290 1.60E+08 Masuda et al., 1975 gamma radiolysis P.K. T=290 9 Alfa-(2-pyridyl-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K.		picrolam					pH = 2.1-3.7
4-ethyl->1-yyldroxy-2-methylgrydine1.40E+09Zakatova 1969CK.pH = 6.52,4,6-trimethyl-3-hydroxypyridine2.50E+09Zakatova et al., 1969Gamma-radiolysisC.K.pH = 6.52,4,6-trimethyl-3-hydroxypyridine1.10E+10Naik and Moorthy, 1991Pulse radiolysisC.K.pH = 6.76,50E+09Steenken and O'Neill, 1979Pulse radiolysisC.K.pH = 6.799Steenken and O'Neill, 1979Pulse radiolysisP.B.K.pH=3.66.30E+096.30E+09Noorthy and Hayon 1975Pulse radiolysisP.B.K.pH=7.207.40E+097.40E+09Stidhar et al., 1975gamma radiolysisC.K.T=2909Alfa-(2-pyridy)-tert-butyl nitrone4.60E+09Stidhar et al., 1984Pulse radiolysisP.B.K.0Alfa-(2-pyridyl)-tert-butyl nitrone8.30E+09Stidhar et al., 1984Pulse radiolysisP.B.K.0Alfa-(4-pyridyl)-tert-butyl nitrone8.30E+09Stidhar et al., 1980Pulse radiolysisP.B.K.0a-(2-Pyridyl 1-oxide)-N-tert-butylnitrone3.20E+09Neta et al., 1980Pulse radiolysisP.B.K.pH=7.00a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone3.20E+09Neta et al., 1980Pulse radiolysisP.B.K		(4-Ammo-3,0,0-trichloro-2-pyridinecarboxylic acid)	3.40E+09	Haag and Yao, 1992	Fenton reaction	C.K.	T = 29 / K
2,4,6-trimethyl-3-hydroxypyridine 2,50E+09 Zakatova et al., 1969 Gamma-radiolysis C.K. $pH = 6.5$ 2-pyridone 1.10E+10 Naik and Moorthy, 1991 Pulse radiolysis P.B.K. $pH = 6.8$ 6.50E+09 Steenken and O'Neill, 1979 Pulse radiolysis C.K. $pH = 6.7$ 9.00E 9.00E+09 Steenken and O'Neill, 1979 Pulse radiolysis C.K. $pH = 6.7$ 9.01E 9.01E 6.30E+09 Steenken and O'Neill, 1979 Pulse radiolysis C.K. $pH = 6.7$ 9.01E 9.02E 6.30E+09 Moorthy and Hayon 1975 Pulse radiolysis $P.B.K.$ $pH=3.6$ 9.01E 6.30E+09 6.30E+09 Noorthy and Hayon 1975 $pH=6.7$ $pH=7.2$ 9.01E 7.40E+09 1.60E+08 Masuda et al., 1975 gamma radiolysis $P.B.K.$ 9.01E+00 7.40E+09 Sridhar et al., 1984 Pulse radiolysis $P.B.K.$ $T=230$ 9.01E+00 Alfa-(2-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis $P.B.K.$ 9.01E+01 Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1980<		4-ethyl-5-hydroxy-2-methylpyridine	1.40E+09	Zakatova 1969			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2,4,6-trimethy1-3-hydroxypyridine	2.50E+09	Zakatova et al., 1969	Gamma-radiolysis	C.K.	pH = 6.5
6.50E+09Steenken and ONeill, 1979Pulse radiolysisC.K. $pH = 6.7$ pyridoxine5.30E+09Steenken and ONeill, 1979Pulse radiolysisC.K. $pH = 6.7$ pyridoxine3,4-pyridinedimethanol, 5-hydroxy-6-methyl4.30E+09Moorthy and Hayon 1975Pulse radiolysisP.B.K. $pH=3.6$ 6.30E+097.40E+097.40E+09PH $pH=7.2$ $pH=0.7$ $pH=0.5$ pyrimidine1.60E+08Masuda et al., 1975gamma radiolysisP.B.K. $pH=0.5$ pH=0.59.60E+09Sridhar et al., 1984Pulse radiolysisP.B.K. $P=20$ Alfa-(2-pyridyl)-tert-butyl nitrone4.60E+09Sridhar et al., 1984Pulse radiolysisP.B.K.Alfa-(3-pyridyl)-tert-butyl nitrone8.30E+09Sridhar et al., 1980Pulse radiolysisP.B.K.Alfa-(3-pyridyl)-tert-butyl nitrone8.30E+09Sridhar et al., 1980Pulse radiolysisP.B.K.Alfa-(3-pyridyl)-tert-butyl nitrone8.30E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ a-(3-Pyridyl-tert-butylnitrone8.30E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ a-(3-Pyridyl-toxide)-N-tert-butylnitrone8.30E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ a-(3-Pyridyl-toxide)-N-tert-butylnitrone8.30E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ a-(4-Pyridyl-1-oxide)-N-tert-butylnitrone8.30E+09Neta et al., 1980Pulse radiolysisP.B.K. $pH=7.0$ a-(4-Pyridyl-1-oxide)-		2-pyridone	1.10E+10	Naik and Moorthy, 1991	Pulse radiolysis	P.B.K.	pH= 6.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6.50E+09	Steenken and O'Neill, 1979	Pulse radiolysis	C.K.	pH = 6-7
pyridoxine 4.30E+09 Moorthy and Hayon 1975 Pulse radiolysis P.B.K. pH=3.6 3,4-pyridinedimethanol, 5-hydroxy-6-methyl 6.30E+09 pulse radiolysis P.B.K. pH=7.2 6.30E+09 7.40E+09 7.40E+09 pH=10.5 pH=6-7 Pinton 1.60E+08 Masuda et al., 1975 gamma radiolysis P.B.K. T=290 Alfra-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. T=290 Alfra-(4-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfra-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfra-(3-pyridyl)-tert-butyl nitrone 8.30E+09 Neta et al., 1980 Pulse radiolysis P.B.K. Alfra-(4-pyridyl)-toride)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 N		4-pyridone	5.30E+09	Steenken and O'Neill, 1979	Pulse radiolysis	C.K.	pH = 6-7
3,4-pyridine dimethanol, 5-hydroxy-6-methyl 4.30E+09 Moorthy and Hayon 1975 Pulse radiolysis P.B.K. pH=3.6 6.30E+09 7.40E+09 7.40E+09 pH=10.5 pH=0.6 pH=0.6 pyrimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis P.B.K. T=290 Alfa-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-Pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(3-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1980 Pulse radiolysis P.B.K. Alfa-(4-pyridyl)-tert-butyl nitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(3-Pyridyl)-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(3-Pyridyl)-toxide)-N-tert-butylnitr		pyridoxine					
6.30E+09 pH=7.2 7.40E+09 7.40E+09 pH=10.5 pyrimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis pH=6.7 PH 7.40E+09 Sridhar et al., 1984 Pulse radiolysis C.K. T=290 Alfa-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-pyridyl)-tert-butyl nitrone 8.30E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(2-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0		3,4-pyridinedimethanol, 5-hydroxy-6-methyl	4.30E+09	Moorthy and Hayon 1975	Pulse radiolysis	P.B.K.	pH=3.6
7.40E+09 7.40E+09 pH=10.5 pyimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis pH=6.7 Masuda et al., 1975 gamma radiolysis C.K. T=290 Alfa-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(3-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a-(2-Pyridyl-loxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl-1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl-1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(3-Pyridyl-1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0			6.30E+09				pH=7.2
pyrimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis pH=6.7 Alfa-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(2-Pyridyl)-tort-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a-(2-Pyridyl)-toride)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. gamma radiolysis P.B.K. pH=7.0 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(4-Pyridyl1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0			7.40E+09				pH=10.5
pyrimidine 1.60E+08 Masuda et al., 1975 gamma radiolysis C.K. T=290 Alfa-(2-pyridy)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(3-pyridy)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridy)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridy)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a-(2-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a-(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0							pH=6-7
Alfa-(2-pyridyl)-tert-butyl nitrone 9.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(3-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a.(2-Pyridyl)-tert-butyl nitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a.(3-Pyridyl1-toxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a.(3-Pyridyl1-toxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a.(4-Pyridyl1-toxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K.		pyrimidine	1.60E+08	Masuda et al., 1975	gamma radiolysis	C.K.	T=290
Alfa-(3-pyridyl)-tert-butyl nitrone 4.60E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a-(2-Pyridyl)-toxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 4.80E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K.		Alfa-(2-pyridyl)-tert-butyl nitrone	9.60E+09	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
Alfa-(4-pyridyl)-tert-butyl nitrone 8.30E+09 Sridhar et al., 1984 Pulse radiolysis P.B.K. a.(2-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a.(3-Pyridyl 1-oxide)-N-tert-butylnitrone 4.80E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a.(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0		Alfa-(3-pyridyl)-tert-butyl nitrone	4.60E+09	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
a(2-Pyridyl 1-oxide)-N-tert-butylnitrone 3.20E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a(3-Pyridyl 1-oxide)-N-tert-butylnitrone 4.80E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0 a(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al., 1980 Pulse radiolysis P.B.K. pH=7.0		Alfa-(4-pyridyl)-tert-butyl nitrone	8.30E+09	Sridhar et al., 1984	Pulse radiolysis	P.B.K.	
a.(3-Pyridyl 1-oxide)-N-tert-butylnitrone 4.80E+09 Neta et al. 1980 Pulse radiolysis P.B.K. pH=7.0 a.(4-Pyridyl 1-oxide)-N-tert-butylnitrone 3.50E+09 Neta et al. 1980 Pulse radiolysis P.B.K. pH=7.0		a-(2-Pyridyl 1-oxide)-N-tert -butylnitrone	3.20E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=7.0
a.(4-Pyridyl 1-oxide)-N-tert -butylnitrone 3.50E+09 Neta et al. 1980 Pulse radiolysis P.B.K. pH=7.0		a-(3-Pyridyl 1-oxide)-N-tert-butylnitrone	4.80E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=7.0
		a-(4-Pyridyl 1-oxide)-N-tert-butylnitrone	3.50E+09	Neta et al., 1980	Pulse radiolysis	P.B.K.	pH=7.0

Table A-B23: Survey of HO• rate constants with pyridine and pyridine derivatives

			experimental	evaluatio	n
compound	k _{HO} . (M-1 s-1)	references	method	method	pH
cycloheptane	7.70E+09	Rudakov et al., 1981	Fenton reaction	C.K.	pH = 2.0
cycloheptanol	1.70E+09	Snook and Hamilton, 1974	Fenton reaction	C.K.	pH = - 1.8
cycloheptanol-1d	1.30E+09	Snook and Hamilton, 1974	Fenton reaction	C.K.	pH = - 1.8
cycloheptatoriene	1.00E+10	Schoeneshoefer, 1971	Pulse radiolysis	C.K.	
cyclohexane	6.10E+09	Rudakov et al., 1981	Fenton reaction	C.K.	pH = 2.0
cyclopentane	4.50E+09	Rabani et al., 1974	Pulse radiolysis	C.K.	
	3.00E+09	Soeylemez and Schuler, 1974	Pulse radiolysis	C.K.	
methylcyclopentane	7.00E+09	Rudakov et al., 1981	Fenton reaction	C.K.	pH = 2.0
tetrahydrofuran	4.00E+09				
1,3-dioxolane	4.00E+09				
1,4-dioxalene	3.10E+09	Eigenberger, 1980	Pulse radiolysis	C.K.	
	2.50E+09	Thomas, 1965	Pulse radiolysis	C.K.	pH=7.0
1,4-dioxolane	4.00E+09	Eigenberger, 1980	Pulse radiolysis	C.K.	
cyclohexene	8.80E+09	Michael and Hart, 1970	Pulse radiolysis	C.K.	pH = 7.0
cyclopentene	7.00E+09	Soeylemez and Schuler, 1974	Pulse radiolysis	C.K.	
1,4-dithiane	1.80E+10	Asmus et al., 1977	Pulse radiolysis	P.B.K.	pH = -7.0
1,3-cyclohexadiene	9.90E+09	Michael and Hart, 1970	Pulse radiolysis	C.K.	pH = 7.0
1,4-cyclohexadiene	7.70E+09	Michael and Hart, 1970	Pulse radiolysis	C.K.	pH = 7.0
cycloserine	9.00E+09	Tanaka et al., 1984	Pulse radiolysis	C.K.	pH = 6.5
	1.20E+10		Pulse radiolysis	C.K.	pH = 9-11
1,3,5-trioxane	1.50E+09	Eigenberger, 1980	Pulse radiolysis	C.K.	
2-methyl-1,3-dioxalane	3.50E+09	Eigenberger, 1980	Pulse radiolysis	C.K.	
tetramethylene sulfoxide	7.00E+09	Veltwish et al., 1980	Pulse radiolysis		

Table A-B24: Survey of HO• rate constants with cyclo-compounds

Table A-B25: Survey of HO• rate constants with furan and related compounds

chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pН
٢	furan	3.90E+09	Lilie 1971	Pulse radiolysis	C.K.	
CH ₃	2-methyl furan	1.90E+10	Savel'eva et al., 1973	gamma-radiolysis	С.К.	pH = 9.0
но	2-furfuryl alcohol	1.50E+10	Savel'eva 1973			-
\sim	2-furaldehyde	7.80E+09	Savel'eva et al., 1973	gamma-radiolysis	C.K.	pH = 9.0
CH,	2-acetyl furan	4.50E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
NH5	2-furancarboxamide	5.50E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
	phenvlfuran	1.60E+10	Vysotskava et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
	5-phenylfurfural	5.90E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0

and and a second	furoin	1 30E+10	Aguer and Richard 1993	Photolusis	СК	pH=63
H _s C ⁻⁰ 0	5-hydroxymethylfurfuryl	5.80E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
4						
	5-methylfurfural	7.20E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
or the Corro	3-bromofurtural	3.90E+09	Vysotskaya et al., 1983	gamma-radiolysis	C.K.	pH = 9.0
OF TO OH	nitrofuraldehyde	5.50E+09	Greenstock and Dunlop, 1973	Pulse radiolysis	P.B.K	pH = 7.0
о= ^N _0_1_0н	nitrofuroic acid	5.30E+09	Greenstock and Dunlop, 1973	Pulse radiotysis	P.B.K	pH = 7.0
o=N_o/N-N_H	nifuroxime	1.00E+10	Greenstock and Dunlop, 1973	Pulse radiolysis	P.B.K	pH = 7.0
och Correction 100 mm	nitrofurazone	1.06E+10	Greenstock and Dunlop, 1973	Pulse radiolysis	P.B.K	pH = 7.0
offo office	furamazone	1.03E+10 9.30E+09	Greenstock and Dunlop, 1973 Greenstock and Dunlop, 1973	Pulse radiolysis Pulse radiolysis	PBK	pH = 7.0
$\langle \rangle$	tetrahvdrofuran	4.00E+09	Eigenberger, 1980	Pulse radiolysis	C.K.	

	•		experimental	evaluation	aluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH	
	-					•	
u					_		
	indole	3.20E+10	Iddon et al., 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
		1.37E+10	Roberts et al., 1998	photolysis	C.K.	pH 7.0	
	1.2-dimethylindole	1.00E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
	1.3-dimethylindole	1 10E+10	Iddon 1971	Pulse radiolysis	PBK	pH = 9.0	
	2 3-dimethylindole	1 30F+10	Iddon 1971	Pulse radiolysis	PBK	pH = 9.0	
CH	2,5- dimetry induce	1.502.10	Iddon 1571	T disc fudioly 515	1.0.11.	p11 5.0	
Cn ₃							
N N							
	1-methylindole	1.50E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
		1 20E+10	Solar et al. 1991	Pulse radiolysis	PBK	pH = 7 - 10	
		1.202.10	501al et al., 1991	1 dise fadiotysis	1.D.K.	pii = /- 10	
N CH,							
	2-methylindole	3.40E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
,⊂H₃							
N N							
	3-methylindole	3.30E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
	indole-3-acetic acid	6.50E+09	Shetiya et al., 1972	Pulse radiolysis	C.K.		
	indole-3-propionic acid	8.50E+09	Shetiya et al., 1972	Pulse radiolysis	C.K.		
e H							
н	5-methylindole	1.70E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
						1	
9 .							
0 ^{×N}							
L N							
т н	5-nitroindole	1.00E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
<u> </u>							
	5-chloroindole	2.00E+10	Iddon 1971	Gamma radiolysis	C.K.	pH = 9.0	
- 184							
LT>							
Hui							
	5-aminoindole	3.30E+10	Iddon et al., 1971	Gamma radiolysis	C.K.	pH = 9.0	
			,,	,		1	
I NOM							
	5-bromoindole	1.60E+10	Iddon et al., 1971	Gamma radiolysis	C.K.	pH = 9.0	
	5-cvanoindole	1.10E+10	Iddon et al., 1971	Gamma radiolysis	C.K.	pH = 9.0	
	5-hvdroxvindole	1.70E+10	Iddon et al., 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
	, , ,	1.67E+10	Roberts et al., 1998	photolysis	C.K.	pH 7.0	
	5-methoxy indole	1.50E+10	Iddon 1971	Pulse radiolysis	P.B.K.	pH = 9.0	
		1 39E+10	Roberts et al. 1998	photolysis	СК	pH 7.0	
	Indole-5-acetic acid	7 90E+09	Iddon 1971	Pulse radiolysis	PBK	pH = 9.0	
CH.				1 dise rudiory sits	1.2.11.	P11 0.00	
-N							
СН,							
	2-(dimethylaminomethyl)-indole						
N	(gramine)	3.00E+10	Lee et al., 2007	Gamma radiolysis	C.K.	pH = 8, 9, 10	
n	(g)						
- 1							
w. Carl							
14 4 4 Y W							
	Melatonin	1.32±0.08 e10	Roberts et al., 1998	photolysis	C.K.	pH = 7.0	
		2.7 ± 0.3 e10	Matuszak et al 1996	Fenton	ESR		

Table A-B26: Survey of HO• rate constants with indole and indole derivatives

	Tryptophan	1.25E+10	Roberts et al., 1998	photolysis	C.K.	pH = 7.0
		1.30E+10	Buxton et al., 1988			average 3 values
20inta		0.02 + 0.06 - 10	Patron of 1000		C.F.	
	0-cmorometatorim	1.05+0.1 +10	Maturals et al. 1998	Fonton	ECR.	pri = 7.0
and a start of the	6-hydroxy-melatonin	1.1±0.3 e10	Matuszak et al 1996	Fenton	ESR	
	5-methoxytryptamine	2.3±0.3 e10	Matuszak et al 1996	Fenton	ESR	
NO TO THE MAY	5-hydroxytryptamine	1.7±0.3 e10	Matuszak et al 1996	Fenton	ESR	

Table A-B27: Survey of HO• rate constants with uracil

				experimental	evaluation	
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pH
	Uracil	5.70E+09	Buxton et al., 1988	selected and recommended values	average of 7 values	
		6.00E+09	Chapman et al., 1973	Pulse radiolysis	P.B.K.	
		6.50E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
		4.80E+09	Patterson and Bansal, 1972	Pulse radiolysis	C.K.	pH = 7.0
		4.70E+09	Willson et al., 1971	Pulse radiolysis	C.K.	
		7.50E+09	Scholes et al., 1965	Pulse radiolysis	C.K.	pH = -2
		8.70E+09				pH = -5
		5.20E+09				pH = -7.4
N NH	5-azauracil	7.00E+09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	pH = 8.0
	6-azauracil	4.50E+09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	pH = 8.0
Br NH	5-bromouracil	5.20E+09	Myint et al., 1987	Pulse radiolysis	P.B.K.	pH = 7.0
		4.00E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
		3.60E+09	Zimbrick et al., 1969	Pulse radiolysis	P.B.K.	pH = 7.0

EN PO						
CI NH						
ö	5-chlorouracil	5.50E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
		5.80E+09		-		pH = 11.0
		5.20E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
HN F						
н	5-fluorouracil	5.20E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
		5.50E+09	Patterson and Bansal, 1972	Pulse radiolysis	P.B.K.	pH = 7.0
		6.00E+09	165			pH = 11.0
O NH O NH	dihydro-6-methyluracil	1.30E+09	Barszcz and Fielden, 1974	Pulse radiolysis	C.K.	pH = 7.0
		1.00E+09	Barszcz and Fielden, 1974	Pulse radiolysis	C.K.	pH = 7.0
	5-nitro-6-methyluracil	5.30E+09	Neta and Greenstock, 1973	Pulse radiolysis	P.B.K.	pH = 5.9
	5-nitrouracil	5.40E+09	Neta and Greenstock, 1973	Pulse radiolysis	PBK.	pH = 5.9
		7.40E+09	Neta and Greenstock, 19/3	Pulse radiolysis	D.K.	pH = 5.9
H ₃ C NH		6 107 100	D			
CH	thymine	6.40E+09	Buxton et al., 1988	selected values		
	6-azathymine	2.80E+09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	pH=8.0
O NH	maleic hydrazide	2.90E+09	Eriksen et al., 1983	Pulse radiolysis	P.B.K.	pH=3.5
e H e						
	isouramil	5.00E+09	Chevion and Ilan, 1980	Pulse radiolysis	P.B.K.	pH= 5.3-8.0
NH ₂	cytosine	6.30E+09	ssung and von Sonntag, 19	Pulse radiolysis	P.B.K.	pH = 7.0
		6.80E+09	Michaels and Hunt, 1973	Pulse radiolysis	P.B.K.	pH = 7.0
		6.20E+09	Theard et al., 1970	Pulse radiolysis	P.B.K.	pH = 5.8
		7.50E+09	Scholes et al., 1965	Pulse radiolysis	C.K.	pH = -5
		4.90E+09			C.K.	pH = -7.5
	5-methylcytosine	6.00E+09	ssung and von Sonntag, 19	Pulse radiolysis	P.B.K.	pH = 7.0
		3.60E+09	Enksen et al., 1983	Pulse radiolysis	C.K.	
HN NH2	6-azacytosine	4.50E+09	Rosenthal et al., 1983	Pulse radiolysis	C.K.	pH = 8.0
	D-azacytosine	2.10E+09	Kosenthal et al., 1983	Pulse radiolysis	C.K.	pH = 8.0
O N O	N-ethylmaleimide	9.00E+09	Hayon and Simic, 1972	Pulse radiolysis	P.B.K.	pH = 6.0
	0-methyl uracil	5./0E+09	gannadham and Steenken, 19	Pulse radiolysis	P.B.K.	pH = 5-6

chemcial formura	compound	k _{HC} - (M-1 s-1)	references	experimental method	method	pH
HIN						pH = 7.4
<u> </u>	imidazole	3.90E+09	Ching et al., 1993	Fenton reaction	C.K.	T = 310 K
		3.90E+09 1.20E+10	Aruoma et al., 1989 Pao et al., 1975	Thermal Polse radiobusis	C.K.	pH = 7.4
ĆH,		1.202.10	1000 VC 00., 1772	1 4074 1040019313	1.0.40	y 11 - 10.7
N.						
$\sqrt{2}$						
<u>~</u> N	1-methyl imidazole	\$.10E+09	Rao et al., 1975	Pulse radiolysis	P.B.K.	pH=9.4
1.						
· · ·						
	xanthine	5.20E+09	Santamaria et al., 1984	Pulse radiolysis	PBK	pH = 7.8
			Containant of all 1999			
with a						
ing .	theophilline	6 30E+00	Powers 1086	Pulsa radialusis	PRK	
	theophanite	0.502.05	100011100	1 daye really sis	1.04	
21						
I.L.						
da,						
	theobromine	5.80E+09	Powers 1986	Pulse radiolysis	P.B.K.	
- 1						
224						
and the second						
	1-hypoxapthine	6.50E+09	Santamaria et al., 1984	Pulse radiolysis	PBK	pH = 7.8
(TT						
J. C.						
~						
	in a more than 1	1 205-10	Manuda et al. 1076	Commo estistant	C.V.	pH = 11.0
	tsoguarane	1.202-10	Masuda et al., 1973	Gamma-raceotysts	C.K.	1 = 290 K
1						
(II						
	guanine	9.20E+09	Masuda et al., 1975	Gamma-radiolysis	C K.	pH = 10 T = 290 K
	Pommit	1200.07	100000 CC 00, 1979	Culture reading sig	U.K.	I - DVR
° (%						
**						
and a lot of						
Сн _ь	caffeine	6.90E+09	Kesavan and Powers, 1985	Pulse radiolysis	CK	
	carente	0.502-07	Resevent and Powers, 1965	Pulse factorysis	e.r.	
1						
(I)						
1 A A						
	allopurinol	7.00E+08	Passquier 1989			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	purine	3.00E+08	Masuda 1975			
an a						
Ť.						
-1						pH= 6.2
	8-methyl purine	4.60E+08	Vieira and Steenken 1987	Pulse radiolysis	C.K.	T = 298 K
Mar. No.						
1 Alexandre						
H_C***						pH= 6.8
	6-methoxy purine	2.00E+09	Vieira and Steenken 1987	Pulse radiolysis	C.K.	T = 298 K
	2-aminopurine	3.00E+09	Manoj et al 2006	Pulse radiolysis	C.K.	pH = 7.0
1 ¹¹⁵						
HT I						
N N						
	adenine	5.S0E+09	Theard et al., 1970	Pulse radiolysis	P.B.K.	pH = 5.7
		6.30E+09	Scholes et al., 1965	Pulse radiolysis	C.K.	pH = -5.3
		3.105+09	actiones et al., 1902	Puise radiolysis	C.K.	pH= -7.4
	N,N-dimethyladenine	7.10E+09	Vieira and Steenken 1987	Pulse radiolysis	С.К.	T = 298 K
' <u>'</u> '						
	2-mercaptopurine	4.40E+09	Czaudema 1984			
1						
	6-mercaptopurine	7.00E+09	Czaudema 1984			
orie						
STAL AND						
	carbandarim	2,205+09	Mazellier 2003			
	and a second second		CONTRACTOR OF THE OWNER			

Table A-B28: Survey of HO• rate constants with imidazole

			experimental	evaluation	
compound	k _{HO} . (M-1 s-1) references		method	method	pH
thiophene	8.20E+09	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = - 7
	4.10E+09	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = -10
	3.30E+09	Lilie 1971	Pulse radiolysis	C.K.	
2,5-dimethylthiophene	7.20E+09	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = -7
2-methylthiophene	3.20E+09	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = 11
3-methylthiophene	3.20E+09	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = 11
2,2'-bithiophene	1.60E+10	Saunders et al., 1978	Pulse radiolysis	P.B.K.	pH = -7
2-iodo-3,5-dinitrothiophene	2.10E+09	Breccia et al 1990	Pulse radiolysis	C.K.	pH = -7
3-nitro-2-(4-nitrophenoxy)thiophene	1.30E+09	Breccia et al 1990	Pulse radiolysis	C.K.	pH = -7
tetrahydrothiophene	1.40E+10	Bonifacic et al., 1975	Pulse radiolysis	P.B.K.	

Table A-B29: Survey of HO• rate constants with thiophene

Table A-B30: Survey of HO• rate constants with triazine

				experiment			
				al	evaluation		
chemcial formura	compound	k _{HO} . (M-1 s-1)	references	method	method	pН	
Ĩ							
CH ₃ N N							
H ₂ C ⁻ N ⁻ N ⁻ CH ₂							
	atrazine	2.00E+09	Charmosta 1993				
он							
N N							
HONCH							
	cyanuric acid	2.00E+07	De laat 1994				
ci (
CH. N. CH.							
<u>LLL</u>							
	propazine	1.20E+09	Charmosta 1993				
	11						
ci							
n k n							
H,C N CH,							
н н т	simazine	2 10E+09	Charmosta 1993				
снь		2.112 07					
N H CH							
N CH							
rge ren							
СНа	prometone	2.50E+09	Shemer 2006				

-The end of HO• rate constant survey

Literature Cited

Adams, G.E.; Boag, J.W.; Michael, B.D. Reactions of the hydroxyl radical. part 2. – determination of absolute rate constants. Trans. Faraday Soc. 1965, **61**, 1417-1424.

Aguer, J.P.; Richard, C. Toxicol. Environ. Chem. 1993, 39, 217-227.

Aguila, A.; O'Shea, K.E.; Tobien, T.; Asmus, K-D. Reactions of hydroxyl radical with dimethyl methylphosphonate and diethyl methylphosphonate. A fundamental mechanistic study. J. Phys. Chem. A. 2001, 105, 7834-7839.

Akhlaq, M.S.; von Sonntag, C. Z. Naturforsch., C, Biosci. 1987, 42C, 134-140.

Al-Suhybani, A.A.; Hughes, G. Arab Gulf J. Sci. Res. 1988, A 6, 85-103.

Anbar, M.; Meyerstein, D.; Neta, P. Reactivity of aliphatic compounds towards hydroxyl radicals. J. Chem. Soc. (B) 1966, 745-747.

Anbar, M.; Neta, P. J. Chem. Soc. Pt. A, 1967, 834-837.

Aruoma, O.I.; Laughton, M.J.; Halliwell, B. Biochem. J. 1989, 264, 863-869.

Ashton, L.; Buxton, G.V.; Stuart, C.R. Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. J. Chem. Soc. Faraday. Trans. 1995, 91(11), 1631-1633.

Asmus, K.-D.; Taub, I.A. Spectrum and kinetics of the hydroxynitromethane anion radical in pulse-irradiated alkaline nitromethane solutions. J. Phys. Chem. 1966, 72(10), 3382-3387.

Barszcz, D.; Fielden, E.M.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1974, 25, 539-553.

Baxendale, J.H.; Khan, A.A. Int. J. Radiat. Phys. Chem. 1969, 1, 11-24.

Bednar, J.; Teply, J. Collect. Czech. Chem. Commun. 1960, 25, 842-851.

Bell, J.A.; Grunwald, E.; Hayon, E. Kinetics of deprotonation of organic free radicals in water. Reaction of HOCHCOO2-, HOCHCONH2, and HOCCH3CONH2 with various bases. J. Am. Chem. Soc. 1975, 97(11), 2995-3000.

Benitez, F.J.; Real, F.J.; Acero, J.L.; Garcia, C.; Llanos, E.M. Kinetics of phenylurea herbicides oxidation by Fenton and photo-Fenton processes. J. Chem. Technol. Biotechnol. 2007, 82, 65-73.

Bonifačić, M.; Möckel, H.; Bahnemann, D.; Asmus, K-D. Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. J. Chem. Soc. Perkin I. 1975, 675-685.

Borggaard, O.K. Acta Chem. Scand. 1972, 26, 3393-3394.

Bors, W.; Michel, C.; Dalke, C.; Stettmaier, K.; Saran, M.; Andrae, U. Radical intermediates during the oxidation of nitropropanes. The formation of NO2 from 2-nitropropane, its reactivity with nucleosides, and implications for the genotoxicity of 2-nitropropane. Chem. Res. Toxicol. 1993, 6, 302-309.

Bors, W.; Lengfelder, E.; Saran, M.; Fuchs, C.; Michel, C. Biochem. Biophys. Res. Commun. 1976, **70**, 81-87.

Bors, W.; Saran, M.; Michel, C. Pulse-radiolytic investigations of catechols and catecholamines. 4. 3,4-dihydroxybenzaldehyde and 3,4-dihydroxyacetophenone. J. Phys. Chem. 1979, 83(24), 3084-3088.

Bors, W.; Saran, M.; Michel, C. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1982, 41, 493-501.

Bors, W.; Michel, C.; Erben-Russ, M.; Kreileder, B.; Tait, D.; Saran, M. Oxygen Radicals Chem. Biol., W. Bors, M. Saran and D. Tait (eds.), de Gruyter, Berlin, Fed. Rep. Germany, Pub. 1984, p.95-9.

Breccia, A.; Busi, F.; Gattavecchia, E. Tamba, M. Radiat. Environ. Biophys. 1990, 29, 153-160.

Brede, O.; Helmstreit, W.; Mehnert, R. Z. Phys. Chem. (Leipzig), 1975, 256, 513-521.

Buechler, Hch.; Buehler, R.E.; Cooper, R. J. Phys. Chem. 1976, 80, 1549-1553.

Buxton, G.V. Trans. Faraday Soc. 1970, 66, 1656-1660.

Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. *J. Phys. Chem. Ref. Data*. 1988, *17* (2) 513-795.

Cabelli, D.E.; Bielski, B.H.J. Z. Naturforsch., B, Anorg. Chem., Org. Chem. 1985, **40B**, 1731-1737.

Cercek, B.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1687-1698.

Cercek, B.; Ebert, M. Adv. Chem. Ser. 1968, 81, 210-221.

Chambers, K.W.; Collinson, E.; Dainton, F.S. Trans. Faraday Soc. 1970, 66, 142-162.

Chevion, M.; Ilan, Y.A. DOE/EV/03221-63, 1980, 16p.

Chin, M.; Wine, P.H. Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp and D.G. Crosby (eds.), CRC Press, Inc., Boca Raton, FL, 1994, p.85-96

Ching, T.-L.; Haenen, G.R.M.M.; Bast, A. Cimetidine and other H2 receptor antagonists as powerful hydroxyl radical scavengers. Chem.-Biol. Interact. 1993, **86**, 119-127.

Chutny, B. Collect. Czech. Chem. Commun. 1966, 31, 358-361.

Chutny, B.; Swallow, A.J. Trans. Faraday Soc. 1970, 66, 2847-2854.

Clay, P.G.; Witort, M. Radiochem. Radioanal. Lett. 1974, 19, 101-107.

Cohen, N.; Benson, S.W. Empirical correlations for rate coefficients for reactions of OH with haloalkanes. J. Phys. Chem. 1987, 91, 171-175.

Cohen, H.; Meyerstein, D. J. Chem. Soc., Dalton Trans. 1976, 1976-1979.

Cole, S.K.; Cooper, W.J.; Fox, R.; Gardinali, P.R.; Mezyk, S.P.; Mincher, B.J.; O'Shea, K.E. Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (Chloroperin). Environ. Sci. Technol. 2007, 41, 863-869.

Cullis, C.F.; Francis, J.M.; Raef, Y.; Swallow, A.J. Proc. R. Soc. London, Ser. A, 1967, **300**, 443-454.

Czauderna, M.; Wagner-Czauderna, E. J. Radioanal Nucl. Chem. 1984, 81, 283-289.

De laat, J.; Chramosta, N.; Rore, M.; Suty, H.; Pouillot, M. Rate constants for reaction of hydroxyl radicals with some degradation by-products of atrazine by O3 or O3/H2O2. Environ. Technol. 1994, 15, 419-428.

Dey, G.R.; Naik, D.B.; Kishore, K.; Moorthy, P.N. J. Radioanal. Nucl. Chem. 1992, 163, 391-400.

Dorfman, L.M.; Taub, I.A.; Harter, D.A. Rate constants for the reaction of the hydroxyl radical with aromatic molecules. J. Chem. Phys. 1964, 41, 2954-2955

Dohrmann, J.K.; Bergmann, B. J. Phys. Chem. 1995, 99, 1218-1227.

Draganic, I.G.; Draganic, Z.D.; Holroyd, R.A. Pulse radiolysis of aqueous cyanogens solution. J. Phys. Chem. 1971, 75(5), 608-612.

Draganic, I.; Draganic, Z.; Petkovic, Lj.; Nikolic, A. The radiation chemistry of aqueous solutions of simple RCN compounds. J. Am. Chem. Soc. 1973, 95(22), 7193-7199.

Draganic, Z.D.; Draganic, I.G.; Jovanovic, S.V. Radiat. Res. 1978, 75, 508-518.

Draganic, Z.D.; Draganic, I.G.; Sehested, K. Radiation chemistry of aqueous solutions of dicyandamide. J. Phys. Chem. 1979, 83(2), 220-224.

Draper, R.B.; Fox, M.A.; Pelizzetti, E.; Serpone, N. Pulse radiolysis of 2,4,5-trichlorophenol: Formation, kinetics, and properties of hydroxytrichlorocyclohexadienyl, trichlorophenoxyl, and dihydroxytrichlorocyclohexadienyl radicals. J. Phys. Chem. 1989, 93, 1938-1944.

Eibenberger, J. Pulse radiolytic investigations concerning the formation and the oxidation of organic radicals in aqueous solution. 1980, Ph.D. Thesis. Vienna University, Austria.

Elliot, A.J.; McCracken, D.R. Effect of temperature on O-- reactions and equilibria: A pulse radiolysis study. Radiat.Phys.Chem. 1989, 33(1), 69-74.

Elliot, A.J.; McCracken, D.R.; Buxton, G.V.; Wood, N.D. J. Chem. Soc., Faraday Trans. 1990, **86**, 1539-1547.

Elliot, A.J.; Simsons, A.S. Radiat. Phys. Chem. 1984, 24, 229-231.

Emmi, S.S.; Beggiato, G.; Casalbore-Miceli, G.; Fuochi, P.G. J. Radioanal. Nucl. Chem., Lett. 1985, **93**, 189-197.

Engman, L.; Lind, J.; Merényi, G. Redox properties of diaryl chalcogenides and their oxides. J. Phys. Chem. 1994, 98, 3174-3182.

Eriksen, T.; Henglein, A.; Stockhausen, K. J. Chem. Soc., Faraday Trans. 1. 1973, 69, 337-345.

Eriksen, T.; Lind, J.; Merenyi, G.J. Chem. Soc., Faraday Trans. 1983, 1 79, 1503-1511.

Ervens, B.; Gligorovski, S.; Herrmann, H. Teperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solution. Phys. Chem. Chem. Phys., 2003, 5, 1811-1824.

Feitelson, J.; Hayon, E. Electron ejection and electron capture by phenolic compounds. J. Phys. Chem. 1973, 77(1), 10-15.

Field, R.J.; Raghavan, N.V.; Brummer, J.G. A pulse radiolysis investigation of the reactions of BrO2• with Fe(CN)64-, Mn(II), phenoxide ion, and phenol. J. Phys. Chem. 1982, **86**, 2443-2449.

Fisher, M.M.; Hamill, W.H. Electronic processes in pulse-irradiated aqueous and alcoholic systems. J. Phys. Chem. **77**, 171-177 (1973)

George, C.; Rousse, D.; Perraudin, E.; Strekowski, R. A new approach for studying aqueous phase OH kinetics: Application of Teflon waveguides. Phys. Chem. Chem. Phys. 2003, 5, 1562-1569.

Getoff, N.; Schwoerer, F. Int. J. Radiat. Phys. Chem. 1970, **2**, 81-89. Simic, M.; Neta, P.; Hayon, E. Int. J. Radiat. Phys. Chem. 1971, **3**, 309-320.

Getoff, N.; Schwörer, F.; Markovic, V.M.; Sehested, K.; Nielsen, S.O. Pulse radiolysis of oxalic acid and oxylates. J. Phys. Chem. 1971, 75(6), 749-755.

Getoff, N.; Schwoerer, F. Int. J. Radiat. Phys. Chem. 1973, 5, 101-111.

Getoff, N. Advancements of radiation induced degradation of pollutants in drinking and waste water. Appl.Radiat.Isot. 1989, 40(7), 585-594.

Getoff, N. Section 5.2. solid and liquid waste treatment. Decomposition of biological resistant pollutants in water by irradiation. Radiat. Phys. Chem. 1990, 35(1-3), 432-439.

Getoff, N. Radiation- and photoinduced degradation of pollutants in water. A comparative study. Radiat. Phys. Chem. 1991, 37(5/6), 673-680.

Gilbert, B.C.; Norman, R.O.C.; Sealy, R.C. J. Chem. Soc., Perkin Trans. 2. 1974, 1435-1441.

Gligorovski, S.; Herrmann, H. Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 4118-4126.

Greenstock, C.L.; Shierman, E. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1975, 28, 1-11.

Greenstock, C.L.; Dunlop, I. Pulse radiolysis studies of nitrofurans. Radiation chemistry of nifuroxime. J. Phys. Chem. 1973, 77(15), 1834-1838.

Guittonneau, S.; de Laat, J.; Dore, M.; Duguet, J.P.; Suty, H. Environ. Technol. 1990, 11, 57-70.

Haag, W.R.; Yao, C.C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005-1013.

Heckel, E.; Henglein, A.; Beck, G. Ber. Bunsenges. Phys. Chem. 1966, 70, 149-154.

Hickel, B. Absorption spectra and kinetics of methyl and ethyl radicals in water. J.Phys.Chem. 1975, 79(11), 1054-1059.

Hissung, A.; von Sonntag, C.Z. Naturforsch., Teil B, 1978, 33B, 321-328.

Hoffman, M.Z.; Hyon, E. Pulse radiolysis study of sulfhydryl compounds in aqueous solution. J. Phys. Chem. 1973, 77(8), 990-996.

Iddon, B.; Phillips, G.O.; Robbins, K.E. Radiation chemistry of aqueous solutions of indole and its derivatives. J.Chem. Soc. (B). 1971, 1887-1892.

Jayson, G.G.; Stirling, D.A.; Swallow, A.J. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1971, **19**, 143-156.

Joseph, J.M.; Jacob, T.A.; Manoj, V.M.; Arvindakumar, C.T. Oxidative degradation of triazine derivatives in aqueous medium: A radiation and photochemical study. J. Agric. Food Chem. 2000, 48, 3704-3709.

Karmann, W.; Granzow, A.; Meissner, G.; Henglein, A. Int. J. Radiat. Phys. Chem. 1969, 1, 395-405.

Kesavan, P.C.; Powers, E.L.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1985, 48, 223-233.

Klever, H.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 1976, 80, 1259-1265.

Kochany, J.; Bolton, J.R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of •OH radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of H2O2. Environ. Sci. Technol. 1992, 26, 262-265.

Koester, R.; Asmus, K.-D. Z. Naturforsch. Teil B, 1971, 26, 1108-1116.

Kraljic, I. The Chemistry of Ionization and Excitation, Johnson, G.R.A. and Scholes, G. (eds.), Taylor and Francis Ltd, London, 1967, p.303-9.

Kumar, M.; Rao, M.H.; Moorthy, P.N. J. Macromol. Sci., Chem. 1990, A27, 299-308.

Kumar, M.; Rao, M.H.; Moorthy, P.N.; Rao, K.N. Radiat. Eff. Express 1, 1988, 167-173.

Lal and Mahal, 1992 Medical Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo and T. Yoshikawa (eds.), Elsevier, Amsterdam, The Netherlands, 1989, Vol. 1, p.425-32

Lal, M.; Schoeneich, C.; Moenig, J.; Asmus, K.-D. Int. J. Radiat. Biol. 1988, 54, 773-785.

Land, E.J.; Ebert, M. Trans. Faraday Soc. 1967, 63, 1181-1190.

Land, E.J. Proc. R. Soc. London, Ser. A, 1968, 305, 457-471.

Landsman, N.A.; Swancutt, K.L.; Bradford, C.N.; Cox, C.R.; Kiddle, J.J.; Mezyk, S.P. Free radical chemistry of advanced oxidation processes removal of nitrosamines in water. Environ. Sci. Technol. 2007, 41, 5818-5823.

Lati, J.; Meyerstein, D. Trivalent nickel. II. A pulse radiolytic study of the formation and decomposition of the ethylenediamine and glycine complexes in aqueous solution. Inorganic. Chem. 1972, 11(10), 2397-2401.

Lee, C.; Schmidt, C.; Yoon, J.; von Gunten, U. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environ. Sci. Technol. 2007, 41, 2056-2063.

Lilie, J.; Beck, G.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1968, 72, 529-533.

Lilie, J.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1970, 74, 388-393.

Lilie, J. Z. Naturforsch. Teil B. 1971, 26, 197-202

Logan, S.R. J. Chem. Soc., Perkin Trans. 2, 1989, 751-754.

Maity, D.K.; Mohan, H.; Chattopadhyay, S.; Mittal, J. P. Formation, stability, and reactivity of radical cations of 1-bromo-n-chloroalkanes in aqueous solution: A pulse radiolysis study. J. Phys. Chem. 1995, 99, 12195-12203.

Mao, Y.; Schöneich, C.; Asmus, K-D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on TiO2 surfaces en Route to mineralization. A combined photocatalytic and radiation chemical study. J. Phys. Chem. 1991, 95, 10080-10089.

Maruthamuthu, P. Makromol. Chem., Rapid Commun. 1980, 1, 23-25.

Massaut, B.; Tilquin, B.; Hickel, B. Bull. Soc. Chim. Belg. 1988, 97, 1031-1036.

Masuda, T.; Minemura, A.; Yamauchi, K.; Kondo, M. J. Radiat. Res. 1980, 21, 149-156.

Masuda, T.; Shinohara, H.; Kondo, M. J. Radiat. Res. 1975, 16, 153-161.

Matheson, M.S.; Mamou, A.; Silverman, J.; Rabani, J. Reaction of hydroxyl radicals with polyethylene oxide in aqueous solution. J. Phys. Chem. 1973, **77**, 2420-2424.

Matheson, M.S.; Silverman, A.M.J.; Rabani, J. Reaction of hydroxyl radicals with polyethylene oxide in aqueous solution. J. Phys. Chem. 1973, 77(20), 2420-2424.

Matsushige, T.; Koltzenburg, G.; Schulte-Frohlinde, D. Ber. Bunsenges. Phys. Chem. 1975, **79**, 657-661.

Mattews, R.W.; Sangster, D.F. Measurement by benzoate radiolytic decarboxylation of relative rate constants for hydroxyl radical reactions. J. Phys. Chem. 1965, **69**, 1938-1946.

Matuszak, Z.; Reszka, K.J.; Chignell, C.F. Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radical Biology &

Medicine. 1997, 23(3), 367-372.

Mazellier, P.; Leroy, E.; De laat, J.; Legube, B. Degradation of carbendazim by UV/H2O2 investigated by kinetic modeling. Environ. Chem. Lett. 2003, 1, 68-72.

Merga, G.; Rao, B.S.M.; Mohan, H.; Mittal, J. P. Reactions of OH and SO4-- with some halobenzenes and halotoluenes: A radiation chemical study. J. Phys. Chem. 1994, 98, 9158-9164.

Merz, J.H.; Waters, W.A. A Electronic transfer reactions. The mechanism of oxidation of alcohols with fenton's reagent. 1949, 179-188.

Mezyk, S.P.; Helgeson, T.; Cole, S.K.; Cooper, W.J.; Fox, R.V.; Gardinali, P.R.; Mincher, B.J. Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. J. Phys. Chem. A. 2006, 110, 2176-2180.

Mezyk, S.P.; Ewing, D.B.; Kiddle, J.J.; Madden, K.P. Kinetics and mechanisms of the reactions of hydroxyl radicals and hydrated electrons with nitrosamines and nitramines in water. J. Phys. Chem. A, 2006, 110, 4732-4737.

Mezyk, S.P.; Cooper, W.J.; Bartels, D.M.; O'Shea, K.E.; Wu, T. Radiation chemistry of alternative fuel oxygenates: Substituted ethers. J. Phys. Chem. A. 2001, 105, 3521-3526.

Mezyk, S.P.; Jones, J.; Cooper, W.J.; Tobien, T.; Nickelsen, M.G.; Adams, J.W.; O'Shea, K.E.; Bartels, D.M.; Wishart, J.F.; Tornatore, P.M.; Newman, K.S.; Gregoire, K.; Weidman, D.J. Environ. Sci. & Technol. 2004, 38, 3994-4001.

Mezyk, S.P. Rate constant and activation energy determination for reaction of e-(aq) and •OH with 2-butanone and propanal. Can. J. Chem. 1994, **72**, 1116-1119.

Michaels, H.B.; Rasburn, E.J.; Hunt, J.W. Radiat. Res. 1976, 65, 250-267.

Michaels, H.B.; Hunt, J.W. Radiat. Res. 1973, 56, 57-70.

Michael, B.D.; Hart, E.J. J. Phys. Chem. 1970, 74, 2878-2884.

Miller, J.S.; Cornwell, D.G. The role of cryoprotective agents as hydroxyl radical scavengers. Cryoobiology. 1978, 15, 585-588.

Milne, P.J. Ph.D., Thesis, Univ. Miami, Coral Gables, FL, 1989, 265p.

Milosavljevic, B.H.; LaVerne, J.A. Pulse radiolysis of aqueous thiocyanate solution. J. Phys. Chem. A. 2005, 109, 165-168.

Mohan, H.; Mittal, J.P. Structure-reactivity studies on the nature of transients formed on reaction of OH radicals with chloroiodoalkanes in aqueous solution. J. Chem. Soc. Perkin. Trans. 2. 1992, 1731-1736.

Mohan, H.; Mittal, J.P. Radiat. Phys. Chem. 1991, 38, 45-50.

Mohan, H.; Mittal, J. Formation and reactivity of the radical cation of bromobenzene in aqueous solution: A pulse radiolysis study. J. Phys. Chem. 1995, 99, 6519-6524.

Mohan, H.; Moorthy, P.N. Formation of radical cations of polyiodomethanes: A pulse radiolysis study. J. Chem. Soc. Perkin. Trans. 2. 1990, 277-282.

Monod, A.; Poulain, L.; Grubert, S.; Voisin, D.; Wortham, H. Kinetics of OH-initiated oxidation of oxygenated organic compounds in the aqueous phase: new rate constants, atructure-activity relationships and atmospheric implications. Atmosph. Environ. 2005, 39, 7667-7688.

Moore, J.S.; Kemsley, K.G.; Davies, J.V.; Phillips, G.O. Radiation Biology and Chemistry. Research Developments, H.E. Edwards, S. Navaratnam, B.J. Parsons and G.O. Phillips (eds.), Elsevier, New York, 1979, p.99-113 (1979).

Moorthy, P.N.; Hayon, E. One-electron redox reactions of water-soluble vitamins. III. Pyridoxine and pyridoxal phosphate (Vitamin B6). J. Am. Chem. Soc. 1975, 97(8), 2048-2052.

Motohashi, N.; Saito, Y. Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate. Chem. Pharm. Bull. 1993, **41**, 1842-1845.

Myint, P.; Deeble, D.J.; Beaumont, P.C.; Blake, S.M.; Phillips, G.O. Biochim. Biophys. Acta, 1987, 925, 194-202.

Naik, D.B.; Moorthy, P.N. Radiat. Phys. Chem. 1993, 41, 817-824.

Naik, D.B.; Moorthy, P.N. Proc. Indian Acad. Sci., Chem. Sci. 1991, 103, 667-675.

Neta, P.; Dorfman, L.M. Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions. Radiat. Chem. 1968, 222-230.

Neta, P.; Greenstock, C.L. Radiat. Res. 1973, 54, 35-48.

Nauser, T.; Buehler, R.E. J. Chem. Soc., Faraday Trans. 1994, 90, 3651-3656.

O'Neill, P.; Steenken, S.; Schulte-Frohlinde, D. J. Phys. Chem. 1975, 79, 2773-2779.

Onstein, P.; Stefan, M.I.; Bolton, J.R. Competition kinetics method for the determination of rate constants for the reaction of hydroxyl radicals with organic pollutants using the UV/H2O2 advanced oxidation technology: The rate constants for the tert-butyl formate ester and 2,4-dinitrophenol. J. AOT. 1999, 4, 231-236.
Park, H-R.; Getoff, N. Radiolysis of aqueous ethanol in the presence of CO. Z. Naturforsch., A, Phys. Sci. 1992. **47A**, 985-991.

Pasquier, C.; Pierce, B.; Willson, R.L. Medical Biochemical and Chemical Aspects of Free Radicals, O. Hayaishi, E. Niki, M. Kondo and T. Yoshikawa (eds.), Elsevier, Amsterdam, The Netherlands, 1989, Vol. 1, p.425-32

Patterson, L.K.; Bansal, K.M. J. Phys. Chem. 1972, 76, 2392-2399.

Poskrebyshev, G.A.; Huie, R.E.; Neta, P. Radiolysis reactions of monochloramine in aqueous solutions. J. Phys. Chem. A. 2003, 107, 7423-7428.

Powers, E.L.Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1986, 50, 983-993.

Rao, P.S.; Hayon, E. Reaction of hydroxyl radicals with oligopeptides in aqueous solutions. A pulse radiolysis study. J. Phys. Chem. 1975, 79(2), 109-115.

Rao, P.S.; Simic, M.; Hayon, E. J. Phys. Chem. 1975, 79, 1260-1263. Reuvers, A.P.; Greenstock, C.L.; Borsa, J.; Chapman, J.D. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1973, **24**, 533-536.

Roberts, J.E.; Hu, D-N.; Wishart, J.F. Pulse radiolysis studies of melatonin and chloromelatonin. J. Photochem. Photobiology B. Biology 42, 1998, 125-132. Robinson, E.A.; Schulte-Frohlinde, D. J. Chem. Soc., Faraday Trans. 1, 1973, **69**, 707-718.

Roder, M.; Wojnarovits, L.; Foldiak, G. Radiat. Phys. Chem. 1990, **36**, 175-176. Rosenthal, I.; Riesz, P.; Faraggi, M. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1983, 44, 463-468.

Ross, F.; Ross, A.B. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical an their radical ions. NSRDS-NBS 59,

Rudakov, E.S.; Volkova, L.K.; Tret'yakov, V.P. React. Kinet. Catal. Lett. 1981, 16, 333-337.

Santamaria, J.; Pasquier, C.; Ferradini, C.; Pucheault, J.Radiat. Res. 1984, 97, 452-461.

Saunders, B.B.; Gorse, Jr. R.A. Reactions of diethylhydroxylamine with radiolytically produced radicals in aqueous solutions. J. Phys. Chem. 1979, 83(13), 1696-1701.

Saunders, B.B.; Kaufman, P.C.; Matheson, M.S. Reactions of thiophene with radiolytically produced radicals. 1. The hydroxyl radical. J. Phys. Chem. 1978, 82(2), 142-150.

Savel'eva, O.S.; Shevchuk, L.G.; Vysotskaya, N.A. J. Org. Chem. USSR, 1972, 8, 283-286.

Savel'eva, O.S.; Shevchuk, L.G.; Vysotskaya, N.A. J. Org. Chem. USSR, 1973, 9, 759-761.

Schöneich, C.; Bobrowski, K. Intramolecular hydrogen transfer as the key step in the dissociation of hydroxyl radical adducts of (Alkylthio)ethanol derivatives. J. Am. Chem. Soc. 1993, 115, 6538-6547.

Scholes, G.; Willson, R.L. Trans. Faraday Soc. 1967, 63, 2983-2993.

Schuchmann, M.N.; von Sonntag, C. Hydroxyl radical-induced oxidation of diisopropyl ether in oxygenated aqueous solution. A product and pulse radiolysis study. Z. Naturforsch. 1987, 42b, 495-502.

Schuchmann, M.N.; von Sonntag, C. J. The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution. Am. Chem. Soc. 1988, **110**, 5698-5701.

Schmidt, K.H.; Bromberg, A.; Meisel, D. Oxidation of diphenylamine by OH radicals and excitation of the diphenylamino and OH adduct radicals. J. Phys. Chem. 1985, 89. 4352-4357.

Sehested, K.; Holcman, J. Reactions of the radical cations of methylated benzene derivatives in aqueous solution. J. Phys. Chem. 1978, 82(6), 651-653.

Sehested, K.; Holcman, J. Nukleonika 1979, 24, 941-950.

Sehested, K.; Cortitzen, H.; Christense, H.C.; Hart, E.J. Rates of reaction of O-, OH, and H with methylated benzenes in aqueous solution. Optical spectra of radicals. 1975, 79(4), 310-315.

Shemer, H.; Sharpless, C.M.; Elovitz, M.S.; Linden, K.G. Relative rate constants of contaminant candidate list pesticides with hydroxyl radicals. Environ. Sci. Technol. 2006, 40, 4460-4466.

Shevchuk, L.G.; Zhikharev, V.S.; Vysotskaya, N.A. J. Org. Chem. USSR, 1969, 5, 1606-1608.

Schoeneshoefer, M. Z. Naturforsch. Teil B, 1971, 26, 1120-1124.

Simic, M.; Ebert, M. Int. J. Radiat. Phys. Chem. 1971, 3, 259-272.

Simic, M.; Neta, P.; Hayon, E. Int. J. Radiat. Phys. Chem. 1971, 3, 309-320.

Simic, M.; Hayon, E. Intermediates produced from the one-electron oxidation and reduction of hydroxylamines. Acid-base properties of the amino, hydroxyamino, and methoxyamino radicals. J. Am. Chem. Soc. 1971, 93(23), 5982-5986.

Snook, M.E.; Hamilton, G.A. Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and fenton's reagent. J.A.C.S. 1974, 96(3), 860-869.

Soeylemez, T.; Schuler, R.H. J. Phys. Chem. 1974, 78, 1052-1062.

Solar, S.; Getoff, N. Oxidation of tryptophan and N-methylindole by N3, Br2- and (SCN)2- radicals in light and heavy-water solutions: A pulse radiolysis study. J. Phys. Chem. 1991, 95, 3639-3643.

Sridhar, R.; Beaumont, P.C.; Powers, E.L. Oxygen Radicals Chem. Biol., W. Bors, M.

Saran and D. Tait (eds.), de Gruyter, Berlin, Fed. Rep. Germany, Pub. 1984, p.101-7

Steenken, S.; O'Neill, P. J. Phys. Chem. 1979, 83, 2407-2412.

Stevens, G.C.; Clarke, R.M.; Hart, E. Radiolysis of aqueous methane solutions. J.Phys.Chem. 1972, 76(25), 3863-3867.

Sumiyoshi, T.; Miura, N.; Aikawa, M.; Katayama, M. Bull. Chem. Soc. Jpn. 1982, 55, 2347-2351.

Tamminga, J.J.; van den Ende, C.A.M.; Warman, J.M.; Hummel, A. Recl. Trav. Chim. Pays-Bas, 1979, **98**, 305-315.

Tanaka, M.; Sakuma, H.; Kohanawa, O.; Fukaya, S.; Katayama, M. Bull. Chem. Soc. Jpn. 1984, 57, 3403-3407.

Thomas, J.K. Trans. Faraday Soc. 1965, 61, 702-707.

Thomas, J.K. Pulse radiolysis of aqueous solutions of methyl iodide and methyl bromide. The reactions of iodine atoms and methyl radicals in water. J. Phys. Chem. 1967, 71(6), 1919-1925.

Tripathi, G.N.R.; Schuler, R.H. J. Phys. Chem. 1983, 87, 3101-3105.

Ulanski, P.; Bothe, E.; Rosiak, J.M.; von Sonntag, C. Macromol. Chem. Phys. 1994, 195, 1443-1461.

Ulanski, P.; von Sonntag, C. The OH radical-induced chain reactions of methanol with hydrogen peroxide and with peroxodisulfate. Perkin transaction, 1994.

Veltwisch, D.; Janata, E.; Asmus, K-D. Primary processes in the reaction of OH•-radicals with sulphoxides. J.C.S. Perkin II. 1980, 146-153.

van der Linde, H.J. Radiat. Phys. Chem. 1977, 10, 199-206.

von Sonntag, C.; Ansorge, G.; Sugimori, A.; Omori, T.; Koltzenburg, G.; Schulte-Frohlinde, D. Z. Naturforsch. Teil B, 1972, **27**, 471-472.

Vysotskaya, N.A.; Shevchuk, L.G.; Gavrilova, S.P.; Badovskaya, L.A.; Kul'nevich, V.G. J. Org. Chem. USSR, 1983, 19, 1352-1354.

Walling, C.; El-Taliawi, G.M. Fenton's reagent. II. Reactions of carbonyl compounds and α , β -unsaturated acids. J. Am. Chem. Soc. 1973, 95(3), 844-847.

Walling, C.; El-Taliawi, G.M.; Johnson, R.A. Fenton's reagent. IV. Structure and reactivity relations in the reactions of hydroxyl radicals and the redox reactions of radicals. J. Am. Chem. Soc. 1974, 96(1), 133-139.

Wander, R.; Neta, P.; Dorfman, L.M. Pulse radiolysis studies. XII. Kinetics and spectra f the cyclohexadienyl radicals in aqueous benzoic acid solution. J. Phys. Chem. 1968, 72(8), 2946-2949.

Wang, W-f.; Schuchmann, M.N.; Schuchmann, H-P.; Knolle, W.; von Sonntag, J.; von Sonntag, C. Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solution. J. Am. Chem. Soc. 1999, 121, 238-245.

Wang, D.; Gyoergy, I.; Hildenbrand, K.; von Sonntag, C. J. Chem. Soc., Perkin Trans. 2, 1994, 45-55.

Whillans, D.W. Radiat. Phys. Chem. 1977, 10, 335-340.

Wigger, A.; Gruenbein, W.; Henglein, A.; Land, E.J. Z. Naturforsch. Teil B, 1969, 24, 1262-1267.

Willson, R.L.; Greenstock, C.L.; Adams, G.E.; Wageman, R.; Dorfman, L.M. The standardization of hydroxyl radical rate data from radiation chemistry. Int.J.Radiat.Phys.Chem. 1971, 3, 211-220.

Wolfenden, B.S.; Willson, R.L. J. Chem. Soc., Perkin Trans. 2, 1982, 805-812.

Zakatova, N.V.; Minkhadzhiddinova, D.P.; Sharpatyi, V.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1969, 1520.

Zimbrick, J.D.; Ward, J.F.; Myers, L.S.Jr. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 1969, 16, 505-523.

Zona, R.; Solar, S.; Sehested, K.; Holcman, J.; Mezyk, S.P. OH-radical induced oxidation of phenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. Primary radical steps and products. J. Phys. Chem. A. 2002, 106, 6743-6749.

APPENDIX C: FORTRAN 90 PROGRAM SOURCE CODE OF

GROUP CONTRIBUTION METHOD IDENTIFIER

```
! GCM Identifier.f90
    FUNCTIONS: GCMIdentifier
 *****
    PROGRAM: GCM Identifier ver 1.0 (June, 2009)
    by Daisuke Minakata and John C. Crittenden
    Department of Civil and Environmental Engineering, Georgia Institute of Technology
                                                                                                                                                                                     * !
This program enables you to calculate an aqueous phase HO radical reaction rate
    constant that includes:
      1)H-atom abstraction from a C-H bond of saturated aliphatic or cyclic compounds
      2)HO radical addition to unsaturated alkenes
      3)HO radical addition to aromatic compounds
      4) HO interaction with S.N. or P-atom containing compounds
    based on a group contribution method (GCM) that is described in a paper:
    Daisuke, M.; Li, K.; Westerhoff, P.; Crittenden, J.C.
    Development of a Group Contribution Method (GCM) to Predict Aqueous Phase Hydroxyl Radical (HO*) Reaction Rate Constants. Environ.Sci.Technol. 2009
     If you have any difficulties in running this program or come across technical
    issues, please email to Daisuke Minakata:
    Daisuke.Minakata@gatech.edu
    Nomenclature:
    NPRIMCH,NSECNCH,NTERTCH: # of primary,secondary,tertiary C-H bond(s)NALCOL,NCABXL: # of alcohol and carboxylic functional group(s)NS,NSS,NSH: # of -S-,-S-S-,-SH- functional group(s)
    NS,NSS,NSH

      NS,NSS,NSH
      : # of -S-,S-S-,SH functional group(s)

      NCN,NNO2
      : # of -CN and -NO2 functional group(s)

      NCONH2,NCONH,NCON
      : # of -CO-NH-, -CO-N-functional group(s)

      NNH2,NNH,NN
      : # of -NH2, -SNH-, -N- functional group(s)

      NNCON
      : # of -N-CO-N- functional group(s)

      NPP
      : # of ->P- functional group(s)

    X1(1)
    : group contribution factor of functional group Rl for primary C-H bond

    X2(J),X3(J)
    : group contribution factor of functional group Rl and R2 for secondary C-H bond

    X4(K), X5(K), X6(K) : group contribution factor of functional group R1,R2,and R3 for tertiary C-H bond*
    NADDALK1 : # of basic structure of HH>C=C<H
NADDALK2 : # of basic structure of HH>C=C<
                                : # of basic structure of HH>C=C<
: # of basic structure of H>C=C<H(cis)
: # of basic structure of H>C=C<H(trans)
: # of basic structure of H>C=C<</pre>
: # of basic structure of H>C=C<
: # of basic structure (benzene ring with one functional group)
: # of -C6H4 structure (benzene ring with 2 functional groups at ortho-position)
: # of -C6H4 structure (benzene ring with 2 functional groups at meta-position)
: # of -C6H4 structure (benzene ring with 2 functional groups at para-position)
: # of -C6H4 structure (benzene ring with 2 functional groups at para-position)
: # of -C6H4 structure (benzene ring with 2 functional groups at para-position)
: # of -C6H4 structure (benzene ring with 2 functional groups at para-position)
</pre>
    NADDALK3
    NADDALK4
    NADDALK5
    NADDALK6
    NBEBC6H5
    BENC6H4O
    BENC6H4M
    BENC6H4P
                                   : # of -C6H3 structure (benzene ring with 3 functional groups at 1,2,3-positions)
    BENC6H3A
    BENC6H3B
                                    : # of -C6H3 structure (benzene ring with 3 functional groups at 1,2,4-positions)
    BENC6H3C
                                    : # of -C6H3 structure (benzene ring with 3 functional groups at 1,3,5-positions)
    BENC6H2C : # of -C6H2 structure (benzene ring with 4 functional groups at 1,2,3,4-positions)
BENC6H2B : # of -C6H2 structure (benzene ring with 4 functional groups at 1,2,3,5-positions)
BENC6H2C : # of -C6H2 structure (benzene ring with 4 functional groups at 1,2,4,5-positions)
BENC6HC : # of -C6H structure (benzene ring with 5 functional groups at 1,2,3,4,5-positions)
BENC6HC : # of -C6H structure (benzene ring with 5 functional groups at 1,2,3,4,5-positions)
BENC6H2C : # of -C6H structure (benzene ring with 6 functional groups at 1,2,3,4,5-positions)
BENC6H2C : # of -C6H structure (benzene ring with 6 functional groups at 1,2,3,4,5-positions)
    PYR1,PYR2,PYR3: # of pyridine structures with a fucntional group at 2-,3-,4-position,respectively
    PYR4,PYR5: # of pyridine structures with two functional groups at 2,6- and 3,5-positionsPYR6: # of pyridine structures with three functional groups at 2,4,6-positions
    FUR1,FUR2 : # of furan structures with one and two functional groups at 2- and 2,5-positions
IMI : # of imidazole basic structure
    TRT
                           : # of triazine basic structure

        OVALLRATE
        : overall HO* reaction rate constant, M-1s-1

        HABSTRATE
        : partial HO* rate constant for H-atom abstraction

    INTRATE
                            : partial HO* rate constant to interact with S-,N-,or P-atom containing compounds
                          : partial HO* rate constant for HO* to add alkene
: partial HO* rate constant for HO* to add aromatic compounds
    ADDALKRATE
    ADDARMRATE
                                                                                  ********
```

PROGRAM GCMIdentifier

IMPLICIT NONE

INTEGER	:	:	I, J, K
INTEGER	:	:	L1,L2,L3,L4,L5,L6
INTEGER	:	:	B1,B2,B3,B4,B5,B6

	_		
INTEGE	R	:: PI,P2,P3	, P4 , P5 , P6
INTEGE	R	:: F1,F2	
INTEGE	R	:: I1	
INTEGE	R	:: Tl	
PRAT.		:: NDRIMCH	NSECNCH NTERTCH NALCOL NCABYL
REAL.		:: NG NGG N	SO NSH NCN NNO2 NCONH2 NCONH NCON NNH2 NNH NN NNCON ND
REAL		:: NADDALK1	Non, Non, Non, Noo2, Neonin2, Neonin, Neoni, Ninz, Nini, Ni, Nineon, Ni
DEAT.		·· NRENCEUS	
DEAT.		·· BENCOUS	RENCEUAO RENCEUAM RENCEUAR
DEAT.		·· BENCEUS	DENCEU2A DENCEU2D DENCEU2C
REAL		:: BENC6H2	BENCEHISA, BENCEHISE, BENCEHISC BENCEHISA, BENCEHISE, BENCEHISC BENCEH BENCE
DEAT.		·· DVD1 DVD	2 DVD3 DVD4 DVD5 DVD6
DENT.		·· FIR1,FIR	2, FIR3, FIR4, FIR5, FIR6
DEAT.		·· TMT	2
REAL		:: TRZ	
REAL,	PARAMETER		:: NMAXN =100
REAL,	PARAMETER		:: NMAXFUN = 197
DEAT	DIMENSION	() · NMA VETINI)	
DENT	DIMENSION (() • NMA VEUNI)	
DEAL	DIMENSION (() NMAXFUN)	·· y1 y2 y3 y4 y5 y6
DENT.	DIMENSION (() NMAXFUN)	·· v1 v2 v3 v4 v5 v6 v7 v8 v0 v10 v11 v12 v13 v14
DENT.	DIMENSION (() NMAXFUN)	·· 71 72 73 74 75 76 77 78 70 710
DEAL,	DIMENSION (0. NMAXFUN)	·· 711 712 713 714 715 716 717 718 719 720
DENT	DIMENSION (() • NMA VEUNI)	·· 701 700 702 704 705 706 707 700 700 700
DEAL,	DIMENSION (0. NMAXFUN)	·· 731 732 733 734 735 736 737 738 739 740
DENT .	DIMENSION (0 · NMAXFUN)	·· 231,232,233,234,233,230,237,230,237,230,237,240
DENT .	DIMENSION (0 · NMAXFUN)	•• 751 750 752 754 755 756 757
KEAL,	DIMENSION (0. INMAXPOIN)	231,232,233,234,233,230,237
REAL,	DIMENSION (0:NMAXN)	:: PRATEPRIM, PRATESECN, PRATETERT
REAL.	DIMENSION (():NMAXN)	: PRATEADDALK1.PRATEADDALK2.PRATEADDALK3
REAL.	DIMENSION (0:NMAXN)	:: PRATEADDALK4, PRATEADDALK5, PRATEADDALK6
REAL.	DIMENSION (0:NMAXN)	:: PRATEADDBEN1
REAL .	DIMENSION (0:NMAXN)	:: PRATEADDBEN2
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN2ORTH, PRATEADDBEN2META, PRATEADDBEN2PARA
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN3
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN3A, PRATEADDBEN3B, PRATEADDBEN3C
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN4
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN4A, PRATEADDBEN4B, PRATEADDBEN4C
REAL	DIMENSION (0:NMAXN)	:: PRATEADDBEN5, PRATEADDBEN6
REAL,	DIMENSION (0:NMAXN)	:: PRATEADDPYR1, PRATEADDPYR2, PRATEADDPYR3
REAL,	DIMENSION (0:NMAXN)	:: PRATEADDPYR4, PRATEADDPYR5, PRATEADDPYR6
REAL,	DIMENSION (0:NMAXN)	:: prateaddfur1, prateaddfur2
REAL,	DIMENSION (0:NMAXN)	:: PRATEADDIMI1
REAL	DIMENSION (0:NMAXN)	:: PRATEADDTRZ1
DEAT		•• •• •••	
DENT		· · UVALLRAT	L, NADOIRAIL, ADDALKRAIL, GRAILALCUL, GRAILCABÂL
DENT		·· INIKATE	DATEC CDATEC CDATECU CDATECN CDATENO) CDATECONUS
REAL		:: GRATECON	H. GRATECON. GRATENH2. GRATENH. GRATEN GRATENCON. GRATECON

 REAL
 :: ADDARMRATE, PRATEADDBEN, PRATEADDPYR, PRATEADDFUR, PRATEADDIMI, PRATEADDTRZ

:: fn_output

!**para	meters**	
y(1)=	1.17401	! '-CH2-
y(2)=	1.17401	! '-CH<
y(3) =	1.17401	! '>C<
y(4) =	0.57803	! '-OH
y(5)=	1.17580E+08	!k prim
у(б)=	5.10970E+08	!k sec
y(7) =	1.99026E+09	!k tert
y(8) =	9.99996E+07	!k OH
y(9)=	1.12000	! '-CH3
y(10) =	0.55103	!'-O- AND -C-O-
y(11) =	0.15399	!'-CO
y(12) =	0.15399	! '-CH2-CO-
y(13)=	0.15399	! '-CH-CO-
y(14) =	0.60162	! '-CHO
y(15)=	0.04300	! '-COOR
y(16)=	0.00000	! '-OCOR
y(17)=	0.04300	! '-COOH
y(18)=	7.00463E+05	! kCOOH
y(19)=	0.00000	! '-F
y(20)=	0.20319	!'-Cl
y(21)=	0.37668	!'-Br
y(22)=	0.10180	!'-CF3
y(23)=	0.00000	!'-CF2-
y(24)=	0.11225	!'-CC13
y(25)=	2.38950	!'-S
y(26)=	2.38950	!'-S-S-
y(27)=	2.36093E+09	!'k -S-
y(28)=	3.67296E+09	!'k -S-S-
v(29) =	0.44480	!'-SO-

y(30)=	1.91952E+09	
y(31) =	2.38950	!'-SH-
y(32) =	9.93380E+08	
y(33) =	0.00292	! '-CN
y(34) =	5.54903E+06	
v(35) =	0.00000	! '-NO2
v(36) =	1.32607E+08	
v(37) =	0 15399	L'-CO-NH
y(38) =	0 15399	1'-CO-NH
y(30) =	0 15399	L'-CO-NG
y(39) =	0.13339	: -00-110
y(40) =	9.981208+07	
y(41) =	5.00446E+08	
y(42)=	9.98491E+08	
y(43)=	1.62857	!'-NH2
y(44)=	3.99837E+09	
y(45)=	1.62857	! ' -NH
y(46)=	1.62857	! '-N<
y(47)=	0.01054	! ' -N-NO
y(48)=	0.17649	! ' -N-NO2
v(49) =	1.00820E+08	
v(50) =	3.53248E+09	
v(51) =	0 00000E+00	
y(51) = y(52) =	0.00000E+00	
y(JZ)=	0.10201	
y(55)=	0.10281	: -PO
y(54)=	2.5/962E+U/	
Y(55)=	1.00000	:'-H
Y(56)=	0.36000	! '=O
y(57)=	0.15399	!->C-CO-
y(58)=	3.18576	!-N-CO-
y(59)=	0.00004	!-P<-
y(60)=	0.86006	!-RS5
y(61) =	0.05199	!-RS3
v(62) =	0 94498	1-0-seco
y(02)=	0.00000	. 0 5000
y(03) =	0.00000	10000
y(64)=	0.00000	!-0-C-C-
Y(65)=	0.36708	!-CH2Br
y(66)=	0.36708	!-CH2C1
y(67)=	0.36708	!-CHC12
y(68)=	0.36708	!-CHBr2
y(69)=	0.36708	!-CHCl-
y(70)=	0.00000	!-CH2CN
y(71) =	0.00000	!-CH2-NO
y(72) =	0.00000	!-CH-NO2
v(73) =	0.00000	!-CH2-O-
v(74) =	9 99990E+09	
y(75) =	1 01020E+08	
y(75) =	0 79771E+10	
y(70)=	3.1610CB.00	
Y(77) = (70)	3.16106E+09	
Y(78)=	3.01102E+10	
y(79)=	0.51475	!-CN(uns
y(80)=	0.38893	!-CH2-(u
y(81)=	0.59969	! -CO- (un
y(82)=	0.00000	!-OH(uns
y(83)=	0.59969	! -CHO (un
y(84)=	0.23449	! - COOH (u
y(85)=	0.23449	! - COOR (u
y(86)=	0.21000	!-Cl(uns
v(87) =	0.17115	!-CH3(un
v(88) =	0.59969	1-CO-NH?
v(89) =	1 00000	1>C=C<
v(90)-	1 00000	I-CERE
y(91) =	1 02285 - 10	
x(92)-	1 204100+00	
Y(92)=	1.29419E+09	
Y(93)=	9.1441/E+U8	
y(94)=	1.00078	!-CH2-(A
y(95)=	1.26917	!-OH(Ar)
y(96)=	0.97265	!-F(Ar)
y(97)=	0.97811	!-Cl(Ar)
y(98)=	0.87842	!-Br(Ar)
y(99)=	0.82106	!'-I(Ar)
y(100)=	0.41111	! ' - CN (Ar
y(101) =	0.40518	!-NO2(Ar
y(102) =	0.67178	!-CHO(Ar
v(103) =	0.67967	1-COOH (A
v(104) =	0 98129	1_CO_(A
v(105)-	0 84219	1_CONTRO
I(106) =	0 65601	. COMEZ
Y(100)=	0.05001	:-30- (A
Y(107) =	0.85532	:-NH-CO-
λ(T08)=	0.3/33⊥	:-SO3H (
y(109)=	⊥.10547	!-NH- (A
y(110)=	1.00078	!-CH< (A
y(111)=	1.03424	!-0- (Ar
y(112)=	1.00078	!-CH3 (A
y(113)=	1.00078	!>C< (Ar
y(114)=	1.48110	!-NH2 (A
v(115) =	1.78102E+09	
v(116) =	7 05874±+08	
$\gamma(117) =$	0 006600.00	
$(\perp \perp /) =$	ッ.00008世+U8	

	: N = 0U=
SH-	
	!k-SH-
-CIN	!k-CN
NO2	
CO-NH2	!k-NO2
-CO-NH-	
-CO-N<	
	!k -CO-NH2
	!k -CO-N<
-NH2	
NUL	!k-NH2
-MH -N<	
-N-NO	
-N-NO2	11- NTT
	!k-N<
	!k-N-NO
DO	!k-N-NO2
-PO	!k PO. PO3
н	
=0	
-CO- 1-CO-	
2<-	
RS5	
las)-secon	d
)-fluor	inated
D-C-C-f	luorinated
.H∠Br CH2Cl	
CHC12	
CHBr2	
CH2CN	
CH2-NO2	
CH-NO2	
:H2-0-	'k HH>C=C <h−1< td=""></h−1<>
	!k HH>C=C <h-2< td=""></h-2<>
	!k HH>C=C <h-2 !k HH>C=C< -1</h-2
	!k HH>C=C <h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<="" td=""></h></h-2
CN(uns)	!k HH>C=C <h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<="" td=""></h></h-2
CN(uns) CH2-(un	!k HH>C=C <h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)</h></h-2
CN(uns) CH2-(uns CO-(uns)	!k HH>C=C <h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)</h></h-2
CN (uns) CH2- (un CO- (uns) DH (uns) CHO (uns)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))</h></h-2 </pre>
CN(uns) CH2-(un CO-(uns) CHO(uns) CHO(uns COOH(un	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)))</h></h-2 </pre>
CN (uns) CH2-(un CO-(uns) CHO(uns) CHO(uns COOH(un COOR(un CI(uns)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)) s) s) s)</h></h-2 </pre>
CN(uns) CH2-(un CO-(uns) CH0(uns) CH0(uns COOH(un COOR(un C1(uns) CH3(uns)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)) s) s))</h></h-2 </pre>
CN (uns) CH2-(un CH(uns) CH(uns) CHO(uns) CHO(uns) CHO(uns) CH3(uns) CH3(uns) CH3(uns) CH3(uns)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)) s) s) s)) uns)</h></h-2 </pre>
2N(uns) CH2-(un CO-(uns) CH0(uns) CH0(uns) CH0(uns) COOH(un C1(uns) CH3(uns) CH3(uns) CH3(uns) CH3(uns) CH5(CH5)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s)) uns)</h></h-2 </pre>
2N(uns) 2H2-(un 2O-(uns) 2H0(uns) 2H0(uns) 2OOH(un 2OOR(un 2H3(uns) 2H3(uns	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s)) s) s) s) s) */ */ */ */ */ */ */ */ */ */ */ */ */</h></h-2 </pre>
2N(uns) H2-(un CO-(uns H(uns) 2HO(uns 200H(un 200R(un 1)(uns) 2H3(uns 20-NH2(2=C< 26H5	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<+ (cis) s))) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-3,5</h-2 </pre>
2N(uns) H2-(un CO-(uns H(uns) CHO(uns COOH(un COOH(un COOH(un COOH(un COOH(un COOH(un COOH(un COOH(un COOH(uns) COOH	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) 2H2-(un 2O-(uns) H(uns) HO(uns) COOR(un 2OOR(un 2OOR(un 2OO-NH2(2=C< 26H5 2H2-(Ar H(Ar)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) 2H2-(un 2O-(uns) 2H0(uns) 2H0(uns) 2OOR(un 2OOR(un 2OOR(un 2OO-NH2(2=C< 26H5 2H2-(Ar) 2H2-(Ar) 2H2-(Ar) 2H2-(Ar)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) 2H2-(uns) 2H0(uns) 2H0(uns) 2H0(uns) 2COH(un 2COH(un 2COOR(un 2CO-NH2(uns) 2H3(uns) 2CO-NH2(C 2=C< 26H5 2H2-(Ar) 2H(Ar) 2(Ar) 21(Ar) 21(Ar)	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) CH2-(uns) OH(uns) HO(uns) HO(uns) COOR(un COOR(un COOR(uns) CH3(uns) CH3(uns) CH2-(Ar) H(Ar) H(Ar) C(Ar) H	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) CH2-(un 2O-(uns) DH(uns) HO(uns) COOH(un COOR(un COOR(un COOR(uns) CH2-(Ar) CH2-(Ar) H(Ar) C(A	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) * !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h></h-2 </pre>
2N(uns) CH2-(uns) OH(uns) HO(uns) HO(uns) COOH(uns) COOH(uns) COOH(uns) CH3(uns) CH3(uns) CO-NH2(C CH2-(Ar) H(Ar) C(Ar) C(Ar) C(Ar) -CN(Ar) H(Ar) CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) H(Ar) -CN(Ar) -CN(Ar) H(Ar) -CN(Ar) -	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) * * * * * *</h></h-2 </pre>
2N(uns) 2N(uns) 2HO(uns) 2HO(uns) 2HO(uns) 2HO(uns) 2COOH(un 2OOOH(un 2COOH(2HC) 2HZ-(Ar) 2HZ-(Ar) 2HZ-(Ar) 2(Ar) 2(Ar) 2(Ar) 2HZ(Ar) 2HO(Ar	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
2N(uns) 2N(uns) 2O(uns) 2HO(uns) 2HO(uns) 2GOOH(un 2GOOH(uns) 2H3(uns) 2GO-NH2(2=C< 2GH5 2H2-(Ar) 2(A	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<< +1 (cis) s)))) s) s) s) s))) !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)</h-2 </pre>
2N(uns) 2N(uns) 2O(uns) 2HO(uns) 2HO(uns) 2OOOH(un 2OOOH(un 2OOOH(uns) 2H3(uns) 2H3(uns) 2H2-(Ar) 2H2-(Ar) 2H2-(Ar) 2H(Ar) 2(Ar) 2(Ar) 2H(Ar) 2H0(Ar	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C< +1 (cis) s))) s) s) s) s))) !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)) Ar)</h-2 </pre>
2N(uns) Ch2-(un Ch2-(un Ch2-(uns) Ch2(uns) Ch2(uns) Ch2(uns) Ch2(uns) Ch2(uns) Ch2(uns) Ch2(ch2) Ch2(Ar) Ch(Ar) C	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
2N(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(Ar) C	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
2N(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(Ar) C	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s))) uns) !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-4)) Ar)) Ar)) ar)))</h></h-2 </pre>
2N(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(uns) CD(Ar) C	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) * * * * * *</h></h-2 </pre>
<pre>2N(uns) DH2-(un DO-(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH3(uns) DH3(uns) DH3(uns) DH2(Ar) DH(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH(Ar) D</pre>	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
<pre>2N(uns) DH2-(uns) DH2(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(Ar) DH1(Ar</pre>	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
<pre>2N(uns) DH2-(un 3D-(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH3(uns) DH3(uns) DH3(uns) DH3(uns) DH3(uns) DH2(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH0(Ar) DH1(Ar)</pre>	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s) s) s) s) s)</h></h-2 </pre>
<pre>2N(uns) DH2-(un 30-(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(uns) DH0(Ar) DH1(Ar) DH1(Ar) DH1(Ar) DH1(Ar) DH1(Ar) DH1(Ar) DH2(Ar) D</pre>	<pre>!k HH>C=C<h-2 !k HH>C=C< -1 !k HH>C=C< -2 !k H>C=C<h (cis)<br="">s))) s) s) s) s) s) s)) !k-C6H5-2,6 !k-C6H5-3,5 !k-C6H5-3,5 !k-C6H5-4)) ar)) hr)))))))))))))))))</h></h-2 </pre>

<pre>y(118) = y(119) = y(120) = y(121) = y(122) = y(122) = y(124) = y(126) = y(127) = y(128) = y(129) = y(130) = y(130) = y(131) = y(132) = y(133) = y(135) = y(135) = y(137) = y(138) = y(139) = y(140) =</pre>	1.69648E+09 1.90707E+09 7.12780E+09 2.15116E+09 1.63538E+09 2.79648E+09 3.06673E+08 1.13033E+09 1.67605E+09 1.97249 0.01078 1.00000 9.89963E+08 2.92815E+08 8.22558E+08 2.49180E+07 7.90881E+08 8.88526E+08 1.02552E+09 3.1676E+08 3.70768E+09	!-ОН !-СООН !-руг
$y(141) = y(142) = y(143) = y(144) = y(145) = y(145) = y(146) = y(147) = y(148) = y(149) = y(150) = (150) = y(150) = \\y(150) = \\y(150$	7.92572E+08 7.61212E+08 0.49841 0.96179 1.74733 0.60347 0.81204 0.33275 1.00000 3.92420E+09	!-CONH !-CH3 !-NH2 !-Br !-C1 !-CN !-fur
y(151)= y(152)= y(153)= y(154)= y(155)= y(156)=	4.81346E+09 1.41939E+09 1.23883 1.23883 0.64680 5.70629E+09	! -CH3 ! -CH2- ! -CH0
y(157) = y(158) = y(159) = y(160) = y(161) = y(162) = y(163) = y(164) = y(165) =	5.70629E+09 0.60013 1.02225 0.77850 0.90311 408844.05370 0.00000 0.00000 0.00000	!-COOH !-O- !-NO2 !-CH-C !k-N-C !-CO(c !-N<(u !k
y(160) = y(167) = y(168) = y(169) = y(170) = y(171) = y(172) = y(173) =	0.00000 0.0000 0.00000 5.14211E+11 0.00000 1.00000 1.70508E+09	!-Br (!-F (!-NO2(!-NH2(!-Iimi
y(174) = y(175) = y(176) = y(177) = y(178) = y(179) = y(180) =	1.08285E+09 0.40621 0.61015 0.94316 0.64680 1.23883 4.13229E+06	! -CO- ! -CONH ! -C6H5 ! -Br ! -CH<
y(181) = y(182) = y(183) = y(184) = y(185) = y(185) = y(186) =1 y(187) = y(188) =	0.00000 0.21404 0.99757 4.94660 0.04155 .82626 5.21229E+10 3.11655E+08	!-OH (!-O (!-Cl (!-NH2(!-NH-(!-S- (! H>C=
y(189) = y(190) = y(191) = y(192) = y(193) = y(194) = y(195) = y(196) = y(197) =	7.06349E+09 3.68416E+09 2.80386E+09 3.52577E+09 0.68103 1.61412 0.73095 1.42538 1.16621	!->C-O !-N< (!-CO (!-NH-(!-Alk(

<pre>!k-C6H4 (m-Ar)-4,6 !k-C6H4 (m-Ar)-5 !k-C6H4 (p-Ar)-2,6 !k-C6H3 (1,2,3-Ar)-4,6 !k-C6H3 (1,2,3-Ar)-5 !k-C6H3 (1,2,4-Ar)-5 !k-C6H3 (1,2,4-Ar)-5 !k-C6H3 (1,2,4-Ar)-6 !k-C6H3 (1,2,4-Ar)-6 !k-C6H3 (1,3,5-Ar) OH (Pyr) -COUM (Pyr)</pre>	i
<pre>Pyr !k(2-pyr)-3,6 !k(2-pyr)-4,5 !k(3-pyr)-2 !k(3-pyr)-2 !k(3-pyr)-5 !k(4-pyr)-5 !k(4-pyr)-2,6 !k(2,6-pyr)-3,5 !k(2,6-pyr)-4 !k(3,5-pyr)-4 !k(3,5-pyr)-4 !k(2,4,6-pyr)-3,5 </pre>	
-CH3 (Pyr)	
-NH2 (Pyr)	
-Br (Pyr)	
-Cl (Pyr)	
-CN (Pyr)	
-fur	
!-k(2-tur)-3	
!-K(2-Iur)-4	
!-K(2-IUT)-5	
CHO (fur)	
-CHO (fur)	
L-k(5-furfural)-3	
$\frac{1}{1-k(5-furfural)-4}$	
-COOH (fur)	
-0 = (5 - furfural)	
-NO2 (5-furfural)	
-CH-CN-(fur)	
K-N-CO-N	
-CO(cyclic)(uns)	
-N<(uns)	
!k H>C=C< -1	
!k H>C=C< -2	
-Br (uns)	
-F (uns)	
-NO2(uns)	
!K >C=C<	
-NH2(UIIS) -Timid	
!k(imid)-1	
!k(imid)-2	
-CO- (fur)	
-CONH2-(fur)	
-C6H5 (fur)	
-Br (fur)	
-CH< (fur)	
!k(triazine)	
-OH (Triazine)	
-O (Triazine)	
-CI (Triazine)	
-NH2(Triazine)	
-Nn-(IIIazine)	
H>C=C <h< math=""> (trans)</h<>	
!kC6H6	
! kC6H5	
!kC6H4-1,2,3,4	
!kC6H4-1,2,3,5	
!kC6H4-1,2,4,5	
->C-O-	
-N< (imid)	
-CO (imid)	
-NH-(imid)	
-Alk(imid)	

!**end of parameters**

OPEN(7, file='GCM_INPUT.txt', status='unknown')

```
PRINT*, "H-atom abstraction"
!The effect of functional groups includes alkane, oxygenated, alkyl halides, !S-, N-, or P-atom containing functional groups.
!Primary C-H bond(s) (kprim*Xi)
   \ensuremath{\mathsf{PRINT}}^\star, "The number of primary C-H bonds presented in the molecule" READ (7,*) NPRIMCH
   IF (NPRIMCH == 0.0) THEN
       PRATEPRIM(NPRIMCH)=0.0
   ELSE IF (NPRIMCH >= 1.) THEN
      PRINT*, "Input group contribution factors of functional groups X of R1 &
    & from the supplement material Tables"
      DO 10 I=1,NPRIMCH
      READ(7,*) X1(I)
         PRATEPRIM(NPRIMCH)=PRATEPRIM(NPRIMCH)+3*v(5)*X1(1)
                                                      IkCH3R1
      CONTINUE
10
   END IF
!Secondary C-H bond(s) (ksec*Xi*Xi)
   \ensuremath{\texttt{PRINT}}^\star, "The number of secondary C-H bonds presented in the molecule" <code>READ</code> (7,*) <code>NSECNCH</code>
   IF (NSECNCH == 0.0) THEN
       PRATESECN(NSECNCH)=0.0
   ELSE IF (NSECNCH >= 1.) THEN
      DO 20 J=1,NSECNCH
         READ(7,*) X2(J)
READ(7,*) X3(J)
          PRATESECN(NSECNCH)=PRATESECN(NSECNCH)+2*y(6)*X2(J)*X3(J) !kCH2R1R2
20
          CONTINUE
   END IF
!Tertiary C-H bond(s) (ktert*Xi*Xi)
   PRINT*, "The number of tertiary C-H bonds presented in the molecule"
   READ (7,*) NTERTCH
   IF (NTERTCH == 0.0) THEN
       PRATETERT(NTERTCH)=0.0
   ELSE IF (NTERTCH >= 1.) THEN
      PRINT*, "Input group contribution factors of functional groups X of R1,R2,and R3 &
           & from the supplement material Tables" DO 30 K=1,NTERTCH
          READ(7,*) X4(K)
           READ(7,*) X5(K)
           READ(7,*) X6(K)
          30
           CONTINUE
   END IF
!Group rate constants for alcohol and carboxylic functional group, \ensuremath{\mathsf{kR4}}
   PRINT*, "The number of alcohol functional group presented in the molecule"
READ(7,*) NALCOL
   GRATEALCOL=NALCOL*y(8)
                                !k-OH
   PRINT*, "The number of carboxylic functional group presented in the molecule"
   READ(7,*) NCABXL
   GRATECABXL=NCABXL*y(18)
                                 !k-COOH
!HO* rate constant for H-atom abstraction
   .
HO radical interaction with S, N, P-atom containing compounds
                                                       GRATES=NS*y(27)
                       !k-S-
   PRINT*, "The number of -S-S-"
READ(7,*) NSS
   GRATESS=NSS*y(28)
                       !k-S-S-
   PRINT*, "The number of -SO-"
READ(7,*) NSO
   GRATESO=NSO*y(30)
                       !k-S0-
```

```
PRINT*, "The number of -SH-"
    READ(7,*) NSH
    GRATESH=NSH*y(32)
                            !k-SH-
!Group rate constant for N-atom containing compounds
    PRINT*, "The number of -CN"
    READ(7,*) NCN
    GRATECN=NCN*y(34)
                               !k-CN
   PRINT*, "The number of -NO2"
READ(7,*) NNO2
    GRATENO2=NNO2*y(36)
                               !k-NO2
    PRINT*, "The number of -CO-NH2"
    READ(7,*) NCONH2
    GRATECONH2=NCONH2*y(40) !k-CO-NH2
   PRINT*, "The number of -CO-NH-"
READ(7,*) NCONH
    GRATECONH=NCONH*y(41)
                                !k-CO-NH-
    \ensuremath{\mathtt{PRINT}^\star} , "The number of -CO-N<"
    READ(7,*) NCON
    GRATECON=NCON*y(42)
                               !k-CO-N<
   PRINT*, "The number of -NH2"
READ(7,*) NNH2
    GRATENH2=NNH2*y(44)
                              !k-NH2
   PRINT*, "The number of -NH-"
READ(7,*) NNH
    GRATENH=NNH*y(49)
                               !k-NH-
    PRINT*, "The number of -N<"
    READ(7,*) NN
    GRATEN=NN*y(50)
                               !k-N<
   PRINT*, "The number of -N-CO-N"
READ(7,*) NNCON
    GRATENCON=NNCON*y(162)
                                 !k-N-CO-N
!Group rate constant for P-atom containing compounds
   PRINT*, "The number of -PO, PO3"
READ(7,*) NP
    GRATEP=NP*y(54)
                                 !k-P<-
!k for interaction with S-, N-, or P-atom containing compounds
    INTRATE=GRATES+GRATESS+GRATESO+GRATESH+GRATECN+GRATEN02+GRATECONH2+GRATECONH+GRATECON &
&
     +GRATENH2+GRATENH+GRATEN+GRATENCON+GRATEP
!HO radical addition to alkenes
_____
PRINT*, "Basic structure that includes C=C bond are: &
   \&(1)HH>C=C<H,\ (2)HH>C=C<,\ (3)H>C=C<H(cis),\ (4)H>C=C<H(trans),\ (5)H>C=C<,\ and\ (6) >C=C<" PRINT*, "The number of basic structure 'HH>C=C<H' presented in the molecule" READ (7,*) NADDALK1
        IF (NADDALK1 == 0.0) THEN
            PRATEADDALK1(NADDALK1)=0.0
        ELSE IF (NADDALK1 >= 1.) THEN
            PRINT*, "Input group contribution factor, Y of R1 "
DO 40 L1=1,NADDALK1
            READ (7,*) Y1(L1)
                \texttt{PRATEADDALK1}(\texttt{NADDALK1}) = \texttt{PRATEADDALK1}(\texttt{NADDALK1}) + (\texttt{y}(\texttt{74}) + \texttt{y}(\texttt{75})) * \texttt{Y1}(\texttt{L1})
            CONTINUE
40
        END IF
    PRINT*, "The number of basic structure 'HH>C=C<' presented in the molecule"</pre>
    READ(7,*) NADDALK2
        IF (NADDALK2 == 0.0) THEN
            PRATEADDALK2(NADDALK2)=0.0
        ELSE IF (NADDALK2 >= 1.) THEN
            PRINT*, "Input group contribution factors, Y of Rl and R2"
DO 50 L2=1,NADDALK2
            READ (7,*) Y2(L2)
            READ (7,*) Y3(L2)
               PRATEADDALK2(NADDALK2) = PRATEADDALK2(NADDALK2) + (y(76) + y(77)) * y2(L2) * y3(L2)
50
            CONTINUE
        END IF
```

```
PRINT*, "The number of basic structure 'H>C=C<H(cis)' presented in the molecule"
   READ(7,*) NADDALK3
       IF (NADDALK3 == 0.0) THEN
           PRATEADDALK3 (NADDALK3) = 0.0
       ELSE IF (NADDALK3 >= 1.) THEN
           PRINT*, "Input group contribution factors, Y of R1 and R2"
           DO 60 L3=1,NADDALK3
           READ (7,*) Y4(L3)
READ (7,*) Y5(L3)
              PRATEADDALK3 (NADDALK3) = PRATEADDALK3 (NADDALK3) + 2*y(78)*Y4(L3)*Y5(L3)
           CONTINUE
60
       END IF
   PRINT*, "The number of basic structure 'H>C=C<H(trans)' presented in the molecule"
   READ(7,*) NADDALK4
       IF (NADDALK4 == 0.0) THEN
       PRATEADDALK4 (NADDALK4) = 0.0
       ELSE IF (NADDALK4 >= 1.) THEN
           PRINT*, "Input group contribution factors, Y of R1 and R2"
           DO 70 L4=1,NADDALK4
           READ (7,*) Y6(L4)
READ (7,*) Y7(L4)
              PRATEADDALK4(NADDALK4)=PRATEADDALK4(NADDALK4)+2*v(187)*v6(L4)*v7(L4)
           CONTINUE
70
       END TE
   PRINT*, "The number of basic structure 'H>C=C<' presented in the molecule"
   READ(7,*) NADDALK5
       IF (NADDALK5 == 0.0) THEN
       PRATEADDALK5(NADDALK5)=0.0
       ELSE IF (NADDALK5 >= 1.) THEN
           PRINT*, "Input group contribution factors, Y of R1, R2, and R3"
DO 80 L5=1,NADDALK5
           READ (7,*) Y8(L5)
READ (7,*) Y9(L5)
           READ (7,*) Y10(L5)
              PRATEADDALK5(NADDALK5)=PRATEADDALK5(NADDALK5)+2*(y(165)+y(166))*Y8(L5)*Y9(L5)*Y10(L5)
80
           CONTINUE
       END IF
   PRINT*, "The number of basic structure '>C=C<' presented in the molecule"
    READ(7,*) NADDALK6
       IF (NADDALK6 == 0.0) THEN
       PRATEADDALK6(NADDALK6)=0.0
       ELSE IF (NADDALK6 >= 1.) THEN
           PRINT*, "Input group contribution factors, Y of R1,R2,R3,and R4"
           DO 90 L6=1,NADDALK6
           READ (7,*) Y11(L6)
READ (7,*) Y12(L6)
           READ (7,*) Y13(L6)
           READ (7,*) Y14(L6)
              PRATEADDALK6(NADDALK6)=PRATEADDALK6(NADDALK6)+v(170)*v11(L6)*v12(L6)*v13(L6)*v14(L6)
90
           CONTINUE
       END IF
   ADDALKRATE=PRATEADDALK1 (NADDALK1)&
   & +PRATEADDALK2(NADDALK2) &
   & +PRATEADDALK3(NADDALK3) &
   & +PRATEADDALK4(NADDALK4) &
   & +PRATEADDALK5(NADDALK5) &
   & +PRATEADDALK6(NADDALK6)
!HO addition to aromatic compounds
1*****
!Benzene
PRINT*, "The # of -C6H5 with one functional group"
   READ(7,*) NBENC6H5
       IF (NBENC6H5 == 0.0) THEN
           PRATEADDBEN1 (NBENC6H5)=0.0
       ELSE IF (NBENC6H5 >= 1.) THEN
           PRINT*, "Input group contribution factor, Z of R1"
              DO 100 B1=1,NBENC6H5
READ(7,*) Z1(B1)
               PRATEADDBEN1 (NBENC6H5) = PRATEADDBEN1 (NBENC6H5) + (2*y(91)+2*y(92)+y(93))*Z1(B1)
                                                                                         !k-C6H5
100
               CONTINUE
```

END TE PRINT*, "The # of -C6H4 with one functional group at 'ortho-' position" READ(7,*) BENC6H40 **IF** (BENC6H4O == 0.0) **THEN** PRATEADDBEN2ORTH(BENC6H4O)=0.0 ELSE IF (BENC6H4O >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1 and R2" DO 110 B2=1,BENC6H40 **READ**(7,*) Z2(B2) **READ**(7,*) Z3(B2) PRATEADDBEN2ORTH(BENC6H4O)=PRATEADDBEN2ORTH(BENC6H4O)+(2*y(115)+2*y(116))*Z2(B2)*Z3(B2) !k-C6H4(ortho) 110 CONTINUE END IF PRINT*, "The # of -C6H4 with one functional group at 'meta-' position" READ(7,*) BENC6H4M IF (BENC6H4M == 0.0) THEN PRATEADDBEN2META(BENC6H4M)=0.0ELSE IF (BENC6H4M >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1 and R2" DO 120 B2=1,BENC6H4M **READ**(7,*) Z4(B2) **READ**(7,*) Z5(B2) PRATEADDBEN2META(BENC6H4M) = PRATEADDBEN2META(BENC6H4M) + (v(117) + 2*v(118) + v(119)) * Z4(B2) * Z5(B2)!k-C6H4(meta) CONTINUE 120 END TE **PRINT***, "The # of -C6H4 with one functional group at 'para-' position" READ(7,*) BENC6H4P IF (BENC6H4P == 0.0) THEN PRATEADDBEN2PARA(BENC6H4P)=0.0 ELSE IF (BENC6H4P >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1 and R2" DO 130 B2=1,BENC6H4P **READ**(7,*) Z6(B2) **READ**(7,*) Z7(B2) PRATEADDBEN2PARA(BENC6H4P) = PRATEADDBEN2PARA(BENC6H4P) + (2*y(120) + 2*y(121))*Z6(B2)*Z7(B2) + k - 2*y(121))*Z6(B2) + k - 2*y(121))*Z6(B2C6H4(para) 130 CONTINUE END TE PRATEADDBEN2(BENC6H4) = PRATEADDBEN2ORTH(BENC6H40)+PRATEADDBEN2META(BENC6H4M)+PRATEADDBEN2PARA(BENC6H4P) **IF** (BENC6H3A == 0.0) **THEN** PRATEADDBEN3A(BENC6H3A)=0.0 ELSE IF (BENC6H3A >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1,R2 and R3" DO 140 B3=1,BENC6H3A **READ**(7,*) Z8(B3) READ(7,*) Z9(B3) **READ**(7,*) Z10(B3) C6H3(1,2,3-Ar) CONTINUE 140 END IF **IF** (BENC6H3B == 0.0) **THEN** PRATEADDBEN3B(BENC6H3B)=0.0 ELSE IF (BENC6H3B >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1,R2 and R3" DO 150 B3=1,BENC6H3B **READ**(7,*) Z11(B3) **READ**(7,*) Z12(B3) **READ**(7,*) Z13(B3) PRATEADDBEN3B(BENC6H3B)=PRATEADDBEN3B(BENC6H3B)+(y(124)+y(125)+y(126))*Z11(B3)*Z12(B3)*Z13(B3) !k-C6H3(1,2,4-Ar) CONTINUE 150 END IF **PRINT***, "The # of -C6H3 with one functional group at (1,3,5-Ar) position (called position C)" READ(7,*) BENC6H3C IF (BENC6H3C == 0.0) THEN PRATEADDBEN3C(BENC6H3C)=0.0 ELSE IF (BENC6H3C >= 1.) THEN
 PRINT*, "Input group contribution factors, Z of R1,R2 and R3" DO 160 B3=1, BENC6H3C READ(7,*) Z14(B3) READ(7,*) Z15(B3)

READ(7,*) Z16(B3)

```
PRATEADDBEN3C(BENC6H3C) = PRATEADDBEN3C(BENC6H3C) + (3*y(127))*Z14(B3)*Z15(B3)*Z16(B3) + (3*y(127))*Z14(B3)*Z15(B3)*Z16(B3))
                                                                                                                                                                                                                                                                             !k-
C6H3(1,3,5-Ar)
                                          CONTINUE
160
                     END IF
PRATEADDBEN3(BENC6H3) = PRATEADDBEN3A(BENC6H3A)+PRATEADDBEN3B(BENC6H3B)+PRATEADDBEN3C(BENC6H3C)
PRINT*, "The # of -C6H2 with one functional group at (1,2,3,4-Ar) position (called position A)"
          READ(7,*) BENC6H2A
                     IF (BENC6H2A == 0.0) THEN
                               PRATEADDBEN4A(BENC6H2A)=0.0
                     ELSE IF (BENC6H2A >= 1.) THEN
                                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                                          DO 170 B4=1, BENC6H2A
                                          READ(7,*) Z17(B4)
                                          READ(7,*) Z18(B4)
                                           READ(7,*) Z19(B4)
                                          READ(7,*) Z20(B4)
                                          C6H2(1,2,3,4-Ar)
                                         CONTINUE
170
                     END IF
IF (BENC6H2B == 0.0) THEN
                                PRATEADDBEN4B(BENC6H2B)=0.0
                     ELSE IF (BENC6H2B >= 1.) THEN
                                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                                          DO 180 B4=1, BENC6H2B
                                          READ(7,*) Z21(B4)
                                          READ(7,*) Z22(B4)
READ(7,*) Z23(B4)
                                          READ(7,*) Z24(B4)
                                          PRATEADDBEN4B(BENC6H2B)=PRATEADDBEN4B(BENC6H2B)+(2*y(191))*Z21(B4)*Z22(B4)*Z23(B4)*Z24(B4)
!k-C6H2(1,2,3,5-Ar)
                                          CONTINUE
180
                     END IF
PRINT*, "The # of -C6H2 with one functional group at (1,2,4,5-Ar) position (called position C)"
          READ(7,*) BENC6H2C
                     IF (BENC6H2C == 0.0) THEN
                     PRATEADDBEN4C(BENC6H2C)=0.0
ELSE IF (BENC6H2C >= 1.) THEN
                                PRINT*, "Input group contribution factors, Z of R1,R2,R3 and R4"
                                          DO 190 B4=1, BENC6H2C
                                          READ(7,*) Z25(B4)
READ(7,*) Z26(B4)
READ(7,*) Z26(B4)
                                          READ(7,*) Z28(B4)
                                          \texttt{PRATEADDBEN4C(BENC6H2C)=PRATEADDBEN4C(BENC6H2C)+(2*y(192))*225(B4)*226(B4)*227(B4)*228(B4))*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*228(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)*28(B4)
!k-C6H2(1,2,4,5-Ar)
                                          CONTINUE
190
                     END IF
PRATEADDBEN4(BENC6H2)=PRATEADDBEN4A(BENC6H2A)+PRATEADDBEN4B(BENC6H2B)+PRATEADDBEN4C(BENC6H2C)
IF (BENC6H == 0.0) THEN
                               PRATEADDBEN5(BENC6H)=0 0
                     ELSE IF (BENC6H >= 1.) THEN
                                PRINT*, "Input group contribution factors, Z of R1,R2,R3,R4 and R5"
                                          DO 200 B5=1,BENC6H
                                          READ(7,*) Z29(B5)
READ(7,*) Z30(B5)
                                          READ(7,*) Z31(B5)
READ(7,*) Z32(B5)
                                          READ(7,*) Z33(B5)
                                          \texttt{PRATEADDBEN5(BENC6H) = PRATEADDBEN5(BENC6H) + y(189) * Z29(B5) * Z30(B5) * Z31(B5) * Z32(B5) * Z33(B5) + Z33(B5)
!k-C6H(1,2,3,4,5-Ar)
                                          CONTINUE
200
                     END IF
PRINT*, "The # of -C6 with functional groups at (1,2,3,4,5,6-Ar) position"
          READ(7,*) BENC6
                     IF (BENC6 == 0.0) THEN
                                PRATEADDBEN6 (BENC6) = 0.0
                     ELSE IF (BENC6 >= 1.) THEN
                                PRINT*, "Input group contribution factors, Z of R1,R2,R3,R4,R5 and R6"
DO 210 B6=1,BENC6
                                          READ(7,*) Z34(B6)
                                          READ(7,*) 234(B6)
READ(7,*) 235(B6)
READ(7,*) 236(B6)
READ(7,*) 237(B6)
READ(7,*) 238(B6)
```

READ(7,*) Z39(B6)

PRATEADDBEN6(BENC6)=PRATEADDBEN6(BENC6)+6*y(188)*Z34(B6)*Z35(B6)*Z36(B6)*Z37(B6)*Z38(B6)*Z39(B6) !k-C6(1,2,3,4,5,6-Ar) 210 CONTINUE END IF PRATEADDBEN= PRATEADDBEN1(NBENC6H5) & PRATEADDBEN2(BENC6H4) & & ŵ + PRATEADDBEN3(BENC6H3) & PRATEADDBEN4(BENC6H2) & 8 + PRATEADDBEN5(BENC6H) & & + PRATEADDBEN6(BENC6) & !overall rate constant for benzene-derivatives ! Pyridine with functional groups PRINT*, "The # of pyridine ring with functional group at (2-pyr) position" READ(7,*) PYR1 **IF** (PYR1 == 0.0) **THEN** PRATEADDPYR1(PYR1)=0.0 ELSE IF (PYR1 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1" DO 220 P1=1, PYR1 **READ**(7,*) Z40(P1) PRATEADDPYR1(PYR1) = PRATEADDPYR1(PYR1) + (2*v(131) + 2*v(132)) * Z40(P1)!k(2-pyr) 220 CONTINUE END IF PRINT*, "The # of pyridine ring with functional group at (3-pyr) position" READ(7,*) PYR2 **IF** (PYR2 == 0.0) **THEN** PRATEADDPYR2(PYR2)=0.0 ELSE IF (PYR2 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1" DO 230 P2=1,PYR2 **READ**(7,*) Z41(P2) PRATEADDPYR2(PYR2)=PRATEADDPYR2(PYR2)+(y(133)+2*y(134)+y(135))*Z41(P2) !k(3-pvr) 230 CONTINUE END IF **PRINT***, "The # of pyridine ring with functional group at (4-pyr) position" READ(7,*) PYR3 **IF** (PYR3 == 0.0) **THEN** PRATEADDPYR3(PYR3)=0.0 ELSE IF (PYR3 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1" DO 240 P3=1, PYR3 READ(7,*) Z42(P3) PRATEADDPYR3(PYR3)=PRATEADDPYR3(PYR3)+(2*y(136)+2*y(137))*Z42(P3) !k(4-pyr) CONTINUE 240 END IF PRINT*, "The # of pyridine ring with functional group at (2,6-pyr) position"
 READ(7,*) PYR4 **IF** (PYR4 == 0.0) **THEN** PRATEADDPYR4(PYR4)=0.0 ELSE IF (PYR4 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1 and R2" DO 250 P4=1,PYR4 READ(7,*) Z43(P4) READ(7,*) Z44(P4) PRATEADDPYR4(PYR4)=PRATEADDPYR4(PYR4)+(2*y(138)+y(139))*Z43(P4)*Z44(P4) !k(2,6-pyr) 250 CONTINUE END IF PRINT*, "The # of pyridine ring with functional group at (3,5-pyr) position" READ(7,*) PYR5 **IF** (PYR5 == 0.0) **THEN** PRATEADDPYR5(PYR5)=0.0 ELSE IF (PYR5 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1 and R2" DO 260 P5=1.PYR5 READ(7,*) Z45(P5) **READ**(7,*) Z46(P5) PRATEADDPYR5(PYR5)=PRATEADDPYR5(PYR5)+(2*y(140)+y(141))*Z45(P5)*Z46(P5) !k(3,5-pvr) 260 CONTINUE END IF **PRINT***, "The # of pyridine ring with functional group at (2,4,6-pyr) position" READ(7,*) PYR6 **IF** (PYR6 == 0.0) **THEN** PRATEADDPYR6(PYR6)=0.0ELSE IF (PYR6 >= 1.) THEN PRINT*, "Input group contribution factors, Z of R1,R2 and R3" DO 270 P6=1,PYR6 READ(7,*) Z47(P6) READ(7,*) Z48(P6) READ(7,*) Z48(P6)

```
PRATEADDPYR6(PYR6) = PRATEADDPYR6(PYR6) + 3*y(142)*z47(P6)*z48(P6)*z49(P6)
                                                                                               !k(2,4,6-pyr)
270
                CONTINUE
        END IF
PRATEADDPYR = PRATEADDPYR1(PYR1)
                                  + &
                PRATEADDPYR2(PYR2) + &
8
                PRATEADDPYR3(PYR3) + &
&
&
                PRATEADDPYR4(PYR4) + &
                PRATEADDPYR5(PYR5) + &
&
8
                PRATEADDPYR6(PYR6)
! furan
 PRINT*, "The # of pyridine ring with functional group at (2-fur) position"
   READ(7,*) FUR1
        IF (FUR1 == 0.0) THEN
           PRATEADDFUR1(FUR1)=0.0
        ELSE IF (FUR1 >= 1.) THEN
           PRINT*, "Input group contribution factors, Z of R1"
                DO 280 F1=1,FUR1
READ(7,*) Z50(F1)
                PRATEADDFUR1(FUR1)=PRATEADDFUR1(FUR1)+(y(150)+y(151)+y(152))*Z50(F1)
                                                                                             !k(2-fur)
280
                CONTINUE
        END IF
 PRINT*, "The # of pyridine ring with functional group at (5-furfural) position"
   READ(7,*) FUR2
       IF (FUR2 == 0.0) THEN
           PRATEADDFUR2(FUR2)=0.0
        ELSE IF (FUR2 >= 1.) THEN
           PRINT*, "Input group contribution factors, Z of Rl and R2"
DO 290 F2=1,FUR2
                READ(7,*) Z51(F2)
READ(7,*) Z52(F2)
                290
                CONTINUE
        END IF
PRATEADDFUR = PRATEADDFUR1(FUR1) + PRATEADDFUR2(FUR2)
!imidazole
 \tt PRINT^{\star}, "The \# of imidazole with 2 functional groups at 4,5-positions"
   READ(7,*) IMI
IF (IMI == 0.0) THEN
           PRATEADDIMI1(IMI)=0.0
       ELSE IF (IMI >= 1.) THEN
PRINT*, "Input group contribution factors, Z of R1 and R2"
D0 300 I1=1,IMI
READ(7,*) Z53(I1)
                READ(7,*) Z54(I1)
                PRATEADDIMI1(IMI) = PRATEADDIMI1(IMI)+(2*y(173)+y(174))*Z53(I1)*Z54(I1)
                                                                                          !k(imidazole)
300
                CONTINUE
        END IF
PRATEADDIMI = PRATEADDIMI1(IMI)
Itriazine
  PRINT*, "The # of triazine with 3 functional groups at 2,4,6-positions"
    READ(7,*) TRZ
       IF (TRZ == 0.0) THEN
           PRATEADDTR71(TR7)=0 0
        ELSE IF (TRZ >= 1) THEN
            PRINT*, "Input group contribution factors, Z of R1, R2 and R3"
DO 310 T1=1,TRZ
READ(7,*) Z55(T1)
                READ(7,*) Z56(T1)
READ(7,*) Z56(T1)
READ(7,*) Z57(T1)
                PRATEADDTRZ1(TRZ) = PRATEADDTRZ1(TRZ)+3*y(180)*Z55(T1)*Z56(T1)*Z57(T1)
                                                                                            !k(triazine)
310
                CONTINUE
        END IF
PRATEADDTRZ =PRATEADDTRZ1(TRZ)
   ADDARMRATE=PRATEADDBEN+PRATEADDPYR+PRATEADDFUR+PRATEADDTMT+PRATEADDTRZ
   CLOSE(7)
!Calculate overall reaction rate constant for a given molecule
                                                                *****
  OVALLRATE=HABSTRATE+INTRATE+ADDALKRATE+ADDARMRATE
   OPEN(8, file='output.txt', status='unknown')
   WRITE(8,*) "Calculated HO radical reaction rate constant,M-1s-1"
WRITE(8,*) " "
```

WRITE(8,*) "Overall rate constant"
WRITE(8,*) OVALLRATE
WRITE(8,*) " "
WRITE(8,*) "Partial rate constant for each reaction mechanism"
WRITE(8,*) "H-atom abstraction"
WRITE(8,*) H-ABSTRATE
WRITE(8,*) HO radical addition to alkene"
WRITE(8,*) ADDALKRATE
WRITE(8,*) ADDALKRATE
WRITE(8,*) ADDARMRATE
WRITE(8,*) HO radical interaction"
WRITE(8,*) HO radical interaction"
WRITE(8,*) INTRATE

CLOSE(8)

END PROGRAM GCMIdentifier

APPENDIX D: ENERGY OF HIGHEST OCCUPIED MOLECULAR

ORBITAL AND LOWEST UNOCCUPIED MOLECULAR ORBITAL

chemical formula of compound	name of compound	k HO	log k	HOMO	HOMO-SOMO	LUMO
CH4	methane	1 20E+08	8.08	-13 30875	-11 47875	4 660697
CITS CITS	athona	1.202+00	0.00	11 76554	0.02554	4 116722
CH3-CH3	eulaile	1.60E+09	9.20	-11.70554	-9.93334	4.110723
CH3-CH2-CH3	propane	3.00E+09	9.50	-11.52019	-9.49019	5.920805
CH3-CH(CH3)-CH3	2-methylpropane	4.60E+09	9.66	-11.29054	-9.46054	3.833211
CH3-(CH2)2-CH3	!butane	4.60E+09	9.66	-11.1/06/	-9.34067	3.828838
CH3-(CH2)3-CH3	!pentane	5.40E+09	9.73	-11.11003	-9.28003	3.775402
CH3-(CH2)4-CH3	!hexane	6.60E+09	9.82	-11.08502	-9.25502	3.737725
CH3-(CH2)5-CH3	!heptane	7.70E+09	9.89	-11.07213	-9.24213	3.681164
CH3-(CH2)6-CH3	!octane	9.10E+09	9.96	-11.06686	-9.23686	3.638226
CH3-CH2-CH(CH3)-CH3	2-methylbutane	5.20E+09	9.72	-11.1809	-9.3509	3.745211
CH3-CH2-CH(CH2-CH3)-CH2-CH3	!3-ethylpentane	5.90E+09	9.77	-10.99532	-9.16532	3.679372
CH3-C(CH3)2-CH2-CH(CH3)-CH3	12,2,4-Trimethylpentane	6.10E+09	9.79	-11.02812	-9.19812	3.626539
CH3-OH	methanol	9.70E+08	8.99	-11.13453	-9.30453	3.77894
CH3-CH2-OH	!ethanol	2.10E+09	9.32	-10.87574	-9.04574	3.564502
CH3-(CH2)2-OH	!1-propanol	3.20E+09	9.51	-10.84639	-9.01639	3.48847
CH3-(CH2)3-OH	!1-butanol	4.20E+09	9.62	-10.84564	-9.01564	3.426211
(CH3)3-C-OH	!tert-butanol	7.00E+08	8.85	-10.99061	-9.16061	3.437299
CH3-(CH2)5-OH	11-hexyanol	7.00E+09	9.85	-10.84862	-9.01862	3.369371
CH3-(CH2)6-OH	11-hentanol	7 40E+09	9.87	-10.84806	-9.01806	3 352759
CH3 CH(OH) CH3	12-propanol	1.90E+09	9.28	-10.89775	-9.06775	3 491269
CH3-CH(OH)-CH3 CH3 CH(CH3) CH3 OH	12 mathyl 1 propanol	3 30E+09	9.20	10.87454	9.04454	3.455493
cus cus creusion cus	2 methyl 2 huterel	1.00E+09	0.22	10.04605	0.11605	2.452075
CH3-CH2-C(CH3)(OH)-CH3	2-methyl-2-butanoi	1.90E+09	9.28	-10.94095	-9.11095	3.433073
CH3-C(CH3)2-CH2-OH	2,2-dimetnyi-1-propanoi	5.20E+09	9.72	-10.80930	-9.03936	3.439935
CH3-CH2-CH(CH3)-CH2-OH		3.80E+09	9.58	-10.82195	-8.99195	3.42855
CH3-CH(OH)-CH2-CH3	2-butanol	3.50E+09	9.54	-10.79586	-8.96586	3.505121
CH3-C(CH3)(OH)-CH2-CH3	!tert-amyl alcohol	1.90E+09	9.28	-10.80912	-8.97912	3.44938
HO-CH2-OH	!dihydroxymethane	1.30E+09	9.11	-10.74605	-8.91605	3.001253
HO-CH2-CH2-OH	ethyleneglycol!	2.40E+09	9.38	-10.82728	-8.99728	3.02301
CH3-CH(OH)2	!1,1-ethanediol	1.20E+09	9.08	-11.29653	-9.46653	-3.253182
CH3-CH(OH)-CH2-OH	!1,2-propanediol	1.70E+09	9.23	-10.82385	-8.99385	3.179295
HO-(CH2)3-OH	!1,3-propanediol	2.50E+09	9.40	-10.91272	-9.08272	3.090769
CH3-CH(OH)-CH2-CH2-OH	1,3-butanediol	2.20E+09	9.34	-10.94984	-9.11984	3.147903
HO-(CH2)4-OH	1.4-butanediol	3.20E+09	9.51	-10.91242	-9.08242	3.141693
CH3-CH(OH)-CH(OH)-CH3	12,3-butanediol	1.30E+09	9.11	-10.7055	-8.8755	3.165536
HO-(CH2)5-OH	1,5-pentanediol	3.60E+09	9.56	-10.88223	-9.05223	3.169252
CH3-CH(OH)-CH2-CH(OH)-CH3	12.4-pentanediol	2.30E+09	9.36	-10.89812	-9.06812	3.126363
HO-(CH2)6-OH	1.6-hexvanediol	4.70E+09	9.67	-10.87071	-9.04071	3.194863
HO-CH2-CH(OH)-CH2-OH	Istycerol	2 00E+09	9 30	-10 81248	-8 98248	3 024266
CH3CH(OCH3)2	11 1-dimethoxyethane	2 20E+09	9.34	-10 70728	-8 87728	2 766965
CH3-O-CH3	!dimethylether	1.00E+09	9.00	-10 61215	-8 78215	3 250377
CH3-O-CH2-O-CH3	Imethylene glycol diethyl ether	3 20E+08	8 51	-10 38339	-8 55339	2 447473
CH3 CH3 O CH3 CH3	I diethylether	2 90E+09	9.46	-10 39318	-8 56318	2 981373
(CH3)2HC O CH(CH3)2	Idiisopropyl ether	2.49E+09	9.40	-10 33819	-8 50819	2 889881
(010)2110-0-01(010)2	mtha	1.60E+09	9.20	10.43097	8 60097	2.009/001
(CH3)2 C O CH3 CH3	Itart butil ather	1.00E+09	9.20	10 30765	9 47765	2.988410
(CH3)3-C-0-CH2-CH3	Itert and mathyl athor	2.27E+09	9.20	10.41498	-8.47705	2.000320
	tert-anyi menyi ener	2.37E+09	9.37	-10.41498	-0.30490	2.933497
CH3CH2-O-CH2CH2-CH2CH2-O-CH2CH3	dieunyiene giycol dieunyi euler	3.20E+09	9.31	-10.41154	-6.36134	2.084070
CH3CH2-O-CH2CH2-O-CH2CH3	eunyiene giycoi dieunyi euner	2.30E+09	9.30	-10.40904	-8.37904	2.445595
CH3-0-CH2-CH2-0-CH3	ethylene glycol dimethyl ether	1.60E+09	9.20	-10.50665	-8.0/005	2.526982
CH2(OC2H5)2	diethoxymethane	1.60E+09	9.20	-10.27684	-8.44684	2.340627
CH2(OCH3)2	!dimethoxymethane	1.20E+09	9.08	-10.38339	-8.55339	2.447473
CH3-C(CH3)(OCH3)CH2-OH	!2-methyl-2-methoxy propanol	8.40E+08	8.92	-10.29167	-8.46167	3.011841
CH3-O-CH2-CH2-OH	2-methoxyethanol	1.30E+09	9.11	-10.57917	-8.74917	2.720358
C2H5-O-CH2-CH2-OH	2-ethoxyethanol	1.70E+09	9.23	-10.48799	-8.65799	2.643535
HO-CH2-CH2-O-CH2-CH2-OH	!diethylene glycol	2.10E+09	9.32	-10.58134	-8.75134	2.384354
CH3-CO-CO-CH3	12,3-butanedion	2.80E+08	8.45	-10.42726	-8.59726	-0.5169114
CH3-CH2-CO-CH3	!2-butanone	8.10E+08	8.91	-10.51649	-8.68649	0.8809061
CH3-CO-CH3	acetone	1.10E+08	8.04	-10.66836	-8.83836	0.8443826
CH3-CH2-CH2-CO-CH3	!2-pentanone	1.90E+09	9.28	-10.53028	-8.70028	0.8842067
CH3-CH2-CO-CH2-CH3	13-pentanone	1.40E+09	9.15	-10.39733	-8.56733	0.9147174
CH3-CO-CH(OH)-CH3	13-hydro-2-butanone	2.90E+09	9.46	-10.4004	-8.5704	0.6729621
(CH3)2-CH-CH2-CO-CH3	!methyl-iso-butyl ketone	2.10E+09	9.32	-10.50366	-8.67366	0.8847981
CH3-CO-CH2CH2-CO-CH3	acetonyl acetone	7.60E+08	8.88	-10.55812	-8.72812	0.5975642
НСНО	formaldehyde	1.00E+09	9.00	-10.78296	-8.95296	0.7926633
CH3-CHO	!acetaldehyde	9.50E+08	8.98	-10.72027	-8.89027	0.8346022
CH3-CH2-CHO	propionaldehyde	2.20E+09	9.34	-10.58833	-8.75833	0.8641795
CH3-CH2-CH0	!butyraldehvde	3.90E+09	9.59	-10.59022	-8.76022	0.8685883
(CH3)2-CH-CHO	isobutyl aldehyde	2.90E+09	9,46	-10.4711	-8,6411	0.9016389
CH3-C(CH3)/OCH3)-CHO	2-methyl-2-methoxy-propagal	3.99E+09	9,60	-10,19846	-8,36846	0.751712
HO-C(CH3)-CHO	hydroxy-iso-butylaldehyde	3 00E+09	9.48	-10 51888	-8 68888	0 5663642
CH3_CO_CHO	Imethyl dvoval	5 30E+08	8 72	-10 44341	-8 61341	-0 5637148
HCOOCHO	athul formata	3 000-08	8.50	-11 50190	-0.01341	1 022202
	euryi iomale	1.2017-0.00	0.09	11 40002	-7.0/107	1.023363
	lathyl acetate	1.20ET08	0.00	11 24904	-7.3/963	1.059022
CH3-COO-CH2-CH3	emyr acetate	4.00E±08	0.00	-11.24800	-9.41800	1.146494
CH3-COU-CH2-CH2-CH3	propyl acetate	1.408+09	9.15	-11.18/01	-9.33/01	1.153089
CH3-CH2-COO-CH3	metnyi propionate	4.50E+08	8.65	-11.25087	-9.40087	1.1458/7
CH3-CH2-COO-CH2-CH3	!ethyl propionate	8.70E+08	8.94	-11.22122	-9.39122	1.196556
CH3-COO-CH2CH2OH	12-hydroxyethyl acetate	9.10E+08	8.96	-11.04306	-9.21306	1.060454
CH3COOCH(CH3)2	lisopropyl acetate	4.50E+08	8.65	-11.1843	-9.3543	1.194501

CH3-COO_(CH2)-COO_CH3 in-Outypacetate 1.80E+09 9.20 -11.1/429 CH3-(CH2)-COO_CH3 methyl butyrate 1.70E+09 9.23 -11.24771 CH3-(CH2)-COO_CH2-CH3 ethyl butyrate 1.60E+09 9.20 -11.19034 CH3-(CH2)-COO_CH2-CH3 diethyl malonate 6.50E+08 8.81 -11.21217 CH3-CO-CC-CH2-COO_CH2CH3 diethylsuccinate 7.80E+08 8.89 -11.1582 CH3-CO-CH2-COO-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.81994 CH3-COOH crasic acid 1.70E+07 7.23 11.61804	-9.34429 -9.41771 -9.36034 -9.39127 -9.3282	1.152855 1.149702 1.199758
CH3-(CH2)-COO-CH3 methyl butyrate 1.70E+09 9.23 -11.24771 CH3-(CH2)-COO-CH3 ethyl butyrate 1.60E+09 9.20 -11.19034 CH3-(CH2)-COO-CH2-CH3 ethyl butyrate 1.60E+09 9.20 -11.19034 CH3-CH2-COO-CH2-COO-CH2-CH3 diethyl malonate 6.50E+08 8.81 -11.2127 CH3-CH2-COO-CH2-COO-CH3 diethyl succinate 7.80E+08 8.89 -11.1582 CH3-O-CH2-COO-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.181994 CH3-COOH crasic acid 1.70E+07 7.33 11.61801	-9.41771 -9.36034 -9.39127 -9.3282	1.149702
CH3-(CH2)2-COO-CH2-CH3 ethyl butyrate 1.60E+09 9.20 -11.19034 CH3CH2-OCO-CH2-COO-CH2CH3 diethyl malonate 6.50E+08 8.81 -11.21217 CH3CH2-OCO-(CH2)-COO-CH2CH3 diethylsuccinate 7.80E+08 8.89 -11.1582 CH3-OC4E2-COO-CH2CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.18194 CH3-OCOH formic acid 1.70E+07 7.23 11.61801	-9.36034 -9.39127 -9.3282	1 199758
CH3-00-CH2-COO-CH2CH3 Cally output 1.001 1.122127 CH3-0-CO-CH2-COO-CH2CH3 diethylsuccinate 6.50E+08 8.81 -11.22127 CH3-0-CO-CH2-COO-CH2CH3 diethylsuccinate 7.80E+08 8.89 -11.1582 CH3-0-CH2-COO-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.81994 CH3-0-COU genein acid 1.70E+07 7.23 11.61800	-9.39127 -9.3282	
CH3CH2-0C0-CH2CH3 diethyl maionate 6.50E+08 8.81 -11.2217 CH3CH2-0C0-CH2CH3 diethyl succinate 7.80E+08 8.89 -11.1582 CH3-0-CH2-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.181994 CH3-0-COU generic acid 1.20E+07 7.23 11.61801	-9.39127	0.7714040
CH3CH2-O-CO-(CH2)2-COO-CH2CH3 diethylsuccinate 7.80E+08 8.89 -11.1582 CH3-O-CH2-COO-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.81994 CH3-O-COU gradie acid 1.70E+07 7.23 11.61804	-9.3282	0.7/14942
CH3-O.CH3-COO-CH3 methyl methoxy acetate 1.80E+09 9.26 -11.03721 H-COOH formic acid 1.30E+08 8.11 -11.81994 CH3-OCOH generic acid 1.70E+07 7.23 11.61804		0.9063339
Heady meany actain 1.801/09 9.20 -11.57/21 H-COOH formic acid 1.30E+08 8.11 -11.81994 CHUCONU acadia acid 1.70E+07 7.23 11.61804	0.20721	1.063044
H-COOH tormic acid 1.30E+08 8.11 -11.81994	-9.20721	1.005044
CH3 COOH acetic acid 1 70E+07 7 23 11 61804	-9.98994	0.9572287
accuc acia 1./01/0/ /.20 =11.01004	-9.78804	0.9760237
CUE CUE COOL Acceptories and 2 20E±09 9 51 11 42741	0.60741	1.01772
ens-enz-coon ipropionic acid 5.201708 8.51 -11.45741	-9.00741	1.01//2
CH3-(CH2)2-COOH !butyric acid 2.20E+09 9.34 -11.44889	-9.61889	1.024579
CH3/CH3/6-COOH caprylic acid 4.80E+09 9.68 -11.25724	-9 42724	1 024105
	0.0004	1.021105
CH3-(CH2)7-COOH Azelaic acid 5.40E+09 9.73 -11.2154	-9.5854	1.023791
(CH3)2CHCH2COOH 13-methylbutyric acid 1.40E+09 9.15 -11.41208	-9.58208	1.040318
(CTU2) C COOTL International 6 50E+09 9 91 11 22527	0.40527	1 124629
	-9.40557	1.124020
CH3-C(CH3)(OCH3)-COOH !2-methyl-2-methoxy-propanoic acid 7.73E+08 8.89 -10.63404	-8.80404	0.9379864
HOCH2COOH /glycolic acid 5.40E+08 8.73 -11.65826	-9.82826	0.8873319
CUL CU/OID COOUL UI	0.45010	0 7020921
CH3-CH(0H)-COOH !!acuc acid 4.50E+08 8.05 -11.28919	-9.43919	0.7252851
CH3CH2CH(OH)COOH 12-hydroxybutyric acid 1.30E+09 9.11 -11.26127	-9.43127	1.089727
но сно спорти соон и интерестрании и 1 30E+09 9 11 -10 82001	-8 99001	0.6729594
	-0.0001	0.0725554
CHOCOOH glyoxylic acid 5.90E+08 8.77 -11.3587	-9.5287	-0.7367213
CH3COCOOH pyruvic acid 1.20E+08 8.08 -11.17299	-9.34299	-0.5833086
CU2 COCUO Exercise aldebude 6 40E±09 9 91 10 44202	9 61202	0 562017
спо-сосно руник адснудс 0.551100 8.61 -10.4505	-0.01505	-0.505717
HOOC-CH2-COOH Imalonic acid 1.60E+07 7.20 -11.74597	-9.91597	-0.5409926
HOOC-(CH2)2-COOH /succinic acid 1.10E+08 8.04 -11.597	-9.767	0.7170363
	0.72724	0.0106072
HOUC-(CH2)3-COOH Ignitianc acid 8.50E+08 8.92 -11.55/24	-9.72724	0.8180075
HOOC-(CH2)4-COOH !adipic acid 2.00E+09 9.30 -11.33201	-9.50201	0.7043018
HOOC (CH2)6 COOH Isaberic acid 4 80E+09 9.68 -11 44787	-9.61787	0.9421537
	-9.01/07	0.0421007
HOOC-(CH2)/-COOH !azelaic acid 5.40E+09 9.73 -11.27873	-9.448/3	0.9605/93
HOOC-(CH2)8-COOH !sabacic acid 6.40E+09 9.81 -11.24963	-9.41963	0.9912882
NOOC CIVOID COON Intervieweid 7.00E+08 8.95 11.41220	0 59220	0.4464404
Hore and an	-7.36339	0.00000000
HOUC-CH2-C(COOH)(OH)-CH2-COOH !citric acid 5.00E+07 7.70 -11.64445	-9.81445	0.3078744
HOOC-CH(OH)-COOH Itartoronic acid 1.70E+08 8.23 -11 81043	-9.98043	0.2966391
	0.70021	0.4992152
HOUC-CH2-CH(OH)-COOH IMaic acid 8:20E+08 8:91 -11:53051	-9.70051	0.4885155
CI-CH2-COOH chloroacetic acid 4.30E+07 7.63 -11.57351	-9.74351	0.6216664
CH3.Cl monochloromethane 5 50E+07 7 74 -11 33756	-9 50756	1 599236
	-9.50750	1.577250
C12-CH2 dichloromethane 5.80E+07 7.76 -11.38951	-9.55951	0.5949168
Br2-CH2 dibromomethane 9.90E+07 8.00 -10.95719	-9.12719	-0.05173813
D COOL have stationed and 7 10E+07 7 95 11 47005	0.64005	0.6216572
BrCI2CH Bromodichloromethane 7.10E+07 7.85 -11.47995	-9.04995	-0.03105/3
CI3C-CHCI2 pentachirooethane 1.00E+07 7.00 -11.86976	-10.03976	-0.6803114
CHBr2C1 chlorodibromomethane 8.30E+07 7.92 -11.16707	-9 33707	-0 7282994
	0.04151	0.74020074
CHBr3 tribromomethane 1.50E+08 8.18 -11.0/151	-9.24151	-0./4//8/4
BrCH2-CH2Br 1.2-dibromoethane 2.60E+08 8.41 -11.01309	-9.18309	0.00074076
CIT2 CITCD 11 diablacesthere 1 20E+09 9 11 11 42295	0.50295	0.5927907
Ch3-ChCl2 1,1-ClClubroethane 1.50E+V6 6.11 -11.42265	-9.39263	0.3827897
CH2CI-CH2CI 1,2-dichloroethane 2.00E+08 8.30 -11.41638	-9.58638	0.6849483
Br2CH-CHBr2 1.1.2.2-tetrabromoethane 2.20E+08 8.34 -10.94151	-9.11151	-0.6516382
		0.4949245
11112 total 120 120 120 120 120 120 120 120 120 120	0.06.7.76	0.4646343
CI3C-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226	-9.96226	
CI3C-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2-CHCI2 1,1,-2-trichloroethane 1.10E+08 8.04 -11.56405	-9.96226	0.17132
CIBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2-CHCI2 1,12-trichloroethane 1.10E+08 8.04 -11.54045 CICH2-CHCI2 1,1.1-irichloroethane 1.00E+08 8.04 -11.54045 CICH2-CHCI2 1,1.1-irichloroethane 1.00E+08 8.04 -11.154045	-9.96226 -9.73405 -10.16181	0.17132
C13C-CH2C1 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 C1CH2-CHC12 1,1.2-trichloroethane 1.10E+08 8.04 -11.56405 CC13-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 THE STREET FOR THE STR	-9.96226 -9.73405 -10.16181	0.17132
CIBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CICH3-CHCI3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHC3-CH3 1,1,1-trichloroethane 2.50E+09 9.40 -11.13376	-9.96226 -9.73405 -10.16181 -9.30376	0.17132 -0.2648686 1.519827
CIBC-CH2C1 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2-CHCD 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCIS-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3-CH2C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCLCHEBr 1.2-dichloro-3-bromoropane 7.30E+08 8.86 -11.04351	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351	0.17132 -0.2648686 1.519827 0.2836433
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2-CHCI 1,12-trichloroethane 1.10E+08 8.04 -11.54045 CCI3-CH2I 1,11richloroethane 1.00E+08 8.04 -11.54045 CCI3-CH3 1,1.1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DCH2CH2CH2Br 1,3-dibromopropane 4.10E+109 0.61 10.85645	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 9.05648	0.17132 -0.2648686 1.519827 0.2836433 0.3616003
CIBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2_CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCIB-CHC3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CHCH2CI 1,-1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CHCH2CI 1-trichloropropane 2.50E+09 9.40 -11.13376 CH2CH_CHCLCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -10.88648 CH2Br-CH2-CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648	0.17132 -0.2648686 1.519827 0.2836433 0.3616003
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCH3-CHCI 1,1-2-trichloroethane 1.0DE+08 8.04 -11.5405 CCH3-CH3 1,1,1-trichloroethane 1.0DE+08 8.00 -11.9181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CLCHCLCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3D-CH2CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C+CLCH3B 1,2-dichloropropane 4.00E+08 8.60 -11.28917	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866
CIBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CICH2_CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCIB-CHCI2 1,1-1-trichloroethane 1.00E+08 8.04 -11.56405 CCIB-CHCI3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHCHCHCHCC1 1-chloropropane 2.50E+09 9.40 -11.13376 CHD2CLCHCL-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2Br-CH2-CH3Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH2CL-CHCLH3 1,2-dichloropropane 3.40E+08 8.60 -11.28917 CH3C-CH2CH3 1,2-dichlorophropane 3.40E+09 9.53 -11.13376	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCH3-CHCI 1,1-2-trichloroethane 1.0DE+08 8.04 -11.5405 CCH3-CHCI 1,1-1-trichloroethane 1.0DE+08 8.00 -11.99181 CH3-CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3D-CH2DBr 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CHCLCH2Br 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2D3-CI 1-chlorobutane 3.40E+09 9.53 -11.13331 CH3-CH2D3-CI 1-chlorobutane 3.40E+09 9.53 -11.13311	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CCB-CH3 1,1,1-trichloroptopane 2.50E+09 9.40 -11.13376 CH2CLCHCL-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2DE-CH2-CH2Br 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CL-CHCL-CH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2)-CH2-OH 1-chlorobutane 3.40E+09 9.53 -11.1331 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCH3-CHC2 1,1-2-trichloroethane 1.0DE+08 8.04 -11.5405 CCH3-CHC3 1,1,1-trichloroethane 1.0DE+08 8.00 -11.9181 CH3-CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CLCHCLCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3D-CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CH2Br 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2DH 1-chlorobutane 3.40E+09 9.53 -11.13331 Br-CH2-CH2-DH 2-bromoethanol 3.50E+08 8.54 -10.83855 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.14609	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CECH2C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH2CLCHCL-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2DCLCHCLCH3 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CLCHCLCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3C(EL)CH2 1chlorobutane 3.40E+09 9.53 -11.1331 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.14609 CU3-CH2-OH 2.2-chloroethanol 4.20E+08 8.62 -11.1626	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.747993
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCH3-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCH3-CHCI 1,1-1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CCH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CLCHCLCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DC-CH2CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2CH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2.2.2.1vichloroethanol 9.50E+08 8.62 -11.163246 CCH3-CH2-OH 2.2.2.1vichloroethanol 4.02E+08 <	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CCB-CH3 1,1,1-trichloropropane 2.50E+09 9.40 -11.13376 CH2CLCHCLCH2br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2DC-CHCLCH3br 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CL-CHCLCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2-CH 1 -chloropthane 3.40E+09 9.53 -11.13331 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2.2-trichloroethanol 9.50E+08 8.98 -11.16209 CC13-CH2-OH 2.2,2-triflouroethanol 4.20E+08 8.62 -11.6246 CF3-CH2-OH 2,2,2-triflouroethanol 2.30	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2_CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCB-CH2 1,1,1-trichloroethane 1.00E+08 8.00 -11.9926 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CHC2 1-chkoropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2CH 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CH2CH2CH2Br 1,2-dichloropopane 4.10E+09 9.61 -10.88648 CH2CHCHCH2Br 1,2-dichloropopane 4.00E+08 8.60 -11.28917 CH3-CH2CH2OH 1-chkoropopane 3.40E+09 9.53 -11.13331 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chkoroethanol 9.50E+08 8.98 -11.14609 CCI3-CH2-OH 2,2,2-trikhoroethanol 4.20E+08 8.62 -11.68246 CF3-CH2-OH 2,2,2-trikhoroethanol 4.20E+08 8.62	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH2CLCHC-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2DC-CHCCH3Br 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2C-CH2DH 1,2-dichloropropane 4.00E+09 9.53 -11.13331 Br-CH2-CH2DH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-bromoethanol 9.50E+08 8.98 -11.14609 CCI3-CH2-OH 2,2,2-triflooroethanol 9.50E+08 8.98 -11.16246 CF3-CH2-OH 2,2,2-triflooroethanol 2.30E+08 8.36 -12.0465 CCI3-CH2OH 2,2,2-triflooroethanol 2.30E+08 8.36	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.315246 -10.2165 -9.38673 -10.42303	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 1.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3344105
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2_CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9926 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CHC1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2CH 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DCHCHCH2CH3 1,2-dichloropopane 4.10E+09 9.61 -10.88648 CH2CLCHCLCH3 1,2-dichloropopane 4.00E+08 8.60 -11.28917 CH3-CH2CH2OH 1-2-dichlorobutane 3.40E+09 9.53 -11.13336 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.14609 CCI3-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.62 -11.6846 CF3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.882673 -10.43293	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54055 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH12 1-thichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2CH 1-thichloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2CH2 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DFCH2CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH2LCH2CH3B 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2D-CH2 1-chlorobutane 3.40E+09 9.53 -11.13331 Br-CH2-CH2:OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLGL-CH2-CH2:OH 2,2,2-trifloroethanol 9.50E+08 8.98 -11.16246 CF3-CH2:OH 2,2,2-trifloroethanol 2.30E+08 8.62 -11.6246 CF3-CH2:OH 2,2,2-triflororothanol 2.30E+08 8.	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096	0.17132 -0.2648686 1.519827 0.2856433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.56405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2CH3 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DCHCH3CH3 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CLCHCLCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3C(CH2)-CH2 1 1-chlorobutane 3.40E+09 9.53 -11.13316 Br-CH2-CH2-0H 2-bromoethanol 3.50E+08 8.54 -10.8385 -10.8385 CLCH2-CH2-OH 2,2,2-trichloroethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36 -12.0455 CCG3-CH(OH)2 chlorofhranol	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -9.85246 -0.2165 -9.88543 -10.2165 -9.84096 -10.24176	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.331954 -0.3564039
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.5405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CEXCH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CEXCH2-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2.CH2Br 1-2-dichloropropane 4.00E+08 8.64 -10.8385 CH3-CH2.CH2.OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLG-CH2.CH2.OH 2-chloroethanol 9.50E+08 8.98 -11.1609 CCH3-CH2.OH 2,2,2-trithloroethanol 4.20E+08 8.62 -11.68246 CF3-CH2.OH 2,2,2-trithloroethanol 2.30E+07 8.	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.42293 -9.94096 -10.24176 -10.24176	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.3564039 -0.3564039
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CECH2C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CECH2CH2C1 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DE-CH2CH3Er 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CLCHCLCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3CH2D-CH2-OH 1-chlorobutane 3.40E+09 9.53 -11.13315 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH3-CH2-OH 2.2,2-trichloroethanol 4.20E+08 8.62 -11.63246 CG3-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.62 -11.63246 CG3-CH2-OH 2,2,2-trichloroethanol 2.30E+08	-9,96226 -9,73405 -10,16181 -9,30376 -9,21351 -9,05648 -9,45917 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,88543 -10,43293 -9,94096 -10,24176 -10,27108	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3345105 -0.3346405 -0.3346405 -0.3346405 -0.2714219
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.5405 CCI3-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.5405 CCI3-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH 1.2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2-CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CH2-CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2-CH2-CH3 1-chlorobutane 3.40E+09 9.53 -11.13331 Br-CH2-CH2-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CH3-CH2-OH 2.2,2-trichloroethanol 9.50E+08 8.98 -11.16824 CH3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CH3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 <td< td=""><td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43368</td><td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.364039 -0.2714219 -0.4409282</td></td<>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43368	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.364039 -0.2714219 -0.4409282
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CECH2C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH2CLCHCL-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2DCLCHCLCH3 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2CLCHCLCH3 1,2-dichloroptropane 4.00E+09 9.63 -11.13376 CH3CLCH2CH2 1-chlorobutane 3.40E+09 9.53 -11.13315 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2.2-trifluoroethanol 4.20E+08 8.62 -11.68246 CF3-CH2-OH 2,2-2-trifluoroethanol 2.30E+08 8.36 -12.0465 CCI3-CH(OH)2 chloroform 1.04D+07 7.11	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.85246 -10.2165 -9.88673 -10.43263 -0.40476 -10.21108 -10.43368 -9.5938	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.0711531
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCI3-CH3 1,1,1-trichloroethane 1.00E+08 8.04 -11.54045 CH3CH2CH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CH2CH2CH2Br 1,3-dibromopropane 4.00E+09 9.61 -10.88648 CH3CH2H2Br 1,3-dibromopropane 4.00E+09 9.53 -11.13331 BrCH3CH2CH2DH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2CH2DH 2-2,2-trichloroethanol 9.50E+08 8.98 -11.14690 CCH3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36 -12.0465 CCH3-CH2-OH 2,2,2-trichloroethanol 2.30E+09 9.49 -11.71673 CF3-CH2-OH 2,2,2-trichloroethanol 2.30E+09 <	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31669 -9.85246 -10.2165 -9.85246 -10.2165 -9.85673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43368 -9.59938	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2922691 -0.3346105 -0.3346105 -0.331954 -0.3564039 -0.2714219 -0.4409282 -0.0711531 -0.94572
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3DC+CHCH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH2C+CH2-CH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2CH3-CH 1-2-dichloroptopane 4.00E+09 9.53 -11.13331 Br-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CI-CH2-CH2-OH 2-2,2-triflooroethanol 9.50E+08 8.62 -11.62465 CCI3-CH2OH 2,2,2-triflooroethanol 2.30E+08 8.62 -11.6246 CF3-CH2OH 2,2,2-triflooroethanol 2.30E+08 8.36 -12.0465 CCI3-CH2OH 2,2,2-triflooroethanol 2.30E+08	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.4096 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.4368 -9.59938 -6.650959	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.0711531 0.93672
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCI3-CH3 1,1,1-trichloroethane 1.0DE+08 8.04 -11.54045 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CHCHCHCH3F 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3CH2H2DF 1,3-dibrompropane 4.00E+09 9.63 -11.13331 Br-CH2-CH2DF 1-chloroptana 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-bromoethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2.2,2-trichloroethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 8.36 -12.0465 CG3-CH2-OH 2.2,2-trichloroethanol 4.20E+08 8.62 <td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43368 -9.59938 -6.650959 -6.357714</td> <td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3405105</td>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43368 -9.59938 -6.650959 -6.357714	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3405105
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CHDCLCHC-CHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CHDC-CHCHBr 1,2-dichloropropane 4.10E+09 9.61 -10.88648 CH2C-CHCLCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3C-CH2D-GH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.16409 CCI3-CH2OH 2.2,2-trifluoroethanol 4.20E+08 8.62 -11.8325 CLCI3-CH2OH 2.2,2-trifluoroethanol 2.30E+08 8.36 -12.0465 CCI3-CH2OH 2.2,2-trifluoroethanol 2.30E+07 7.11 -12.26293 CH3-CH2CH2 Chloroform 1.04E+07 7.11	-9,96226 -9,73405 -10,16181 -9,20376 -9,21351 -9,05648 -9,45917 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,88673 -10,43293 -9,94096 -10,24176 -10,257714 -1	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.31954 -0.3564039 -0.2714219 -0.31954 -0.3564039 -0.2714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.3714219 -0.3564039 -0.36603 -0.3664039 -0.3660039 -0.3660039 -0.3
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1.2-trichloroethane 1.10E+08 8.04 -11.54045 CCH3-CHCI2 1,1.2-trichloroethane 1.0DE+08 8.04 -11.54045 CCH3-CHCI2 1,1.1-trichloroethane 1.0DE+08 8.00 -11.9181 CH3CH2CH2-CI 1chloropropane 2.50E+09 9.40 -11.13376 CH2DCCHCLCHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CHCLCHEBr 1,2-dichloropropane 4.0DE+09 9.61 -10.88648 CH3C-CHCLCH2Br 1,3-dibromopropane 4.0DE+09 9.53 -11.13331 Br-CH2-CH2DH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-clororethanol 9.50E+08 8.98 -11.146246 CT3-CH2-OH 2.2,2-trichloroethanol 9.20E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36 -12.0465 CCI3-CH2-OH 2,2,2-trichloroethanol 2.30E+07	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88543 -10.43293 -9.94096 -10.24176 -10.21708 -10.24176 -10.27108 -0.24176 -10.27108 -0.59938 -6.550959 -6.357714 -6.612901	0.17132 -0.2648686 1.519827 0.2856433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.364039 -0.2714219 -0.4409282 -0.0711531 0.93672 -1.5168 0.8614488 1.456244
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CH2CH12-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CHDICHCHCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CHD2-CH2DH 1,2-dichloro-3-bromopropane 4.10E+09 9.61 -10.88648 CH2CCHCLCH3 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH2CCH2D-GH 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH2CCH2D-GH 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH2CH2DH 1,2-dichloropropane 4.00E+09 9.53 -11.13311 Br-CH2-CH2:-OH 2,2-trichloroethanol 9.50E+08 8.98 -11.14609 CCI3-CH2:-OH 2,2,2-trichloroethanol 4.20E+08 8.62 -11.62246 CF3-CH2:OH 2,2,2-trichloroethanol 2.30E+08	-9,96226 -9,73405 -10,16181 -9,20376 -9,21351 -9,05648 -9,45917 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,85246 -10,2165 -9,88673 -10,43263 -9,94096 -10,24176 -10,24176 -10,24176 -10,24176 -10,4368 -9,59938 -6,650959 -6,357714 -6,612901 -6,295221	$\begin{array}{c} 0.17132\\ -0.2648686\\ 1.519827\\ 0.2836433\\ 0.3616003\\ 1.114866\\ 1.510461\\ 0.6344152\\ 1.293984\\ -0.2747993\\ -0.2747993\\ -0.2747993\\ -0.2992691\\ -0.3346105\\ -0.39346105\\ -0.3346105\\ $
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1.2-trichloroethane 1.10E+08 8.04 -11.540405 CCH3-CHCI2 1,1.1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CH2CH2-CI 1chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CI 1chloropropane 2.50E+09 9.40 -11.13376 CH2DCCHCLCH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH2LCHCLCH2Br 1,3-dibrompropane 4.00E+09 9.53 -11.13331 Br-CH2-CH2Dr 1-chloroptopane 4.00E+09 9.53 -11.13331 Br-CH2-CH2DH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-2,2-trichloroethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36 -12.0465 CCI3-CH(0H)2 chlorofform 1.40E+07 7.11 -12.26293 CCI3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.36	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88543 -10.43293 -9.94096 -10.24176 -10.21708 -10.24176 -10.21708 -10.24176	0.17132 -0.2648686 1.519827 0.2856433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.364039 -0.2714219 -0.4409282 -0.0711531 0.93672 -1.5168 0.8614488 0.8614488 -1.456254 -1.357738
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2-CHC1 1-chloropropane 2.50E+09 9.40 -11.13376 CHDICHCI-CHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CHDICHCI-CHEBr 1,2-dichloro-3-bromopropane 4.10E+09 9.61 -10.88648 CHDICHCICH3 1,2-dichloropropane 4.00E+09 9.63 -11.13331 Br-CH2-CH20H 1-2-bromoethanol 3.50E+08 8.64 -10.8385 CICH2-CH2-OH 2-bromoethanol 9.50E+08 8.98 -11.16246 CH3-CH2-OH 2,2,2-triflooroethanol 4.20E+08 8.62 -11.6246 CH3-CH2-OH 2,2,2-triflooroethanol 2.30E+08 8.36 -12.0465 CG3-CH0EP Halothane 1.30E+07 7.11 -12.26293 CH3-CH2-OCH1 2,2-dichloro-1,1,1-trifluoroethane 1.30E+07	-9,96226 -9,73405 -10,16181 -9,20376 -9,21351 -9,05648 -9,45917 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,85246 -10,2165 -9,85246 -10,2165 -9,88673 -10,43263 -9,94096 -10,24176 -10,24176 -10,24176 -10,4368 -9,59938 -6,650959 -6,357714 -6,612901 -6,236529 -6,2365316	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 0.331954 -0.3564039 -0.2714219 0.93672 -1.5168 0.8614488 -1.456254 -1.357738 0.703413
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1,-2-trichloroethane 1.10E+08 8.04 -11.54045 CCH3-CHCI 1,1,-2-trichloroethane 1.00E+08 8.00 -11.9181 CH3-CHCI 1,-1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCHEBR 1,2-dichlorogropane 4.00E+09 8.66 -11.28917 CH3CHCHCHCHBR 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3CH2CHCHCH3 1,2-dichloropropane 4.00E+09 9.53 -11.13331 Br-CH3-CH3-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2.2,2-trichloroethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichlororoethanol 2.30E+07 <	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43293 -9.94096 -10.24176 -10.27108 -10.43269 -9.59938 -6.650959 -6.357714 -6.612901 -6.236539 -6.236539	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3345039 -0.2714219 -0.4409282 -0.0711531 0.93672 -1.5168 0.8614488 1.456254 -1.357738 0.7303413 0.73
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.540405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CH2CH2-CI 1-thoropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CH2CH2-CH2Br 1,3-dibromopropane 4.00E+09 9.61 -10.88648 CH2C-CH2CH2-CH2 1-chlorobutane 3.40E+09 9.53 -11.13331 Br-CH2-CH2-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CCG-CH2-CH2-OH 2-2,2-trichloroethanol 9.50E+08 8.98 -11.16409 CG3-CH2-OH 2,2,2-trifhoroethanol 4.20E+08 8.62 -11.6246 CF3-CH2-OH 2,2,2-trifhoroethanol 2.30E+08 8.36 -12.0465 CG3-CH(OH)2 chloroform 1.40E+07 7.11 -12.26293 CG3-CH2OH 2,2-2-dichloro1,1,1-trifhoroethane 1.30E+07	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.42293 -9.4006 -10.24176 -10.255316 -10.2555316 -10.2555316 -10.255	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3346105 -0.331954 -0.3364039 -0.2714219 0.3364039 -0.2714219 0.3364039 -0.2714219 0.3644488 1.456254 -1.456254 -1.457738 0.7303413 0.5407815
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1,-2-trichloroethane 1.10E+08 8.04 -11.54045 CCH3-CHCI 1,1,-2-trichloroethane 1.00E+08 8.00 -11.9181 CH3-CHCI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCHER 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CHCHCHCHER 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3CHCHCHCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2DH 1-chlorobutane 3.40E+09 9.53 -11.13331 Br-CH3-CH2-OH 2-bromoethanol 9.50E+08 8.94 -10.8385 CCH3-CH2-OH 2.2,2-trichloroethanol 9.50E+08 8.94 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichlororoethanol 2.30E+07 <	-9,96226 -9,73405 -10,16181 -9,30376 -9,21351 -9,05648 -9,45917 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,88673 -10,43293 -9,94096 -10,24176 -10,27108 -10,43293 -9,94096 -10,24176 -10,27108 -10,43293 -9,94096 -6,55959 -6,357714 -6,612901 -6,295221 -6,236539 -6,755316 -6,928738 -6,854018	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3345105 -0.331954 -0.3345105 -0.2714219 -0.4409282 -0.711531 0.93672 -1.5168 0.8614488 -1.456254 -1.357738 0.7303413 0.5407815 0.5429511
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.540405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CEXCH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CHDCHCHCHCHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2-CH2Br 1,3-dibromopropane 4.00E+09 9.61 -10.88648 CH2C-CH2-CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.168246 CF3-CH2-OH 2,2-trithoroethanol 4.20E+08 8.62 -11.68246 CF3-CH2-OH 2,2,2-trithoroethanol 2.30E+07 8.36 -12.0465 CG3-CH(0H)2 chloroform 1.40E+07 7.11 -12.20456 CF3-CH2O 2,2-dickloro-1,1,1-trifhuoroethane 1.30E+07 <td< td=""><td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.27108 -10.24176 -10.27108 -0.43368 -9.59938 -6.55959 -6.357714 -6.612901 -6.295221 -6.235316 -6.928738 -6.854018 -6.</td><td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.334615 -0.544488 -1.456254 -1.5168 -0.3641488 -1.456254 -1.51738 -0.3641488 -1.456254 -1.51738 -0.3641488 -1.456254 -1.51738 -0.364139 -0.373413 -0.5407815 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.542952 -0.55295</td></td<>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.27108 -10.24176 -10.27108 -0.43368 -9.59938 -6.55959 -6.357714 -6.612901 -6.295221 -6.235316 -6.928738 -6.854018 -6.	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.3346105 -0.331954 -0.334615 -0.544488 -1.456254 -1.5168 -0.3641488 -1.456254 -1.51738 -0.3641488 -1.456254 -1.51738 -0.3641488 -1.456254 -1.51738 -0.364139 -0.373413 -0.5407815 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.5429511 -0.542952 -0.55295
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1,-2-trichloroethane 1.10E+08 8.04 -11.540405 CCH3-CHCI 1,1,-2-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH2HBr 1,2-dichloroj-3-bromopropane 7.30E+08 8.66 -11.04351 CH3DC-CHCLCH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CHCLCH2Br 1,3-dibromopropane 4.00E+09 9.53 -11.13331 Br-CH2-CH2DH 2-bromoethanol 9.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-2,2-trichloroethanol 9.50E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+07 7.11 -12.26293 CCH3-CH2-OH 2,2,2-dichloro-1,1,1-trifluoroethane	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.27108 -10.43293 -9.94096 -10.24176 -10.27108 -10.43293 -9.94096 -6.55959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -6.595918 -6.555318 -6.555418 -6.55548 -6.	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3345105 -0.3345105 -0.3614488 1.456254 -1.357738 0.7303413 0.5407815 0.5429511 0.6732906
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1-2-trichloroethane 1.10E+08 8.04 -11.540405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CEXCH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CHDCHCHCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+09 9.61 -10.88648 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2-0H 2-bromoethanol 3.50E+08 8.54 -10.8385 CCH2-CH2-0H 2-chloroethanol 9.50E+08 8.98 -11.1609 CCH3-CH2-0H 2,2,2-trithoroethanol 4.20E+08 8.62 -11.6246 CF3-CH2-0H 2,2,2-trithoroethanol 2.30E+07 7.11 -12.20465 CGI3-CH(0H)2 chloroform 1.40E+07 7.11 -12.20493 CH3-CH2-CH2-CH2-CH2 2,2-dichloro-1,1,1-irithuoroethane 1.30E+07	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.85246 -10.2169 -9.85246 -10.2169 -9.85246 -10.21708 -10.24176 -10.27108 -0.43268 -9.99938 -6.650959 -6.357714 -6.612901 -6.235219 -6.2355316 -6.295221 -6.2355316 -6.295273 -6.555316 -5.24573 -7.76493	$\begin{array}{c} 0.17132\\ -0.2648686\\ 1.519827\\ 0.2836433\\ 0.3616003\\ 1.114866\\ 1.510461\\ 0.6344152\\ 1.293984\\ -0.2747993\\ 1.395035\\ -0.2992691\\ -0.3031954\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.3346105\\ -0.33413\\ -0.5407815\\ -0.532906\\ -0.6227674\\ \end{array}$
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1-2-trichloroethane 1.10E+08 8.04 -11.54045 CCH3-CHCI 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCHEBR 1,2-dichloroj-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CHCHCHCHEBR 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3CHCHCHCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3-CH2-CH2DH 2-bromoethanol 9.50E+08 8.54 -10.83855 CCH3-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.14609 CCH3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2.2,2-trichloroethanol 2.30E+08 8.62 -11.7673 CT3-CH2-OH 2.2,2-dichloro-1,1,1-trifluoroethane 1.30E	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21108 -10.43269 -9.94096 -10.24176 -10.27108 -10.43269 -5.95938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -5.295221 -6.236539 -7.76493 -7.76493	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.4409282 -0.7114511 0.93672 -1.5168 0.8614488 -1.456254 -1.357738 0.5402815 0.5429511 0.6732906 -0.6227674 0.8079428
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI2 1,1.2-trichloroethane 1.10E+08 8.04 -11.540405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CELCH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCHCHCHEBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2-CH2Br 1,3-dibromopropane 4.10E+09 9.61 -10.88648 CH3C-CH2-CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2-CH2-OH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.14609 CCB-CH2-CH2-OH 2,2-dichloroethanol 2.30E+08 8.36 -12.0465 CCB-CH2-CH2-OH 2,2,2-trithloroethanol 2.30E+07 7.11 -12.26293 CCB-CH2-CH2-OH 2,2,2-trithloroethane 1.30E+07 7.11 -12.20456 CB-CH2-CH2-OH 2,2,2-dichloro-1,1,1-trithloroethane	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31669 -9.85246 -10.2165 -9.85246 -10.2169 -9.85246 -10.2169 -9.85246 -10.21708 -10.24176 -10.27108 -10.24376 -5.95938 -6.65959 -6.357714 -6.612901 -6.295221 -6.23539 -6.755316 -5.928738 -6.854018 -6.854018 -6.724573 -7.76493 -7.70044 -7.20142	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3031954 -0.3364039 -0.2714219 -0.3031954 -0.3364039 -0.2714219 -0.3031954 -0.3364039 -0.2714219 -0.3031954
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1,-2-trichloroethane 1.10E+08 8.04 -11.54045 CCH3-CHCI 1,1,-1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCCHCLCHEBR 1,2-dichloroj-3-bromopropane 7.30E+08 8.86 -11.04351 CH3CHCHCLCHEBR 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3CHCHCHCH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3CH2CH2-CH1 2-bromoethanol 9.50E+08 8.94 -10.8385 CCH3CH2-OH 2-chloroethanol 9.50E+08 8.94 -10.8385 CCH3CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.68246 CT3-CH2-OH 2,2,2-trichloroethanol 2.30E+08 8.62 -11.7623 CG3-CH2OH 2,2-dichloroethanol 2.30E+07 <t< td=""><td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.43269 -9.94096 -10.24176 -10.27108 -10.43269 -5.95938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -6.295738 -6.854018 -6.724573 -7.76044 -7.7631343</td><td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.711531 0.93672 -1.5168 0.8614488 -1.456254 -1.357738 0.5402815 0.5429511 0.6732906 -0.6227674 0.8079428 0.7123829</td></t<>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.43269 -9.94096 -10.24176 -10.27108 -10.43269 -5.95938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -6.295738 -6.854018 -6.724573 -7.76044 -7.7631343	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.711531 0.93672 -1.5168 0.8614488 -1.456254 -1.357738 0.5402815 0.5429511 0.6732906 -0.6227674 0.8079428 0.7123829
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CHCI 1,1.2-trichloroethane 1.10E+08 8.04 -11.540405 CCB-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.9181 CH3CH2CH2-C1 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CH2CH2-CH 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+09 9.61 -10.88648 CH3C-CH2CH2Br 1,3-dibromopropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2DH 2-bromoethanol 3.50E+08 8.54 -10.8385 CLCH2-CH2-OH 2-chloroethanol 9.50E+08 8.98 -11.168246 CCB-CH2-CH2-OH 2,2,2-trithloroethanol 4.20E+08 8.62 -11.68246 CCB-CH2-CH2-OH 2,2,2-trithloroethanol 2.30E+07 7.11 -12.20293 CCB-CH2-CH2-OH 2,2,2-trithloroethanol 2.30E+07 7.11 -12.20293 CB-CH2-CH2-OH 2,2,2-dichloro-1,1,1-trithloroethane <	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.30331 -9.30331 -9.30331 -9.30331 -9.3035 -9.31609 -9.85246 -10.2165 -9.85246 -10.2165 -9.85246 -10.212108 -10.43263 -9.94096 -10.24176 -10.24176 -10.27108 -10.43368 -9.95938 -6.555316 -6.25521 -6.255231 -6.255231 -6.553316 -5.255316 -5.255316 -5.2553316 -5.2	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.409282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.456254 -1.456254 -1.55738 0.8614488 -1.456254 -1.55738 0.6407815 0.5429511 0.5432906 -0.6227674 0.8079428 0.7123829 0.7124829 0.
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCH2-CH2CI 1,1-2-trichloroethane 1.00E+08 8.04 -11.56405 CCH2-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.19181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3CHCH2CH2Br 1,2-dichloro-3-brompropane 4.10E+09 9.61 -10.88648 CH3CHCH2CH2Dr 1,2-dichloropropane 4.00E+09 9.53 -11.13311 BrCH2CH2-CH2-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CCH2-CH2-OH 2-bromoethanol 9.50E+08 8.54 -10.8385 CCH2-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.62 -11.68246 CF3-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.36 -12.0455 CCH3-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.36 -11.16409 CCH3-CH2-OH 2,2,2-trithloroethanol 4.20E+08 8.36 -11.176173 CH3-CH2-CH2-DH 2,2,2-trithloroethanol 3.00E+07	-9.96226 9.73405 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88246 -10.2165 -9.88273 -10.43263 -9.94096 -10.24176 -10.27108 -10.43263 -9.94096 -10.24176 -10.27108 -10.43263 -9.95938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -5.295221 -6.236539 -7.70044 -7.631343 -7.764376	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.714219 -0.4409282 -0.711531 0.93672 -1.5168 0.93674 -1.5168 0.5402815 0.5429511 0.5429511 0.5429511 0.5429511 0.5429511 0.5429511 0.5429511 0.5732906 -0.6227674 0.8079428 0.7123829 0.7194619 0.7123829 0.7194619 0.51077
CBC-CH2CI 1,1,1-2-tretrachloroethane 180E+07 7.26 -11.79226 CCH2-CH2CI 1,1-2-trichloroethane 1.00E+08 8.04 -11.56405 CCH2-CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.19181 CH3CH2CH2-CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH2CCHCH2EBr 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH2C-CH2CH2F 1,2-dichloro-3-bromopropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2-CH2 1,2-dichloroptropane 4.00E+08 8.60 -11.28917 CH3-CH2CH2-CH2 2-diclorobtane 3.40E+09 9.53 -11.13331 B+CH2-CH2-OH 2-bromoethanol 3.50E+08 8.98 -11.14609 CCI3-CH2-OH 2,2,2-triflororothanol 4.20E+08 8.62 -11.68246 CF3-CH2-OH 2,2,2-triflororothanol 4.20E+07 7.11 -12.26293 CCI3-CH2-OH 2,2,2-triflororothanol 4.20E+07 7.11 -12.0176 CH3-CH2-CF2-CHCDH 2,2-dichloro-1,1,1-triflororothano	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.21351 -9.0085 -9.30331 -9.30331 -9.30331 -9.30331 -9.30331 -9.3035 -9.31609 -9.85246 -10.2165 -9.85673 -10.43293 -9.94096 -10.24176 -10.21108 -10.43368 -9.59938 -6.650959 -6.357714 -6.612901 -6.236539 -6.553316 -5.236539 -6.7553316 -5.236539 -7.70044 -7.631343 -7.70493 -7.731073	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3346105 -0.3346105 -0.334515 0.460282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.456254 -1.45738 0.5407815 0.5429511 0.5432906 -0.6227674 0.8079428 0.7123829 0.7124619 0.6316707 -0.5516707 -0.5516707 -0.5516707 -0.5516707 -0.5516
CBC-CH2CI 1,1,1-2-tetrachloroethane 180E+07 7.26 -11.79226 CCH2H_CHC2 1,1-2-trichloroethane 1.00E+08 8.04 -11.56405 CCH2CH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CH3CH2CH2CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH2CCHCCH3R 1,2-dichloro-3-bromopropane 4.10E+09 9.61 -10.88648 CH2CCHCH2H3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3CH2CH2CH 1-chlorobutane 3.40E+09 9.53 -11.13331 B-CH2CH2CH3 1.2-dichloroptropane 4.00E+08 8.60 -11.28917 CH3CH2CH2 1-chlorobutane 3.50E+08 8.98 -11.1609 CCL3-CH2OH 2.2-trichloroethanol 2.50E+08 8.98 -11.1609 CCL3-CH2OH 2.2.2-trichloroethanol 2.30E+08 8.62 -11.68246 CCL3-CH2OH 2.2.2-trichloroethanol 2.30E+07 7.11 -12.26238 CCL3-CH2OH 2.2.2-trichloroethanol 2.30E+07 7.11	-9.96226 9.73405 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88246 -10.2165 -9.88273 -10.43263 -9.94096 -10.24176 -10.27108 -10.43263 -9.94096 -10.24176 -10.27108 -10.43263 -9.95938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -5.295221 -6.236539 -7.70044 -7.6331043 -7.76433 -7.76433 -7.76433 -7.7643143 -7.634796 -7.5311073 -7.413156	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.430564 -0.3346105 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.65427674 0.6327674 0.6327674 0.6327674 0.6327674 0.6327674 0.6316707 0.4398249
CBC-CH2CI 1,1,1-2-tetrachloroethane 1.80E+07 7.26 -11.79226 CCB2-CH2C 1,1,2-tetrachloroethane 1.00E+08 8.04 -11.5405 CCB3-CH2C 1,1,1-tethoroethane 1.00E+08 8.04 -11.9181 CH3CH2CH2CI 1-chloropropane 2.50E+09 9.40 -11.13376 CH3C-CH2CHCH2Br 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04851 CH3C-CH2Dr 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH2C-CH2CH2Br 1,2-dichloropropane 4.00E+09 9.53 -11.13031 Br-CH2-CH2OH 2-bloroethanol 3.50E+08 8.54 -10.8385 CH2C-CH2OH 2-bloroethanol 9.50E+08 8.98 -11.14609 CG3-CH2-OH 2,2,2-trichloroethanol 4.20E+08 8.62 -11.62246 CG3-CH2OH 2,2,2-trichloroethanol 4.20E+08 8.64 -11.0239 CG3-CH2OH 2,2,2-trichloroethane 1.30E+07 7.11 -12.0465 CG3-CH2OH 2,2,2-tritrinboroethane 1.30E+07 7.11 <td>-9,96226 9,73405 -10,16181 -9,30376 -9,21351 -9,05648 -9,21351 -9,0085 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,88673 -10,43293 -9,94096 -10,2165 -9,88673 -10,43293 -9,94096 -10,21708 -10,24176 -10,27108 -0,25221 -6,559316 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -7,70044 -7,531073 -7,7634796 -7,531073 -7,413156</td> <td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.334515 0.460282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.456254 -1.45738 -1.456254 -1.55738 0.5407815 0.5429511 0.67323906 -0.6227674 0.8079428 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.</td>	-9,96226 9,73405 -10,16181 -9,30376 -9,21351 -9,05648 -9,21351 -9,0085 -9,30331 -9,0085 -9,31609 -9,85246 -10,2165 -9,88673 -10,43293 -9,94096 -10,2165 -9,88673 -10,43293 -9,94096 -10,21708 -10,24176 -10,27108 -0,25221 -6,559316 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -6,5295318 -7,70044 -7,531073 -7,7634796 -7,531073 -7,413156	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.334515 0.460282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.456254 -1.45738 -1.456254 -1.55738 0.5407815 0.5429511 0.67323906 -0.6227674 0.8079428 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.
CBC-CH2CI 1,1,1-2-tetrachloroethane 1,80E+07 7,26 -11,79226 CCH2-CHCD 1,1,2-titchloroethane 1,00E+08 8,04 -11,5405 CCH3-CHCD 1,1,1-titchloroethane 1,00E+08 8,00 -11,9181 CH3CH2CH2CI 1-chloropropane 2,50E+09 9,40 -11,13376 CH3C-CH2CH2CH 1-chloropropane 7,00E+08 8,86 -11,088648 CH3C-CH2CH2CH 1,2-dichloro-3-bromopropane 4,00E+09 9,61 -10,88648 CH3C-CH2CH2CH2CH 1,2-dichloropropane 4,00E+09 9,53 -11,13331 B-CH2-CH2.OH 2-chloroethanol 3,50E+08 8,54 -10,8385 CLCH2-CH2.OH 2-2-trichloroethanol 2,30E+08 8,62 -11,68246 CF3-CH2.OH 2,2-trichloroethanol 2,30E+08 8,63 -11,2465 CGB-CH2.OH 2,2-trichloroethanol 2,30E+08 8,63 -12,0455 CGB-CH2.OH 2,2-trichloroethanol 2,30E+08 8,63 -11,0455 CGB-CH2.OH 2,2-trichloroethanol 2,30E+08 8,30	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -9.85246 -0.2165 -9.88273 -10.43263 -9.94096 -10.24176 -10.27108 -10.43263 -9.94096 -10.24176 -10.27108 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.55316 -5.255316 -5.255316 -5.2553173 -7.76044 -7.6331073 -7.413156 -7.631222 -7.631225 -7.7044 -7.631225 -7.7044 -7.631225 -7.7044 -7.631225 -7.7044 -7.631225 -7.7044 -7.63125 -7.7631225 -7.7044 -7.63125 -7.7631225 -7.7044 -7.63125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.704 -7.75125 -7.7515 -7.7	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.4409282 -0.7114219 -0.4409282 -0.7114511 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.6527674 -0.82767428 0.7123829 0.7123829 0.7124829 0.7123829 0.7124829
CBC-CH2CI 1,1,1-2-tetrachloroethane 1,80E+07 7,26 -11,79226 CCB2-CH2CI 1,1,2-tichloroethane 1,00E+08 8,04 -11,5405 CCB3-CH3 1,1,1-tichloroethane 1,00E+08 8,04 -11,9181 CH3C-CH2CI 1-chloropropane 2,50E+09 9,40 -11,13376 CH3C-CH2C-CH3E 1,2-dichloro-3-bromopropane 7,0E+08 8,86 -11,088648 CH3C-CH3C-CH3E 1,2-dichloro-3-bromopropane 4,10E+09 9,61 -10,88648 CH3C-CH3C-CH3E 1,2-dichloropropane 4,00E+09 9,53 -11,13317 CH3-CH2:OH 2-bromoethanol 3,50E+08 8,54 -10,8385 CCH3-CH2:OH 2,2-trithloroethanol 9,50E+08 8,62 -11,6246 CCH3-CH2:OH 2,2,2-trithloroethanol 2,30E+08 8,63 -12,0455 CCH3-CH2:OH 2,2,2-trithloroethanol 2,30E+07 7,11 -12,26293 CCH3-CH2:OH 2,2,2-trithloroethane 1,30E+07 7,11 -12,26293 CH3-CH2:CH3 Chloroform 1,40E+07	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.21351 -9.0085 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21108 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -10.24176 -6.52953 -6.550959 -6.557714 -6.612901 -6.236539 -6.555316 -6.528538 -7.70443 -7.70443 -7.70443 -7.531073 -7.7634796 -7.531073 -7.413156	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.364039 -0.2714219 -0.3346105 -0.4009282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.456254 -1.457384 -0.45079428 0.71238296 -0.6227674 0.8079428 0.7123829 0.7124619 0.6316707 -0.4398249 0.711593 0.2166057
CBCCH2CI 1,1,1-2-tetrachloroethane 180E-07 7.26 -11.79226 CCH2-CHC1 1,1,1-2-tetrachloroethane 1100E+08 8.04 -11.56405 CCH3-CH3 1,1,1-trichloroethane 100E+08 8.00 -11.9918 CH3CHICH3-CI 1-chloropropane 250E+09 9.40 -11.13376 CH3CHCHCLCH3-CI 1-2-dichloro-3-bromopropane 7.30E+08 8.66 -11.04351 CH3CHCHCLCH3 1,2-dichloro-3-bromopropane 4.00E+09 9.61 -10.8648 CH3CHCH3-CH3 1,2-dichloroptropane 4.00E+09 9.53 -11.13331 B-CH3CH2-OH 2-bromoethanol 3.50E+08 8.98 -11.14609 CCI3-CH2-OH 2,2-dichloroethanol 2.30E+08 8.62 -11.62465 CCI3-CH3-OH 2,2-dichloroethanol 2.30E+08 8.62 -11.62465 CCI3-CH2-OH 2,2-dichloroethanol 2.30E+08 8.36 -12.0465 CCI3-CH3-OH 2,2-dichloroethane 1.30E+07 7.11 -12.07076 CFI3-CH2-OH 2,2-dichloroethane 1.30E+07 <t< td=""><td>-9.96226 9.73405 -9.73405 -10.16181 -9.30376 9.21351 -9.05648 -9.21351 -9.05648 -9.21351 -9.0085 -9.31609 -9.85246 -10.2165 -9.88573 -10.43269 -9.94096 -10.24176 -10.27108 -0.43269 -9.94096 -10.24176 -10.27108 -0.43263 -9.94096 -10.24176 -10.27108 -0.43263 -9.5938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -7.70644 -7.631343 -7.7634796 -7.634796 -7.634795 -7.634725 -7.634255 -7.904745</td><td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.409282 -0.0711531 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.5429511 0.5732906 0.541488 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.71449 0.7124829 0.71449 0.71449 0.71449 0.71449 0.7</td></t<>	-9.96226 9.73405 -9.73405 -10.16181 -9.30376 9.21351 -9.05648 -9.21351 -9.05648 -9.21351 -9.0085 -9.31609 -9.85246 -10.2165 -9.88573 -10.43269 -9.94096 -10.24176 -10.27108 -0.43269 -9.94096 -10.24176 -10.27108 -0.43263 -9.94096 -10.24176 -10.27108 -0.43263 -9.5938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -7.70644 -7.631343 -7.7634796 -7.634796 -7.634795 -7.634725 -7.634255 -7.904745	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.409282 -0.0711531 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.5429511 0.5732906 0.541488 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.7123829 0.7124829 0.71449 0.7124829 0.71449 0.71449 0.71449 0.71449 0.7
CBC-CH2CI 1,1,1-2-tetrachloroethane 180E+07 7.26 -11.79226 CCH2-CHCI 1,1,2-1-trichloroethane 1100E+08 8.04 -11.54405 CCH3-CH2 1,1-1-trichloroethane 1100E+08 8.00 -11.99181 CH3CH2CH2-CI 1-2-dichloro-3-bromopropane 2.50E+09 9.40 -11.13376 CH3C-CH2CH2-CH2 1,2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH2CH2-CH3 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3C-CH2CH2 1-chloropropane 4.00E+08 8.60 -11.28917 CH3C-CH2CH2 1-chloropropane 3.00E+08 8.54 -10.83848 CH3C-CH2CH3 1,2-dichloropropane 4.00E+08 8.60 -11.28917 CH3C-CH2CH3 1-chloropropane 3.00E+09 9.53 -11.13331 GCH3C-CH2CH3 2,2-thloroethanol 4.20E+08 8.62 -11.6246 CH3C-CH2CH3 2,2-thloroethane 1.30E+07 7.11 -12.26293 CH3C-CH3CH3 chlorofform 1.40E+07 7.15 <td>-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.21351 -9.0085 -9.30371 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.24176 -10.21708 -10.24176 -10.21708 -10.24176 -10.24176 -10.27108 -0.959938 -6.550959 -6.357714 -6.612901 -6.236539 -6.755316 -6.2928738 -7.706493 -7.70493 -7.70493 -7.7631073 -7.413155 -7.904745 -7.90475 -7</td> <td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3946105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.334194 -0.3464039 -0.2714219 -0.334619 -0.334515 0.460282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.45778 0.7303413 0.5407815 0.5429511 0.6732906 -0.6227674 0.8079428 0.7124829 0.71246057 0.4641739 0.2166057 0.46417388 0.2166057 0.46417388 0.2164057 0.46417388 0.2164057 0.46417388 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2166057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.4641738 0.2164057 0.4641738 0.46417</td>	-9.96226 9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.21351 -9.0085 -9.30371 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.24176 -10.21708 -10.24176 -10.21708 -10.24176 -10.24176 -10.27108 -0.959938 -6.550959 -6.357714 -6.612901 -6.236539 -6.755316 -6.2928738 -7.706493 -7.70493 -7.70493 -7.7631073 -7.413155 -7.904745 -7.90475 -7	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3946105 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.334194 -0.3464039 -0.2714219 -0.334619 -0.334515 0.460282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.45778 0.7303413 0.5407815 0.5429511 0.6732906 -0.6227674 0.8079428 0.7124829 0.71246057 0.4641739 0.2166057 0.46417388 0.2166057 0.46417388 0.2164057 0.46417388 0.2164057 0.46417388 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2166057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.2164057 0.4641738 0.4641738 0.2164057 0.4641738 0.46417
CBC-CH2CI 1,1,1-2-tetrachloroethane 180E+07 7.26 -11.79226 CCH2-CH02 1,1,2-trichloroethane 1100E+08 8.04 -11.54045 CCH3-CH3 1,1,1-trichloroethane 100E+08 8.00 -11.99181 CH3CH2CH3-CH 1-2-dichloro-3-bromopropane 7.30E+08 8.86 -11.04351 CH3C-CH3C-CH3-CH3P 1,2-dichloropropane 4.00E+09 9.61 -10.88648 CH3C-CH3C-CH3P 1,2-dichloropropane 4.00E+09 9.53 -11.13331 BC-CH3-CH3-OH 2,2-bromoethanol 9.50E+08 8.98 -11.14609 CG3-CH3-OH 2,2,2-trifucorethanol 9.50E+08 8.98 -11.14609 CG3-CH3-OH 2,2,2-trifucorethanol 2.30E+08 8.62 -11.62465 CG3-CH3-OH 2,2,2-trifucorethanol 2.30E+08 8.62 -11.14609 CG3-CH3-OH 2,2,2-trifucorethanol 1.30E+07 7.11 -12.0716 CG3-CH3-OH 2,2,2-trifucorethane 1.30E+07 7.11 -12.07176 CG3-CH3-CH3 chloroform 1.40E+07 <t< td=""><td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.94096 -10.24176 -10.2105 -9.84076 -10.24176 -10.27108 -0.43263 -9.94096 -10.24176 -10.27108 -0.43263 -9.5938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -5.9282738 -6.854018 -6.724573 -7.76493 -7.7643 -7.631232 -6.93255 -6.93255 -6.93255 -9.90745 -7.552176</td><td>0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.409282 -0.0711531 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.5429511 0.5732906 0.541488 0.7303413 0.5407815 0.5429511 0.5732906 0.6227674 0.8079428 0.7123829 0.7123829 0.7194619 0.6316707 0.4398249 0.711593 0.2166057 0.4641739 0.2166057 0.4641739 0.216384</td></t<>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.88246 -9.94096 -10.24176 -10.2105 -9.84076 -10.24176 -10.27108 -0.43263 -9.94096 -10.24176 -10.27108 -0.43263 -9.5938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -6.755316 -5.9282738 -6.854018 -6.724573 -7.76493 -7.7643 -7.631232 -6.93255 -6.93255 -6.93255 -9.90745 -7.552176	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.409282 -0.0711531 0.93672 -1.5168 0.7303413 0.5407815 0.5429511 0.5429511 0.5732906 0.541488 0.7303413 0.5407815 0.5429511 0.5732906 0.6227674 0.8079428 0.7123829 0.7123829 0.7194619 0.6316707 0.4398249 0.711593 0.2166057 0.4641739 0.2166057 0.4641739 0.216384
CHICCHECI 1,1,1-2-tetrachloroethane 180E-07 7.26 -11.79226 CCH2-CHC1 1,1,-2-tetrachloroethane 110E+08 8.04 -11.56405 CCH3-CH12 1,1,-1-trichloroethane 110DE+08 8.04 -11.56405 CCH3-CH12-CH12-CH12 1,2-dichloro-3-bromopropane 2.50E+09 9.40 -11.13376 CH12-CH12-CH12-CH12-CH12-CH12-CH12-CH12-	-9.96226 9.73405 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88573 -10.43293 -9.94096 -10.24176 -10.21708 -10.24176 -10.27108 -10.24176 -10.27108 -10.24176 -10.27108 -10.24176 -10.27108 -0.95938 -6.550599 -6.357714 -6.612901 -6.236539 -6.755316 -6.236539 -7.706493 -7.706493 -7.70493 -7.703143 -7.631222 -6.93255 -7.904745 -7.532276 -7.211336	0.17132 -0.2448686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.39346105 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.3346105 -0.3031954 -0.364039 -0.2714219 -0.409282 -0.0711531 -0.409282 -0.6227674 -0.627674 -0.
CHC-CHCL 1,1,1-2-trichloroethane 1.80E+07 7.26 -1.179226 CKH2-CHCL 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CGLCH3 1,1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHICCHCCCH2Br 1.2-dichloro-3-bromopropane 2.50E+09 9.40 -11.13376 CHICCHCCH2Br 1.2-dichloro-3-bromopropane 4.10E+09 9.61 -10.88648 CHICCHCCH2Br 1.2-dichloroptropane 4.00E+08 8.60 -11.28917 CHICCHCCH2Br 1.2-dichloroptropane 4.00E+08 8.64 -10.88648 CHICCHCCH2CH3 1.2-dichloroethanol 3.50E+09 9.53 -11.13331 BcCH2CH2.0H 2-chaloroethanol 9.50E+08 8.54 -10.8384 CCH2CH2.0H 2.2-brichloroethanol 2.30E+08 8.36 -12.0465 CCH2CH2.0H 2.2-brichloroethanol 2.30E+07 7.11 -12.26293 CCH2CH2.0H 2.2-brichloroethanol 2.30E+07 7.11 -12.0465 CCH3CH0P12 dholoral hyrdmate 3.30E+07 <	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88573 -10.43269 -9.4096 -10.2165 -9.88673 -10.43269 -9.4096 -10.21165 -9.88673 -10.43269 -0.43263 -9.4096 -10.21165 -9.88673 -10.43263 -9.4096 -10.21165 -9.88673 -10.43263 -0.55316 -0.22173 -6.525216 -6.528738 -6.634796 -7.531163 -7.634295 -7.634295 -7.634295 -7.634295 -7.5325276 -7.532577 -7.525276 -7.211336 -7.437602	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.31954 -0.3564039 -0.2714219 0.3031954 -0.3564039 -0.2714219 0.3031954 -0.3714219 0.303413 0.5407815 0.5429511 0.6527674 0.8079428 0.7123829 0.7194619 0.6316707 0.4398249 0.711593 0.2166057 0.4641739 0.6113388 0.6572682 0.193759
CBC-CH2C 1,1,1-2-tetrachloroethane 1 80E+07 7.26 -1.179226 CCH2CHCD 1,1-2-trichloroethane 1 10E+08 8.04 -11.56405 CCB-CH3 1,1,1-trichloroethane 1 00E+08 8.00 -11.99181 CHECHERCH2CH 1-chloropropane 2 50E+09 9.40 -11.13376 CH3CHERCH2CH3 1,2-dichloro-3-bromopropane 7 30E+09 9.61 -10.88648 CH3CHCH2CH3CH 1,2-dichloropane 4 00E+09 9.53 -11.13331 Bx-CH2CH2CH3CH 2-bromoethanol 3 50E+08 8.54 -10.8385 CCH3CH2CH3CH 2-2-dicrorethanol 2 30E+08 8.62 -11.168246 CT3CH2CH3CH 2,2-2-trichloroethanol 2 30E+08 8.62 -11.168246 CCH3CH3CH3CH Halothane 1 30E+07 7.11 -11.226293 CCH3CH3CH3CH Halothane 1 30E+07 7.11 -11.226293 CCH3CH3CH3CH Endmarane 9.50E+07 7.18 -12.0176 CH32-OCFACH3CH3 dimethyl-di-sutfides 1 .00E+07 7.11 -1	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -10.2165 -9.88273 -10.43293 -9.94096 -10.24176 -10.21708 -10.43293 -9.94096 -10.24176 -10.27108 -10.43269 -0.593714 -6.612901 -6.236539 -6.555316 -6.928738 -7.76493 -7.76493 -7.76493 -7.76493 -7.764796 -7.531073 -7.764796 -7.531073 -7.764796 -7.531222 -6.93255 -7.904745 -7.532276 -7.211336 -7.437602 -7.211356	0.17132 -0.2448686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3946105 -0.3346105 -0.3346105 -0.3346105 -0.334150 -0.409282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -0.3614488 -1.456254 0.363143 0.5407815 0.5429511 0.5429511 0.6732906 -0.6227674 0.8079428 0.7124829 0.7194619 0.6316707 0.4398249 0.7114533 0.2166057 0.4398249 0.7114533 0.2166057 0.4641739 0.2166057 0.2166057 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675 0.21675
CHC-CHCL 1,1-2-tetrachloroethane 1.80E+07 7.26 -1.179226 CHELCHCL 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CHELCHCL 1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHELCHCACHEBR 1,2-dichloro-3-bromopropane 7.50E+09 9.40 -11.13376 CHELCHCACHEBR 1,3-dibtromyorpane 4.00E+09 9.61 -10.88648 CHELCHCACHEBR 1,3-dibtromyorpane 4.00E+09 9.53 -11.13331 BCHELCHCHEB 2,2-divinforcethanol 3.50E+08 8.54 -10.8385 CCHACHEDH 2,2-divinforcethanol 9.50E+08 8.62 -11.68246 CCHACHEDH 2,2-divinforcethanol 2.30E+08 8.62 -11.68246 CCHACHEDH 2,2-divinforcethanol 2.30E+09 9.49 -11.71673 CCHACHEDH 2,2-divinforcethanol 2.30E+09 9.49 -11.71673 CCHACHEDH 2,2-divinforcethano 1.30E+07 7.11 -12.20636 CHECHCHEDH 2,2-divinforcethano 1.30E+07 7.11	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43263 -9.0409 -10.2165 -9.88673 -10.43263 -9.4096 -10.21165 -9.88673 -10.43263 -9.4096 -10.21165 -9.88673 -10.43263 -9.4096 -10.21165 -9.88673 -10.43263 -9.5938 -6.650959 -6.55316 -6.29221 -6.236539 -6.755316 -6.724573 -7.70044 -7.531343 -7.70443 -7.70443 -7.70443 -7.631252 -6.93255 -7.904745 -7.5525276 -7.211336 -7.437602 -7.365183	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3931954 -0.3564039 -0.2714219 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.3346105 -0.3031954 -0.364039 -0.2714219 -0.3614488 -1.456254 -1.3577380 -0.6227674 -0.8079428 -0.7123829 -0.7123829 -0.7123829 -0.7123829 -0.7123829 -0.2136057 -0.4641739 -0.6113388 -0.572682 -0.9887089 -0.2886098 -0.5572682 -0.557682 -0.55
CHE-CHECL 1,1-2-trichloroethane 1.80E+07 7.26 -1.1792/6 CKH2-CHC2 1,1-2-trichloroethane 1.10E+08 8.04 -11.56405 CGL-CH3 1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHICCHCCCCH2R 1.2-dichloro-3-fromopropane 2.50E+09 9.40 -11.13376 CHILCHCCCH2R 1.2-dichloro-3-fromopropane 4.00E+08 8.60 -11.28917 CHILCHCCCH2R 1.2-dichloroptropane 4.00E+09 9.61 -10.86648 CHILCH2CH2CH2 1.2-dichloroptropane 4.00E+08 8.60 -11.28917 CHILCH2CH2CH3 1.2-dichloroptropane 4.00E+08 8.61 -11.03331 B-CHILCH2CH3 2.2-dichloroptropane 9.50E+08 8.54 -10.8385 CHILCH2CH3 2.2-dichloroptropane 9.50E+08 8.62 -11.1620 CHILCH2CH2 2.2-dichloroptropane 9.50E+08 8.62 -11.1620 CHILCH2CH2 2.2-dichloroftrane 1.50E+07 7.11 -12.26298 CHILCH2CH2 2.2-dichloroftrane 1.50E+07	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.43293 -9.94096 -10.24176 -10.27108 -10.43269 -9.59938 -6.650959 -6.357714 -6.612901 -6.295221 -6.236539 -7.75430 -7.76493 -7.76493 -7.76493 -7.764796 -7.531073 -7.764796 -7.531073 -7.764325 -7.904745 -7.532276 -7.211336 -7.437602 -7.36185 -7.078919	0.17132 -0.2448686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3341954 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.366048 -0.6227674 -0.6327674
CIECCHICI 1,1,2-tetradioroethane 1.80E-07 7.26 -11.7926 CIELCHICI 1,1-2-trichloroethane 1.00E+08 8.04 -11.5946 CIELCHICI 1,1-trichloroethane 1.00E+08 8.04 -11.99181 CHELCHICICHIR 1chloropropane 2.50E+09 9.40 -11.1337 CHELCHICHIR 1.2-dichlorospropane 4.00E+08 8.60 -11.04351 CHELCHICHIR 1.2-dichloropropane 4.00E+09 9.53 -11.13331 BCHICHICHIR 1.2-dichloropropane 4.00E+08 8.54 -10.8384 CHELCHICHIR 1.2-dichloropropane 4.00E+08 8.54 -10.8384 CHELCHICHIR 2.2-trinhloroethanol 3.50E+08 8.94 -11.14609 CHELCHICHIR 2.2.2-trinhloroethanol 2.0E+08 8.62 -11.6246 CHELCHIR 2.2.2-trinhloroethanel 1.20E+07 7.11 -12.26293 CHELCHICHIR 2.2.2-trinhloroethane 1.30E+07 7.11 -12.2639 CHELCHIR CHELCHIR 1.1.10T076 1.177096	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43263 -9.94096 -10.2165 -9.88673 -10.43263 -9.94096 -10.21105 -0.43263 -9.94096 -10.21105 -0.43263 -0.55316 -0.43263 -0.55316 -0.43263 -0.55316 -0.55316 -0.528738 -6.650959 -6.555316 -6.529538 -6.650959 -6.755316 -6.228738 -6.854018 -6.724573 -7.70643 -7.70044 -7.531073 -7.413156 -7.631222 -6.93255 -7.904745 -7.552276 -7.211336 -7.4379602 -7.365185 -7.078919 -10.63419	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 -0.3346105 -0.3031954 -0.3564039 -0.2714219 0.3031954 -0.3564039 -0.2714219 0.3031954 -0.3564039 -0.2714219 0.3031954 -0.3564039 -0.2714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.3031954 -0.3714219 0.31660 -0.6227674 0.8079428 0.711593 0.2166057 0.4641739 0.21860957 0.4641739 0.2186057 0.4641739 0.2186057 0.4641739 0.2186057 0.4641739 0.2186057 0.4641739 0.2186057 0.488789 0.2886098 0.4106834 1.66406
CIECCHICI 1,1,1-2-tetrahloroethane 1.80E-07 7.26 -11.7926 CIELCHICI 1,1-2-trichloroethane 1.00E+08 8.04 -11.5405 CIELCHICHICI 1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHERCHICHICHI 1-chloropropane 2.50E+09 9.40 -11.13376 CHERCHICHIB 1,2-dichloropropane 4.10E+09 9.53 -11.13331 CHERCHICHIB 1,2-dichloropropane 4.00E+09 9.53 -11.13331 BCRICHICHID 2-bromoethanol 3.50E+08 8.54 -10.8364 CHERCHIDH 2-bromoethanol 3.50E+08 8.54 -11.14609 CCHICHIDH 2.2.2+trikhoroethanol 2.30E+08 8.56 -12.0465 CCHICHIDH 2.2.2+trikhoroethanol 2.30E+07 7.11 -12.20455 CCHICHIDH 2.2.2-trikhoroethanol 1.30E+07 7.11 -12.0495 CHIGI Chlorothane 1.30E+07 7.11 -12.0455 CHICHICHIDH 2.2-dichlorothane 1.30E+07 7.11 -12.0456 <td>-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.43293 -9.94096 -10.24176 -10.27108 -10.43293 -9.94096 -6.55959 -6.357714 -6.612901 -6.295221 -6.236539 -7.553105 -7.76493 -7.77649 -7.77</td> <td>0.17132 -0.2448686 1.519827 0.2856433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3341954 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.400282 -0.0711531 -0.400282 -0.0711531 -0.400282 -0.0711531 0.54071531 0.54071531 0.5407815 0.5429511 0.6316707 -0.6227674 -0.6316707 -0.6316707 -0.4398249 0.7114533 0.2166057 0.4641739 0.2166057 0.2166057 0.2167057 0.2166057 0.2167057 0.2166057 0.2167057 0.2</td>	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.3031 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43293 -9.94096 -10.24176 -10.21708 -10.43293 -9.94096 -10.24176 -10.27108 -10.43293 -9.94096 -6.55959 -6.357714 -6.612901 -6.295221 -6.236539 -7.553105 -7.76493 -7.77649 -7.77	0.17132 -0.2448686 1.519827 0.2856433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3346105 -0.3346105 -0.3346105 -0.3341954 -0.3364039 -0.2714219 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.3364039 -0.2714219 -0.3346105 -0.400282 -0.0711531 -0.400282 -0.0711531 -0.400282 -0.0711531 0.54071531 0.54071531 0.5407815 0.5429511 0.6316707 -0.6227674 -0.6316707 -0.6316707 -0.4398249 0.7114533 0.2166057 0.4641739 0.2166057 0.2166057 0.2167057 0.2166057 0.2167057 0.2166057 0.2167057 0.2
CIECCHICI 1,1,2-tetrachloroethane 1.80E-07 7.26 -11.7926 CIELCHICI 1,1-2-trichloroethane 1.00E+08 8.04 -11.5946 CIELCHICI 1,1-trichloroethane 1.00E+08 8.00 -11.99181 CHELCHICICHIR 1-chloropropane 2.50E+09 9.40 -11.13376 CHERCHICICHIB 1.2-dichlorospropane 4.10E+09 9.61 -10.88648 CHERCHICICHIB 1.2-dichlorospropane 4.00E+08 8.60 -11.13331 BCRECHICHIB 1.2-dichlorospropane 4.00E+09 9.53 -11.13331 BCRECHICHIB 2.2-dichlorosthanol 3.50E+08 8.94 -10.88648 CHELCHICH 2.2-dichlorosthanol 4.20E+08 8.62 -11.6246 CHELCHICH 2.2.2-trichlorosthanol 4.20E+08 8.62 -11.6246 CHELCHICH 2.2.2-trichlorosthanol 4.20E+08 8.62 -11.6246 CHELCHICH 2.2.2-trichlorosthanol 2.0E+08 8.62 -11.16246 CHELCHICH 2.2.2-trichlorosthanol 1.00E+07 7.11	-9.96226 -9.73405 -10.16181 -9.30376 -9.21351 -9.05648 -9.45917 -9.30331 -9.0085 -9.31609 -9.85246 -10.2165 -9.88673 -10.43263 -9.94096 -10.21165 -9.88673 -10.43263 -9.94096 -10.21105 -9.4096 -10.21105 -9.88673 -10.43263 -9.94096 -10.21105 -0.55316 -6.50959 -6.555316 -6.52959 -6.555316 -6.529538 -6.650959 -6.555316 -6.2285738 -6.650959 -6.755316 -7.55316 -7.70493 -7.70044 -7.631232 -7.631222 -6.93255 -7.904745 -7.211336 -7.437602 -7.365185 -7.078919 -10.63419 -10.43641	0.17132 -0.2648686 1.519827 0.2836433 0.3616003 1.114866 1.510461 0.6344152 1.293984 -0.2747993 1.395035 -0.2992691 -0.3346105 -0.3031954 -0.3564039 -0.2714219 0.3346105 -0.3031954 -0.3564039 -0.2714219 0.334515 0.409282 -0.0711531 0.93672 -1.5168 0.8614488 -1.456254 -1.357388 0.7512961 0.542951 0.542951 0.542951 0.542951 0.542951 0.542951 0.542951 0.542951 0.542952 0.544488 0.557682 0.128809 0.2358008 0.416406 -0.2375803 0.54606 -0.2375803 0.557682 0.5429580 0.557682 0.54606 0.5429580 0.557682 0.54606 0.5429580 0.557682 0.54606 0.54606 0.5429580 0.557682 0.54606 0.54606 0.547682 0.54606 0.54606 0.547682 0.54606 0.54606 0.54606 0.547682 0.547682 0.54606 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0.547682 0

	1	2.007.07	7.40	10.01400	10 40 400	1.026006
NC-CH2-CH2-CN	succino nitrile	3.00E+07	7.48	-12.51428	-10.48428	1.020900
CCI3CN	trichloroacetonitrile	3.90E+07	7.59	-12.533	-10.703	-0.9552739
H2N-CN	cyanamide	8.70E+06	6.94	-10.79421	-8.96421	1.619838
H_CN	hydrogen cyanide	6 00E+07	7 78	-13 67734	-11 84734	1 725668
	injen ogen ogenede	0.50E100	1.10	15.07751	11.01751	1.725000
CH3-CH2-CH2-NO2	1-nitropropane	2.50E+08				
(CH3)2-CH-NO2	2-nitropropane	8.00E+07				
CH2CINO2	chloronitromethane	1.94E+08				
CHCDNO2	dichloronitromethane	5 12E+08				
CHCI2NO2	dictilor official distance	0.045.00				
CH2BrNO2	bromontromethane	8.36E+07				
CHBr2NO2	dibromonitromethane	4.75E+08				
CHBrCINO2	bromochloronitromethane	4.20E+08				
CU12 CO 2012		1.00E+08	0.00	10 52640	9 70640	1 521405
CH3-CO-NH2	acetailide	1.901 08	0.20	-10.33049	-8.70049	1.551455
HO-CH2-CO-NH2	glycolamide	1.10E+09	9.04	-10.51591	-8.68591	1.455724
HO-CH(CH3)-CO-NH2	2-hydroxypropionamide	1.30E+09	9.11	-10.57368	-8.74368	1.365525
(CH3)2_CH_CO_NH2	2-methylpropionamide	1.60E+09	9.20	-10 47292	-8 64292	1 61425
	a mouly propromanae	7.00000	0.05	10.402	0.662	1 577941
C2HJ-CO-NH2	propionamide	7.00E+08	0.03	-10.495	-8.003	1.377841
(CH3)3-C-CO-NH2	trimethylacetamide	1.50E+09	9.18	-10.45896	-8.62896	1.638468
(CH3)2-CH-CO-NH2	isobutyramide	1.60E+09	9.20	-10.47933	-8.64933	1.60468
CH3-CO-NH-C-(CH3)3	N-tert-butyl-acetamide	1 10E+09	9.04	-9 884847	-8 054847	1 600515
	N mathula actamida	1.60E+00	0.20	0.012084	0,000,0004	1 52049
CH3-CO-NH-CH3	IN-methylacetamide	1.00E+09	9.20	-9.912964	-0.002904	1.52946
(CH3)2-CH-CO-NH-CH3	N-butylformamide	1.90E+09	9.28	-9.872602	-8.042602	1.582228
(CH3)3-C-CO-NH-CH3	N-methyl-pivalamide	2.40E+09	9.38	-9.848647	-8.018647	1.652937
CH3-CH2-CO-NH-CH3	N-methyl-propionamide	1 40E+09	9.15	-9.882551	-8.052551	1 576084
	N-meany-propriorialide	1.000000	0.20	0.050500	0.040706	1.570004
(CH3)2-CH-CO-NH-CH3	IN-methylisobutyramide	1.90E+09	9.28	-9.8/8/20	-8.048/26	1.505597
H-CO-N-(CH3)2	N,N-dimethyl formamide	1.70E+09	9.23	-10.07748	-8.24748	1.513837
H-CO-NH-CH3	N-methyl-formamide	1.20E+09	9.08	-10.03077	-8.20077	1.559681
CHI CO N (CHIN)	N N-dimethyl acetamida	3 508+00	0.54	-9 494224	-7 664224	1 497595
CH3-CU-IN-(UH3)2	TAT I' at the state	3.005:00	2.34	-7.774444	-7.004224	1.70/303
(CH3)3-C-CO-N-(CH3)2	N,N-dimethyl pivalamide	3.90E+09	9.59	-9.429583	-7.599583	1.598679
H2N-CH2-CO-NH2	2-aminoacetamide	2.80E+09	9.45	-10.27474	-8.44474	1.551645
CH3-NH2	methyl amine	5 70E+09	9.76	-9 752981	-7 922981	3 811647
	athed and a	6 40E 100	0.91	0.696005	7.956005	2 65010
CH3-CH2-NH2	etnyl amine	0.40E+09	9.81	-9.080995	-/.800995	3.05019
CH3-(CH2)3-NH2	N-butyl amine	8.20E+09	9.91	-9.691511	-7.861511	3.527124
CH3-CH2-CH2-NH2	propyl amine	7.30E+09	9.86	-9.688557	-7.858557	3.586944
HON CHO CHO NHO	athylanadismina	5 50E+09	9.74	0 7/19013	7 018013	3 280833
H2N-CH2-CH2-NH2	entylenedianine	5.5015109	2.74	-9.746913	-7.918915	3.280855
(CH3)3-C-NH2	tert-butyl amine	6.00E+09	9.78	-9.835228	-8.005228	3.530262
CH3-(CH2)4-NH2	N-amyl amine	7.00E+09	9.85	-9.693243	-7.863243	3.490922
CH3-(CH2)5-NH2	Hexvlamine	1.30E+10	10.11	-9.692966	-7.862966	3,464632
CH3 (CH3)7 NH3	N octulamine	1.46E+10	10.16	9 692657	7 862657	3 432262
CH3-(CH2)/-IVH2	14-Octylaninic	1.405110	10.10	-9.092037	-7.802057	0.402202
(CH3)2-CH-NH2	iso-propyl amine	1.30E+10	10.11	-9.842072	-8.012072	3.619046
CH3-O-NH2	O-methyl hydroxy amine	1.40E+10	10.15	-10.53077	-8.70077	2.763594
CH3-NH-CH3	dimethylamine	8.90E+09	9.95	-9.387733	-7.557733	3.479749
CH3.(CH2)3.NH.(CH2)3.CH3	dibutyl amine	1 80E+10	10.26	-9.289158	-7 459158	3 121498
015-(012)5-015	t i ti ii	1.002.107	70.20	10.01650	0.40050	0.5047705
HOOC-CH2-NH-CH2-COOH	Immodiacetic acid	4.90E+07	/.69	-10.31659	-8.48659	0.5947785
(C2H5)2-N-OH	N,N-diethyl hydroxyl amine	1.30E+09	9.11	-9.712082	-7.882082	2.628267
(CH3(CH2)3)3-N	tributyl amine	1.70E+10	10.23	-8.953861	-7.123861	2.807584
(C2115)2 N	triathul amina	1.00E+10	10.00	9 057604	7 127604	2 970667
(CZHJ)5-N	uleulyi anime	1.001 10	10.00	-8.997004	-7.127004	2.879007
(CH3)3-N	trimethyl amine	1.30E+10	10.11	-9.122827	-7.292827	3.192113
(HO-CH2-CH2)3-N	triethanolamine	8.00E+09	9.90	-9.283858	-7.453858	2.262806
(CH2COOH)3-N	Nitrilotriacetic acid	2 10E+09	9 32	-10 20437	-8 37437	0 384091
(IOCUOCUD) 2 N	Nitrilatriathanal	8 00E+00	0.00	0.276757	7 446757	2.266425
(HUCH2CH2)3-N	INITIOTIEthanoi	8.00E+09	9.90	-9.2/0/3/	-/.440/3/	2.200425
(CH3)2-N-NH2	1,1-dimethyl hydrazine	1.60E+10	10.20	-9.472585	-7.642585	2.755817
(HO-CH2)3C-NH2	2-amino-2-propane-1,3-diol	1.50E+09	9.18	-10.04871	-8.21871	2.835901
(CH3)2 NI NO	N-nitrosodimethylamine	4 30E+08	8.63	-10.0307	-8 2007	0.8459922
	d 1 d 1 h	4.05E100	0.00	0.000001	0.120001	0.0107022
CH3-CH2-N(CH3)-N=O	metnyletnylnitrosamine	4.95E+08	8.09	-9.960921	-8.130921	0.918/220
CH3-CH2-N(N=O)-CH2-CH3	diethylnitrosamine	6.99E+08	8.84	-9.868942	-8.038942	1.004807
(CH3)2-N-NO2	dimethylnitramine	5.44E+08				
(CH3 CH2)/2 N NO2	diethyl nitramine	8 67E+08				
(0115-0112)2-1(-1(02	d 1 d 1 h	7.COE 100				
(CH3)(CH3CH2)-N-NO2	metnyl etnyl nitramine	7.60E+08				
(CH3)(CH3-O-)2-P=O	dimethyl methylphosphonate (DMMP)	2.00E+08	8.30	-11.41011	-9.58011	1.029427
(CH3)(CH3CH2)(CH3CH2O)-PO	Diethyl methylphosphonate (DEMP)	6.00E+08	8.78	-10.9066	-9.0766	1.6096
PO4 (CU2)2	trimathul phosphata	1 2012+09	8.08	11 72212	0.00212	0 502197
PO4-(CH3)3	unieuryi phosphate	1.2015108	0.00	-11.75512	-9.90312	0.303187
PO4-(CH2-CH3)3	triethyl phosphate	2.90E+09	9.46	-11.39699	-9.56699	0.6473161
PO4-(CH2-CH2-CH3)3	tributyl phosphate	1.00E+10	10.00	-11.28924	-9.45924	0.6307454
	cyclohentane	7 70E+09			1.83	
	cycloneptane	1.702.00			1.00	
	cycloheptanol	1.70E+09			1.85	
	cyclohexane	6.10E+09			1.83	
	cyclopentane	4.50E+09			1.83	
	tetrahvdrofivan	4 00E+00			1.92	
		4.00ET09			1.03	
	1,4-dioxane	3.10E+09			1.83	
	1,4-dithiane	1.80E+10			1.83	
	1.3.5-trioxane	1.50E+09			1.83	
	tatramathylana sulfavida	7.00E±00			1.03	
	teu ameurytene suitoxide	7.00ETU9			1.63	
	2-methyl-1,3-dioxalane	3.50E+09			1.83	
	1,3-dioxolane	4.00E+09			1.83	
	ethylene oxide	6 80E+07			1.83	
	1.0	5.00E+07			1.00	
	1,2-epoxybutane	7.80E+08			1.85	
	1,2-epoxypropane	2.50E+08			1.83	
	2,3-epoxypropanol	4.70E+08			1.83	
Inc-enemon	allul -11-1	5 00E 100	0.77	10.04291	0 21201	1 21045
H2C=CHCH2OH	aiiyi alcohol	5.90E+09	9.77	-10.04281	-8.21281	1.21805
H2C=CHCH2CH3	1-butene	7.00E+09	9.85	-9.925002	-8.095002	1.369879

UIC-CUCOCUS	1 butene 3 one	8 50E+09	0.03	10 64627	8 81627	0.06871939
H2C-CHCOCHS	1-butche-5-one	5.00E+00	0.55	10.55244	-0.01027	-0.00071939
H2C=CHCONH2	acrylamide	5.90E+09	9.77	-10.55544	-8.72544	0.1649501
H2C=CHCHO	acrolein	7.00E+09	9.85	-10.69461	-8.86461	-0.138328
H2C=CHCOOH	acrylic acid	1.50E+09	9.18	-11.172	-9.342	-0.1215594
H2C=CHCOOCH2CH2OH	2-hydroxyethyl acrylate	1.10E+10	10.04	-11.02822	-9.19822	-0.06259909
H2C=CHCI	vinyl chloride	1 20E+10	10.08	-10 20941	-8 37941	0.8561512
incontrol	-the analysis	6 00E+00	0.94	10 50270	9.67270	0.0301312
H2C=CHCH2CN	aliyi cyanide	0.90E+09	9.64	-10.30379	-8.07379	0.824497
H2C=CHCN	acrilonitrile	5.30E+09	9.72	-10.8575	-9.0275	0.04998269
H2C=CHCH3	propylene	7.00E+09	9.85	-9.982217	-8.152217	1.351431
H2C=CCl2	vinvlidine chloride	6.80E+09	9.83	-10.18964	-8.35964	0.3793356
HIG-C(CHI) CO MHI	mothyl aogulamida	1 20E+10	10.11	10.42105	8 50105	0 1902290
H2C=C(CH3)-CO-NH2	metnyi acrylamide	1.50E+10	10.11	-10.42105	-8.39103	0.1895389
H2C=C(CH3)COOCH3	methyl methacrylate	1.10E+10	10.04	-10.36607	-8.53607	-0.03770118
(CH3)2C=CH2	isobutylene	5.40E+09	9.73	-9.594924	-7.764924	1.277581
H2C=C(CH3)CN	methacylonitrile	1 20E+10				
	mediacytomatic	1.10E+10				
H2C=C(CH3)COOCH3	methyl methacrylate	1.10E+10				
CH3CH=CHCHO	crotonaldehyde	5.80E+09	9.76	-10.44213	-8.61213	-0.141633
HOOC-CH=CH-COOH (cis)	maleic acid	6.00E+09				
CICH=CHCI (cis)	dichloroethylene	3 80E+09				
	formation and	6.00E 100	0.79	11 6222	0.8022	1 204269
HOOC-CH=CH-COOH (trans)	Turnaric acid	0.00E+09	9.78	-11.0555	-9.8033	-1.204508
CICH=CHC1 (trans)	dichloroethylene	4.40E+09	9.64	-10.01435	-8.18435	0.3390446
C12C=CC12	tetrachloroethylene	2.00E+09	9.30	-9.899768	-8.069768	-0.4371864
	1.4-cvclohexadiene	7 70E+09				
	avalan antan a	7.00E+00				
	cyclopentene	7.00E+09				
	cyclohexene	8.80E+09				
	trichloroethene	2.90E+09	9.46	-9.955593	-8.125593	-0.06103172
	ethevlene	4 40E+09	9 64	-10 55205	-8 72205	1 438299
	II	5 70E 100	0.76	0.071515	0.141515	0.2102602
	Uracii	5.70E+09	9.76	-9.9/1515	-8.141515	-0.5185082
	5-azauracil	7.00E+09	9.85	-11.05554	-9.22554	-0.5902089
	6-azauracil	4.50E+09	9.65	-10.55661	-8.72661	-0.6103272
	5-bromouracil	4 00E+09	9.60	-9.806242	-7 976242	-0.6673521
	5-biomouracii	4.00E 109	9.00	-9.800242	7.970242	-0.0073321
	5-chiorouracii	5.50E+09	9.74	-9./50308	-7.920308	-0.001387
	5-fluorouracil	5.20E+09	9.72	-9.81127	-7.98127	-0.6562816
	dihydro-6-methyluracil	1.30E+09	9.11	-10.52412	-8.69412	0.4678679
	5 nitro 6 methybracil	5 30E+09				
	5-ind 6-6-incuryidi acti	5.100.00				
	5-nitrouracii	5.40E+09				
	thymine	6.40E+09	9.81	-9.607611	-7.777611	-0.2941526
	6-azathymine	2.80E+09	9.45	-10.17861	-8.34861	-0.5449313
	malaic hudrazida	2 00E+00	9.46	0.049073	8 118073	1.067842
	indele nyel azide	2.901:09	9.40	-9.946975	-0.1109/5	-1.007842
	isouramii	5.00E+09	9.70	-8./35811	-0.905811	-0.07312857
	cytosine	6.30E+09	9.80	-9.383221	-7.553221	-0.09800104
	5-methylcytosine	6.00E+09	9.78	-9.156627	-7.326627	-0.07697516
	6-azacytosine	4 50E+09	9.65	-9 936148	-8 106148	-0 4477363
	0-azacytosuic	4.50E+00	0.00	-9.950146	-0.100140	-0.4477505
	5-azacytosine	2.10E+09	9.52	-9.9/3156	-8.143156	-0.09400064
	N-ethylmaleimide	9.00E+09	9.95	-10.52536	-8.69536	-1.103325
	6-methyl uracil	5.70E+09				
C6H5 CH2CH3	ethylhenzene	7 50E+09	9.88	-9 363271	-7 533271	0.5302613
C6H5-CH2CH3	ethylbenzene	7.50E+09	9.88	-9.363271	-7.533271	0.5302613
С6H5-CH2CH3 С6H5-OH	ethylbenzene phenol	7.50E+09 6.60E+09	9.88 9.82	-9.363271 -9.115282	-7.533271 -7.285282	0.5302613 0.3974596
C6H5-CH2CH3 C6H5-OH C6H5-F	ethylbenzene phenol fluorobenzene	7.50E+09 6.60E+09 5.70E+09	9.88 9.82 9.76	-9.363271 -9.115282 -9.545124	-7.533271 -7.285282 -7.715124	0.5302613 0.3974596 0.1636994
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl	ethylbenzene phenol fluorobenzene chlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09	9.88 9.82 9.76 9.63	-9.363271 -9.115282 -9.545124 -9.560975	-7.533271 -7.285282 -7.715124 -7.730975	0.5302613 0.3974596 0.1636994 0.1546716
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5CI C6H5CI	ethylbenzene phenol fluorobenzene chlorobenzene brumobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09	9.88 9.82 9.76 9.63 9.68	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-Br	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.20E+00	9.88 9.82 9.76 9.63 9.68	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 0.647126	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 7.817126	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-Br C6H5-I	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene iodobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09	9.88 9.82 9.76 9.63 9.68 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5CI C6H5-Br C6H5-I C6H5-I	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene iodobenzene benzonitrile	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016
C6H3-CH2CH3 C6H3-0H C6H3-F C6H3-F C6H3-Br C6H3-Br C6H3-1 C6H3-CN C6H3-N02	ethylbenzene phenol fhuorobenzene cklorobenzene bormobenezene iodobenzene benzonitrile nitrobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-Br C6H5-Br C6H5-Br C6H5-I C6H5-CN C6H5-NO2 C6H5-NO2	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene iodobenzene benzonitrile nitrobenzene benzoltehyde	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-F C6H5-Br C6H5-Br C6H5-1 C6H5-CN C6H5-NO2 C6H5-CN C6H5-CHO	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene iodobenzene benzonitrile nitrobenzene benzaldehyde benzeni ozid	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59 9.64 9.64	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 8.25448	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-Br C6H5-Sr C6H5-SCN C6H5-SCN C6H5-NO2 C6H5-CHO C6H5-CHO	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene iodobenzene benzoitrile nitrobenzene benzaldehyde benzoic acid	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.30E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59 9.64 9.63	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4684967
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-Br C6H5-1 C6H5-CN C6H5-CN C6H5-CNO C6H5-CHO C6H5-COOH C6H5-COOH	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenzene iodobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone	7.50E+09 6.60E+09 5.70E+09 4.30E+09 5.30E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09 4.30E+09 6.40E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59 9.64 9.63 9.81	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4348125 -0.4684967 -0.361914
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-L C6H5-L C6H5-NO C6H5-NO C6H5-NO C6H5-COOH C6H5-COOH3 C6H5-COOH3	ethylbenzene phenol fhuorobenzene cklorobenzene bormobenezene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzanide	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.30E+09 4.60E+09	9.88 9.82 9.76 9.63 9.68 9.72 9.59 9.64 9.63 9.81 9.66	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-G C6H5-G C6H5-G C6H5-G C6H5-CN C6H5-CN C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH2 C6H5-COOH2	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 4.30E+09 4.40E+09 4.30E+09 4.60E+09 9.70E+09	9.88 9.82 9.76 9.63 9.72 9.59 9.59 9.64 9.63 9.81 9.66 9.99	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.936084 -9.942663 -9.260956	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.106084 -8.112663 -7.430956	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-G C6H5-Br C6H5-Br C6H5-N0 C6H5-N0 C6H5-N0 C6H5-CH0 C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH2 C6H5-CONH2 C6H5-CONH2	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene iodobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzolicohol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 6.40E+09 9.70E+09 8.40E+09	9.88 9.82 9.76 9.63 9.64 9.59 9.64 9.63 9.81 9.66 9.99 9.99	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.17277 -8.125448 -8.106084 -7.430956 -7.430956 -7.430956	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-Br C6H5-A C6H5-A C6H5-CN C6H5-CN C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene bezonitrile nitrobenzene benzaldehyde benzaidehyde benzaidehyde benzaidehyde benzaidehyde benzaidehyde benzaidehyde benzaidehyde benzente benzanide	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 8.40E+09 8.40E+09	9.88 9.82 9.76 9.63 9.72 9.59 9.64 9.63 9.81 9.66 9.99 9.92 0.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 9.76556	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-F C6H5-Br C6H5-Br C6H5-CN C6H5-CN C6H5-CNO C6H5-CHO C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COCH3 C6H5-COCH3 C6H5-CH2OH C6H5-SNCH3	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenezene iodobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzylalcohol acetanlide	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 3.90E+09 3.90E+09 4.30E+09 4.30E+09 4.30E+09 6.40E+09 9.70E+09 8.40E+09 5.20E+09	9.88 9.82 9.76 9.63 9.64 9.59 9.64 9.63 9.81 9.66 9.99 9.92 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.822318 -8.765556	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.71975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.430956 -6.935536	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5-L C6H5-L C6H5-L C6H5-NO2 C6H5-NO2 C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3	ethylbenzene phenol fhuorobenzene cklorobenzene boromobenezene iodobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanlide benzenesulfonic acid	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09	9.88 9.82 9.76 9.63 9.72 9.59 9.64 9.63 9.64 9.63 9.81 9.66 9.99 9.92 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.942663 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.106084 -7.430956 -7.552318 -6.935336 -8.59274	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 -0.3259316 -0.8968664
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-G C6H5-G C6H5-G C6H5-CN C6H5-CN C6H5-CNO C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COCH3 C6H5-COCH3 C6H5-SOCH3 CH5-SOCH3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene benzonitrile nitrobenzene benzanitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzylalcohol acetanilide benzensulfonic acid phenyl hydroxylamine	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09 1.50E+10	9.88 9.82 9.63 9.63 9.72 9.59 9.64 9.63 9.64 9.63 9.81 9.66 9.99 9.92 9.72 9.32 10.18	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318 -6.935536 -8.59274 -6.268616	0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3346016 -0.4684967 -0.361914 -0.1992762 0.4754084 0.3259316 -0.8968664 -0.8968664
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5-G C6H5-Br C6H5-CN C6H5-N0 C6H5-N0 C6H5-CNO C6H5-CNO C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-NH-COCCH3 C6H5-NH-COCCH3 C6H5-NH-OH C6H5-NH-OH	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene benzonitrile nitrobenzene benzoitrile nitrobenzene benzaidehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.60E+09 4.60E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09	9.88 9.82 9.63 9.63 9.72 9.59 9.64 9.64 9.64 9.93 9.94 9.66 9.99 9.92 9.72 9.32 10.18 9.77	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.36084 -9.942663 -9.362318 -8.765536 -10.42274 -8.098616 -9.287429	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.459254 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429	0.5302613 0.3974596 0.1536994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8988664 0.7375505 0.829438
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5Cl C6H5-L C6H5-L C6H5-L C6H5-L C6H5-CN C6H5-CN C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH4 C6H5-SOCH4 C6H5-SOCH4 C6H5-CH2D2-C(CH3)2-OH C6H5-CH2D2-C(CH3)2-OH C6H5-CH2D2-C(CH3)2-OH	ethylbenzene phenol fluorobenzene cklorobenzene bormobenzene bormobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanlide benzensuffonic acid phenyl hydroxylamine 2-methyl - hytenyl - Joruanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 8.40E+09 1.50E+10	9.88 9.82 9.63 9.63 9.64 9.63 9.64 9.64 9.66 9.99 9.92 9.72 9.59	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.430956 -7.552318 -6.93536 -8.59274 -6.268616 -7.457429 -7.553887	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.3958664 0.7375505 0.5829438 0.5120207
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5-G C6H5-Br C6H5-CN C6H5-N0 C6H5-N0 C6H5-CN C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-CH0H C6H5-NH-OH C6H5-NH-OH C6H5-CH0CH(20)2 OH C6H5-CH0CH(20)2 CH32-OH C6H5-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH(20)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH2(CH3)2 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH0CH3 CH32-CH32-CH32 CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32 CH32-CH32-CH32-CH32 CH32-CH32-CH32-CH32 CH32-CH32-CH32-CH32 CH32-CH32-CH32-CH32 CH32-CH32-CH32-CH32-CH32 CH32-CH32-CH32-CH32-CH32-CH32-CH32-CH32-	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenezene iodobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzylalcohol acetanllide benzensulfonic acid phenyl hydroxylamine 2-methyl-4-phenyl-1-propanol chemyl hydroxylamine	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.30E+09 3.30E+09 3.30E+09 4.40E+09 4.30E+09 4.30E+09 4.60E+09 9.70E+09 5.20E+09 5.20E+09 2.10E+09 1.50E+10 5.90E+09	9.88 9.82 9.63 9.63 9.64 9.59 9.64 9.64 9.64 9.64 9.90 9.92 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.9426536 -10.42274 -8.098616 -9.287429 -9.383857 -9.383857	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.553857	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8968664 0.3375505 0.5829438 0.5120207
C6H3-CH2CH3 C6H3-CH2CH3 C6H3-OH C6H3-F C6H3-G C6H3-G C6H3-G C6H3-NO2 C6H3-NO2 C6H3-NO2 C6H3-COOH C6H3-COOH C6H3-COOH3 C6H3-COOH3 C6H3-COOH3 C6H3-COOH3 C6H3-COOH3 C6H3-CH2OH C6H3-COOH3 C6H3-CH2OH C6H3-CH2OH C6H3-CH2OHCH3 C6H3-CH2OHCH3 C6H3-CH2OHCH3 C6H3-CH2OHCH3	ethylbenzene phenol fhuorobenzene cklorobenzene boromobenezene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylacohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-2-butanol phenyl-tylethanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09 1.50E+10 1.50E+10 1.50E+09 9.50E+09	9.88 9.82 9.63 9.63 9.63 9.59 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.942663 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318 -6.935356 -8.59274 -6.268616 -7.457429 -7.553175	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8968664 0.7375505 0.5829438 0.5120207
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-G C6H5-G C6H5-G C6H5-CN C6H5-CN C6H5-CN C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2D C6H5-CH2CH2 C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2D C6H5-CH2CH2CH3)	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene berzonitrile nitrobenzene berzzitrile nitrobenzene berzzidehyde benzoi acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanilide benzylalcohol acetanilide benzylalcohol acetanilide benzylalcohol acetanilide benzylalcohol acetanilide benzylalcohol acetanilide benzensulfonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-1-propanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 8.40E+09 9.70E+09 1.50E+09 1.50E+09 1.10E+10 1.00E+10	9.88 9.82 9.63 9.63 9.72 9.59 9.64 9.63 9.64 9.63 9.99 9.92 9.92 9.32 10.18 9.77 9.93 10.18	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.552318 -6.935536 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.5553857 -7.5553857 -7.555757 -7.555757 -7.555757 -7.555757 -7.555757 -7.555757 -7.555757 -7.555757 -7.555757 -7.5557757577 -7.555777 -7.555777 -7.555777 -7.555777 -7.5557777 -7.555777	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4684967 -0.361914 -0.2145394 0.3259316 -0.8968664 0.3375505 0.5829438 0.5120207 0.5058496 0.4862124
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5-F C6H5-F C6H5-F C6H5-F C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN0H C6H5-COH C6H5-COH2 C6H5-COH2 C6H5-CH0H C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH0HCH2 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH2-OH	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene benzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzylalcohol acetanilide benzenesulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.80E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 9.50E+09 9.50E+09 9.50E+09 1.10E+10 1.00E+10	9.88 9.82 9.63 9.63 9.72 9.59 9.64 9.64 9.64 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.04	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.387175 -9.387175 -9.455846 -9.4753491	-7.533271 -7.285282 -7.715124 -7.71512 -7.71512 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -7.552318 -6.955536 -8.59274 -7.555355 -7.555355 -7.555355 -7.555175 -7.625846 -7.625846 -7.625846	0.5302613 0.3974596 0.1536594 0.1536716 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8988664 0.7375505 0.5829438 0.5120207 0.0588496 0.4862124 0.4123215
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5Cl C6H5-Br C6H5-Sr C6H5-SN C6H5-SN C6H5-SN C6H5-CNOH C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SOCH3 C6H5-SNH-OH C6H5-SO1H C6H5-CH2H2-C(H3)2-OH C6H5-CH2CH2-CH3)2 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3	ethylbenzene phenol fluorobenzene cklorobenzene bormobenezene bormobenezene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanlide benzensuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-ptropanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.30E+09 3.30E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 8.40E+09 1.50E+10 1.00E+10 2.10E+10	9.88 9.82 9.66 9.63 9.68 9.72 9.64 9.63 9.66 9.99 9.92 9.52 10.18 9.75 9.52 10.18 9.75 9.58 10.04 10.00 10.32 9.73	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.387175 -9.455846 -9.473491 -9.04682	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.430956 -7.430956 -7.452318 -6.935356 -8.59274 -6.268616 -7.457429 -7.553857 -7.557175 -7.625846 -7.643491 -7.174682	0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.04348125 -0.4684967 -0.361914 -0.192762 0.4754084 0.3259316 -0.886664 0.7375505 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-G C6H5-G C6H5-G C6H5-SN2 C6H5-SN2 C6H5-SN2 C6H5-SN2 C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-CH2OH C6H5-SN3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 C6H5-CH2OH CH3 CH3 C6H5-CH2OH CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene berzonitrile nitrobenzene benzoitale nitrobenzene benzaldehyde benzoic acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-propanol anisol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 9.50E+09 9.50E+09 9.50E+09 1.10E+10 1.00E+10 2.10E+10 2.10E+10 1.00E+10	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.64 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00 10.32 9.73	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.36084 -9.942663 -9.36084 -9.942663 -9.36084 -9.942663 -9.36084 -9.942658 -9.36084	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.71975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.5531857 -7.625846 -7.643491 -7.174682 -7.763941	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.361914 -0.2145394 -0.392505 0.4754084 0.3259316 -0.8968664 0.7375555 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.8437376
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5Cl C6H5Cl C6H5-L C6H5-L C6H5-CN C6H5-NO2 C6H5-NO2 C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-SO3H C6H5-SO3H C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OHCH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	ethylbenzene phenol fhuorobenzene cklorobenzene boromobenzene benzonitrile nitrobenzene benzaldehyde benzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzyłałcohol acetanikide benzenesuffonic acid phenyl hydroxyłamine 2-methyl-1-phenyl-2-butanol 1-phenyl-1-propanol 1-phenyl-1-propanol aasio 1-phenyl-2-propanol anisol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 1.50E+10 1.00E+10 1.00E+10 5.40E+09 1.00E+10 5.40E+09	9.88 9.82 9.63 9.63 9.63 9.59 9.64 9.64 9.64 9.64 9.64 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00 10.32 9.73 10.00	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.94274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.473491 -9.004682 -9.617941 -9.004682	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318 -6.935536 -8.59274 -6.268616 -2.68616 -2.68516 -2.65817 -7.557175 -7.657845 -7.657845 -7.6343491 -7.174682 -7.787941 -7.174682 -7.787941	0.5302613 0.974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.4348125 -0.4684967 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8968664 0.7375505 0.5829438 0.5120207 0.5058496 0.4862124 0.4823275 0.4837376 0.4837376 0.4243417 0.423215 0.4837376
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5-C1 C6H5-C1 C6H5-C1 C6H5-CN C6H5-C0OH C6H5-C0OH C6H5-C0OH C6H5-C0OH C6H5-C0OH C6H5-C0OH3 C6H5-C0OH3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH2CH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CH2OH3 C6H5-CCOH	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanlide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol nisol phenystetianol 1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 5.20E+09 1.50E+10 1.50E+10 1.00E+10 1.00E+10 9.00E+09	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.96 9.92 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.9426536 -10.42274 -9.938387 -9.383857 -9.383857 -9.383857 -9.3837175 -9.455846 -9.473491 -9.004682 -9.6(17941) -9.84922	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.71975 -7.771476 -7.817136 -8.19129 -8.19129 -8.19277 -8.25448 -8.106084 -8.112663 -7.450244 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.657175 -7.652846 -7.643491 -7.174682 -7.787941 -8.01922	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.392762 0.4754084 0.3259316 -0.8968664 -0.375555 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.0243417 -0.6259145
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-F C6H5Cl C6H5-Cl C6H5-CN C6H5-N0 C6H5-N0 C6H5-N0 C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-CH2OH C6H5-COCH3 C6H5-CH2OH CH2OH C6H5-CH2OH CH	ethylbenzene phenol fluorobenzene cklorobenzene boromobenzene benzonitrile nitrobenzene benzanite nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylacohol acetanikide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-potranol	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.50E+10 5.90E+09 1.10E+10 5.40E+09 1.00E+10 9.00E+09 1.00E+10	9.88 9.82 9.63 9.63 9.64 9.65 9.95 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.473491 -9.617941 -9.84922 -8.042634	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.17277 -8.17277 -8.17277 -8.1929 -8.1929 -8.1929 -8.1929 -7.55318 -6.955356 -8.59274 -6.268616 -7.457429 -7.5531857 -7.553175 -7.55318 -6.268616 -7.457429 -7.553857 -7.553175 -7.5531857 -7.55318 -7.55	0.5302613 0.974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.33480125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8968664 0.7375505 0.8529438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.0243417 0.0243417 0.0259145 0.1528785
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5CI C6H5-I C6H5-I C6H5-I C6H5-I C6H5-I C6H5-CN C6H5-CO C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-COOH3 C6H5-SOCH3 C6H5-SNH-OC-CH3 C6H5-SO1H C6H5-SO1H C6H5-SO1H C6H5-CH2CH2/C(H3)2-OH C6H5-CH2CH2/C(H3)2 C6H5-CH0HCH(2(H3)2) C6H5-CH0HCH3 C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5/S12-CO (C6H5)2-S0	ethylbenzene phenol fluorobenzene cklorobenzene boromobenezene benzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanlide benzensuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09 1.50E+10 1.00E+10 1.00E+10 9.00E+09 1.00E+10 6.30E+09	9.88 9.82 9.66 9.63 9.64 9.63 9.64 9.65 9.99 9.92 9.72 9.59 9.66 9.99 9.92 9.72 9.32 10.18 9.73 10.00 9.73 9.73 10.00 9.95 10.00 9.80	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.473491 -9.04682 -9.617941 -9.84922 -8.042634 -9.242753	-7,533271 -7,285282 -7,715124 -7,715124 -7,715124 -7,730975 -7,771476 -8,19129 -8,17277 -8,25448 -8,106084 -8,112663 -7,552318 -6,935536 -7,552318 -6,935536 -7,457429 -7,553857 -7,655846 -7,457429 -7,553857 -7,655846 -7,457429 -7,787941 -8,01922 -6,212634 -7,38753	0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.33446016 -0.4348125 -0.4684967 -0.361914 -0.2145394 0.4259316 -0.8968664 0.3375505 0.5829438 0.5120207 0.508486 0.4862124 0.48231376 0.0243417 -0.6259145 0.6259145 0.528785 0.528785
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5C1 C6H5C1 C6H5-F C6H5-G1 C6H5-G1 C6H5-C1 C6H5-C0 C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H3 C6H5-C00H3 C6H5-C00H3 C6H5-CH20H C6H5-NH-C0CH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH2-OH C6H5-CH2-OH C6H5-CH2-OH C6H5-CH3 -0-C00H (C6H5)2-C0 (C6H5)2-NH (C6H5)2-NH (C6H5)2-NH (C6H5)2-S0 (C6H5)2-S0 (C6H5)2-S0	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene berzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl sulfoxide benzylacohol acetanilide benzenesulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol benzopanol benzophenone diphenyl sulfoxide benzenese	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 8.40E+09 5.20E+09 2.10E+09 9.50E+09 9.50E+09 9.50E+09 9.50E+09 1.00E+10 5.40E+09 1.00E+10 9.00E+09 1.00E+10 9.00E+09 1.00E+10 9.00E+09	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.95 9.64 9.96 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00 10.32 9.73 10.00 9.95 10.00 9.95	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383175 -9.487429 -9.383175 -9.473491 -9.004682 -9.473491 -9.474491 -9.474491 -9.474491 -9.474491 -9.474	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.45248 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.625846 -7.643491 -7.174682 -7.787941 -8.01922 -6.212634 -7.393753	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.85829438 0.5120207 0.5058496 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.4862124 0.4123215 0.4837376 0.4862124 0.4123215 0.4827345 0.1528785 -0.2421511 0.1528785
C6H5-CH2CH3 C6H5-OH C6H5-F C6H5CI C6H5-I C6H5-I C6H5-I C6H5-I C6H5-CN C6H5-CN C6H5-CO C6H5-COOH C6H5-COCH3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH2	ethylbenzene phenol fhuorobenzene cklorobenzene boromobenzene berzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide berzyłałcohol acetanikide benzenesulfonic acid phenyl hydroxyłamine 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide tobuene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 1.50E+10 1.50E+10 1.00E+10 1.00E+10 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 5.1	9.88 9.82 9.66 9.63 9.64 9.63 9.64 9.65 9.99 9.99 9.92 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.106084 -8.106084 -8.106084 -7.430956 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429 -7.5533857 -7.557175 -7.625846 -7.457429 -7.577175 -7.625846 -7.457429 -7.577175 -7.625846 -7.457429 -7.577175 -7.625846 -7.457429 -7.577175 -7.625846 -7.457429 -7.57775 -7.625846 -7.457429 -7.57775 -7.625846 -7.457429 -7.57775 -7.625846 -7.457429 -7.57775 -7.625846 -7.457429 -7.57775 -7.625846 -7.457429 -7.57755 -7.625846 -7.45775 -7.625846 -7.45775 -7.57775 -7.625846 -7.5777575 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.57775 -7.625846 -7.5777575 -7.577755 -7.57775575757575 -7.57775757	0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 - -0.4348125 -0.4684967 -0.361914 -0.2145394 0.4259316 -0.8968664 0.32559316 0.8529438 0.5120207 0.5088496 0.4820124 0.4383736 0.0243417 -0.6259145 0.1528785 0.522049
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-G C6H5-G C6H5-G C6H5-SN2 C6H5-N02 C6H5-N02 C6H5-CN0H C6H5-C0CH3 C6H5-C0CH3 C6H5-C0CH3 C6H5-C0CH3 C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H C6H5-CH2H2 C6H5-CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene bromobenezene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzanide methyl phenyl suffoxide benzelacohol acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 1.50E+10 5.90E+09 9.50E+09 1.00E+10 1.00E+10 1.00E+10 6.30E+09 1.00E+10 5.10E+09 1.70E+10	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.95 9.64 9.95 9.92 9.72 9.32 10.18 9.77 9.93 10.00 10.32 9.73 10.00 10.32 9.73 10.00 9.95	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.382318 -8.765536 -10.42274 -9.383857 -9.383857 -9.3837175 -9.455846 -9.473491 -9.04682 -9.617941 -9.84922 -8.642634 -9.223753 -9.330592 -8.21347	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.711476 -7.817136 -8.19129 -8.12448 -8.106084 -8.112663 -7.452448 -8.10268416 -7.4553218 -6.268616 -7.4557429 -7.553857 -7.625846 -7.643491 -7.174682 -7.767941 -8.01922 -6.212634 -7.303753	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8868664 0.3355365 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.8837376 0.8837376 0.4862124 0.4123215 0.4837375 0.528785 -0.2421511 0.528785 -0.2421511 0.520049 0.7582679
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CO C6H5-CO C6H5-COCH3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CHCH2-C(CH3) C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH3 -0-C00H (C6H5)2-NH (C6H5)2-NH C6H5-CH3 C6H5-CH3 C6H5-SNE2 H3C-C6H4-CH3	ethylbenzene phenol fluorobenzene cklorobenzene boromobenzene benzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanikide benzylalcohol acetanikide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-2-butanol 1-phenyl-1-propanol nehtyl-1-phenyl-2-propanol amisol phenoxyacetic acid benzophenone diphenylamine diphenyl suffoxide tokuene aniline o-xylene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.50E+10 5.90E+09 1.00E+10 2.10E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 6.30E+09 5.10E+09 1.00E+10 6.30E+09 5.1	9.88 9.82 9.63 9.63 9.63 9.59 9.59 9.64 9.64 9.65 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.942663 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.387175 -9.387175 -9.455846 -9.455846 -9.475491 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.557175 -7.652846 -7.65846 -7.457429 -7.553857 -7.655845 -7.65846 -7.6343491 -7.174682 -7.787941 -7.174682 -7.787941 -7.174682 -7.787941 -7.174682 -7.362846 -7.393753 -7.500592 -6.312634 -7.338906	0.5302613 0.974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8968664 0.7375505 0.829438 0.5120207 0.5088496 0.4862124 0.4123215 0.4837376 0.0243417 -0.6259145 0.1528785 -0.2421511 0.520049 0.7582679 0.5253025
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-I C6H5-I C6H5-I C6H5-SP C6H5-CN C6H5-N0 C6H5-N0 C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-COOH C6H5-CH0 CH0 C6H5-CH0 CH0 C6H5-CH0 CH0 CH0 CH0 CH0 CH0 CH0 CH0 CH0 CH0	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenezene iodobenzene berzonitrile nitrobenzene benzalide benzoic acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanlide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol nisol phenystetianol 1-phenyl-1-propanol phenystetianol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 1.50E+10 1.50E+10 1.00E+10 1.00E+10 9.00E+09 1.00E+10 9.00E+09 5.10E+09 5.10E+09 5.10E+09	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.96 9.92 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.601476 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.9426536 -10.42274 -9.383857 -9.383857 -9.3837175 -9.455846 -9.473491 -9.04682 -9.6(17941) -9.84922 -8.042634 -9.23753 -9.330592 -8.21347 -9.168906 -9.10805	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.71975 -7.771476 -7.817136 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.59274 -6.268616 -7.457429 -7.553857 -7.657175 -7.652846 -7.643491 -7.174682 -7.787941 -8.01922 -6.212634 -7.503925 -6.38347 -7.388906 -7.368065	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.361914 -0.2145394 -0.361914 -0.2145394 0.3259316 -0.8968664 0.3355935 0.5829438 0.5120207 0.5058496 0.4825124 0.4123215 0.4837376 0.0243417 -0.6259145 0.528495 0.528495 0.528495 0.528495 0.528495 0.528435 0.528435 0.528435 0.528435 0.528435 0.5283025 0.5283025
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-COH C6H5-COH C6H5-COH C6H5-COH C6H5-COH C6H5-COH C6H5-COH3 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-CH0H C6H5-CH0HCH2 C6H5-CH2 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene bernonitile nitrobenzene benzonitile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylacohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol benzophenone diphenylamine diphenyl suffoxide tohaene aniline o-xylene m-xylene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 4.60E+09 9.70E+09 2.10E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.70E+10 6.70E+09 7.50E+09 7.50E+09 7.50E+09	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.04 10.03 9.973 10.00 9.955 10.00 9.955 10.00 9.80 9.73 10.23 9.83 9.85	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.387175 -9.455846 -9.457549 -9.387175 -9.455846 -9.473491 -9.455846 -9.473491 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.10137	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17127 -8.17127 -8.17127 -8.19129 -8.17277 -8.17127 -8.19129 -8.19129 -8.19129 -7.55318 -6.935536 -8.59274 -6.268616 -7.457429 -7.55318 -7.625846 -7.63537 -7.50592 -6.338347 -7.338906 -7.338906 -7.360805 -7.231137	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394 -0.3192762 0.4754084 0.3259316 -0.8968664 0.7375505 0.5829438 0.5120207 0.5058496 0.4863124 0.4123215 0.4837376 0.0243417 0.0259145 0.1528785 -0.2421511 0.528049 0.5582679 0.5253025 0.5293261
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-I C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CO C6H5-CO C6H5-COCH3 C6H5-CH2CH2 C6H5-CH2CH2-CH3 C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH3 C6H5-S02 C6H5-S02 C6H5-S03 C6H5-S03 C6H5-S03 C6H5-S04 C6H5-S04 C6H5-S05 C6H5-S04 C6H5-S04 C6H5-S04	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene berzoitrile nitrobenzene berzaldchyde benzoia acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanilide benzylalcohol acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol nisol phenoytacettic acid benzophenone diphenyl amine diphenyl amine diphenylamin	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.30E+09 4.30E+09 4.30E+09 4.30E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 5.30E+09 1.10E+10 1.00E+10 5.30E+09 1.00E+10 5.30E+09 5.10E+09 5.10E+09 7.50E+09 7.50E+09 7.50E+09	9.88 9.82 9.63 9.63 9.64 9.63 9.59 9.59 9.59 9.64 9.63 9.81 9.66 9.99 9.92 9.72 9.32 9.72 9.32 9.72 9.32 10.18 9.77 9.92 9.70 9.59 9.72 9.72 9.72 9.72 9.72 9.72 9.73 9.75 9.72 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.473491 -9.04682 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.061137 -9.651564	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -7.452318 -6.935536 -7.457429 -7.553857 -7.653845 -7.643491 -7.457429 -7.553857 -7.653845 -7.643491 -7.457421 -8.01922 -6.212634 -7.338906 -7.360805 -7.360805 -7.360805 -7.2531137	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3945016 0.4754084 0.3259316 -0.8968664 0.3259316 0.5829438 0.5120207 0.5058496 0.4823124 0.4123215 0.6259145 0.1528785 0.5226439 0.5253025 0.5293261 0.5293261 0.5293261
C6H5-CH2CH3 C6H5-OH C6H5-I C6H5-I C6H5-I C6H5-I C6H5-N2 C6H5-N2 C6H5-N2 C6H5-N2 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CO0H C6H5-CO0H C6H5-CO0H C6H5-S0CH3 C6H5-CH0HCH3 C6H5-NH-CO-CH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH2-CH3 -0-C00H (C6H5)2-S0 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene bernonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoit acid acetophenone benzalide methyl phenyl suffoxide benzelacohol acetanilide benzelacohol acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene p-xylene 1,2-dichlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 3.40E+09 5.20E+09 2.10E+09 1.50E+10 5.90E+09 9.50E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.10E+09 1.00E+10 5.10E+09 1.70E+09 7.50E+	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.95 9.64 9.95 9.64 9.95 9.72 9.32 10.18 9.72 9.32 9.72 9.32 9.72 9.32 9.72 9.32 9.72 9.32 10.10 9.95 9.72 9.59 9.72 9.72 9.72 9.72 9.72 9.72 9.72 9.7	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942645 -9.387175 -9.387175 -9.387175 -9.455846 -9.473491 -9.004682 -9.617941 -9.84922 -8.042634 -9.23753 -9.30592 -8.21347 -9.168906 -9.108055 -9.961137 -9.601684 -9.601684	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.70975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.19129 -8.106084 -8.106084 -8.106084 -8.106084 -7.552318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.625846 -7.643491 -7.174682 -7.632846 -7.632846 -7.632846 -7.632846 -7.632846 -7.338906 -7.360805 -7.231137 -7.771684	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.3946016 -0.361914 -0.2145394 -0.361914 -0.2145394 -0.361914 -0.2145394 -0.361914 -0.2145394 0.4754084 0.3259316 -0.8968664 0.7375505 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4887376 0.4882124 0.4123215 0.4887375 0.528145 0.1528785 -0.2421511 0.520049 0.7582679 0.5253025 0.5293261 0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.4865504 -0.412155 -0.4215555 -0.4215555 -0.4215555 -0.421555555 -0.42155555 -0.42155555 -0.421555555 -0.42155
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-COH C6H5-COCH3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2CH3 C6H5-CH2CH2-OH C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3	ethylbenzene phenol fluorobenzene cklorobenzene boromobenzene benzonitrile nitrobenzene benzonitrile nitrobenzene benzalidehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-2-butanol 1-phenyl-1-propanol ni-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenylamine diphenyl suffoxide tokuene aniline o-xylene m-xylene p-xylene 1,2-dichlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 2.10E+09 1.50E+10 5.90E+09 1.10E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 6.30E+09 1.10E+10 6.30E+09 1.00E+10 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 1.00E+10 6.30E+09 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+09 1.00E+	9.88 9.82 9.63 9.63 9.63 9.59 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.002129 -10.00277 -10.08448 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -0.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.473491 -9.004682 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.061837 -9.661861	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.552318 -6.955536 -8.59274 -6.268616 -7.457429 -7.5533857 -7.557175 -7.652846 -7.65846 -7.457429 -7.553857 -7.65846 -7.638447 -7.7787941 -8.01922 -6.312634 -7.360895 -7.360895 -7.360895 -7.251187 -7.2711684 -7.8711684 -7.8711684 -7.360805 -7.231137	0.5302613 0.974596 0.1636994 0.1546716 0.05965194 0.05965194 0.06134555 -0.03446016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.8868664 0.7375505 0.8829438 0.5120207 0.5088496 0.486564 0.4833736 0.0243417 -0.6259145 0.1528785 0.1528785 0.523025 0.5293261 0.8863504 -0.4121155 -0.582059 -0.58205
C6H5-CH2CH3 C6H5-OH C6H5-I C6H5-I C6H5-I C6H5-NO2 C6H5-NO2 C6H5-NO2 C6H5-NO2 C6H5-COOH C6H5-CH0H C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0-OH C6H5-CH0-OH C6H5-CH0-OH C6H5-CH2-OCH C6H5-CH2-OH C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzalide benzanide methyl henyl suffoxide benzylalcohol acetanilide benzenesulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl sulfoxide toluene aniline o-xylene m-xylene 1,2-dichlorobenzene 1,4-dichlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 1.50E+10 1.50E+10 1.50E+10 1.50E+10 1.50E+10 1.00E+00 1.00E+	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.95 9.64 9.95 9.92 9.72 9.32 10.18 9.77 9.92 9.72 9.32 10.18 9.77 9.98 10.00 10.32 9.73 10.00 9.95 10.00 9.95 9.73	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.9426536 -10.42274 -9.9383857 -9.3857175 -9.3857175 -9.455846 -9.473491 -9.84922 -8.042634 -9.94753 -9.30592 -8.21347 -9.168906 -9.168906 -9.10805 -9.061137 -9.661361 -9.524891	-7.533271 -7.285282 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.557175 -7.625846 -7.643491 -7.174682 -7.787941 -8.01922 -6.212634 -7.369055 -7.369055 -7.369055 -7.369055 -7.369055 -7.36137 -7.371684 -7.361361 -7.851361 -7.851361	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.03966194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.1992762 0.4754084 0.3259316 -0.4754084 0.3259316 -0.4754084 0.3259316 -0.4754084 0.3259316 -0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.4837376 0.5028496 0.4862124 0.4123215 0.4837376 0.5259125 -0.2421511 0.520049 0.7582679 0.5253025 0.55587
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CI C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CO0H C6H5-CO0H3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH C6H5-CH2OH2 C6H5-CH2OH2 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH0HCH3 C6H5-CH0HCH2-CH3 C6H5-CH0HCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH2OHCH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 C6H4-C12 C6H4-C	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene benzonitrile nitrobenzene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzamide methyl phenyl suffoxide benzylalcohol acetanilide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-1-phenyl-1-propanol phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide tohnene aniline o-xylene m-xylene p-xylene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dimethoxybenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 5.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 6.30E+09 1.00E+10 6.30E+09 1.00E+10 6.70E+09 1.00E+10 6.70E+09 1.00E+10 5.70E+09 1.00E+09 5.00E+09 5.70E+09 5.00E+09 5.70E+	9.88 9.82 9.63 9.63 9.64 9.63 9.82 9.59 9.64 9.65 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.97 10.03 9.73 10.00 9.80 9.73 10.00 9.85 9.83 9.83 9.83 9.88 9.85 9.66 9.72 9.72 9.73	-9.363271 -9.115282 -9.545124 -9.56075 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.455846 -9.4573491 -9.004682 -9.617341 -9.8002634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.061137 -9.601684 -9.621871	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17136 -8.19129 -8.17277 -8.17136 -7.81263 -7.430956 -7.457429 -7.552318 -6.955336 -8.59274 -6.268616 -7.457429 -7.55318 -7.553175 -7.55318 -7.65846 -7.65846 -7.65846 -7.65846 -7.457429 -7.757941 -7.757941 -7.757941 -7.757941 -7.757941 -7.38906 -7.38906 -7.360805 -7.251137 -7.251137 -7.771684 -7.851361 -7.654891 -7.55115 -7.55115 -7.55115 -7.55218	0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.05965194 0.06134555 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394 -0.2145394 -0.3259316 -0.898664 0.7375505 0.5829438 0.5120207 0.0588496 0.4862124 0.4823376 0.0243417 0.528745 -0.2421511 0.528745 0.5253025 0.525325 0.525355 0.525355 0.525355 0.52535
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CH C6H5-SH C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CO C6H5-CH2 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 </td <td>ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzanide methyl phenyl suffoxide benzylacohol acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol ni-phenyl-1-propanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol nisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene p-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene</td> <td>7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 1.50E+10 1.50E+10 1.50E+10 1.50E+10 1.50E+09 1.00E+10 9.00E+09 1.00E+10 9.00E+09 5.10E+09 1.00E+10 9.00E+09 5.10E+00 5.10E+00 5.10E+00 5.10E+00 5.10E+00 5.10E+</td> <td>9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64</td> <td>-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.601476 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.383857 -9.387175 -9.355846 -9.473491 -9.84922 -8.042634 -9.23753 -9.330592 -8.21347 -9.168906 -9.10805 -9.9061137 -9.601684 -9.9524891 -9.524891 -9.524891 -8.629187 -8.629187 -8.629187 -9.55647</td> <td>-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.711476 -7.817136 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -7.553857 -7.653857 -7.653857 -7.653854 -7.643491 -7.174682 -7.553857 -7.7538906 -7.363896 -7.251137 -7.771684 -7.654891 -7.654891 -7.654891 -7.654891 -7.654891 -7.653857</td> <td>0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.361914 -0.2145394 -0.361914 -0.2145394 0.4754084 0.33559316 -0.8968664 0.7375505 0.5829438 0.5120207 0.508496 0.4825124 0.4123215 0.6289435 0.5283025 0.5283025 0.5293261 0.4863504 -0.4863504 -0.1550087 0.4857356</td>	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzanide methyl phenyl suffoxide benzylacohol acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol ni-phenyl-1-propanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol nisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene p-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 1.50E+10 1.50E+10 1.50E+10 1.50E+10 1.50E+09 1.00E+10 9.00E+09 1.00E+10 9.00E+09 5.10E+09 1.00E+10 9.00E+09 5.10E+00 5.10E+00 5.10E+00 5.10E+00 5.10E+00 5.10E+	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.601476 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.383857 -9.387175 -9.355846 -9.473491 -9.84922 -8.042634 -9.23753 -9.330592 -8.21347 -9.168906 -9.10805 -9.9061137 -9.601684 -9.9524891 -9.524891 -9.524891 -8.629187 -8.629187 -8.629187 -9.55647	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.711476 -7.817136 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -7.553857 -7.653857 -7.653857 -7.653854 -7.643491 -7.174682 -7.553857 -7.7538906 -7.363896 -7.251137 -7.771684 -7.654891 -7.654891 -7.654891 -7.654891 -7.654891 -7.653857	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.361914 -0.2145394 -0.361914 -0.2145394 0.4754084 0.33559316 -0.8968664 0.7375505 0.5829438 0.5120207 0.508496 0.4825124 0.4123215 0.6289435 0.5283025 0.5283025 0.5293261 0.4863504 -0.4863504 -0.1550087 0.4857356
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-OH C6H5-OH C6H5-OH C6H5-I C6H5-N0 C6H5-N0 C6H5-N0 C6H5-N0 C6H5-C00 C6H5-C00 C6H5-C00 C6H5-C00 C6H5-C00 C6H5-C00 C6H5-C00 C6H5-C00H C6H5-C00H C6H5-C00H C6H5-C00H3 C6H5-C00H3 C6H5-CH2OH C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH0HCH2 C6H5-CH2 C6H5-CH2 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene bernonitile nitrobenzene benzonitile nitrobenzene benzaldehyde benzene benzaldehyde benzene benzaldehyde benzene benzaldehyde benzenesulforic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 2-methyl-1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol 1-phenyl-1-propanol benzophenone diphenyl sulfoxide toluene anilne o-xylene n-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,3-dimethoxybenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 3.00E+	9.88 9.82 9.63 9.63 9.64 9.63 9.82 9.72 9.59 9.64 9.64 9.99 9.92 9.72 9.32 10.18 9.72 9.32 9.72 9.32 9.72 9.32 9.72 9.72 9.72 9.72 9.73 10.00 10.32 9.73 10.00 9.95 9.00 9.80 9.73 10.00 9.83 9.83 9.83 9.85 9.66 9.72 9.73 10.23 9.85 9.73 10.23 9.85 9.73 10.23 9.85 9.73 9.74 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383175 -9.455346 -9.473491 -9.004682 -9.473491 -9.004682 -9.473491 -9.004682 -9.473491 -9.223753 -9.355846 -9.23753 -9.35592 -8.21347 -9.168906 -9.190805 -9.061137 -9.601684 -9.524891 -8.865617 -8.865617 -8.865617 -9.8629187 -8.865617 -8.865617 -9.8629187 -8.865617 -9.8629187 -8.865617 -9.8629187 -8.865617 -9.8629187 -8.865617 -9.8629187 -9.865517 -9.8629187 -9.865617 -9.524891 -9.8629187 -9.8629187 -9.865617 -9.524891 -9.8629187 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.524891 -9.865617 -9.524891 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.865617 -9.524891 -9.524891 -9.524891 -9.524891 -9.865617 -9.524891 -9.5	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.17277 -8.17277 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -7.553857 -7.553857 -7.553857 -7.653846 -7.643491 -7.174682 -7.783741 -7.338906 -7.360805 -7.231137 -7.771684 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.851361 -7.551157 -7.231137 -7.771684 -7.851361 -7.35117 -7.771684 -7.35117 -7.771684 -7.305617 -7.771684 -7.305617 -7.771684 -7.305617 -7.771684 -7.7035617 -7.035617	0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.06134555 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394 -0.2145394 -0.3259316 -0.852938 0.5120207 0.5058496 0.5829438 0.5120207 0.5058496 0.4865124 0.4123215 0.4825145 0.1528785 -0.2421511 0.520049 0.7582679 0.5253025 0.5293261 0.520325 0.5293261 -0.486504 -0.1525087 -0.155087 -0.2155
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CI C6H5-CI C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-COH C6H5-COH C6H5-COH3 C6H5-COH3 C6H5-COH3 C6H5-COH3 C6H5-COH3 C6H5-COH4 C6H5-SOH4 C6H5-COH3 C6H5-COH3 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-CH2H4 C6H5-CH2H2 C6H5-CH2H2 C6H5-CH2H2 C6H5-CH2H2 C6H5-CH2H3 C6H5-CH2H3 C6H5-CH2H3 C6H5-CH2H3 C6H5-CH3 C6H4-CH3 <	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene berzonitrile nitrobenzene berzoitrile nitrobenzene berzaldehyde benzoia acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanilide benzensulfonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl amine diphenyl amine diphenyl amine diphenylamine dip	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 9.70E+09 5.20E+09 5.20E+09 5.20E+09 1.10E+10 1.00E+10 1.00E+10 5.00E+09 1.00E+10 5.00E+09 5.10E+09 1.00E+10 6.70E+09 7.00E+09 5.70E+	9.88 9.82 9.76 9.63 9.63 9.59 9.59 9.59 9.59 9.64 9.63 9.92 9.72 9.32 9.72 9.32 9.72 9.32 9.72 9.32 9.72 9.92 9.72 9.72 9.72 9.72 9.72 9.7	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942674 -9.9382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.473491 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.061137 -9.661361 -9.524891 -8.662187 -8.865617 -8.8551408	-7,533271 -7,285282 -7,715124 -7,715124 -7,715124 -7,715124 -7,71476 -7,817136 -8,19129 -8,17277 -8,25448 -8,106084 -8,112663 -7,452318 -6,935536 -7,452318 -6,935536 -7,457429 -7,457429 -7,553857 -7,625846 -7,457429 -7,553857 -7,625846 -7,457429 -7,553857 -7,625846 -7,457429 -7,553857 -7,555857 -7,55587 -7,555857 -7,555857 -7,55587 -7,55587 -7,555857 -7,55587 -7,5	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3936014 -0.2145394 0.3259316 -0.8988664 0.32559316 0.5829438 0.5120207 0.5058496 0.4862124 0.4123215 0.525945 0.525945 0.5259325 0.52593261 0.4863504 0.4863504 0.4863504 0.4863505 -0.3155087 0.52593261 0.4863504 0.4863504 0.4863505 -0.3155087 0.52593261 0.4863505 0.5293261 0.4863504 0.4863505 0.5293261 0.4863505 0.5293261 0.4863505 0.5293261 0.4863505 0.5293261 0.48657356 0.4848553 0.3840715
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-OH C6H5-I C6H5-I C6H5-N2 C6H5-N2 C6H5-N2 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CH0 C6H5-CO0H C6H5-CO0H C6H5-S0CH3 C6H5-CH2 C6H5-CH2 C6H5-NH-OH C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH2-CH3 C6H5-CH2-CH3 C6H5-CH2-OH C6H5-CH2 C6H5-CH2 <	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene berzonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoit acid acetophenone benzalide benzenia (2000) acetanilide benzenia (2000) acetanilide benzensulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-propanol 1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenyl sulfoxide toluene aniline o-xylene 1,2-dichlorobenzene 1,4-dinlorobenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,2-dimethoxybenzene 1,4-dimethoxybenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.60E+09 4.60E+09 4.60E+09 5.20E+09 2.10E+09 5.20E+09 9.50E+09 9.50E+09 1.00E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 6.70E+09 1.00E+10 6.70E+09 1.00E+10 6.70E+09 1.00E+10 5.20E+09 1.00E+10 5.20E+09 1.00E+10 5.20E+09 1.00E+10 5.20E+09 5.20E+	9.88 9.82 9.63 9.63 9.64 9.63 9.82 9.72 9.59 9.64 9.64 9.99 9.92 9.72 9.32 10.18 9.99 9.92 9.72 9.32 10.10 9.99 9.92 9.72 9.32 10.10 9.95 9.72 9.32 10.00 10.32 9.73 10.00 9.95 10.00 9.95 10.00 9.95 10.00 9.95 9.73 9.83 9.83 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.73 9.72 9.85 9.73 9.72 9.73 9.72 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75	-9.363271 -9.115282 9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.362818 -8.765536 -10.42274 -9.9383857 -9.3837175 -9.3857429 -9.383857 -9.387175 -9.455846 -9.473491 -9.004682 -9.617941 -9.84922 -8.042634 -9.223753 -9.30592 -8.21347 -9.168906 -9.108055 -9.661137 -9.661137 -9.6611361 -9.524891 -8.865617 -8.865617 -8.865617 -8.865617 -8.865617	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.719975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.655846 -7.643491 -7.174682 -7.625846 -7.63347 -7.338906 -7.308055 -7.308055 -7.308055 -7.251137 -7.771684 -7.6628137 -7.652816 -7.663847 -7.338906 -7.360805 -7.351317 -7.771684 -7.652138 -7.6521408 -7.6521408 -7.6521408 -7.6521408 -7.6521408 -7.6521408 -7.6521408 -7.0521408 -7.052117 -7.771684 -7.6521408 -7.6521408 -7.6521408 -7.052148 -7.55218 -	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.361914 -0.2145394 -0.3259316 -0.8868664 0.375505 0.5829438 0.5120207 0.5058496 0.4865124 0.4123215 0.4837376 0.5058496 0.4862124 0.4123215 0.528785 -0.2421511 0.520049 0.7582679 0.5253025 0.5253025 0.5253025 0.58293261 0.4865504 -0.1421155 0.0182009 0.2155087 0.4657356 0.4848553 0.3840715 0.47087
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CI C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CO C6H5-CO C6H5-CO C6H5-COCH3 C6H5-CH20H C6H5-CH20H C6H5-CH20H C6H5-CH20H C6H5-CH20CH23 C6H5-CH0HCH3 C6H5-CH20HCH23 C6H5-CH0HCH3 C6H5-CH20HCH23 C6H5-CH20HCH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 C6H4-C12 C6H4-C13 C6H4-C13 C6H4-C13 <tr< td=""><td>ethylbenzene phenol fluorobenzene cklorobenzene bromobenzene benzonitrile nitrobenzene benzanite nitrobenzene benzaldehyde benzene benzaldehyde benzene benzaldehyde benzenesulfonic acid acetophenone benzamide methyl phenyl suffoxide benzenesulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-1-propanol phenyl-2-propanol 1-phenyl-1-propanol 2-methyl-1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide tohuene aniline o-xylene m-xylene p-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,3-dimethoxybenzene 1,4-dicivanobenzene 1,4-dicvanobenzene</td><td>7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 6.70E+09 7.50E+09 7.50E+09 7.50E+09 5.20E+09 7.20E+09 5.20E+09 7.20E+</td><td>9.88 9.82 9.63 9.63 9.63 9.64 9.65 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.95 9.73 10.00 9.80 9.73 10.00 9.88 9.88 9.88 9.88 9.88 9.88 9.88</td><td>-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.457849 -9.330592 -8.21347 -9.168906 -9.190805 -9.061837 -9.524891 -9.524891 -9.524891 -8.865617 -8.8551408 -8.894211 -10.342550</td><td>-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.430956 -7.430956 -7.45318 -6.955336 -8.59274 -6.268616 -7.457429 -7.55318 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.360805 -7.360805 -7.231137 -7.231137 -7.231137 -7.035617 -6.721408 -7.664211 -8.51255</td><td>0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3954014 -0.192762 0.4754084 0.3259316 -0.8868664 0.7375505 0.5829438 0.5120207 0.508496 0.4863504 0.1528785 0.523025 0.5293261 0.4863504 -0.4863504 -0.4863504 -0.4863505 0.5823025 0.5293261 0.4863504 -0.4863505 -0.4211515 -0.1582009 -0.2155087 0.4863505 -0.4484553 0.5840715 0.4867356</td></tr<>	ethylbenzene phenol fluorobenzene cklorobenzene bromobenzene benzonitrile nitrobenzene benzanite nitrobenzene benzaldehyde benzene benzaldehyde benzene benzaldehyde benzenesulfonic acid acetophenone benzamide methyl phenyl suffoxide benzenesulfonic acid phenyl hydroxylamine 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-2-butanol 2-methyl-1-phenyl-1-propanol phenyl-2-propanol 1-phenyl-1-propanol 2-methyl-1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide tohuene aniline o-xylene m-xylene p-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,3-dimethoxybenzene 1,4-dicivanobenzene 1,4-dicvanobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 6.70E+09 7.50E+09 7.50E+09 7.50E+09 5.20E+09 7.20E+09 5.20E+09 7.20E+	9.88 9.82 9.63 9.63 9.63 9.64 9.65 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.95 9.73 10.00 9.80 9.73 10.00 9.88 9.88 9.88 9.88 9.88 9.88 9.88	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.457849 -9.330592 -8.21347 -9.168906 -9.190805 -9.061837 -9.524891 -9.524891 -9.524891 -8.865617 -8.8551408 -8.894211 -10.342550	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.430956 -7.430956 -7.430956 -7.45318 -6.955336 -8.59274 -6.268616 -7.457429 -7.55318 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.655345 -7.360805 -7.360805 -7.231137 -7.231137 -7.231137 -7.035617 -6.721408 -7.664211 -8.51255	0.5302613 0.9374596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3946016 -0.3954014 -0.192762 0.4754084 0.3259316 -0.8868664 0.7375505 0.5829438 0.5120207 0.508496 0.4863504 0.1528785 0.523025 0.5293261 0.4863504 -0.4863504 -0.4863504 -0.4863505 0.5823025 0.5293261 0.4863504 -0.4863505 -0.4211515 -0.1582009 -0.2155087 0.4863505 -0.4484553 0.5840715 0.4867356
C6H5-CH2CH3 C6H5-OH C6H5-I C6H5-I C6H5-I C6H5-I C6H5-NO2 C6H5-NO2 C6H5-COOH C6H5-CH0H C6H5-CH0HCH3 C6H5-CH0CHCH2OH C6H5-CH0CHCH3 C6H5-CH0-CH3 C6H5-CH2-CH3 C6H5-CH2-CH3 C6H5-CH3-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 C6H4-CD C6H4-CD C6H4-CD C6H4-CD C6H4-CD C6H4-CD C6	ethylbenzene phenol fhuorobenzene chlorobenzene bromobenezene bromobenezene benzonitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzaldehyde benzanide methyl phenyl suffoxide benzenesuffonic acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol 1-phenyl-2-propanol anisol phenoxyacetic acid bencophenone diphenyl suffoxide tokuene aniline o-xylene p-xylene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 1.50E+10 5.90E+09 9.50E+09 9.50E+09 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 1.00E+10 9.50E+09 5.10E+09 5.10E+09 5.0E+000E+09 5.0E+000E+000E+000E+000E+000E+000E+000E+	9.88 9.82 9.63 9.63 9.64 9.64 9.64 9.64 9.96 9.96 9.92 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.02129 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.383175 -9.385175 -9.385175 -9.3455846 -9.473491 -9.84922 -8.042634 -9.223753 -9.30592 -8.21347 -9.168906 -9.168906 -9.90805 -9.061137 -9.601684 -9.661361 -9.524891 -8.659187 -8.8551408 -8.894211 -0.342550 -9.65588	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.715126 -7.711476 -7.81277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.557175 -7.657841 -7.652846 -7.643491 -7.174682 -7.633847 -7.368005 -7.263127 -7.368005 -7.261137 -7.771684 -7.663854 -7.663854 -7.368005 -7.261137 -7.771684 -7.651361 -7.664891 -6.799187 -7.05617 -7.05617 -7.05617 -7.05617 -7.05617 -7.05617 -7.05618 -7.064211 -8.51255	0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394 -0.3259316 -0.8968664 0.7375505 0.5829438 0.5120207 0.5058496 0.482124 0.4123215 0.4837376 0.5258495 0.2421511 0.528785 -0.2421511 0.52049 0.7582679 0.5253025 0.5239251 0.4863504 -0.1582009 -0.2155087 0.4657356 0.4848553 0.3840715 0.47087 -1.166878 -0.193467
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CH C6H5-CI C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-COH C6H5-COH C6H5-COH C6H5-COH3 C6H5-COH4 C6H5-COH5 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-COH4 C6H5-CH2CH C6H5-CH2CH2 C6H5-CH0HCH2 C6H5-CH0HCH2CH3) C6H5-CH0HCH2CH3) C6H5-CH0HCH2CH3) C6H5-CH0HCH2CH3) C6H5-CH0HCH2CH3) C6H5-CH0H2CH2-OH C6H5-CH0H2CH3) C6H5-CH0H2CH3) C6H5-CH0H2CH3) C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 C6H4-CD	ethylbenzene phenol fluorobenzene cklorobenzene bromobenezene bromobenezene benzonitrile nitrobenzene benzoitaki nitrobenzene benzaldehyde benzene benzaldehyde benzenside methyl phenyl suffoxide benzenesuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 2-methyl-1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol benzophenone diphenylamine diphenyl suffoxide tohaene aniine o-xylene n-xylene 1,2-dichlorobenzene 1,2-dimethoxybenzene 1,3-dimethoxybenzene tart-butylphenol 1,4-dicyanobenzene tart-butylphenol 1,4-dicyanobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 2.10E+09 2.10E+09 2.10E+09 9.50E+09 9.50E+09 9.50E+09 9.50E+09 1.00E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+10 5.30E+09 1.00E+09 5.30E+09 1.00E+09 5.30E+09 1.00E+09 5.30E+09 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+	9.88 9.82 9.63 9.63 9.63 9.72 9.59 9.64 9.64 9.69 9.99 9.92 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.97 9.97 9.97 9.97 9.97 9.97 9.98 10.04 10.03 9.95 10.00 9.95 10.00 9.80 9.73 10.23 9.83 9.83 9.85 9.66 9.72 9.72 9.85 10.23 9.85 9.85 9.72 9.85 10.23 9.85 9.73 10.23 9.85 9.85 9.75 9.75 9.75 9.77 9.77 9.77 9.77 9.7	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -8.098616 -9.287429 -9.383857 -9.387175 -9.455846 -9.455846 -9.457549 -9.387175 -9.455846 -9.455846 -9.473491 -9.004682 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.168906 -9.190805 -9.601684 -9.524891 -8.8551408 -8.8551408 -8.8551408 -8.859187 -8.8551408 -8.859187 -9.632658 -9.54558 -9.632658 -9.632658 -9.632658 -9.632658 -9.632658 -9.632658 -9.632658 -9.632658 -9.632658	-7.533271 -7.285282 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17127 -8.17127 -8.17127 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -8.19129 -7.55318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.625846 -7.643491 -7.174682 -7.785941 -7.338906 -7.360805 -7.281361 -7.3510592 -6.38347 -7.735896 -7.369805 -7.281361 -7.694891 -7.0551137 -7.035617 -7.00562	0.5302613 0.5974596 0.1536994 0.1546716 0.05965194 0.05965194 0.06134555 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.2145394 -0.2145394 -0.3259316 -0.85829438 0.5120207 0.5058496 0.8293438 0.5120207 0.5058496 0.48637376 0.48637347 -0.425145 0.1528785 -0.2421511 0.5259145 0.1528785 -0.2529145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259145 0.5259261 0.5259261 0.52593261 0.52593261 0.5158009 -0.2155087 0.4863504 -0.1421155 -0.1558009 -0.2155087 0.4863534 -0.4767356 0.4848553 0.3840715 0.470787 -1.166678 -0.913946
C6H5-CH2CH3 C6H5-CH C6H5-G1 C6H5-G1 C6H5-G1 C6H5-G1 C6H5-G1 C6H5-CN C6H5-N0 C6H5-CN C6H5-CO C6H5-COOH C6H5-CH2CH3 C6H5-CH2CH3) C6H5-CH2CH3) C6H5-CH2CH3) C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6H4-CH3 C6	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene berzonitrile nitrobenzene benzoitrile nitrobenzene benzaldehyde benzoic acid acetophenone benzaldehyde benzylacohol acetanlide benzenesulforia acid phenyl hydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol ni-phenyl-1-propanol 1-phenyl-1-propanol phenygethanol 1-phenyl-2-propanol arisol phenoxyacetic acid benzophenone diphenyl sulfoxide toluene aniline o-xylene p-xylene 1,2-dichlorobenzene 1,3-dimethoxybenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 4.40E+09 5.20E+09 5.20E+09 5.20E+09 5.20E+09 1.50E+10 1.50E+10 1.50E+10 1.50E+10 1.50E+09 1.00E+10 1.00E+10 1.00E+10 1.00E+10 5.00E+09 5.10E+09 1.00E+10 5.00E+09 5.10E+09 5.10E+09 5.10E+09 5.10E+09 5.20E+	9.88 9.82 9.63 9.63 9.64 9.63 9.64 9.64 9.64 9.64 9.64 9.96 9.92 9.72 9.72 9.72 9.72 9.72 9.72 9.72	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.47136 -10.00277 -10.08448 -9.936084 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.383857 -9.3837175 -9.355846 -9.473491 -9.942634 -9.9473491 -9.84922 -8.042634 -9.473491 -9.84922 -8.042634 -9.473491 -9.84922 -8.042634 -9.41375 -9.330592 -8.21347 -9.168906 -9.90805 -9.9061137 -9.601684 -9.9524891 -8.8551408 -8.8594211 -0.342550 -9.452550 -9.452550 -9.452550 -9.452550 -9.452550 -9.452550 -9.452550 -9.452550 -9.4502	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.71512 -7.771476 -7.817136 -8.19129 -8.19129 -8.19129 -8.19129 -8.19277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -8.59274 -6.268616 -7.457429 -7.553857 -7.653857 -7.653857 -7.653846 -7.457429 -7.553857 -7.653847 -7.557175 -7.625846 -7.457429 -7.553857 -7.557175 -7.625846 -7.453491 -7.358906 -7.360805 -7.231137 -7.771684 -7.93517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05517 -7.05617 -7.05617 -7.05617 -7.056258 -7.6029658 -7.6029658	0.5302613 0.3974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.3946016 -0.3051914 -0.2145394 -0.2145394 -0.2145394 0.4754084 0.32559316 -0.8968664 0.7375505 0.5829438 0.5120207 0.5085496 0.4862124 0.4123215 0.487376 0.0243417 -0.6259145 0.1528785 0.5253025 0.5
C6H5-CH2CH3 C6H5-OH C6H5-OH C6H5-OH C6H5-I C6H5-I C6H5-N2 C6H5-N2 C6H5-N2 C6H5-N2 C6H5-N2 C6H5-C00H C6H5-CH00HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH0HCH3 C6H5-CH2-OH C6H5-CH3 C6H5-CH3 C6H4-CH3	ethylbenzene phenol fluorobenzene chlorobenzene bromobenzene bromobenzene benzonitrile nitrobenzene benzaldehyde benzoia caid acetophenone benzalide benzenia coho benzalide coho acetanilide benzensuffonic acid phenyl hydroxylamine 2-methyl-1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-1-propanol 1-phenyl-2-propanol anisol phenoxyacetic acid benzophenone diphenylamine diphenyl suffoxide toluene m-xylene 1,2-dichlorobenzene 1,4-dinlorobenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,4-dinethoxybenzene 1,2-difhorobenzene 1,2-difhorobenzene 1,2-difhorobenzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.60E+09 4.60E+09 4.60E+09 5.20E+09 2.10E+09 5.20E+09 2.10E+09 1.00E+10 5.90E+09 1.00E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.10E+09 1.00E+10 5.10E+09 1.70E+09 5.20E+09 5.20E+09 1.70E+09 5.20E+	9.88 9.82 9.63 9.63 9.64 9.63 9.72 9.59 9.64 9.64 9.93 9.81 9.66 9.99 9.92 9.72 9.32 10.18 9.92 9.72 9.32 10.10 9.95 9.72 9.32 10.00 10.32 9.73 10.00 10.32 9.83 9.83 9.85 9.66 9.71 10.23 9.85 9.66 9.72 9.73 9.73 9.73 9.85 9.60 9.73 9.72 9.85 9.60 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.72 9.85 9.73 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.936084 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942663 -9.942644 -9.9383857 -9.387175 -9.455846 -9.473491 -9.004682 -9.617941 -9.84922 -8.042634 -9.223753 -9.30552 -8.21347 -9.168906 -9.108055 -9.681361 -9.524891 -9.681361 -9.524891 -9.681361 -9.5254891 -9.5251408 -9.632658 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.632658 -9.432550 -9.135165	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.730975 -7.771476 -7.817136 -8.19129 -8.17277 -8.17277 -8.17277 -8.19129 -8.19129 -8.19277 -8.19129 -8.19129 -8.19277 -7.552318 -6.935536 -7.457429 -7.553857 -7.652846 -7.643491 -7.652846 -7.643491 -7.738906 -7.362846 -7.338906 -7.360805 -7.338906 -7.360805 -7.251137 -7.771684 -7.6521408 -7.6521408 -7.6521408 -7.6521408 -7.055617 -7.622408 -7.6521408 -7.6521408 -7.055617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.025617 -7.005607 -7.005607 -7.005617	0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.4348125 -0.4684967 -0.361914 -0.2145394 -0.361914 -0.2145394 -0.3259316 -0.8868664 0.7375505 0.5829438 0.5120207 0.5058496 0.4865124 0.4123215 0.4837376 0.528785 -0.2421511 0.520049 0.7582679 0.5253025 0.5283025 0.4657356 0.4848553 0.3840715 0.47087 -1.166878 -0.913308 0.5717542
C6H5-CH2CH3 C6H5-CH C6H5-CH C6H5-CI C6H5-CI C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-CN C6H5-COH C6H5-COH3 C6H5-COCH3 C6H5-CH2OH C6H5-CH2OH C6H5-CH2CH2-CH3 C6H5-CH2CH2-CH3 C6H5-CH2CH2-OH C6H5-CH0HCH3 C6H5-CH2CH2-OH C6H5-CH2CH2-OH C6H5-CH3 -0-COOH (C6H5)2-N1 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H5-CH3 C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 H3C-C6H4-CH3 C6H4-C12 C6H4-C12 C6H4-C13 </td <td>ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene bernovitrile nitrobenzene bernzitrile nitrobenzene bernzalidehyde benzoi acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanilide benzensulfonic acid phenyl sydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene m-xylene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-diculorobenzene 1,4-diculorobenzene 1,4-diculorobenzene 1,2-4-trimethyl benzene 1,2,4-trimethyl benzene</td> <td>7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 5.40E+09 1.00E+10 5.40E+09 5.40E+</td> <td>9.88 9.82 9.63 9.63 9.63 9.64 9.65 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.97 10.03 9.73 10.00 9.80 9.73 10.00 9.88 9.88 9.88 9.88 9.88 9.85 10.23 9.76 9.72 9.72 9.73 10.00 9.80 9.73 9.83 9.88 9.88 9.85 9.76 9.76 9.77 9.76 9.77 9.78 9.73 9.73 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75</td> <td>-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -9.765536 -10.42274 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.387175 -9.455846 -9.455846 -9.475349 -9.455846 -9.475349 -9.455846 -9.475349 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.681361 -9.524891 -9.524891 -8.865617 -8.8551408 -8.894211 -10.342550 -9.632658 -9.490196 -9.135165 -8.864077</td> <td>-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.71476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -7.452318 -6.935536 -7.457429 -7.353857 -7.3538567 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.355647 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.355647 -7.457429 -7.355647 -7.35565 -7.1540477</td> <td>0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.361914 -0.2145394 0.192762 0.4754084 0.2259316 0.4868664 0.32559316 0.5829438 0.5120207 0.5088496 0.4862124 0.4123215 0.528045 0.528045 0.528045 0.528045 0.528045 0.528045 0.5283025 0.5293261 0.4863504 -0.4863504 -0.4863504 -0.4863505 0.5283025 0.5293261 0.4863504 -0.4863505 0.5283025 0.5293261 0.4863505 -0.4211515 -0.152009 -0.2155087 0.4657356 0.4848553 0.3840715 0.4863553 0.3840715 0.4863504 -0.412155 0.5293261 0.4863504 -0.421515 0.528785 0.5293261 0.4863504 -0.421515 0.5687356 0.4848553 0.3840715 0.47087 -1.166878 -0.1138308 0.5717542 0.5046722</td>	ethylbenzene phenol fluorobenzene chlorobenzene bromobenezene bernovitrile nitrobenzene bernzitrile nitrobenzene bernzalidehyde benzoi acid acetophenone benzanide methyl phenyl suffoxide benzylalcohol acetanilide benzensulfonic acid phenyl sydroxylamine 2-methyl-4-phenyl-2-butanol 2-methyl-4-phenyl-2-butanol 1-phenyl-1-propanol phenylethanol 1-phenyl-1-propanol 1-phenyl-1-propanol anisol phenoxyacetic acid benzophenone diphenyl suffoxide toluene aniline o-xylene m-xylene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-diculorobenzene 1,4-diculorobenzene 1,4-diculorobenzene 1,2-4-trimethyl benzene 1,2,4-trimethyl benzene	7.50E+09 6.60E+09 5.70E+09 4.30E+09 4.30E+09 4.30E+09 3.90E+09 3.90E+09 3.90E+09 4.40E+09 4.40E+09 4.40E+09 4.60E+09 9.70E+09 5.20E+09 2.10E+09 5.20E+09 1.10E+10 5.90E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 1.00E+10 5.40E+09 5.40E+09 1.00E+10 5.40E+09 5.40E+	9.88 9.82 9.63 9.63 9.63 9.64 9.65 9.59 9.64 9.66 9.99 9.92 9.72 9.32 10.18 9.72 9.72 9.32 10.18 9.77 9.98 10.04 10.00 9.97 10.03 9.73 10.00 9.80 9.73 10.00 9.88 9.88 9.88 9.88 9.88 9.85 10.23 9.76 9.72 9.72 9.73 10.00 9.80 9.73 9.83 9.88 9.88 9.85 9.76 9.76 9.77 9.76 9.77 9.78 9.73 9.73 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75	-9.363271 -9.115282 -9.545124 -9.560975 -9.601476 -9.647136 -10.00277 -10.00277 -10.00277 -10.08448 -9.942663 -9.260956 -9.382318 -9.765536 -10.42274 -9.942663 -9.260956 -9.382318 -8.765536 -10.42274 -9.383857 -9.387175 -9.455846 -9.455846 -9.475349 -9.455846 -9.475349 -9.455846 -9.475349 -9.617941 -9.84922 -8.042634 -9.223753 -9.330592 -8.21347 -9.681361 -9.524891 -9.524891 -8.865617 -8.8551408 -8.894211 -10.342550 -9.632658 -9.490196 -9.135165 -8.864077	-7.533271 -7.285282 -7.715124 -7.715124 -7.715124 -7.715124 -7.715124 -7.71476 -7.817136 -8.19129 -8.17277 -8.25448 -8.106084 -8.112663 -7.452318 -6.935536 -7.452318 -6.935536 -7.457429 -7.353857 -7.3538567 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.355647 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.457429 -7.355647 -7.457429 -7.355647 -7.35565 -7.1540477	0.5302613 0.5974596 0.1636994 0.1546716 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.05965194 0.03946016 -0.3946016 -0.3946016 -0.361914 -0.2145394 0.192762 0.4754084 0.2259316 0.4868664 0.32559316 0.5829438 0.5120207 0.5088496 0.4862124 0.4123215 0.528045 0.528045 0.528045 0.528045 0.528045 0.528045 0.5283025 0.5293261 0.4863504 -0.4863504 -0.4863504 -0.4863505 0.5283025 0.5293261 0.4863504 -0.4863505 0.5283025 0.5293261 0.4863505 -0.4211515 -0.152009 -0.2155087 0.4657356 0.4848553 0.3840715 0.4863553 0.3840715 0.4863504 -0.412155 0.5293261 0.4863504 -0.421515 0.528785 0.5293261 0.4863504 -0.421515 0.5687356 0.4848553 0.3840715 0.47087 -1.166878 -0.1138308 0.5717542 0.5046722

0043 0043 0043	1.2.3 trimethoxythenzene	7.005+09	0.85	8 57087	6 74087	0.5082324
-0015, -0015, -0015	1.2.4 trimethemethemeter	6 20E+00	0.70	9 200726	6 560726	0.4005612
	1,2,4-ulineuloxybenzene	0.20E+09	9.79	-8.390720	-0.300720	0.4093013
	1,3,5-trimethoxybenzene	8.10E+09	9.91	-8.96364	-7.13364	0.539/12
-OH, -OH, -OH	1,2,4-trihydroxybenzene	8.60E+09	9.93	-8.685031	-6.855031	0.1685672
-OH, -OH, -C(CH3)3	tert-butyl hydroquinone	6.30E+09	9.80	-8.623081	-6.793081	0.2502026
-C1, -C1, -OH	2,4-dichlrophenol	7.10E+09	9.85	-9.230422	-7.400422	-0.1966052
-C1, -C1, -O-COOH	2,4-dichlorophenoxyacetic acid	6.60E+09	9.82	-9.627147	-7.797147	-0.550822
-F, -F, -F	1,3,5-trifluorobenzene	4.10E+09	9.61	-10.07859	-8.24859	-0.4993107
-F -F -F	1.2.3-trifluorobenzene	3.70E+09	9.57	-9.935002	-8.105002	-0.5078655
	1.2.4-triffuorohenzene	3.90E+09	9.59	-9.673085	-7.843085	-0.5498641
	1,2,4-uninorobenzene	1.00E+10	10.00	-9.075085	7.405044	0.2009405
-OH, -OH, -OH		1.00E+10	10.00	-9.233044	-7.403044	0.5088495
	1,2,3,4-tetramethylbenzene	7.20E+09	9.86	-8.902376	-7.072376	0.5368509
	1,2,3,4-tetrafluorobenzene	8.00E+09	9.90	-9.940006	-8.110006	-0.8556418
	1,2,3,5-tetramethylbenzene	7.10E+09	9.85	-8.910298	-7.080298	0.5395229
	1,2,4,5-tetramethylbenzene	7.00E+09	9.85	-8.819628	-6.989628	0.5005955
	1,2,4,5-tetramethoxybenzene	7.00E+09	9.85	-8.115336	-6.285336	0.3806553
-CL -CL -CL -OH	2.4.5-trichlorophenol	1.20E+10	10.08	-9.322358	-7 492358	-0.5108725
1245 CLOW OW CL	2.5-dichlorohydroguinone	2 10E+10	10.32	-8 982342	-7 152342	-0.4068606
1,2,4,5-01, 011, 01	2,5 demorphydroquinolie	7.00E±00	0.95	10.06738	0 22720	1 182204
	pentanuorobenzene	7.00E+09	9.65	-10.00738	-0.23730	-1.163294
	pentameutyidenzene	7.30E+09	9.00	-8.787002	-0.937002	0.342101
F, F, F, F, F, -COCH3	pentafluoroacetophenone (PFA)	1.50E+09	9.18	-10.20297	-8.37297	-1.681022
F, F, F, F, F, CHO	pentafluorobenzaldehyde	2.00E+09	9.30	-10.28462	-8.45462	1.775973
F, F, F,F, F, -COOH	pentafluorobenzoic acid	1.10E+09	9.04	-10.31038	-8.48038	-1.830766
F, F, F, F, F, F-NH2	pentafluoroaniline	9.60E+09	9.98	-9.102796	-7.272796	-0.9412494
FFFFFOH	pentafluorophenol	9.50E+09	9.98	-9.939639	-8.109639	-1.2963
	pentafluoroiodobenzene	1 20E+09	9.08	-10 2148	-8 3848	-1 469127
	hexafluorohenzene	1.40E+09	9.15	-10.37	-8 53846	-1.479236
	h annual a thread a name	7.20E+00	0.96	0.750200	6 020289	0.6761211
	nexameniyibenzene	7.20E+09	9.80	-8.750588	-0.920388	1.12147
-F, -F, -F, -F, -OH, -OH	tetrafluorohydroquinone	3.10E+09	9.49	-9.549/25	-7./19/25	-1.1314/
-CH3	2-methyl pyridine	2.50E+09	9.40	-9.628386	-7.798386	0.1505354
-CH3	3-methyl pyridine	2.40E+09	9.38	-9.638089	-7.808089	0.133376
-NH2	2-pyridine amine	8.40E+09	9.92	-8.570785	-6.740785	0.4871594
-NH2	4-pyridine amine	5.00E+09	9,70	-8,903617	-7.073617	0.4037449
Br	2-bromonvridine	2.40E+09	9.38	-9.892888	-8.062888	-0.303153
Pr	3 bromonuridine	1 10E+09	9.04	9.874868	8 044868	0.3221716
-DI	2 stansorialis	1.10E+09	9.04	-9.0/4000	-0.044000	-0.3221710
-01	2-chioropyridine	1.80E+09	9.26	-9.8/902/	-8.049027	-0.2294526
-C1	4-chloropyridine	3.10E+09	9.49	-10.22018	-8.39018	-0.1355081
-CN	3-cyanopyridine	7.50E+08				
-OH	2-pyridone	6.50E+09	9.81	-9.435832	-7.605832	0.1213861
-OH	3-pyridinol	5.40E+09	9.73	-9.452283	-7.622283	0.02146091
-OH	4-pyridinol	1.10E+10	10.04	-9.949773	-8.119773	0.01668134
C00H	2-puridine carboxulic acid	2.60E+07	7.41	-10 38682	-8 55682	-0.7652425
-0001	2-pyridine carboxylic acid	2.00E+07	7.41	10 41977	0 50077	0.820062
-000	5-pyridinecarboxylic acid	2.20E+07	7.54	-10.41677	-0.30077	-0.820903
-COOH	4-pyridinecarboxylic acid	6.00E+07	1.78	-10.32512	-8.49512	-0.///1906
-pyr	4,4'-bipyridine	5.30E+09	9.72	-9.923306	-8.093306	-0.7677598
-pry	2,2'-bipyridine	6.20E+09	9.79	-9.186643	-7.356643	-0.5373726
-CONH2	4-pyridinecarboxyamide	1.60E+09	9.20	-10.22076	-8.39076	-0.5112579
-CONH2	3-pyridinecarboxyamide	1.40E+09	9.15	-10.28491	-8.45491	-0.5768472
	2.6-dimethyl pyridine	3.00E+09	9.48	-9.394721	-7.564721	0.1760146
	3.5-dimethyl pyridine	8 00E+09	9.90	-9.435932	-7 605932	0.1378607
	2.4.6 trimathylayriding	2.50E±00	0.40	0.257427	7.507407	0.2276712
	2,4,0-uineutypyrtaite	2.00E+00	0.40	-9.337427	-7.527427	0.2370713
	niran	3.90E+09	9.59	-9.51/554	-7.48/554	0.7230736
	2-methyl furan	1.90E+10	10.28	-9.007906	-7.177906	0.7199911
	2-furfuryl alcohol	1.50E+10	10.18	-9.174876	-7.344876	0.6181119
	2-furaldehyde	7.80E+09	9.89	-9.735093	-7.905093	-0.4559993
	2-acetyl furan	4.50E+09	9.65	-9.664335	-7.834335	-0.3647549
	2-furancarboxamide	5.50E+09	9.74	-9.674635	-7.844635	-0.1558389
	phenylfuran	1.60E+10	10.20	-8.600646	-6.770646	-0.2524168
	5-phenylfurfural	5 90E+09	9.77	-8 954058	-7 124058	-0.8471305
	5-pitchylana a	1.20E+10	10.11	0.411220	7.521030	0.6207286
	5 budsommethylfurfurd	5 SOE+00	0.76	0.110404	7 280404	0.285224
	5-nydroxymeurynarad yr	5.80E+09	9.70	-9.119494	-7.207474	-0.385334
	5-methylfurfural	7.20E+09	9.86	-9.245028	-7.415028	-0.50/1848
	5-bromofurfural	3.90E+09	9.59	-9.726897	-7.896897	-0.7652646
	nitrofuraldehyde	5.50E+09				
	nitrofuroic acid	5.30E+09				
	nifuroxime	1.00E+10				
	nitrofurazone	1.06E+10				
	firamazone	1 03E+10				
	financia di contra di cont	0.200-00				
		5.50ETU9	0.00	10.00046	0.27044	2 11 6 470
	tetranydrofuran	4.00E+09	9.60	-10.20846	-8.5/840	5.116479
	indole	3.20E+10	10.51	-8.403031	-6.573031	0.3000424
		1.37E+10				
	1,2-dimethylindole	1.00E+10				
	1,3-dimethylindole	1.10E+10				
	2.3-dimethylindole	1.30E+10	10 11	-8.121906	-6.291906	0.3036284
	1 mathedia 4-1-	1 500-10	10.10	_8 20021	-6 47021	0 22/19/21
	1-memymidole	1.300 10	10.18	-0.50021	-0.47021	0.5246051
		1.20E+10	40.77			
	2-methylindole	3.40E+10	10.53	-8.274981	-6.444981	0.2980896
	3-methylindole	3.30E+10	10.52	-8.238073	-6.408073	0.3067786
	indole-3-acetic acid	6.50E+09	9.81	-8.843916	-7.013916	-0.1644274
	indole-3-propionic acid	8.50E+09	9.93	-8.529186	-6.699186	0.0819269
	5-methylindole	1.70E+10	10.23	-8.347065	-6 517065	0.325323
	5_nitroindolo	1.00E+10		0.5 17005	0.017005	0.020020
	5-introndole	2.005 10	10.20	0 610504	6 703534	0.041202
	D-cnloromdole	2.00E+10	10.30	-8.012524	-0./82524	0.041292
		0.047		7 6 6 1 2 6 7	5 921257	0.4400067
	5-aminoindole	3.30E+10	10.52	-/.00100/	-5.821557	0.4400007
	5-aminoindole 5-bromoindole	3.30E+10 1.60E+10	10.52	-8.654009	-6.824009	0.02258883
	5-aminoindole 5-bromoindole 5-cyanoindole	3.30E+10 1.60E+10 1.10E+10	10.52 10.20 10.04	-7.651337 -8.654009 -8.847144	-6.824009 -7.017144	0.02258883
	5-aminoindole 5-bromoindole 5-cyanoindole 5-hydroxvindole	3.30E+10 1.60E+10 1.10E+10 1.70E+10	10.52 10.20 10.04 10.23	-7.051357 -8.654009 -8.847144 -8.301017	-6.824009 -7.017144 -6.471017	0.02258883 -0.2170322 0.1543591
	5-aminoindole 5-bromoindole 5-hydroxyindole 5-mydhoxy indole	3.30E+10 1.60E+10 1.10E+10 1.70E+10 1.50E+10	10.52 10.20 10.04 10.23 10.18	-7.051357 -8.654009 -8.847144 -8.301017 -8.218704	-5.821337 -6.824009 -7.017144 -6.471017 -6.388704	0.02258883 -0.2170322 0.1543591 0.2132235
	5-aminoindole 5-bromoindole 5-cyanoindole 5-hydroxyindole 5-methoxy indole Indole_5-acetro acid	3.30E+10 1.60E+10 1.10E+10 1.70E+10 1.50E+10 7.90E+09	10.52 10.20 10.04 10.23 10.18 9.90	-7.651357 -8.654009 -8.847144 -8.301017 -8.218704 -8.803644	-6.824009 -7.017144 -6.471017 -6.388704 -6.973644	0.02258883 -0.2170322 0.1543591 0.2132235 -0.2380285

2-(dimethylaminomethyl)-indole					
(gramine)	3.00E+10	10.48	-8.288119	-6.458119	0.2996526
Melatonin	1.32E+10	10.12	-8.383657	-6.553657	-0.02848179
Tryptophan	1.25E+10	10.10	-8.469387	-6.639387	0.1268472
6-chloromelatonin	8.20E+09	9.91	-8.748535	-6.918535	-0.3210769
6-hydroxy-melatonin	1.10E+10	10.04	-8.474654	-6.644654	-0.07347865
5-methoxytryptamine	2.30E+10	10.36	-8.175366	-6.345366	0.1698762
5-hydroxytryptamine	1.70E+10	10.23	-8.252984	-6.422984	0.113479
indoline	3.80E+10	10.58	-8.012069	-6.182069	0.6960114
imidazole	3.90E+09	9.59	-9.159063	-7.329063	0.9772351
1-methyl imidazole	8.10E+09	9.91	-9.068705	-7.238705	0.9551286
xanthine	5.20E+09	9.72	-9.335711	-7.505711	-0.5102662
theophilline	6.30E+09	9.80	-9.065549	-7.235549	-0.3744477
theobromine	5.80E+09	9.76	-9.017918	-7.187918	-0.4077799
1-hypoxanthine	6.50E+09	9.81	-9.499949	-7.669949	-0.6002567
isoguanine	1.20E+10	10.08	-8.931677	-7.101677	-0.4709503
guanine	9.20E+09	9.96	-8.599816	-6.769816	-0.1587732
caffeine	6.90E+09	9.84	-8.946396	-7.116396	-0.3416989
allopurinol	7.00E+08	8.85	-9.623034	-7.793034	-0.5682302
purine	3.00E+08	8.48	-9.641496	-7.811496	-0.566691
6-methyl purine	4.60E+08	8.66	-9.579273	-7.749273	-0.5272966
6-methoxy purine	2.00E+09	9.30	-9.537105	-7.707105	-0.503417
2-aminopurine	3.00E+09	9.48	-8.430102	-6.600102	0.2551631
adenine	5.80E+09	9.76	-8.665549	-6.835549	-0.5752795
N,N-dimethyladenine	7.10E+09				
2-mercaptopurine	4.40E+09	9.64	-8.669272	-6.839272	-1.05871
6-mercaptopurine	7.00E+09	9.85	-8.826919	-6.996919	-1.121564
carbendazim	2.20E+09	9.34	-8.719607	-6.889607	-0.1053538
thiophene	8.20E+09	9.91	-9.217519	-7.387519	0.2388409
2,5-dimethylthiophene	7.20E+09	9.86	-8.960532	-7.130532	0.192614
2-methylthiophene	3.20E+09	9.51	-9.167394	-7.337394	0.2153039
3-methylthiophene	3.20E+09	9.51	-8.960335	-7.130335	0.2716238
2,2'-bithiophene	1.60E+10	10.20	-8.582865	-6.752865	-0.5731946
2-iodo-3,5-dinitrothiophene	2.10E+09				
3-nitro-2-(4-nitrophenoxy)thiophen	e 1.30E+09				
tetrahydrothiophene	1.40E+10				
atrazine	2.00E+09	9.30	-9.4324	-7.6024	0.02653915
cyanuric acid	2.00E+07	7.30	-11.16566	-9.33566	-0.5236035
simazine	2.10E+09	9.32	-9.322888	-7.492888	0.1204403
prometone	2.50E+09	9.40	-9.356476	-7.526476	0.3281624
1,3,5-triazine	3.40E+09	9.53	-11.31689	-9.48689	-0.5514946
2,4,6-trimethoxy-1,3,5-triazine	2.06E+08	8.31	-10.63024	-8.80024	-0.1619785
dioxohexahydrotriazine	1.61E+09	9.21	-10.3639	-8.5339	0.5279263
simetone	4.70E+09	9.67	-9.172058	-7.342058	0.5188141
ametryne	2.60E+10	10.41	-8.658154	-6.828154	0.193481
simetryne	2.60E+10	10.41	-8.596725	-6.766725	0.3103282
terbutazine	2.80E+09	9.45	-9.291797	-7.461797	0.1537872
cyanazine	1.90E+09	9.28	-9.554059	-7.724059	-0.1189912
2-chloro-4,6-diamino-s-triazine	5.00E+07	7.70	-9.729335	-7.899335	-0.01503109

APPENDIX E: QUANTUM MECHANICALLY OPTIMIZED STRUCTURES IN THE GASEOUS AND AQUEOUS PHASES FOR NEUTRAL COMPOUNDS

The structure on the left is optimized geometry of molecules and radicals in the gaseous phase using G1, G2 and G3 methods (i.e., geometry optimization is conducted with MP2(Full)/6-31G(d). The optimized geometry includes numbers and labels of each atom as well as atomic charges that were obtained from Mulliken's charge distribution (charges were shown in the parentheses). The Z-matrix is also given for the gaseous phase optimizes structure. The vector indicates direction of the dipole moment. The structure on the right is optimized geometry that is used for calculating free energy of solvation.

CH₄ in CPCM

Н

NB	NC	Bond	Angle	Dihedral	
2 2 2	3 3	1.0898653 1.0898653 1.0898653 1.0898653	109.47122 109.47122 109.47122	206 206 206	120.0000000 -120.0000000

TS CH₄-HO•

No

TS CH₄-HO• in CPCM

	7H (0.) 55) 6н(0,02) 10 94) 24 1) 1)							
Row	Highlight No	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	U U	1			1 09700	07		
2	INO N	2	п	1	2		1.08/99	07 47 112 202		
3	NO	3	Н	1	2		1.08/58	4/112.382.	2663	
4	No	4	0	1	3	2	2.49230	43 101.9002	2896	115.9528627
5	No	5	Н	1	4	3	1.08766	71 107.983	0162	-118.6674389
6	No	6	Н	1	4	3	1.22039	32 5.52592	78	170.5837115
7	No	7	Н	4	1	3	0.98554	81 93.3845	049	20.390555

1	INO	1	C					
2	No	2	Н	1			1.0926187	
3	No	3	Н	1	2		1.0926182 107.6918168	
4	No	4	Н	1	3	2	1.0926182 107.6917705	-115.8851506
5	No	5	С	1	3	4	1.5243840 111.1968744	-122.0574157
6	No	6	Н	5	1	3	1.0926187 111.1968643	59.9999827
7	No	7	Н	5	1	3	1.0926182 111.1968744	180.0000000
8	No	8	Н	5	1	3	1.0926182 111.1968744	-60.0000346

C₂H₀ in CPCM

	4H(0, 1/8) 10(-8 3H(0, 1/8) 6H	2H(B) 3 .335) 50(-0,	B) 7H(B.1)B) BH(B.1)B)							
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.09279	88		
3	No	3	Н	1	2		1.09279	89 107.718	6035	
		4	11	1	n	2	1.00270	00 107 710	(0)25	115 04277
4	No	4	н	1	2	3	1.092/96	89 107.718	0035	115.94377

6	No	6	Н	5	1	2	1.0927988 111.1716097	180.0000000
7	No	7	Н	5	1	2	1.0927989 111.1716064	-60.0000058
8	No	8	Н	5	1	2	1.0927989 111.1716064	60.0000058

C2H6-HO• (TS)

C2H6-HO• (TS) in CPCM

NC

Propane (C3H8)

Propane (C3H8) in CPCM

					Row	Highlight Bond	Tag Angle	Symbol Dihedral	NA	NB	NC
	бН	(1)7H	1) 1)		1	No	1	С			
		50(-0-1) 104	.5)	2	No 1.0937473	2	Н	1		
20	10/00		80(-0.41)	3	No 1.0943707	3 7 107.919	Н)969	1	2	
		34(8,1,1,1)9	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.1)	4	No 1.0943707	4 7 107.919	H 0969	1 116.16	2 91046	3
	44 (0.11)				5	No 1.5245619	5 9 111.544	C 1765	1 -121.9	2 154477	3
					6	No 1.0958923	6 3 109.4874	H 4306	5	1 58106	2
7	No	7	Н	5	1	2	1.095892	23 109.4874	306	58.115	8106
8	No	8	С	5	1	2	1.52456	19 112.3595	737	180.00	00000
9	No	9	Н	8	5	1	1.09437	07 110.7870	249	59.755	9666
10	No	10	Н	8	5	1	1.09374	73 111.5441	765	180.00	00000
11	No	11	Н	8	5	1	1.09437	07 110.7870	249	-59.75	59666

C3H8-HOradical TS1

BH(0.23 9H(0.33) 9H(0.33) 2d 11H(0,0) 10(00,0) 10(
--	--

Row	HighlighT	Гag	Symbol	NA	NB	NC	Bond	Angle	Dihedral
	Х		Y		Z				
1	No	1	С						
	-0.032551	0	0.217507	0	0.0381	640			
2	No	2	С	1			1.51285	66	
	-0.041099	90	0.061847	'0	1.5429	670			
3	No	3	Η	1	2		1.09246	72 113.4266290	
	0.884472	0	-0.14649	00	-0.4309	9410			
4	No	4	Н	1	2	3	1.09234	91 113.8677853	127.1121200
	-0.906047	70	-0.21404	00	-0.4557	7980			
5	No	5	Н	2	1	4	1.09444	31 109.3238599	-57.7998579
	-0.945764	40	0.524341	0	1.9497670				
6	No	6	Н	2	1	4	1.09458	38 109.3701413	-174.0220832
	0.805781	0	0.608764	-0	1.96933	350			
7	No	7	0	1	2	5	2.50082	16 105.6002886	63.2878354
	0.070578	0	2.680519	0	-0.3826	5030			
8	No	8	Н	7	1	2	0.97829	96 94.3325698	111.3218865
	0.979568	0	2.655857	0	-0.7434	4340			
9	No	9	Н	1	2	7	1.20867	80 107.7123036	-6.1521522
	-0.106552	20	1.398155	0	-0.2098	3210			
10	No	10	С	2	1	7	1.52767	46 111.9506633	-174.8674707
	0.024126	0	-1.40471	10	1.96574	470			
11	No	11	Н	10	2	1	1.09343	15 111.0525937	-179.9354835
	0.015973	0	-1.50022	90	3.05490	680			
12	No	12	Н	10	2	1	1.09379	73 110.9718650	59.9813511
	0.936039	0	-1.87955	50	1.5924	770			
13	No	13	Н	10	2	1	1.09365	48 110.9173422	-59.8961560
	-0.830005	50	-1.96290	80	1.57210	010			

C3H8-HOradical TS1 in CPCM

вн (0.3	(-0.4 7))		. .	Ro 1	эw	Highlight Bond No	Tag Angle 1	Symbol Dihedral C	NA	NB	NC
	ЭН	(0.348H	4)		2		No 1.513157:	2 5	С	1		
			20,000)		3		No 1.092058	3 8 113.543	Н 1386	1	2	
		10(-0.4			8) 4		No 1 0927679	4 9 1 1 3 5 5 4	H 8832	1 127 1	2 889193	3
	зн		100	(-0.483)	5		No 1 094933	5 5 5 109 438	H 4084	2 174 3	1	3
			124(0.14	3)	6		No 1.095114	6 9 109.508	H 2425	2 57.67	1 01216	3
					7		No	7	0	1	2	5
	2.5130	171 105.32	87268	61.148	6800							
8	No	8	Н	7	1	2	0.	9858586	93.3994955		81.44172	55
9	No	9	Н	1	2	7	1.	2048159	108.6646019		-4.619258	36
10	No	10	С	2	1	7	1.	5276409	111.7839674		-177.1873	7546
11	No	11	Н	10	2	1	1.	0935963	111.0176666		179.9707	344
12	No	12	Н	10	2	1	1.	0937742	110.8774186		59.87890	03
13	No	13	Н	10	2	1	1.	0937718	110.8318383		-59.97890)99

C3H8-HOradical TS2 Staggered

	13. 18. 18. 11. 11. 0						
Row	Highlight Tag	Symbol NA	NB 7	NC	Bond	Angle	Dihedral

	X	Ŷ	Z	C	
1	No 1	С			
	0.0433560	0.0689040	0.0687530		
2	No 2	C 1		1.5142781	
	0.0513010	0.3885390	1.5488910		
3	No 3	C 2	1	1.5142773 114.9252361	
	1.3124570	-0.0167780	2.2825390		
4	No 4	Н 1	2 3	1.0941535 111.0394491	-55.7235557
	0.9066980	0.5149650	-0.4340810		
5	No 5	Н 1	2 3	1.0955269 110.4307196	63.4931515
	0.0923740	-1.0141150	-0.0888740		
6	No 6	Н 1	2 3	1.0924229 111.3956270	-176.3823785
	-0.8627670	0.4414060	-0.4145390		
7	No 7	Н 2	1 3	1.0943691 111.7177012	-128.6323876
	-0.8466520	0.0129140	2.0491210		
8	No 8	Н 2	1 3	1.1946103 107.8346214	120.2829200
	-0.0779770	1.5700700	1.6687470		
9	No 9	Н 3	2 1	1.0924224 111.3954823	176.3828806
	1.2830960	0.2965230	3.3286590		
10	No 10	Н 3	2 1	1.0941525 111.0393256	55.7244715
	2.1974900	0.4278320	1.8175570		
11	No 11	Н 3	2 1	1.0955274 110.4307597	-63.4925662
	1.4369980	-1.1048950	2.2566330		
12	No 12	O 2	1 3	2.5265637 105.4546130	115.6800906
	-0.0310940	2.9096030	1.6937060		
13	No 13	Н 12	2 1	0.9786268 93.3027968	-60.9838358
	0.8140420	3.0213350	1.2131110		

C3H8-HOradical TS2 Staggered in CPCM

Row	Highlight NC	Tag Bond	Symbol Angle	NA Dihedral	NB
1	No	1	С		
2	No 1.5145279	2	С	1	
3	No	3	С	2	1
	1.5145172	114.75406	63		
4	No	4	Н	1	2
	3	1.0939767	110.90929	43	-
56.325988	0				
5	No	5	Н	1	2
	3	1.0954579	110.23653	89	
	62.939690	7			
6	No	6	Н	1	2
	3	1.0928617	111.47396	86	-
177.08664	.94				
3	1.0947827	111.70051	24	-128.4427	383
3	1.1921016	107.75101	.64	120.01416	517
1	1.0928587	111.47738	312	177.11987	'86
1	1.0939732	110.91121	34	56.351587	2
1	1.0954658	110.23150	031	-62.91012	92
3	2.5397858	105.79359	71	116.20624	76

	10+ 10+ 11+	2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Row	HighlighTag X	Symbol NA V	NB NC	Bond Angle	Dihedral
1	No 1	C	2		
2	-0.0747120	0.0015510	0.0293220	1 5142162	
2	0.0059960	-0.1314570	1.5356250	1.3143162	
3	No 3	C 2	1	1.5143170 114.9391899	
	1.3989850	0.0009400	2.1145970		
4	No 4	H 1	2 3	1.0930913 110.6337006	-56.1264376
5	0.3301290 No 5	U.9516570 H 1	-0.29/1150	1 0958220 110 4296167	63 3317263
5	0.4830440	-0.8069760	-0.4564950	1.0938220 110.4290107	05.5517205
6	No 6	Н 1	2 3	1.0925403 111.4862733	-176.4772267
	-1.1085760	-0.0409510	-0.3213390		
7	No 7	H 2	1 3	1.0946535 111.6655672	-128.5232437
8	-0.4937400 No 8	-1.0391950 H 2	1.8885500	1 1935836 106 3221937	117 3315285
0	-0.6319220	0.7708870	1.9867100	1.1955656 100.5221957	117.3515265
9	No 9	Н 3	2 1	1.0925400 111.4864054	176.4770368
	1.3843910	-0.0419810	3.2061960		
10	No 10	H 3	2 1	1.0930908 110.6337582	56.1260916
11	1.850/8/0 No 11	0.9510140 H 3	1.81/8110	1 0958221 110 4294562	-63 3320260
11	2.0428990	-0.8076270	1.7507010	1.0756221 110.7294502	-05.5520200
12	No 12	0 2	1 3	2.5309497 107.7985225	120.2251068
	-1.4301800	1.6884500	2.5510280		
13	No 13	H 12	2 1	0.9785029 95.1465910	117.6903135
	-2.0523290	1.0743000	2.9905940		

C3H8-HOradical TS3 Eclipsed

3	No	3	С	2	1		1.5340227 113.3152872	
4	No	4	С	3	2	1	1.5321572 113.3152872	179.9897384
5	No	5	Н	1	2	3	1.0963616 111.4699916	179.9922033
6	No	6	Н	1	2	3	1.0973113 111.1566451	-59.8714373
7	No	7	Н	1	2	3	1.0973127 111.1563104	59.8562027
8	No	8	Н	2	1	3	1.0997736 109.4617689	122.0840238
9	No	9	Н	2	1	3	1.0997730 109.4626456	-122.0849654
10	No	10	Н	3	2	1	1.0997738 109.1506682	57.7319241
11	No	11	Н	3	2	1	1.0997736 109.1503755	-57.7519577
12	No	12	Н	4	3	2	1.0963616 111.4699917	179.9929895
13	No	13	Н	4	3	2	1.0973123 111.1563656	59.8568402
14	No	14	Н	4	3	2	1.0973122 111.1565532	-59.8707356

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond
1	No	1	C				
2	No	2	Ċ	1			1.5379
3	No	3	C	1	2		1.5334
4	No	4	С	2	1	3	1.5334
5	No	5	Н	1	3	2	1.0987
6	No	6	Н	1	3	2	1.0998
7	No	7	Н	2	1	3	1.0998
8	No	8	Н	2	1	3	1.0987
9	No	9	Н	3	1	2	1.0976
10	No	10	Н	3	1	2	1.0959
11	No	11	Н	3	1	2	1.0963
12	No	12	Н	4	2	1	1.0963
13	No	13	Н	4	2	1	1.0976
14	No	14	Н	4	2	1	1.0959

2	Bond	Angle	Dihedral	
	1 53792	80		
	1.53343	13 114.366	9905	
	1.53343	13 114.366	9905	65.6963061
	1.09871	11 108.864	4577	-121.7647513
	1.09987	27 109.4242	2987	122.7025278
	1.09987	27 109.082	5461	-57.1914798
	1.09871	11 108.685	9982	-172.4411496
	1.09760	39 110.997	0755	57.7114576
	1.09596	28 111.922	3309	-62.5025121
	1.09632	44 111.073	5279	177.4453780
	1.09632	44 111.073	5279	177.4453780
	1.09760	40 110.997	1056	57.7115029
	1.09596	28 111.922	3309	-62.5025121

C4H10 – Gauche staggered dihedral angle = 300 degrees

12H(R.).9 40 14H(R.)	13H(0,8)8) 0,-55) вн 77) 20(0,09 7H (0,05) 5H	11H(8 5) 1C(8.8)	1948) 94(9, 97) 30(44, 9) 184(9, 8) 8) 84							
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.53793	07		
3	No	3	С	1	2		1.53343	12 114.3675	5327	
4	No	4	С	2	1	3	1.53343	12 114.3675	5327	-65.6947700
5	No	5	Н	1	3	2	1.09871	06 108.8645	5205	121.7648434
6	No	6	Н	1	3	2	1.09987	27 109.4241	1333	-122.7026963
7	No	7	Н	2	1	3	1.09871	10 108.6857	7893	172.4424429
8	No	8	Н	2	1	3	1.09987	27 109.0824	4772	57.1931298

9	No	9	Н	3	1	2	1.0976037 110.9968063	-57.7119838
10	No	10	Н	3	1	2	1.0963243 111.0740412	-177.4453703
11	No	11	Н	3	1	2	1.0959625 111.9226271	62.5018985
12	No	12	Н	4	2	1	1.0963243 111.0740412	-177.4453703
13	No	13	Н	4	2	1	1.0959625 111.9226271	62.5018985
14	No	14	Н	4	2	1	1.0976037 110.9968063	-57.7119838

C4H10-HO radical TS1 Anti staggered dihedral angle = 180 degrees

Row	Highlight Tag	Symbol NA	NB NC	Bond Angle	Dihedral
1	No 1	1 C	L		0 1559880
1	-0.3339080	0.2062360			0.1557000
2	No 2	Н 1		1.0923054	0.1948660
	-0.7102210	1.2309350			
3	No 3	Н 1	2	1.2082820 104.0702091	1.2646150
	-0.5437720	-0.2260240			
4	No 4	Н 1	2 3	1.0924193 110.2097568	-114.1283246
	0.0184570	0.7498190	0.2071610		
5	No 5	C 1	2 4	1.5126185 113.8918024	-128.8250075
	-0.8296950	-1.0651190	-0.6779440		
6	No 6	Н 5	1 2	1.0957321 109.4930405	-57.8052260
	-0.5793240	-2.1316230	-0.7005830		
7	No 7	Н 5	1 2	1.0958993 109.5477781	-174.1917212
	-0.7372040	-0.7027290	-1.7080480		
8	No 8	C 5	1 2	1.5286063 112.4233245	63.9625355
	-2.2739030	-0.8935440	-0.2073460		
9	No 9	H 8	5 1	1.0965051 109.1804691	-57.9354940
	-2.3620320	-1.2549410	0.8241330		
10	No 10	0 1	5 8	2.5020159 105.8700432	-175.0338900
	2.3888880	-0.6028790	-0.8900740		
11	No 11	H 10	1 5	0.9783016 94.2494371	110.8215550
	2.4592990	0.3394550	-1.1432990		
12	No 12	H 8	5 1	1.0966710 109.2198494	58.0117652
	-2.5212080	0.1746030	-0.1830660		
13	No 13	C 8	5 1	1.5248897 112.4472733	-179.9452924
	-3.2679410	-1.6315780	-1.0975610		
14	No 14	Н 13	8 5	1.0938284 110.8337676	59.8290218
	-3.0548630	-2.7043480	-1.1124930		
15	No 15	Н 13	8 5	1.0934273 111.3842702	179.9950557
	-4.2944220	-1.4973780	-0.7455520		
16	No 16	Н 13	8 5	1.0938949 110.8595867	-59.8213593
	-3.2147690	-1.2660370	-2.1272010		

C4H10-HO radical TS2 Anti staggered dihedral angle = 180 degrees

C5H12 – Anti Staggered

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.0941147			
3	No	3	Н	1	2		1.0941147	107.72704	-07	
4	No	4	Н	1	2	3	1.0936558	107.86417	59	116.1928710
5	No	5	С	1	4	2	1.5247509	111.53470	65	-121.9483950
6	No	6	Н	5	1	4	1.0969419	109.62398	89	-58.1490982
7	No	7	Н	5	1	4	1.0969419	109.62398	89	58.1490982
8	No	8	С	5	1	4	1.5250730	112.81387	62	180.0000000
9	No	9	Н	8	5	1	1.0983327	109.25007	97	57.8959964
10	No	10	Н	8	5	1	1.0983327	109.25007	97	-57.8959964
11	No	11	С	8	5	1	1.5250730	113.38272	.66	180.0000000
12	No	12	Н	11	8	5	1.0969419	109.14462	17	57.8790304
13	No	13	Н	11	8	5	1.0969419	109.14462	.17	-57.8790304
14	No	14	С	11	8	5	1.5247509	112.81387	62	180.0000000
15	No	15	Н	14	11	8	1.0941147	110.84768	16	59.7907381
16	No	16	Н	14	11	8	1.0936558	111.53470	65	180.0000000
17	No	17	Н	14	11	8	1.0941147	110.84768	16	-59.7907381

C5H12-HO radical TS2

	10 (7) 10 (7) 10 (10) 10 (10)		,		
Row	Highlight Tag	Symbol NA	NB NC	Bond Angle	Dihedral
1	X Y No 1	Z			
1	0.0586670	-0.1079310	0.0323560		
2	No 2	C 1		1.5148027	
	0.0126980	0.3936000	1.4609850		
3	No 3	C 2	1	1.5156857 115.3536642	
4	1.2829570	0.1884970	2.2620330	1 0041204 111 072(25)	55 (0(0922
4	NO 4	H I 0.2270000	2 3 0.5144270	1.0941294 111.0736236	-33.0900832
5	No 5	U.3379990 H 1	-0.5144270	1 0954672 110 4014780	63 5291712
5	0.1935080	-1.1949020	0.0133740	1.0754072 110.4014700	05.52)1712
6	No 6	Н 1	2 3	1.0926808 111.4342469	-176.4089237
	-0.8638950	0.1279770	-0.5035340		
7	No 7	Н 2	1 3	1.0957260 111.8088149	-128.6245046
	-0.8638340	0.0138420	1.9977260		
8	No 8	H 2	1 3	1.1941364 108.0840701	119.9975845
0	-0.2038480	1.56/6480	1.4348920	1 0086220 100 2100568	54 1495102
9	2 1303820	0 6278600	1 7181550	1.0980229 109.5109508	54.1465102
10	No 10	Н 3	2 1	1.0998254 108.7742229	-61,1952153
	1.4901590	-0.8896690	2.3271580		
11	No 11	O 2	1 3	2.5322745 106.2776912	114.5289204
	-0.2187300	2.9114560	1.3222180		
12	No 12	H 11	2 1	0.9789901 92.6885645	-57.3843380
12	0.5999140	3.003/3/0	0.7933250	1 5252404 112 2702521	176 5470125
15	1 2138330	0 7844090	2 I 3 6644600	1.5255494 115.2705521	1/0.34/0133
14	No 14	Н 13	3 2	1.0967702 108.9978229	58,7084155
	0.3765810	0.3273240	4.2057430		
15	No 15	Н 13	3 2	1.0948879 108.5453599	-56.8432734
	0.9820620	1.8510320	3.5785700		
16	No 16	C 13	3 2	1.5242680 112.6579605	-179.3031566
17	2.5039520	0.5851080	4.4513940	1 0042204 110 0042226	50 0546244
1/	1NO 1/ 3.3400330	п 10 1.0580460	15 5	1.0942294 110.9043236	39.9340344
	J.JT/0330	1.0500400	5.7717//0		

18	No	18	Н	16	13	3	1.0934021 111.3674358	-179.9955998	
	2.4313360		1.0195	1.0195990		300			
19	No	19	Н	16	13	3	1.0942427 111.0069678	-59.7900784	
	2.7348660		-0.4786300		4.5632300				

C5H12-HO radical TS2

Row	Highlight Tag	Symbol NA	NB NC	Bond Angle	Dihedral
	X	Y	Z		
1	No 1	С			
	-0.0063080	-0.0055230	-0.0068700		
2	No 2	C 1		1.5158948	
	0.0086040	-0.0211430	1.5088710		
3	No 3	C 2	1	1.5158944 116.0438591	
	1.3768580	-0.0048090	2.1612130		
4	No 4	Н 1	2 3	1.0972577 109.1922739	-53.6524343
	0.5900780	0.8431390	-0.3647400		
5	No 5	Н 1	2 3	1.0984113 108.6877984	61.6507080
	0.4997130	-0.9090150	-0.3731380		
6	No 6	Н 2	1 3	1.0971678 111.4678989	-129.0416688
	-0.6170430	-0.8291120	1.9082820		
7	No 7	Н 2	1 3	1.1935739 107.3606085	120.0494014
	-0.5749260	0.9513640	1.8808140		
8	No 8	Н 3	2 1	1.0972578 109.1922203	53.6533250
	1.9524850	0.8438520	1.7708250		
9	No 9	Н 3	2 1	1.0984113 108.6877527	-61.6497199
	1.9225510	-0.9082720	1.8571060		
10	No 10	O 2	1 3	2.5372809 104.6362355	114.7281672
	-1.0495740	2.1841550	2.1831960		
11	No 11	Н 10	2 1	0.9792808 92.1361885	-61.2472471
	-0.3478070	2.6998330	1.7353230		
12	No 12	C 3	2 1	1.5248530 112.6511420	176.0599108
	1.3014030	0.0747020	3.6821210		
13	No 13	Н 12	3 2	1.0938417 110.7260061	60.9528907
	0.7748440	-0.7932150	4.0894850		
14	No 14	Н 12	3 2	1.0933377 111.3882059	-178.9218054
	2.2984470	0.1043580	4.1297940		
15	No 15	Н 12	3 2	1.0925555 110.2229687	-58.3400171
	0.7563660	0.9712210	3.9868600		
16	No 16	C 1	2 3	1.5248530 112.6510925	-176.0589554
	-1.4173620	0.0733220	-0.5794840		
17	No 17	Н 16	1 2	1.0933382 111.3882413	178.9220501
	-1.4031270	0.1024660	-1.6723410		
18	No 18	Н 16	1 2	1.0938421 110.7259913	-60.9526831
	-2.0084590	-0.7946170	-0.2732540		
19	No 19	Н 16	1 2	1.0925552 110.2230744	58.3402661
	-1.9236780	0.9698710	-0.2140790		

СНЗСН2ОН

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	Н	1			1.0917693	3		
3	No	3	Н	1	2		1.0917693	3 108.43363	302	
4	No	4	Н	1	2	3	1.0933220	0 108.83174	148	118.2399256
5	No	5	С	1	2	3	1.5118586	5 109.97330)25	-120.2807483
6	No	6	Н	5	1	2	1.0991518	3 110.22076	510	-179.6193158
7	No	7	Η	5	1	2	1.0991518	3 110.22076	510	-61.0358765
8	No	8	0	5	1	2	1.4275846	5 107.02294	41	59.6724039
9	No	9	Н	8	5	1	0.9711288	8 107.70639	937	180.0000000

CH3CH2OH – HO radical TS1

-		-	-					
2	No	2	С	1			1.5023386	
3	No	3	Η	1	2		1.0895662 113.0671477	
4	No	4	Н	1	2	3	1.0906044 113.4836227	129.3531768
5	No	5	Η	2	1	3	1.0968851 109.9842882	177.8321676
6	No	6	Н	2	1	3	1.0990223 110.4713632	-62.8216968
7	No	7	0	1	2	5	2.4399043 94.6184081	66.5649571
8	No	8	Н	7	1	2	0.9813564 84.9858821	38.7730367
9	No	9	Н	1	2	7	1.2325561 106.1098348	-4.3034523
10	No	10	0	2	1	7	1.4332197 106.9336453	-53.8526620
11	No	11	Н	10	2	1	0.9718047 107.9883587	176.8713599

9	No	9	Н	1	2	7	1.1951128 108.7925255	12.9107047
10	No	10	0	1	2	7	1.4083560 109.0732246	-105.4350453
11	No	11	Н	10	1	2	0.9726559 107.7340914	-175.3957615

СНЗСН(ОН)СНЗ

CH3CH(OH)CH3-HO radical TS1

1000	ingingin	1 ug	Symoor	1 11 1	140	110	Bolia Fingle Billeara	
1	No	1	С					
2	No	2	0	1			2.4737132	
3	No	3	Н	1	2		1.2001575 11.0939544	
4	No	4	Н	2	1	3	0.9793677 85.1890685	179.9719699
5	No	5	0	1	2	4	1.4218821 90.6419651	-0.0228165
6	No	6	Н	5	1	2	0.9747216 107.6080243	179.9579748
7	No	7	С	1	5	2	1.5104417 112.1769066	-113.9491624
8	No	8	Н	7	1	5	1.0928020 111.1528970	173.8379491
9	No	9	Н	7	1	5	1.0976914 109.9299261	-66.5218701
10	No	10	Н	7	1	5	1.0914047 109.9914931	52.9968809
11	No	11	С	1	5	7	1.5104431 112.1764915	-132.1048449
12	No	12	Н	11	1	5	1.0928038 111.1530722	-173.8362622
13	No	13	Н	11	1	5	1.0914034 109.9907923	-52.9955984
14	No	14	Н	11	1	5	1.0976868 109.9292862	66.5219428

CH3CH(OH)CH3-HO radical TS2

5	No	5	С	1	3	4	1.5202769 110.6774752	59.5952352
6	No	6	Н	5	1	3	1.0933420 111.0506524	175.4533188
7	No	7	Н	5	1	3	1.0955069 110.3123697	-64.9326732
8	No	8	Η	5	1	3	1.0922432 110.0319615	54.8471519
9	No	9	С	1	3	5	1.5115119 110.6212202	-125.6077553
10	No	10	Η	9	1	3	1.0914989 113.9299139	-167.8965256
11	No	11	Н	9	1	3	1.2353394 106.4245284	-52.1344445
12	No	12	Η	9	1	3	1.0930579 113.2107121	63.5791964
13	No	13	0	9	1	3	2.4401073 95.3305833	-47.8606546
14	No	14	Н	13	9	1	0.9821730 84.8209609	28.3006272

СН3СН2СН2ОН

12

No

12

5

CH3CH2CH2OH - HO radical TS1

CH3CH2CH2OH – HO radical TS2

No

14

-177.5731559

CH3CH2CH2OH- HO radical TS3

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.5063747			
3	No	3	Н	1	2		1.0990527	112.92423	65	
4	No	4	Н	2	1	3	1.0944997	108.00729	84	-178.8481418
5	No	5	Н	2	1	3	1.0959800	108.43256	26	-63.3496562
6	No	6	0	1	2	4	2.5122367	105.97171	91	54.3689557
7	No	7	Н	6	1	2	0.9792625	84.223836	7	-85.9066756
8	No	8	Н	1	2	6	1.1919149	107.09707	'49	12.1417889
9	No	9	0	1	2	6	1.4081089	109.68577	40	-106.3828819
10	No	10	Н	9	1	2	0.9723044	108.08447	03	-171.5316767
11	No	11	С	2	1	9	1.5240738	111.77816	82	-173.7102265
12	No	12	Н	11	2	1	1.0924355	110.93380	27	-179.8749798
13	No	13	Н	11	2	1	1.0939917	111.15970	14	-59.9558782
14	No	14	Н	11	2	1	1.0927221	110.36730	65	60.0968194

278

HOCH2OH – HO radical TS

	X	-	Ŷ		Z			-	
1	No	1	С						
	0.1988810		0.1362680		0.0369840				
2	No	2	Н	1			1.1876402		
	0.1557360		-0.0440340	1.2100650					
3	No	3	Н	1	2		1.0923834	107.3703458	1.2521990
	0.2088190		-0.2433000						
4	No	4	0	1	3	2	1.3900685	108.1370790 119.2121830 -0.4204750	1.3360340
	-0.2935460								
5	No	5	Н	4	1	3	0.9737081	106.2263408 155.3839825 -1.3643400	1.1303660
	-0.4157220								
6	No	6	0	1	4	5	1.3901238	113.4628063 30.8083466 -0.4103820	-0.9762380
	-0.5318510								
7	No	7	Н	6	1	4	0.9757679	106.1050159 -104.8578795 -0.9033650	-1.4126920
	0.1882870								
8	No	8	0	1	4	6	2.4662317	109.4098404 -97.1057960 -0.6103300	-0.6244140
	2.2389920								
9	No	9	Н	8	1	4	0.9789731	100.3516194 -20.2889496 -0.9523160	0.2182440
	2.6014300								

носн2соон

HOCH2COOH HO radical TS1 CIS

Highlight	Tag	Symbol	NA	NB
No	1	С		
No	2	Н	1	
No	3	Н	1	2
No	4	0	1	2
No	5	Н	4	1
No	6	0	1	4
No	7	С	6	1
No	8	0	7	6
No	9	Н	8	7
No	10	0	1	7
No	11	Н	10	1
	Highlight No No No No No No No No No No	HighlightTagNo1No2No3No4No5No6No7No8No9No10No11	Highlight Tag Symbol No 1 C No 2 H No 3 H No 4 O No 5 H No 6 O No 7 C No 8 O No 9 H No 10 O No 11 H	Highlight Tag Symbol NA No 1 C

NC	Bond	Angle	Dihedral	
	1.09511	05		
	1.20947	79 106.014	0503	
3	2.47836	39 118.586	5102	-2.9970869
2	0.98061	88 85.1626	498	175.2842370
5	2.40963	51 110.652	8951	78.2697466
4	1.21521	95 30.7622	863	-69.1089389
1	1.35453	39 124.039	5531	176.4447715
6	0.98000	54 105.679	6663	1.1791849
6	1.39567	14 110.577	5747	-137.6542236
7	0.97288	60 107.720	5115	-175.2084566

HOCH2COOH HO radical TS2 TRANS

NC	Bond	Angle	Dihedral	
	1.2109027	,		
	1.3237389	162.76121	56	
1	0.9797667	97.028189	4	-12.1375357
2	2.4296451	114.53053	62	-117.0609105
3	1.2096211	29.652570	2	-52.9631031
1	1.3673317	123.80069	60	179.8624238
5	0.9795665	5 105.73811	98	0.4798498
5	1.3879629	109.48903	13	5.4493437
6	0.9722802	2 107.93054	19	-176.5790685
6	1.0977355	5 115.09188	93	125.3040287

HOCH2COOH HO radical TS3 TRANS

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	Н	1			1.20722	33		
3	No	3	0	2	1		1.33348	78 154.816	5096	
4	No	4	Н	3	2	1	0.98030	86 96.2210	473	32.3837369
5	No	5	0	1	3	2	2.42042	99 106.344	5544	100.3798600
6	No	6	С	5	1	3	1.21231	15 30.1537	344	-99.0276128
7	No	7	0	6	5	1	1.35656	86 124.438	7946	177.2556052
8	No	8	Н	7	6	5	0.97949	83 105.907	8124	-1.6291804
9	No	9	0	1	6	5	1.39226	83 109.673	4151	-16.4653433
10	No	10	Н	9	1	6	0.97276	47 107.436	2443	-178.5759779
11	No	11	Н	1	9	6	1.09575	24 115.247	5164	127.7223199

(СНЗ)ЗСОН

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.52401	64		
3	No	3	Н	2	1		1.09286	55 109.8394	4691	
4	No	4	Н	2	1	3	1.09415	26 111.337	5715	120.6753134
5	No	5	Н	2	1	3	1.09597	63 110.5082	2670	-119.4825216
6	No	6	С	1	2	3	1.51844	42 111.0063	3412	-58.3020152
7	No	7	Н	6	1	2	1.09280	13 109.8924	4893	58.3923256
8	No	8	Н	6	1	2	1.09280	13 109.8924	4893	177.5651625
9	No	9	Н	6	1	2	1.09349	61 110.7924	4333	-62.0212560
10	No	10	С	1	6	2	1.52401	64 111.0063	3412	124.0425119
11	No	11	Н	10	1	6	1.09286	55 109.8394	4691	58.3020152
12	No	12	Н	10	1	6	1.09597	63 110.5082	2670	177.7845368
13	No	13	Н	10	1	6	1.09415	26 111.337	5715	-62.3732982
14	No	14	0	1	6	10	1.43803	70 104.4870	0544	117.9787440
15	No	15	Н	14	1	6	0.97389	32 106.9310	5679	180.0000000

(CH3)3COH HO radical TS

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.522925	1		
3	No	3	Н	2	1		1.0934409	9 109.8124	4513	
4	No	4	Н	2	1	3	1.0923804	4 110.6065	5089	120.8494068
5	No	5	Н	2	1	3	1.095487	1 110.3385	5564	-119.2523708
6	No	6	С	1	2	4	1.5130693	7 110.9447	7170	61.6817545
7	No	7	Н	6	1	2	1.0914450	5 112.6995	5902	53.9810690
8	No	8	Н	6	1	2	1.0914449	9 112.9025	5981	-178.9540495
9	No	9	Н	6	1	2	1.2125368	8 106.7436	5117	-64.1299152
10	No	10	С	1	6	2	1.522558	7 110.6393	3145	123.9513059
11	No	11	Н	10	1	6	1.0930075	5 109.8627	7173	58.6412109
12	No	12	Н	10	1	6	1.0957240	5 110.3085	5472	178.0488763
13	No	13	Н	10	1	6	1.0931204	4 110.801	1313	-62.0291147
14	No	14	Ο	1	6	10	1.4391230	0 103.6704	4440	118.0817965
15	No	15	Н	14	1	6	0.9746298	8 106.7538	8551	-179.0105829
16	No	16	Ο	6	1	14	2.4980833	5 103.6352	2300	-176.7174221
17	No	17	Н	16	6	1	0.9790300	5 95.18084	429	112.0265432

СН(СН3)(ОН)2

В	NC	Bond	Angle	Dihedral	
		1 509421	3		
		1.425241	5 112.1695	092	
	3	1.3991234	4 107.3932	665	116.9415979
	4	1.0932583	3 110.5392	698	179.9503068
	4	1.0910572	2 108.2569	900	60.2806661
	4	1.092066	6 110.44992	256	-59.4908537
	4	1.1044354	4 110.8364	731	121.1517750
	1	0.9724113	3 107.89364	482	-77.6711664
	1	0.9736420	0 106.26862	278	-169.2478189

CH(CH3)(OH)2 – HO radical TS2

HCHO – HO radical TS

CH3CHO – HO radical TS2

Row	Highlight Tag	Symbol NA	NB	NC	Bond	Angle		Dihedral
	X Y	Z						
1	No 1	С						
	-0.0123370	0.0703640	-0.03527	760				
2	No 2	Н 1			1.090440	8		
	-0.0691130	-0.1357170	1.034008	80				
3	No 3	Н 1	2		1.092958	3 110.95201	88	
	1.0169880	0.2766090	-0.33943	320				
4	No 4	Н 1	2	3	1.093589	1 110.50716	539	119.0960818
	-0.3578190	-0.7930320	-0.61071	20				
5	No 5	0 1	2	4	2.431589	7 86.813346	59	119.6883917
	-1.5576560	1.9026830	0.37365	50				
6	No 6	C 5	1	2	1.205471	3 29.325516	57	178.0649927
	-0.8644510	1.2594230	-0.37390	040				
7	No 7	Н 6	5	1	1.194419	5 120.80525	529	-178.0457185
	-0.7665880	1.5578260	-1.52630	000				
8	No 8	O 6	5	1	2.534174	2 120.26238	342	-162.9257261
			_	-0.20776	540	2.1998790)	-2.6336260
			9	No	9	Н	8	6 5
				0.979442	25 93.66274	37	5.7499330) -

снзсосно

0.6119510 3.0744320

-2.4572810

285

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	Н	1			1.0935787	7		
3	No	3	Н	1	2		1.0896056	5110.32198	381	
4	No	4	Н	1	3	2	1.0935838	3 110.31730)60	-117.7034927
5	No	5	С	1	3	4	1.4990048	8 109.57888	390	-121.1452959
6	No	6	С	5	1	3	1.5218312	2 117.11382	262	-179.9739652
7	No	7	Н	6	5	1	1.1059837	7 114.15775	589	-179.9994603
8	No	8	0	5	1	6	1.2281004	125.12634	403	-179.9967228
9	No	9	0	6	5	1	1.2230842	2 122.68968	367	0.0003627

CH3COCHO-HOradical TS1

			~) 0					
1	No	1	С					
2	No	2	Н	1			1.0886815	
3	No	3	Н	1	2		1.2481002 103.5165864	
4	No	4	Н	1	2	3	1.0879395 115.7773833	118.0283824
5	No	5	С	1	4	2	1.4998351 113.5968071	-135.4350744
6	No	6	С	5	1	4	1.5553826 114.6909736	168.7600823
7	No	7	Н	6	5	1	1.1088956 112.8067475	162.4500085
8	No	8	0	5	1	6	1.1986216 126.0702681	177.9881369
9	No	9	0	6	5	1	1.1978521 122.7021906	-20.1206492
10	No	10	0	1	5	8	2.3878360 82.5527627	98.6749401
11	No	11	Н	10	1	5	0.9813396 94.4849431	-75.9111752

CH3COCHO-HOradical TS2

3	No	3	Н	1	2		1.0882820 114.5100852	
4	No	4	Н	1	3	2	1.2537801 105.5063179	-115.8996371
5	No	5	С	1	3	2	1.5013281 112.4912609	131.5785438
6	No	6	С	5	1	3	1.5661333 115.4564998	179.4036012
7	No	7	Н	6	5	1	1.1082900 112.2560061	177.8631111
8	No	8	0	5	1	6	1.1880689 126.5462975	179.6266902
9	No	9	0	6	5	1	1.2020879 123.7022434	-0.9869822
10	No	10	0	1	5	8	2.4183871 92.6442261	-119.7637367
11	No	11	Н	10	1	5	0.9810850 92.1264387	-78.9423099

CH3COCHO-HOradical TS3

Row	Highlight	Tag	Symbol	NA	NB			
	NC	Bond	Angle	Dihedral				
1	No	1	С					
2	No	2	Н	1			1.0935503	
3	No	3	Н	1	2		1.0893375 110.5846966	
4	No	4	Н	1	3	2	1.0936836 110.6198336	-118.1875497
5	No	5	С	1	3	2	1.4958448 109.8349372	120.6093385
6	No	6	С	5	1	3	1.5611351 115.8773507	178.7953853
7	No	7	Н	6	5	1	1.2233674 110.6638218	-172.1137211
8	No	8	0	5	1	6	1.2165418 126.3625699	178.8419312
9	No	9	0	6	5	1	1.1859733 124.4381423	12.5995865
10	No	10	0	6	5	1	2.4515706 101.8167983	173.2089785
11	No	11	Н	10	6	5	0.9813976 89.4313241	2.5666983

CH3COCHO-HOradical TS4

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	Н	1			1.0937243			
3	No	3	Н	1	2		1.0894837	110.35451	82	
4	No	4	Н	1	3	2	1.0932174	110.71414	46	-118.2519502

5	No	5	С	1	3	2	1.4996733 109.4360733	120.6197257
6	No	6	С	5	1	3	1.5643106 115.0908868	177.4129540
7	No	7	Η	6	5	1	1.2150091 111.1312403	174.4726842
8	No	8	0	5	1	6	1.2116475 126.6913929	-179.8178451
9	No	9	0	6	5	1	1.1893590 124.7990155	-2.7108374
10	No	10	0	6	5	1	2.4677087 116.3428064	157.8012160
11	No	11	Н	10	6	5	0.9800394 90.1968317	-166.2043528

CHOCOOHTS1

44			2 10 10							
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	0	1			1.185110	01		
3	No	3	С	1	2		1.556882	24 125.4279	9199	
4	No	4	0	3	1	2	1.207422	25 120.8423	3297	-25.1066722
5	No	5	0	3	1	2	1.33563	06 113.4704	4566	154.9377726
6	No	6	Н	1	2	3	1.196592	28 122.6821	1845	176.7152248
7	No	7	Н	5	3	1	0.98938	96 110.1876	5172	0.7303834
8	No	8	0	1	2	3	2.50073	90 132.0264	4866	152.1300853
9	No	9	Н	8	1	2	0.98058	59 94.87747	707	-29.9711572

СНОСООН2 ТS

94	40 (1.2) 3C(1.2) 80 (1.1)	jiter 24	60 5+ 00 71) () () () () () () () () () () () () ()						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	NO No	1	0	1			1 18//05	5		
3	No	3	Č	1	2		1 542956	,5 53 125 9894	5771	
4	No	4	õ	3	1	2	1.211669	8 122 1640)841	177.7697924
5	No	5	Ĥ	1	2	3	1.220646	5 124.2809	9118	-176.0976115
6	No	6	0	1	2	3	2.421160	3 118.3418	3254	-155.8183066
7	No	7	Н	6	1	2	0.980408	31 91.37386	588	-1.8079368
8	No	8	0	3	1	2	1.342808	35 110.9920)979	-1.5809055
9	No	9	Н	8	3	1	0.981195	3 106.4019	9610	179.4826963

сносоонз тѕ

СНЗОСНЗ

CH3OCH3 – HO radical TS1

СНЗСОСНЗ

CH3COCH3 – HO radical TS

СНЗСОСОСНЗ

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Di
1	No	1	С						
2	No	2	С	1			1.50117	88	
3	No	3	0	2	1		1.22844	70 124.1940	0116
4	No	4	С	2	1	3	1.53364	17 116.629	1839
5	No	5	Н	1	2	3	1.08983	14 109.319	5266
6	No	6	Н	1	2	3	1.09322	19 110.036	5937
7	No	7	Н	1	2	3	1.09322	31 110.0358	8886
8	No	8	С	4	2	1	1.50117	88 116.629	1839
9	No	9	Н	8	4	2	1.09322	31 110.0358	8886
10	No	10	Н	8	4	2	1.08983	14 109.319	5266
11	No	11	Н	8	4	2	1.09322	19 110.036	5937
12	No	12	0	4	2	1	1.22844	70 119.1768	3045

Dihedral

-179.9991151

-121.3744199

121.3793921

180.0000000

58.6197231

179.9961727

-58.6264649

-0.0008383

0.0029425

Angle

CH3COCOCH3 HO radical TS

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.5018949)		
3	No	3	0	2	1		1.1941576	5 125.11142	211	
4	No	4	С	2	1	3	1.5665340	115.38728	349	-179.9439121
5	No	5	Н	1	2	3	1.0885213	112.04826	661	-0.9621441
6	No	6	Н	1	2	3	1.0891957	113.96119	905	-133.0269904
7	No	7	Н	1	2	3	1.2494046	5 104.13445	543	112.5133348
8	No	8	С	4	2	1	1.4962037	115.23043	388	-177.1243307
9	No	9	Н	8	4	2	1.0932388	3 109.78820)60	58.0438643
10	No	10	Н	8	4	2	1.0893630	109.60079	943	179.8763329
11	No	11	Н	8	4	2	1.0932520	0 109.36171	52	-58.4661361
12	No	12	0	4	2	1	1.2188519	119.87418	366	2.2232633
13	No	13	0	1	2	3	2.4242745	93.689450)7	118.3720772
14	No	14	Н	13	1	2	0.9810665	90.643243	39	77.3135759

СНЗСООН

	24007) 10007 44003 3403	80 50(1.13)	2) 2) 7) 7) 7) 7) 7) 7) 7)	1					l	
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C	1			1 000 45			
2	No	2	H	I			1.08845	92		
3	No	3	H	1	2		1.09221:	58 110.1913	3043	
4	No	4	Н	1	2	3	1.092214	45 110.1918	3801	118.6718828
5	No	5	С	1	2	3	1.50009	58 109.2979	9924	-120.6631144
6	No	6	О	5	1	2	1.36122	56 110.9704	4813	-179.9955921
7	No	7	Η	6	5	1	0.97924	18 105.398	1012	-179.9967961
8	No	8	0	5	1	6	1.21686	56 126.4400	5452	-179.9993039

CH3COOH – HO radical TS

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.4894306			
3	No	3	0	2	1		1.2143774	126.51240	09	
4	No	4	0	2	1	3	1.3664787	110.71911	33	-179.7006338
5	No	5	Н	1	2	3	1.0891367	112.95176	72	-123.3053690
6	No	6	Н	1	2	3	1.2374797	106.75559	54	122.4806756
7	No	7	Н	1	2	3	1.0871782	112.01160	14	6.3904978
8	No	8	Н	4	2	1	0.9796669	105.73847	73	179.6398951
9	No	9	0	1	2	3	2.4525945	99.171234	4	129.1151106
10	No	10	Н	9	1	2	0.9798345	88.681430	0	39.1485394

СН3СН2СООН

Row	Highlight	Tag	Symbol	NA
1	No	1	С	
2	No	2	С	1
3	No	3	С	2
4	No	4	0	3
5	No	5	0	3
6	No	6	Н	1
7	No	7	Н	1
8	No	8	Н	1
9	No	9	Н	2
10	No	10	Н	2
11	No	11	Н	5

NB	NC	Bond	Angle	Dihedral	
		1.5293694	4		
1		1.5033478	8 112.11057	703	
2	1	1.217840	7 126.41970	012	119.0565305
2	1	1.3624786	5 111.22313	393	-60.4358735
2	3	1.0924303	3 110.23183	374	-178.1820138
2	3	1.0908435	5 110.78308	322	61.6328208
2	3	1.092911	1 110.74128	847	-58.7043642
1	3	1.0949355	5 109.90433	388	-120.1281290
1	3	1.0914486	5 111.40926	528	119.8860049
3	2	0.9793973	3 105.40115	527	179.3696902

CH3CH2COOH HO radical TS1

CH3CH2COOH HO radical TS2

6H	12 12 10 10 10 10 10 10 10 10 10 10	40 1 5) 30(0 () 9+() 3)	3) 300 114(7) 51 (1)	7)
	7			
Row	Highlight	Tag	Symbol	NA
Row 1	Highlight No	Tag 1	Symbol C	NA
Row 1 2	Highlight No No	Tag 1 2	Symbol C C	NA 1
Row 1 2 3	Highlight No No No	Tag 1 2 3	Symbol C C C	NA 1 2
Row 1 2 3 4	Highlight No No No No	Tag 1 2 3 4	Symbol C C C O	NA 1 2 3
Row 1 2 3 4 5	Highlight No No No No No	Tag 1 2 3 4 5	Symbol C C C O O	NA 1 2 3 3
Row 1 2 3 4 5 6 7	Highlight No No No No No No	Tag 1 2 3 4 5 6 7	Symbol C C C O O H H	NA 1 2 3 3 1
Row 1 2 3 4 5 6 7 8	Highlight No No No No No No No	Tag 1 2 3 4 5 6 7 8	Symbol C C C O O H H H	NA 1 2 3 1 1 1 1

	Dihedral	Angle	Bond	NC	NB
		5	1.517124		
	579	8 112.680	1.495290		1
5.2281025	594	1 124.722	1.222024	1	2
102.6897673	039	1 112.394	1.352896	1	2
174.3513811	137	9 110.307	1.091485	3	2
5.6989357	196	9 110.603	1.094559	3	2
54.5733381	372	2 110.1474	1.091621	3	2
129.3860029	008	4 114.1834	1.090979	3	1
25.22810 102.689 174.351 55.69893 54.5733 129.386	579 594 039 137 196 372 008	5 8 112.680 1 124.722 1 112.394 9 110.307 9 110.603 2 110.147 4 114.183	1.517124 1.495290 1.222024 1.352896 1.091485 1.094559 1.091621 1.090979	1 1 3 3 3 3	1 2 2 2 2 2 1

10	No	10	Н	2	1	3	1.2276152 106.6955486	113.8350890
11	No	11	Н	5	3	2	0.9807815 105.9572461	178.4546518
12	No	12	0	2	1	3	2.4471972 102.9113785	102.6802720
13	No	13	Н	12	2	1	0.9815543 86.6440291	-92.4010817

нооссн2соон

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.09275	16		
3	No	3	Н	1	2		1.09320	98 108.5593	3005	
4	No	4	0	1	2	3	2.42234	73 86.02113	361	127.9006381
5	No	5	0	1	4	2	2.43003	14 90.39669	950	-116.3383840
6	No	6	С	5	1	4	1.21554	04 30.25990	541	163.2247692
7	No	7	С	4	1	6	1.21502	85 30.36503	339	87.3474994
8	No	8	0	6	5	1	1.35544	94 123.726	1605	-178.9385506
9	No	9	Н	8	6	5	0.97984	87 105.8342	2807	0.4134014
10	No	10	0	7	4	1	1.354754	49 123.8663	3076	-179.7831706
11	No	11	Н	10	7	4	0.97959	81 105.9332	2817	3.1983458

HOOCCH2COOH HOradical TS

5	110	5	11	1	4		1.240/1/0 103.343/033	
4	No	4	0	1	2	3	2.4466970 115.7920422	0.9276214
5	No	5	Н	4	1	2	0.9807696 89.9845468	-147.9819511
6	No	6	0	1	4	5	2.4063482 103.0025226	118.7624380
7	No	7	0	1	6	4	2.4058312 124.3570621	154.8372467
8	No	8	С	7	1	6	1.2147152 30.9298388	-123.9838432
9	No	9	С	6	1	8	1.2133690 30.8779700	43.0603078
10	No	10	0	8	7	1	1.3584630 123.4512644	179.6722539
11	No	11	Н	10	8	7	0.9803507 106.1442371	-2.0519639
12	No	12	0	9	6	1	1.3552302 124.0304969	178.4996519
13	No	13	Н	12	9	6	0.9803428 105.7399374	-0.2354131

CH3COCOOHTS1

CH3COCOOHTS2

СНЗСООСНЗ

7н 5н	30 11) 200 10 10 1) 1,756H[11] 7;	4 (14) , (77) , (77)	94 (1) 2) ¹¹⁴ 8((x,13)) 7) 184 (1)	8)	-					
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
2	No	2	C	1			1 502730	01		
3	No	3	0 0	2	1		1 218150)9 126 056	9676	
4	No	4	Ő	2	1	3	1 356176	6 110 497	2898	-180 0000000
5	No	5	Ĥ	1	2	3	1.092201	4 109.839	5561	-120.8656378
6	No	6	Н	1	2	3	1.092198	31 109 841	2655	120.8790459
7	No	7	Н	1	2	3	1.088859	9 109.250	9199	0.0056337
8	No	8	С	4	2	1	1.439543	7 114.013	0884	179.9979556
9	No	9	Н	8	4	2	1.090829	8 110.451	9754	60.4163792
10	No	10	Н	8	4	2	1.087982	2 105.134	2580	-179.9844068
11	No	11	Н	8	4	2	1.090825	59 110.452	7969	-60.3844166

CH3COOCH3 – HO radical TS1

	6H (0, 3H (0, 31 7H (0, 7H	94(0, 20) 40(0, 20) 31) 31) 40(1, 20) 40(1, 20) 40)	124(1)3) 147(1)12) 147(1)12) 147(1)12) 2) 30(2)(3)	4)	(
Row	Highlig	ht Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
2	N0 No	1	C	1			1 /102235	7		
3	No	3	õ	2	1		1 215957	, 2.126.0076	5102	
4	No	4	ŏ	2	1	3	1.361235	7 110.4295	5258	179.9733343
5	No	5	Ĥ	1	2	3	1.089300	3 112.9650	0391	-121,4232276
6	No	6	Н	1	2	3	1.235872	0 107.0764	1075	124.1744188
7	No	7	Н	1	2	3	1.087645	0 111.9142	2996	7.9436848
8	No	8	О	1	2	3	2.450554	5 99.26072	238	131.2005430
9	No	9	Н	8	1	2	0.979809	0 87.53589	915	37.8548815
10	No	10	С	4	2	1	1.443055	8 114.0274	1778	-179.8384672
11	No	11	Н	10	4	2	1.090144	4 110.1887	7612	60.0763777
12	No	12	Н	10	4	2	1.087595	7 105.1106	6400	179.5857816
13	No	13	Н	10	4	2	1.090333	1 110.2963	3202	-60.7452764

CH3COOCH3 – HO radical TS2

бН	13H(0, 120(-0) 7H(0, 322) 44 10(-0, 17) 5H(0, 3)	12) 30(-8) 20(1.823) 40(11+10 11+10 0.077) 10 10	a) () () () () () () () () () () () () ()	(
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C	1			1 40 40 2 41			
2	No	2	C	1			1.494924	1	(02	
3	No	3	0	2	1		1.2229080) 124.4781	.692	150 0000501
4	No	4	0	2	1	3	1.3461609	9 111.7432	995	-178.9023791
5	No	5	H	1	2	3	1.0879876	5 114.0157	648	-154.8316040
6	No	6	Н	1	2	3	1.0897070) 112.0091	700	75.8852728
7	No	7	Н	1	2	3	1.2447802	2 105.5490)695	-37.1199107
8	No	8	С	4	2	1	1.4440845	5 114.2452	2788	179.1027316
9	No	9	Н	8	4	2	1.0901796	5 110.1776	5737	59.8823707
10	No	10	Н	8	4	2	1.0873015	5 104.9559	9379	179.4645416
11	No	11	Н	8	4	2	1.0902288	8 110.2320)446	-60.9531515
12	No	12	0	1	2	3	2.4334984	4 96.63451	.23	-30.0065880
13	No	13	Н	12	1	2	0.9816709	9 86.31875	519	23.5203040

НСООСН2СН3

HCOOCH2CH3 HO radical TS1

HCOOCH2CH3 HO radical TS2

10

11

12

13

No

No

No

No

Η

Н

0

Η

10

11

12

13

1

4

1

2

2

5

2

12

3

3

3

1

1.2156622 108.4373096

1.0962852 124.8794421

2.4837717 114.9498177

0.9804726 90.6706262

117.4633158

-179.6647542

115.8607010

179.2353614

СН2СІСООН

n a (* 1 .)	5H (7) 1C(8,10) 2C(6H (2,105)	40(-8.34) 7H(8.337) 8.495) 30(-8.495)
Row	Highlight Tag	Symbol NA

Row	Highlight	Tag	Symbol	NA	NB
1	No	1	C		
2	No	2	С	1	
3	No	3	0	2	1
4	No	4	0	2	1
5	No	5	Н	1	2
6	No	6	Н	1	2
7	No	7	Н	4	2
0		0	C1		•

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5094908	;		
3	No	3	0	2	1		1.2161251	124.50685	589	
4	No	4	0	2	1	3	1.3512828	3 111.41967	727	-178.6615377
5	No	5	Н	1	2	3	1.0908101	109.92153	359	123.7953732
6	No	6	Н	1	2	3	1.0879670	0 108.33012	299	2.8693689
7	No	7	Н	4	2	1	0.9796137	106.03473	377	-179.1905166
8	No	8	Cl	1	2	3	1.7785385	5 111.29321	112	-116.6344609

CH2CICOOH HO radical TS1

	30 <mark>(-0,419</mark>) 2 7	5H(B, 1 10 10 10(0, 485)	2) 5H(0.3)	а <mark>(-е. 37</mark>) 2) 9н(а. 23 3)))					l
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	NO N	1	C				1 50121/	-0		
2	NO No	2	C	1	1		1.501213)9 17 124 477	0.57	
3	INO N-	3	0	2	1	2	1.21383	10 124.40/2	2956	177 000(100
4	NO	4	0	2	1	3	1.355500)/ 111.349/	/999	-1//.9006199
S	NO	2	H	1	2	3	1.224//0	54 106.0978	3940	116.2959/9/
6	No	6	Н	I	2	3	1.08843	/6 110./06	620	1.5758338
7	No	7	Н	4	2	1	0.979953	70 106.1052	2436	179.3284970
8	No	8	0	1	2	3	2.456525	58 96.47334	473	120.0241796
9	No	9	Н	8	1	2	0.980408	33 90.31472	225	52.1394805
10	No	10	Cl	1	2	3	1.749617	74 114.3105	5537	-125.2313749

CH3CI – HO radical TS

	2011 8.2 4H (10) 3H	e) 7+(0,25) 60(-6,472) 7+(0,31) +(0,31)			
Row	Highlight Tag	Symbol NA	NB NC	Bond Angle Dihedra	IX Y
1	Z No 1 0.0324910	C 0.0735030	-0.0457330		
2	No 2 0.1157880	Cl 1 -0.4216530	1.6327750	1.7520008	
3	No 3 1.0157050	H 1 0.3437340	2 -0.4231680	1.0872864 111.0892923	
4	No 4 -0.7120910	H 1 0.8531100	3 2 -0.1871600	1.0872861 113.3221376	125.8900901
5	No 5 -0.3386700	H 1 -0.8679740	4 3 -0.7310020	1.2221837 105.7499757	-115.3856490
6	No 6 -0.7310980	O 1 -1.9471280	4 3 -1.2744930	2.4851296 107.9550848	-119.5131191
7	No 7 -0.7847980	H 6 -2.5021410	1 4 -0.4697470	0.9790502 94.0925270	-118.5730562

CH2Cl2

CH2Cl2 – HO radical TS

	6H(8.2.5) 4H(8 201(-8.22)	9 - 529) (0, 1 () 3H(8, 138)		
Row	Highlight Tag X	Symbol NA Y	NB NC Z	Bond Angle Dihedral
1	No 1	C	0.0055060	
2	-0.0057280 No 2	-0.1091990 Cl 1	0.0055960	1.7511287
	-0.1553290	0.0513630	1.7429190	
3	No 3	H 1 0.0531160	2 -0.2974410	1.0877137 110.1069232
4	No 4 -0.6477250	H 1 0.7794530	3 2 -0.5181000	1.2149568 105.7887293 116.9100713
5	No 5	O 1 1.8328320	3 4 -0.8947310	2.4825617 105.2337461 -5.2017575
6	No 6 -1.7235690	H 5 2.0547050	1 3	0.9796106 96.0766436 -130.4129373
7	No 7 -0.6047400	Cl 1 -1.6166730	5 6 -0.6334210	1.7434552 111.6813655 109.4648495

CHCI	3									
	2H(······································							
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.0859050)		
3	No	3	Cl	1	2		1.7647550	0 107.649	6419	
4	No	4	Cl	1	2	3	1.7647553	107.649	6388	120.0000136
5	No	5	Cl	1	2	3	1.7647553	107.649	6388	-120.0000136

CHCl3 – HO radical TS

	3100 21(0,00) 01(0,00) 01(0,00) 71(0,00)				
Row	Highlight Tag	Symbol NA	NB NC	Bond Angle	Dihedral
1	A No 1	r C	L		
•	0.1502290	-0.0582220	-0.0270430		
2	No 2	Н 1		1.2113901	
	0.0516450	-0.2064140	1.1712000		
3	No 3	O 2	1	1.2769738 173.6870009	
	0.0284220	-0.2481900	2.4472790		
4	No 4	Н 3	2 1	0.9798502 100.5435918	-2.1135074
	0.6084120	0.5117800	2.6621360		
5	No 5	Cl 1	3 2	1.7560589 103.9788259	178.5991999
	1.1146520	1.3846800	-0.2947460		
6	No 6	Cl 1	3 2	1.7462661 107.2965739	59.3529605
	-1.4846470	0.1159630	-0.6155030		
7	No 7	Cl 1	3 2	1.7464857 107.3267641	-62.1560496
	0.9339120	-1.5013450	-0.6215590		

CH3CH2CI

	340 74(0)(5) 5(100,07) 5(100,07) 8(10) 8(10)									
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.09113	63		
3	No	3	Н	1	2		1.09368	68 108.5403	3635	
4	No	4	Н	1	2	3	1.09113	63 108.472	7189	117.7514409

5	No	5	С	1	2	4	1.5142665 110.8805834	121.9808439
6	No	6	Н	5	1	2	1.0898889 111.4966144	-179.4768387
7	No	7	Н	5	1	2	1.0898889 111.4966144	58.9138472
8	No	8	Cl	5	1	2	1.7884778 111.3615489	-60.2814958

CH3CH2CI – HO radical TS1

Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle
No	1	C					
No	2	С	1			1.5032899)
No	3	Н	1	2		1.0896395	5 113.87
No	4	Н	1	2	3	1.0917653	112.01
No	5	Н	2	1	3	1.0899236	5111.10
No	6	Н	2	1	3	1.0918229	111.36
No	7	0	1	2	5	2.4669892	99.899
No	8	Н	7	1	2	0.9794829	92.882
No	9	Н	1	2	7	1.2250699	108.38
No	10	Cl	2	1	7	1.7893247	111.39

8 9 10

	1.5032899	
	1.0896395 113.8753135	
3	1.0917653 112.0153383	128.1599262
3	1.0899236 111.1001021	173.7985897
3	1.0918229 111.3672397	-64.4830810
5	2.4669892 99.8996084	56.6551953
2	0.9794829 92.8822734	51.1119198
7	1.2250699 108.3895233	-1.1202039
7	1.7893247 111.3920030	-62.6629434

Dihedral

NB	NC	Bond	Angle	Dihedral	
		1 5049328	8		
2		1.090156	5 5 114 51973	724	
1	3	1.090980	5 110.62893	370	175.7387864
1	3	1.0928555	5 109.26918	319	56.1917135
1	3	1.0933084	4 110.71499	981	-63.6118216
2	4	2.496223	7 105.48749	952	54.6166151
1	2	0.9792778	8 94.645473	34	-119.7317749
2	7	1.2065970	0 107.28387	764	5.0402959
2	7	1.766382	1 113.40536	503	-113.2349317

CH3CHCl2

CH3CHCl2 – HO radical TS1

	10H(0,207) 60(0,427) 80(1 7H(0,414) 3H(0,154)(0,010)) 4H(0,156)	-2329) 20(8.199) -9(1) - 8.425) 5H(8.102)			
Row	Highlight Tag X	Symbol NA Y	NB NC Z	Bond Angle D	ihedral
1	No 1 -0.0276110	C 0.2066110	0.0593180		
2	No 2 -0.0316170	C 1 -0.0434420	1.5397830	1.5014390	
3	No 3 0.9049620	H 1 -0.1052720	2 -0.4100090	1.0896014 112.2921220	
4	No 4 -0.9032840	H 1 -0.2180090	2 3 -0.4323710	1.0903501 112.1879770	127.7839306
5	No 5 0.0681180	H 2 -1.1057850	1 3 1.7641170	1.0903419 111.4010516	-61.8089081
6	No 6 -0.0138670	O 1 2.6609360	2 5 -0.2228260	2.4705273 106.1452560	-174.0140478
7	No 7 -0 1232970	H 1 1 4202400	2 6 -0.1538300	1.2359139 109.4743844	-5.0522321
8	No 8 1 3620090	Cl 2 0.7555100	1 6	1.7836693 110.6013411	-56.4022039
9	No 9	Cl 2 0.4914530	1 6	1.7741652 111.1014339	67.1773257
10	No 10 0.5374100	H 6 2.8244070	1 2 0.5700510	0.9794300 94.3868087	34.4060462

CH3CHCl2 – HO radical TS2

	ва <mark>1 (- 9, ст)</mark> 10 Зн(0, 198) 20 5н(8,	60(-8.42) PH(0.490) (-8.207) 901(-2.258 901(-2.258 136)	,		
Row	Highlight Tag X Y	Symbol NA Z	NB N	IC Bond Angle	Dihedral
1	No 1	С			
2	0.0244230 No 2	0.1069860	0.0067020	1 5052920	
2	0.0026630	-0.0214720	1.5063450	1.5052720	
3	No 3	Н 2	1	1.0914012 109.2988725	
	1.0244570	0.0241900	1.8871450		
4	No 4	H 2	1 3	1.0911716 109.3102293	-119.3826392
5	-0.4383070 No 5	-0.9813190 H 2	1.//991/0	1 0925503 110 3008634	-120 3950279
5	-0.5840990	0.7876310	1.9476260	1.0723505 110.5008054	-120.3730277
6	No 6	0 1	2 4	2.4882174 103.9378935	-53.8150454
	1.1954530	-1.9523320	-0.7543000		
7	No 7	H 1	2 6	1.2017934 107.0300721	-5.4757959
0	0.6761720	-0.8101330	-0.4157000	1 7572117 112 9495040	121 212(975
ð	INO 8 0.8441930	1 5614010	2 6	1./5/311/112.8485940	-121.21308/5
9	No 9	Cl 1	2 6	1 7649431 112 3146979	111 1022024
-	-1.5838730	-0.0510320	-0.7028320		111.1022021
10	No 10	Н б	1 2	0.9797790 96.9942978	132.2224337

CH2CICH2CI - boat

0.5538320

-2.2040040

-1.4506840

CH2CICH2CI – HO radical TS (Trans)

CH2CICHCI2

6C1	
	801
701	

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.51687	72		
3	No	3	Н	1	2		1.09014	56 108.8895	5603	
4	No	4	Н	2	1	3	1.08875	32 111.1326	6960	-64.7307969
5	No	5	Н	1	2	4	1.09009	74 110.102	1473	174.9913964
6	No	6	Cl	2	1	5	1.77821	49 107.9208	8978	-67.4655462
7	No	7	Cl	1	2	4	1.77441	98 111.356	1989	54.1250595
8	No	8	Cl	2	1	5	1.76831	08 111.7625	5514	54.9222831

CH2CICHCI2 HOradical TS1

CH2CICHCl2 HO radical TS2

CH2CICH2CI (Trans)

CH2CICH2CI (Cis)

	70 <mark>1 - e. 2</mark> 0) 10 8H(e. 1)	4H(8.1 2d)) 5H(8.1	5) 60 <mark>1 (- 0. 29</mark> (- 0. 1) 3H(0. 1) 5) .))	(l	
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.511998	36		
3	No	3	Н	2	1		1.092112	24 108.9078	8275	
4	No	4	Н	2	1	3	1.09022	77 110.8564	4046	120.1042807
5	No	5	Н	1	2	4	1.09022	76 110.8564	4070	-173.6858870
6	No	6	Cl	2	1	5	1.778100	53 112.4999	9430	-52.7826806
7	No	7	Cl	1	2	4	1.778100	56 112.4999	9585	-52.7826231
8	No	8	Н	1	2	4	1.092113	30 108.907	7971	66.2098964

CH2CICH2CI – HO radical (trans) TS1

СНЗССІЗ

		ан 10 2н	501 50 801	701						l
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	Н	1			1.09051	58		
3	No	3	Н	1	2		1.09051	57 109.5219	9404	
4	No	4	Н	1	3	2	1.09051:	59 109.5219	9461	-120.1244757
5	No	5	С	1	3	2	1.514008	80 109.4204	1475	119.9377611
6	No	6	Cl	5	1	3	1.777970	00 109.7548	8355	60.0007784
7	No	7	Cl	5	1	3	1.777970	00 109.7548	8353	-59.9992220
8	No	8	Cl	5	1	3	1.777970	00 109.7548	3355	-179.9992223

CH3CCI3 – HO radical TS

CH3Br – HO radical TS

Row	Highlight Tag	Symbol NA	NB NC	Bond Angle	Dihedral
	XY	Z		-	
1	No 1	С			
	0.0491390	-0.2921990	0.0283690		
2	No 2	Н 1		1.0862658	
	-0.0528140	0.1313230	1.0234610		
3	No 3	Н 1	2	1.0862657 114.3360206	
	0.8599350	0.1313300	-0.5574690		
4	No 4	Н 1	3 2	1.2263685 106.9266693	-118.1415359
	0.2971220	-1.4846700	0.1715370		
5	No 5	0 1	3 2	2.4731808 109.5212113	-123.3297328
	0.3447850	-2.7417060	0.1990500		
6	No 6	Н 5	1 3	0.9792476 92.3404240	-116.9364571
	-0.4896700	-2.9163670	-0.2827220		
7	No 7	Br 1	5 6	1.9207136 102.3226799	0.0000000
	-1.6093710	-0.1452210	-0.9291710		

СІЗССН2ОН

	80 50 ()) ((9.)(3) 3) 22(1. 90	4H 1 10 319) 3H) 7H 0.37 1990 10 6)	2)	
Row	Highlight	Tag	Symbol	NA	NB	NC
1	No	1	С			
2	No	2	С	1		
3	No	3	Н	1	2	
4	No	4	Н	1	2	3
5	No	5	Cl	2	1	3
6	No	6	Ο	1	2	5
7	No	7	Н	6	1	2
8	No	8	Cl	2	1	6
9	No	9	Cl	2	1	6

С	Bond	Angle	Dihedral	
	1.533586	7		
	1.091382	2 107.6846	5724	
	1.097322	5 107.1480	0734	-117.2935364
	1.773458	8 108.1316	605	61.1079515
	1.401889	4 112.8179	634	178.8680906
	0.973448	8 107.9948	3965	69.8939248
	1.781436	6 108.7367	106	-62.1988726
	1.764203	9 110.4121	851	58.1798906

CI3CCH2OH HO radical TS

	31 20 0)))))))	9)			Î)	l	
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.5274641			
3	No	3	Н	1	2		1.0919652	109.6846	873	
4	No	4	0	1	2	3	2.4733662	106.38432	271	-127.4725164
5	No	5	Н	4	1	2	0.9799560	101.0246	597	13.8384514
6	No	6	Н	1	2	4	1.2131248	107.10674	499	11.9549261
7	No	7	Cl	2	1	4	1.7745413	108.03592	265	-68.7275897
8	No	8	0	1	2	4	1.3791064	114.6208	846	-108.8461149
9	No	9	Н	8	1	2	0.9756838	107.8633	988	75.2486606
10	No	10	Cl	2	1	8	1.7762146	109.8199	747	-57.9027964
11	No	11	Cl	2	1	8	1.7681130	109.4694	984	62.4748744

F3CCH2OH

¢	•••••									
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5058334	1		
3	No	3	Н	1	2		1.0968709	9 107.2564	4124	
4	No	4	Н	1	2	3	1.0968711	107.2563	3894	-116.8412035
5	No	5	0	1	2	4	1.4126789	9 107.0150	0114	-121.5794106
6	No	6	Н	5	1	2	0.9707617	7 107.8345	5825	179.9981277
7	No	7	F	2	1	5	1.3449296	5 111.8863	3841	-60.6537225
8	No	8	F	2	1	5	1.3544677	7 109.2676	5077	180.0000000
9	No	9	F	2	1	5	1.3449298	3 111.8864	4193	60.6534961

F3CCH2OH HO radical TS

1	110	1	C					
2	No	2	С	1			1.5023487	
3	No	3	Η	1	2		1.0964099 110.5900838	
4	No	4	0	1	2	3	2.4807611 102.5931580	-123.0019222
5	No	5	Η	4	1	2	0.9799622 89.8680009	-44.7171935
6	No	6	Η	1	2	4	1.2149770 104.8162542	9.7324067
7	No	7	0	1	2	4	1.3888087 108.5494433	-109.2649915
8	No	8	Н	7	1	2	0.9723831 108.2406961	176.5180444
9	No	9	F	2	1	7	1.3512365 110.9783731	-61.6406116
10	No	10	F	2	1	7	1.3478948 109.7329275	179.1577485
11	No	11	F	2	1	7	1 3442371 112 1101086	58 91 39403

F3CCHCl2

Row	Highlight	Tag	Symbol	NA	NB
1	No	1	С		
2	No	2	С	1	
3	No	3	Н	1	2
4	No	4	F	2	1
5	No	5	F	2	1
6	No	6	F	2	1
7	No	7	Cl	1	2
8	No	8	Cl	1	2

Symbol	NA	NB	NC	Bond	Angle	Dihedral	
C							
С	1			1.5250954	1		
Н	1	2		1.0895117	7 107.69241	175	
F	2	1	3	1.3443289	9 109.65233	384	-59.1598382
F	2	1	3	1.3370348	3 112.26149	980	180.0000000
F	2	1	3	1.3443289	9 109.65233	384	59.1598382
Cl	1	2	5	1.7611848	8 109.93444	492	62.0994997
Cl	1	2	5	1.7611848	8 109.93444	492	-62.0994997

F3CCHCl2 HO radical

	2000 2000 2000 2000 2000 2000 2000 200	2 (1) 2 2) ,							
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.52197	14		
3	No	3	0	1	2		2.46558	09 98.51857	758	
4	No	4	Н	3	1	2	0.98033	78 94.61289	922	51.2303835
5	No	5	Н	1	2	3	1.222673	38 104.9388	3942	-3.1462954
6	No	6	F	2	1	3	1.35000	87 109.2216	5145	-54.0426387
7	No	7	F	2	1	3	1.33875	58 112.0096	5053	-174.0350790
8	No	8	F	2	1	3	1.33824	58 110.4495	5563	64.6615850
9	No	9	Cl	1	2	3	1.73861	92 111.7182	2616	-118.3596625
10	No	10	Cl	1	2	3	1.74251	30 111.2483	3853	112.8510728

APPENDIX F: OPTIMIZED MOLECULAR STRUCTURES FOR

IONIZED COMPOUNDS

All molecular and radical structures were optimized at B3LYP/6-31G(d) with the SMD solvation model.

H0•

vacuo Row 1 2	Highlight No No	Tag 1 2	Symbol O H	NA 1	NB	NC	Bond 0.9762090	Angle	Dihedral
Water Row 1 2	Highlight No No	Tag 1 2	Symbol O H	NA 1	NB	NC	Bond 0.9773250	Angle	Dihedral

H2O

vacuo Row	Highlight No	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral
2	No	2	Н	1			0.9618832		
3	No	3	Н	1	2		0.9618832	2 103.72616	588
Water									
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral
1	No	1	0						
2	No	2	Н	1			0.9640429)	
4	No	3	н	1	2		0.9640429	102.91777	762

НСОО-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	0	1			1.2550634	Ļ		
3	No	3	0	1	2		1.2550634	128.17532	288	
4	No	4	Н	1	2	3	1.1242020	115.91233	56	180.0000000

Complex with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	0	1			1.2585671			
3	No	3	0	1	2		1.2426905	129.39069	941	
4	No	4	Н	1	3	2	1.1386801	116.32828	390	-179.9919976
5	No	5	0	2	1	3	2.6949660	80.919319	96	-179.9988671
6	No	6	Н	5	2	1	0.9923476	18.326070)7	-179.9635181

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	0	1			1.25813	65		
3	No	3	0	1	2		1.24278	58 129.4619	9970	
4	No	4	Н	1	3	2	1.13894	83 116.296	5404	-179.9922118
5	No	5	0	2	1	3	2.69863	88 80.73982	273	-179.9466891
6	No	6	Н	5	2	1	0.99199	89 18.2605	580	179.9948910

СНЗСОО-

Vacuo										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5775575			
3	No	3	0	2	1		1.2509454	114.9722	656	
4	No	4	0	2	1	3	1.2509454	114.9722	656	178.4757704
5	No	5	Н	1	2	3	1.0999228	109.4005	594	-89.2378852
6	No	6	Н	1	2	3	1.0968652	111.4835	090	152.3856557
7	No	7	Н	1	2	3	1.0968652	111.4835	090	29.1385738
water										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.5381280			
3	No	3	0	2	1		1.2615947	117.0329	928	
4	No	4	0	2	1	3	1.2615947	117.0329	928	178.4478910
5	No	5	Н	1	2	3	1.0971857	108.9690	579	-89.2239455
6	No	6	Н	1	2	3	1.0936022	111.4545	713	152.2491371
7	No	7	Н	1	2	3	1.0936022	111.4545	713	29.3029719

TS with HO radical

Vacuo										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.5510952			
3	No	3	0	2	1		1.2502555	112.31894	23	
4	No	4	0	2	1	3	1.2519399	118.23344	46	-179.9977424
5	No	5	Н	1	2	3	1.0958753	112.17460	29	-61.5417468
6	No	6	Н	1	2	3	1.2208910	107.70310	99	-179.9680425
7	No	7	Н	1	2	3	1.0958783	112.17503	26	61.6120591
8	No	8	0	1	2	3	2.5207054	96.306336	7	-179.9819007
9	No	9	Н	8	1	2	0.9849539	75.048129	0	-0.0123990
Water										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					8		
2	No	2	Č	1			1.5280346			
3	No	3	0	2	1		1.2559018	114.50456	09	
4	No	4	Õ	2	1	3	1.2611523	119.00896	65	179.7328949
5	No	5	H	1	2	3	1.0937174	112,41585	99	-67 2522530
6	No	6	Н	1	2	3	1.2086949	108.13791	06	175.6565575
7	No	7	Н	1	2	3	1.0934116	112.62421	46	58.0953272
8	No	8	0	1	2	3	2.5126693	95,701802	4	176.8238598
			-							/ /

Complex with HO radical

C-centered radical

Vacuo Row 1	Highlight No	Tag	Symbol C	NA	NB	NC	Bond	Angle	Dihedral	
2	No	2	Н	1			1.0902437	,		
3	No	3	Н	1	2		1.0902437	117.94874	11	
4	No	4	С	1	2	3	1.5050900	121.02562	.92	179.9918772
5	No	5	0	4	1	2	1.2598142	115.31713	01	-179.9969839
6	No	6	0	4	1	5	1.2598142	115.31713	01	-179.9976589
Water										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	Η	1			1.0856116			
3	No	3	Н	1	2		1.0856116	118.63379	14	
4	No	4	С	1	2	3	1.4764340	120.68310	37	179.9873162
5	No	5	0	4	1	2	1.2697253	117.17733	22	-179.9825063
6	No	6	0	4	1	5	1.2697253	117.17733	22	179.9779574

СНЗСН2СОО-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.5360833	3		
3	No	3	С	2	1		1.5404047	7 110.27106	645	
4	No	4	0	3	2	1	1.2624316	5117.12953	27	88.8554160
5	No	5	0	3	2	1	1.2624316	5117.12953	27	-88.8554160
6	No	6	Н	1	2	3	1.0946555	5 111.60183	22	180.0000000
7	No	7	Н	1	2	3	1.0955269	9 110.71007	'80	59.7675066
8	No	8	Н	1	2	3	1.0955269	0 110.71007	/80	-59.7675066
9	No	9	Н	2	1	3	1.0951392	2 109.63384	37	-120.6538505
10	No	10	Н	2	1	3	1.0951392	2 109.63384	37	120.6538505

TS1 with HO radical

Row Ingingin Tag Symbol NA NB NC Bold Ange Directal 1 No 1 C 1 1.5166227 1 1.5166227 3 No 3 C 2 1 1.5437957 115.4912876 1 4 No 4 O 3 2 1 1.2528578 117.5361363 135.74752 5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.0935773 113.4921807 177.12622 8 No 8 H 1 2 3 1.0935773 113.4921807 54.34962	
1 No 1 C 2 No 2 C 1 1.5166227 3 No 3 C 2 1 1.5437957 115.4912876 4 No 4 O 3 2 1 1.2528578 117.5361363 135.74752 5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.36932 8 No 8 H 1 2 3 1.204353 109.1054363 62.36932	
2 No 2 C 1 1.5166227 3 No 3 C 2 1 1.5437957 115.4912876 4 No 4 O 3 2 1 1.2528578 117.5361363 135.74752 5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 7 H 1 2 3 1.0935771 114.1845714 54.34963	
3 No 3 C 2 1 1.5437957 115.4912876 4 No 4 O 3 2 1 1.2528578 117.5361363 135.74752 5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 7 H 1 2 3 1.0935773 114.1245714 54.34962	
4 No 4 O 3 2 1 1.2528578 117.5361363 135.74752 5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 8 H 1 2 3 1.093271 114.1245714 54.34962	
5 No 5 O 3 2 1 1.2710693 117.6775527 -45.70725 6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 8 H 1 2 3 1.2104353 109.1054363 62.369322	64
6 No 6 H 1 2 3 1.0935773 113.4921807 177.12622 7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 8 H 1 2 3 1.204353 109.1054363 62.369322	06
7 No 7 H 1 2 3 1.2104353 109.1054363 62.369322 8 No 8 H 1 2 3 1.0032071 114.1845714 54.34063	19
9 No 9 H 1 2 2 1 0022071 114 1945714 54 24062	5
o 110 o 11 1 2 5 1.09559/1114.1645/14 -54.54905	37
9 No 9 H 2 1 3 1.0979495 109.2974250 -121.4964	796
10 No 10 H 2 1 3 1.0963933 109.5286654 122.13850	09
11 No 11 O 1 2 3 2.5177083 99.7147303 57.522294	5
12 No 12 H 11 1 2 0.9969321 80.0397309 -35.05540	35

TS2 with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.51836	87		
3	No	3	С	2	1		1.53891	44 116.6666	5720	
4	No	4	0	3	2	1	1.26593	45 117.6140)437	146.2870691
5	No	5	0	3	2	1	1.25397	46 116.4140	0641	-35.2114387
6	No	6	Н	1	2	3	1.09421	75 111.2638	3770	-177.9587991
7	No	7	Н	1	2	3	1.09559	04 110.0060	0705	62.6634576
8	No	8	Н	1	2	3	1.09464	98 111.6212	2624	-56.7811035
9	No	9	Н	2	1	3	1.09698	45 111.7672	2112	-126.6358661
10	No	10	Н	2	1	3	1.18742	17 109.5940	0514	119.5865156
11	No	11	О	2	1	3	2.54152	35 122.1513	3552	113.1554881
12	No	12	Н	11	2	1	0.98749	17 74.43117	783	-136.9934852

НООССН2СОО-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					-		
2	No	2	Н	1			1.09191	31		
3	No	3	Н	1	2		1.09282	34 108.7089	9955	
4	No	4	Ο	1	2	3	2.38667	26 92.43390	024	94.1299402
5	No	5	Ο	1	4	2	2.41605	56 134.5920	6824	-88.6907370
6	No	6	С	5	1	4	1.21574	87 30.24053	367	-114.3507801
7	No	7	С	4	1	6	1.25209	42 36.33960	028	3.0793609
8	No	8	0	6	5	1	1.35136	26 121.944	1766	178.5147668
9	No	9	Н	8	6	5	0.97146	22 107.6302	2017	-1.7269216
10	No	10	0	7	4	1	1.25601	80 127 6934	4860	-179.8467560

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	Н	1			1.0924433	5		
3	No	3	Н	1	2		1.1598393	106.91728	307	
4	No	4	0	1	2	3	2.6056028	3 107.10333	97	-11.6708063
5	No	5	Н	4	1	2	0.9736023	88.520956	57	-142.2121043
6	No	6	0	1	4	5	2.3951069	96.403320)1	112.9720186
7	No	7	0	1	6	4	2.4132763	143.41342	275	149.0217665
8	No	8	С	7	1	6	1.2135524	30.365558	86	-92.8287395
9	No	9	С	6	1	8	1.2470365	35.263877	7	-28.2978764
10	No	10	0	8	7	1	1.3489363	122.53147	79	179.3556370
11	No	11	Н	10	8	7	0.9716740	0 108.06037	92	-0.7090864
12	No	12	0	9	6	1	1.2565433	128.35377	88	-178.2602802

-OOC(CH2)2COO-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					e		
2	No	2	С	1			1.54253	11		
3	No	3	0	2	1		1.26278	67 117.6455	5338	
4	No	4	0	2	1	3	1.26221	01 117.0252	2997	-178.6035986
5	No	5	Н	1	2	4	1.09520	41 108.7235	5034	19.9613289
6	No	6	Н	1	2	4	1.09789	28 107.3670	0860	-94.4287553
7	No	7	С	1	2	4	1.52819	05 114.6586	5359	144.9565202
8	No	8	Н	7	1	2	1.09792	07 108.5378	3356	50.1312946
9	No	9	Н	7	1	2	1.09616	68 110.8698	3372	-65.4150279
10	No	10	С	7	1	2	1.54279	15 115.9885	5491	170.7340996
11	No	11	0	10	7	1	1.26268	56 116.2697	7926	157.9210145
12	No	12	0	10	7	1	1.26199	49 118 2483	3009	-23.7391386

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.53547	65		
3	No	3	0	2	1		1.25593	43 115.244	7347	
4	No	4	Ο	2	1	3	1.26502	51 118.676	8659	178.9744781
5	No	5	Н	1	2	3	1.17564	62 106.866	4621	168.2561618
6	No	6	Н	1	2	3	1.09436	40 111.153	8695	53.6392821
7	No	7	Ο	1	2	3	2.56657	61 93.6729	949	173.5863438
8	No	8	Н	7	1	2	0.98739	67 73.6645	127	5.7890455
9	No	9	С	1	2	3	1.52102	62 113.717	6105	-72.1890023
10	No	10	Н	9	1	2	1.09987	48 108.109	3495	57.7285740
11	No	11	Н	9	1	2	1.09452	51 110.675	9695	-58.8970925
12	No	12	С	9	1	2	1.54658	68 114.493	8551	176.7422645
13	No	13	0	12	9	1	1.25963	36 116.657	9626	144.0981760
14	No	14	0	12	9	1	1.26022	05 117.140	7214	-37.4032980

СНЗСОСОО-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	0	1			1.25496	75		
3	No	3	С	1	2		1.56592	40 115.6765	5700	
4	No	4	0	3	1	2	1.21828	62 120.2943	3832	179.8498092
5	No	5	С	3	1	2	1.50535	58 117.1659	9645	-0.1475589
6	No	6	Н	5	3	1	1.09498	08 109.675	5998	-58.1420397
7	No	7	Н	5	3	1	1.09155	51 110.851	5249	-179.9706614
8	No	8	Н	5	3	1	1.095013	32 109.6594	4646	58.2217870
9	No	9	0	1	2	3	1.25181	51 128.391	1953	179.9850526

TS1 with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	0	1			1.26261	59		
3	No	3	С	1	2		1.55944	37 115.9143	3612	
4	No	4	0	3	1	2	1.21890	10 120.408	1934	-151.8839381
5	No	5	С	3	1	2	1.49516	65 117.8420	5138	27.4028054
6	No	6	0	1	2	3	1.24491	16 127.8979	9246	-179.2176411
7	No	7	Н	5	3	1	1.19999	98 106.5918	8585	-66.7387385
8	No	8	Н	5	3	1	1.09143	60 113.036	5364	176.9251190
9	No	9	Н	5	3	1	1.09184	15 113.1049	9464	46.8571471
10	No	10	0	5	3	1	2.52219	40 101.314	1202	-55.5891304
11	1 No	11	Н	10	5	3	0.99059	59 79.2984	677	42.5171028

TS2 with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	0	1			1.2525088	3		
3	No	3	С	1	2		1.5737290) 115.13314	492	
4	No	4	0	3	1	2	1.2165636	5 120.7245	743	-179.8080359
5	No	5	С	3	1	2	1.4978901	116.1862	529	0.1873813
6	No	6	0	1	2	3	1.2471084	129.4615	356	-179.9908581
7	No	7	Н	5	3	1	1.0931580) 112.7548	152	-62.7626332
8	No	8	Н	5	3	1	1.218547	106.7306	339	-179.9484629
9	No	9	Н	5	3	1	1.0931799	9 112.7585	742	62.8596704
10	No	10	0	5	3	1	2.5130241	97.43889	51	-179.9367400
11	No	11	Н	10	5	3	0.9755587	7 84.96305	77	-0.0329154

TS3 with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	0	1			1.2537626	, ,		
3	No	3	С	1	2		1.5627193	114.44224	175	
4	No	4	0	3	1	2	1.2161745	5 121.12353	865	156.9921080
5	No	5	С	3	1	2	1.5013119	116.85547	745	-21.5094253
6	No	6	Н	5	3	1	1.0907082	2 111.99554	152	-172.8853233
7	No	7	Н	5	3	1	1.1605194	107.16174	155	68.0693831
8	No	8	Н	5	3	1	1.0926504	112.24861	85	-45.8874473
9	No	9	0	1	2	3	1.2485253	129.38952	235	178.7962420
10	No	10	0	5	3	1	2.5937781	119.93321	47	74.0447129
11	No	11	Н	10	5	3	0.9733447	91.162581	1	94.9216081

CH2ClCOO-

Vacuo										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ć					U		
2	No	2	С	1			1.5752444			
3	No	3	0	2	1		1.2344772	119.87375	514	
4	No	4	0	2	1	3	1.2515686	107.52446	686	179.9731942
5	No	5	Cl	1	2	3	1.8603508	117.82932	234	0.0719315
6	No	6	Н	1	2	3	1.0902969	110.15838	398	-119.8222031
7	No	7	Н	1	2	3	1.0902376	110.1740	153	119.9949164
XX 7 4										
water	*** * * * * *	Ŧ	a		100	210	D			
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5481317			
3	No	3	0	2	1		1.2556149	116.15963	306	
4	No	4	0	2	1	3	1.2556149	116.15963	306	-179.9175053
5	No	5	Н	1	2	3	1.0886566	112.14312	210	-153.0209849
6	No	6	Cl	1	2	3	1.8303334	109.40455	555	89.9587527
7	No	7	Н	1	2	3	1.0886566	112.14312	210	-27.0615098

Complex with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.541448	1		
3	No	3	0	2	1		1.271313	2 112.2881	324	
4	No	4	0	2	1	3	1.239995	9 121.2039	058	179.2547634
5	No	5	Н	1	2	4	1.088950	5 110.2480	0352	-125.4327657
6	No	6	Н	1	2	4	1.090450	9 109.5615	5779	115.0135448
7	No	7	0	3	2	1	2.644364	4 119.5129	0659	-8.5129590
8	No	8	Н	7	3	2	1.011931	4 0.961063	3 73.92836	06
9	No	9	Cl	1	2	4	1.815250	1 115.0492	2819	-4.8096037

TS with HO radical

Vacuo

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.6091372	2		
3	No	3	0	2	1		1.2426074	108.59314	164	
4	No	4	0	2	1	3	1.2302228	3 116.74387	707	-179.9388399
5	No	5	Н	1	2	4	1.1502500	108.88090)57	-90.9488159
6	No	6	Н	1	2	4	1.0888002	111.2215	127	148.9694571
7	No	7	0	1	2	4	2.6137537	125.41402	268	-93.2061725
8	No	8	Н	7	1	2	0.9693297	84.198478	33	129.1460848
9	No	9	Cl	1	2	4	1.8262714	115.33024	438	28.1335865

Water

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.5490139			
3	No	3	0	2	1		1.2609953	112.68464	106	
4	No	4	0	2	1	3	1.2431340	118.83232	252	178.0069770
5	No	5	Н	1	2	4	1.1879932	105.75927	796	-139.7647843
6	No	6	Н	1	2	4	1.0910173	112.00418	311	105.4224276
7	No	7	0	1	2	4	2.5049616	95.291083	34	-151.1827970
8	No	8	Н	7	1	2	0.9830256	76.472338	33	-20.7009990
9	No	9	Cl	1	2	4	1.7853926	117.13387	791	-20.3040185

C-centered radical

2	No	2	С	1			1.5400000			
3	No	3	0	2	1		1.2583997	120.0000	0084	
4	No	4	0	2	1	3	1.2583997	120.0000	0084	180.0000000
5	No	5	Cl	1	2	3	1.7600003	119.9999	953	-90.0000000
6	No	6	Н	1	2	3	1.0699998	120.0000	049	90.0000000
Water										
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
Row 1	Highlight No	Tag 1	Symbol C	NA	NB	NC	Bond	Angle	Dihedral	
Row 1 2	Highlight No No	Tag 1 2	Symbol C H	NA 1	NB	NC	Bond 1.0826116	Angle	Dihedral	
Row 1 2 3	Highlight No No No	Tag 1 2 3	Symbol C H C	NA 1 1	NB 2	NC	Bond 1.0826116 1.4843939	Angle 123.1430	Dihedral	
Row 1 2 3 4	Highlight No No No No	Tag 1 2 3 4	Symbol C H C O	NA 1 1 3	NB 2 1	NC 2	Bond 1.0826116 1.4843939 1.2665587	Angle 123.1430 113.1923	Dihedral 0277 0429	-0.0147631
Row 1 2 3 4 5	Highlight No No No No	Tag 1 2 3 4 5	Symbol C H C O O	NA 1 1 3 3	NB 2 1 1	NC 2 4	Bond 1.0826116 1.4843939 1.2665587 1.2578403	Angle 123.1430 113.1923 119.3869	Dihedral 0277 0429 0355	-0.0147631 -179.9926978

CHCl2COO-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.56564	71		
3	No	3	0	2	1		1.244813	35 117.6529	9044	
4	No	4	0	2	1	3	1.25128	78 112.613	5584	-178.8254779
5	No	5	Н	1	2	3	1.085134	45 112.020	1207	-162.0688165
6	No	6	Cl	1	2	3	1.803389	94 113.1960	0861	-41.4406990
7	No	7	Cl	1	2	3	1.81500	36 108 670	3341	81.0815042

CF2HCOO-

	5H	75								
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.5517666	5		
3	No	3	0	2	1		1.2516483	115.44570)44	
4	No	4	0	2	1	3	1.2516483	115.44570)44	-177.2798390
5	No	5	Н	1	2	3	1.0971657	111.56410	572	88.6399195
6	No	6	F	1	2	3	1.3652214	111.03854	490	-150.7604380
7	No	7	F	1	2	3	1.3652214	111.03854	490	-31.9597230

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					-		
2	No	2	С	1			1.570366	53		
3	No	3	0	2	1		1.243420	08 114.7702	2453	
4	No	4	0	2	1	3	1.252296	58 115.0198	3139	178.7012624
5	No	5	Н	1	2	3	1.174233	89 108.453	1101	161.8686820
6	No	6	0	1	2	3	2.562756	52 95.73943	320	167.5393038
7	No	7	Н	6	1	2	0.982691	7 76.82312	207	9.2856247
8	No	8	F	1	2	3	1.351502	27 110.4803	3389	-79.3868168
9	No	9	F	1	2	3	1.345796	51 112 422	5468	40.7829840

Complex with HO radical

Row 1	Highlight No	Tag 1	Symbol C	NA	NB	NC	Bond	Angle	Dihedral	
2	No	2	С	1			1.5500215	5		
3	No	3	0	2	1		1.2427695	5117.06211	10	
4	No	4	0	2	1	3	1.2624901	115.10103	379	-177.5279988
5	No	5	Н	1	2	3	1.0964875	111.55365	537	99.3519928
6	No	6	0	4	2	1	2.6708772	2 127.71718	388	-5.3657013
7	No	7	Н	6	4	2	1.0052466	4.7642940	9.432134	4
8	No	8	F	1	2	3	1.3662393	110.40911	53	-140.3601527
9	No	9	F	1	2	3	1.3602113	111.11249	934	-21.8150262

CHBr2COO-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.5628049)		
3	No	3	0	2	1		1.2429244	118.14887	796	
4	No	4	0	2	1	3	1.2540700) 112.30452	276	179.9432597
5	No	5	Н	1	2	3	1.0846822	2 112.08505	574	177.0543878
6	No	6	Br	1	2	3	1.9710809	0 110.87984	414	-65.3459698
7	No	7	Br	1	2	3	1.9697655	5 111.54092	224	58.9131591

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.57369	65		
3	No	3	0	2	1		1.23810	14 116.708	4030	
4	No	4	0	2	1	3	1.25493	33 113.584	8866	-179.2272607
5	No	5	Н	1	2	3	1.15508	23 109.639	1434	-170.8637617
6	No	6	О	1	2	3	2.55931	56 95.9405	052	-172.9842796
7	No	7	Н	6	1	2	0.98536	82 76.7475	184	-5.4706171
8	No	8	Br	1	2	3	1.94648	28 113.576	8894	-53.6356266
9	No	9	Br	1	2	3	1.95083	18 110.9002	2174	74.0198459

Complex with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5573584			
3	No	3	0	2	1		1.2355314	119.20346	666	
4	No	4	0	2	1	3	1.2653863	112.85720)86	179.1001393
5	No	5	Н	1	2	3	1.0844485	112.34272	260	160.1417410
6	No	6	0	4	2	1	2.6544761	120.73986	595	2.2710869
7	No	7	Н	6	4	2	1.0086689	1.2625004	-170.1657	539
8	No	8	Br	1	2	3	1.9728431	108.38715	53	-84.4551998
9	No	9	Br	1	2	3	1.9563724	113.38148	380	39.6135639

Cl3CC00-

3 4 5 6 7	No No No No	3 4 5 6 7	0 0 Cl Cl Cl	2 2 1 1 1	1 1 2 2 2	3 3 3 3	1.2395986 1.2395986 1.7965239 1.7965239 1.8130073	5 114.27810 5 114.27810 9 112.4923: 9 112.4923: 9 106.5479	014 014 515 515 112	177.5697398 152.4544617 29.9757985 -88.7848699
TS with	h HO radi	ical								
	61	•								
		_								
		<u> </u>								
			acı							
		20-0								
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5951577	7		
3	No	3	0	2	1		1.2383651	113.7955	073	
4	No	4	0	2	1	3	1.2384431	113.83902	222	-179.9905400
5	No	5	0	1	2	3	4.1484445	5 98.694574	49	87.8847622
6	No	6	Н	5	1	2	0.9703815	96.88687	90	-75.3987414
7	No	7	Cl	1	2	3	1.7422407	116.9932	103	-21.5463998
8	No	8	Cl	5	1	2	1.9221380	3.585192	7 54.297844	42
9	No	9	Cl	1	2	3	1.7419665	5 116.9522	388	-159.2518383

Complex with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.6014530)		
3	No	3	0	2	1		1.2323167	7 116.19791	169	
4	No	4	0	2	1	3	1.2507084	113.88813	331	178.6448953
5	No	5	0	4	2	1	2.6966306	5 129.05283	315	-5.7580770
6	No	6	Н	5	4	2	0.9987912	2 1.3363413	3-38.98980	71
7	No	7	Cl	1	2	3	1.7897837	7 113.01440)83	13.2840877
8	No	8	Cl	1	2	3	1.8022551	110.73885	587	134.6891610
9	No	9	Cl	1	2	3	1.8068883	8 107.43005	566	-106.5112721

Br3CCOO-

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.6093380)		
3	No	3	0	2	1		1.2397784	114.34399	929	
4	No	4	0	2	1	3	1.2397784	114.34399	929	178.0177619
5	No	5	Br	1	2	3	1.9666868	112.72955	554	152.1996410
6	No	6	Br	1	2	3	1.9858430	106.26317	754	-89.0088809
7	No	7	Br	1	2	3	1.9666868	112.72955	554	29.7825971

TS with HO radical

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.5878183	3		
3	No	3	0	2	1		1.2407005	5 114.40026	543	
4	No	4	0	2	1	3	1.2403319	9 114.1281	171	-179.1745253
5	No	5	0	1	2	4	4.2939175	5 96.710390)8	-81.8046552
6	No	6	Н	5	1	2	0.9696590	97.254979	90	-12.5775321
7	No	7	Br	1	2	4	1.9195969	9 115.93704	431	27.0408122
8	No	8	Br	1	2	4	1.9223453	3 116.49742	291	161.6079055
9	No	9	Br	5	1	2	2.0298329	9 41 31 163	3 - 124 6074	.093

With explicit water molecules CH3COO-HO radical with H2O

0(0)	Ч(7) Н(5) Н(12)	H(9) C(1, H(8)	O(10) H(1) O(4) C(2)	0(3)					
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral
2	No	2	C	1			1 5256920)	
2	No	2	C O	2	1		1.525065) 2 115 1071	0265
1	No	1	0	2	1	3	1.251154.) 118 3684	5042
5	No		н	1	2	3	1 192718	3 107 9164	597
6	No	6	0	1	$\frac{2}{2}$	3	2 544674	7 96 26294	190
7	No	7	н	6	1	2	0.981305	1 77 4841e	544
8	No	8	Н	1	2	3	1 093944	1 111 7134	5185
9	No	9	Н	6	1	2	2.136044	5 82.75314	139
10	No	10	0	4	2	1	2.848556	7 105.265	1192

CH3COO-HO radical with 2H2O

No

No

11

12

Н

Н

11

12

4

2

2

3

0.9752104 13.1699577

1.0921768 113.5579843

10

1

-178.6133261 -157.2877667 -161.4390055 -3.2964981 87.6443150 -81.3959709

43.2533692

108.6079219

-38.6536063

13	No	13	Н	12	3	2	0.9665530 98.2562453	17.4590543
14	No	14	Н	12	3	2	0.9799526 4.4917050	-148.1018470
15	No	15	Н	1	2	3	1.0914219 113.2583334	26.1861669

CH3COO-HO radical with 3H2O

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.52296	10		
3	No	3	Ο	2	1		1.25650	91 117.245	5939	
4	No	4	0	2	1	3	1.26631	50 117.455	5116	-179.4591039
5	No	5	Н	1	2	3	1.17576	82 106.147	7464	-137.0471603
6	No	6	Н	1	2	3	1.093332	28 112.0114	4102	109.0025616
7	No	7	Ο	1	2	3	2.57070	80 92.60840	512	-139.3448038
8	No	8	Н	7	1	2	0.980832	29 78.16983	363	-21.8552554
9	No	9	Ο	4	2	1	2.792012	21 111.7940	0015	28.9246153
10	No	10	Н	9	4	2	0.96417	75 97.46204	467	-76.5188126
11	No	11	Н	9	4	2	0.97996	21 4.623424	41	114.5285949
12	No	12	0	3	2	1	2.83295	09 102.4384	4407	49.1320250
13	No	13	Н	12	3	2	0.975514	49 91.61533	362	38.9775675
14	No	14	Н	12	3	2	0.97521	89 10.21314	495	-151.0225459
15	No	15	Ο	7	1	2	2.86144	77 83.38299	979	69.3852990
16	No	16	Н	15	7	1	0.96516	89 99.1970	173	-85.4562221
17	No	17	Н	15	7	1	0.97803	79 4.77766	19	125.7554167
18	No	18	Н	1	2	3	1.08998	00 114.1759	9379	-20.1045845

Transition state 1 for CH2ClCOO-HOradical with one explicit water molecule

7	No	7	0	1	2	3	2.5653721 97.3405346	-142.7348999
8	No	8	Η	7	1	2	0.9777407 81.2305794	-12.0994126
9	No	9	Η	1	2	3	1.0905617 111.7744333	113.7182258
10	No	10	Н	7	1	2	2.2375272 80.4390501	-89.0916997
11	No	11	0	4	2	1	2.8078004 113.9790319	26.6889318
12	No	12	Н	11	4	2	0.9781067 8.8540233	113.3866772

Transition state 2 for CH2ClCOO-HOradical with one explicit water molecule

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.5458216	5		
3	No	3	0	2	1		1.2561478	3 115.57126	526	
4	No	4	0	2	1	3	1.2514596	5117.30800	85	-178.9562023
5	No	5	Cl	1	2	4	1.7898016	5 112.77469	013	116.4824970
6	No	6	Н	1	2	4	1.1884166	108.52893	609	-0.7352169
7	No	7	0	3	2	1	2.7644767	115.20682	258	-22.0508014
8	No	8	Н	7	3	2	0.9635350	100.79400)86	-85.9718912
9	No	9	Н	7	3	2	0.9813089	2.9784560)	128.9459821
10	No	10	0	1	2	4	2.5151850	95.993586	59	-2.6458366
11	No	11	Н	10	1	2	0.9836370	77.804474	2	1.7531963
12	No	12	Н	1	2	4	1.0905829	0 113.11082	242	-120.6212563

3	No	3	0	2	1		1.2493552 119.5303303	
4	No	4	0	2	1	3	1.2547724 111.6770602	176.9400648
5	No	5	Cl	1	2	3	1.7850288 117.4462625	8.1600013
6	No	6	Н	1	2	3	1.1579584 103.6678494	-109.4297928
7	No	7	0	1	2	3	2.5960454 89.3710907	-116.0678121
8	No	8	Н	7	1	2	0.9782609 79.2705642	-35.5873799
9	No	9	Н	1	2	3	1.0895021 112.9224309	135.6605467
10	No	10	0	7	1	2	2.9612695 77.2891756	61.9191818
11	No	11	Н	10	7	1	0.9716844 9.5829623	170.8963245
12	No	12	Н	10	7	1	0.9701623 93.4118652	-27.0721677

Transition state for CH2ClCOO-HOradical with 2 explicit water molecules

Transition state for CH2ClCOO-HOradical with 3 explicit water molecules

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C					-		
2	No	2	С	1			1.544902	20		
3	No	3	0	2	1		1.24397	92 120.1254	1384	
4	No	4	0	2	1	3	1.26287	56 112.3381	1453	-179.8768752
5	No	5	Cl	1	2	3	1.77982	96 117.3730	0401	-4.6037156
6	No	6	Н	1	2	3	1.15917	88 105.0775	5918	-123.6898857
7	No	7	Н	1	2	3	1.08994	56 111.8064	1441	122.0475681
8	No	8	0	1	2	3	2.58548	55 93.3665(001	-134.4981319
9	No	9	Н	8	1	2	0.97988	87 78.65986	516	-30.5491489
10	No	10	0	4	2	1	2.80806	71 114.9290	0378	26.6788105
11	No	11	Н	10	4	2	0.964382	21 97.77732	265	-71.8390731
12	No	12	Н	10	4	2	0.97831	54 4.623125	57	123.5951555
13	No	13	0	3	2	1	2.86739	37 107.4156	5771	68.5398483
14	No	14	Н	13	3	2	0.97556	88 92.51869	934	26.2400772
15	No	15	Н	13	3	2	0.97163	97 10.08477	775	-133.6542284
16	No	16	0	13	3	2	2.837112	27 87.49367	723	29.2757016
17	No	17	Н	16	13	3	0.96521	52 92.11139	935	54.9109796
18	No	18	Н	16	13	3	0.97757	03 107.2860	0361	-49.5519409

0(9) H(10)	1(3) (4) (2) (2) (2) (3)	H(7) C(1) C(1)	0.6) 13) CI	(11)						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No	2	С	1			1.5778446			
3	No	3	0	2	1		1.2368740	115.7229	793	
4	No	4	0	2	1	3	1.2559985	114.3480	667	179.7971522
5	No	5	Н	1	2	3	1.1532287	109.0948	716	179.0356074
6	No	6	0	1	2	3	2.5871818	96.30544	93	-179.1674712
7	No	7	Н	6	1	2	0.9843426	77.71449	33	8.6117623
8	No	8	Н	6	1	2	2.0679367	87.11182	36	-70.6989463
9	No	9	0	6	1	2	2.9274237	81.91899	74	-61.5557399
10	No	10	Н	9	6	1	0.9688124	77.57731	02	56.7346468
11	No	11	Cl	1	2	3	1.7867251	111.48792	259	-64.3203511
12	No	12	Cl	1	2	3	1.7841096	112.0373	487	61.4215128

Transition state for CHCl2COO-HOradical with 2 explicit water molecules

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5738602			
3	No	3	0	2	1		1.2329102	117.14872	.75	
4	No	4	0	2	1	3	1.2600957	113.89651	77	-179.1689350
5	No	5	Н	1	2	3	1.1487936	110.38354	53	-142.0806251
6	No	6	0	1	2	3	2.6537247	111.29518	66	-144.5410454
7	No	7	Н	6	1	2	0.9961434	92.505317	'9	-57.3418795
8	No	8	0	4	2	1	2.7298588	125.62620	31	2.2703621
9	No	9	Н	8	4	2	0.9649886	107.15959	16	67.6322492
10	No	10	Н	8	4	2	0.9858250	4.7085723	119.94034	29
11	No	11	0	6	1	2	2.8876757	83.368488	0	24.9659891
12	No	12	Н	11	6	1	0.9728529	12.412443	5	132.5613274
13	No	13	Н	11	6	1	0.9691733	88.864928	3	-40.3722801
14	No	14	Cl	1	2	3	1.7816885	114.40838	45	-24.0154672
15	No	15	Cl	1	2	3	1.7932952	109.56698	77	101.1823870

Transition state for CHCl2COO-HOradical with 3 explicit water molecules

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.57310	13		
3	No	3	0	2	1		1.23836	05 117.3508	3589	
4	No	4	0	2	1	3	1.25547	91 113.9350	0651	179.6875104
5	No	5	Н	1	2	3	1.14893	91 109.0382	2926	-131.7298881
6	No	6	0	1	2	3	2.66112	61 107.4463	7944	-133.7474532
7	No	7	Н	6	1	2	0.99773	13 92.19193	301	-62.7147047
8	No	8	0	6	1	2	2.72268	33 83.06317	728	-57.3534654
9	No	9	Н	8	6	1	0.96498	13 106.7744	4196	-73.5501696
10	No	10	Н	8	6	1	0.98482	59 83.92385	555	29.6389243
11	No	11	0	3	2	1	2.97272	89 95.49864	465	84.1578736
12	No	12	Н	11	3	2	0.97677	90 88.90429	957	22.9532031
13	No	13	Н	11	3	2	0.96784	79 13.84672	215	-172.7558987
14	No	14	0	11	3	2	2.83991	85 83.31122	259	22.9639824
15	No	15	Н	14	11	3	0.96950	51 91.91075	575	23.1818126

16	No	16	Н	14	11	3	0.9775488	100.8903	790	-79.0176867
17	No	17	Cl	1	2	3	1.7800488	114.89154	409	-14.0969196
18	No	18	Cl	1	2	3	1.7919684	110.2009	991	111.8913762
Transitio	n state for	CHF2COO)-HOradica	al with 1 e	xplicit wate	er molecule	9			
0(9) F(10)	F(12)	0(6) T H H(5) C(1) F(11)	(7) (2) (2) (3)	(4)						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C	1			1 57472(7			
2	No N-	2	0	1	1		1.5/4/30/	112 7100	207	
3	NO	3	0	2	1	2	1.2422178	115./182	906	170 2002041
4	No	4	0	2	1	3	1.2503275	115.6354.	514	1/9.3803041
2	No	5	H	1	2	3	1.168/238	108.2939	558	1/2.93/1418
6	No	6	0	1	2	3	2.5934733	94.368439	93	170.0871065
7	No	7	Н	6	1	2	0.9855825	76.50071	11	9.9111207
8	No	8	Н	6	1	2	1.8966327	80.49138.	33	-82.5103351
9	No	9	0	6	1	2	2.8589773	76.618304	43	-81.5944698
10	No	10	Н	9	6	1	0.9637594	96.86798	76	-28.8170879
11	No	11	F	1	2	3	1.3456627	111.2090	519	-66.6942064

Transition state for CHF2COO-HOradical with 2 explicit water molecules

0(9) H(10) L L L L	F(1 C(2	5. CC	0(6) H(5) (1) H(F(14	((12) O(11) 13)						
Row	Highlight	0(3) Τaσ	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C	1 12 1	ЦЪ	110	Dona	ringie	Dinearai	
2	No	2	C	1			1.561219	98		
3	No	3	0	2	1		1.24662	75 115.717	6389	
4	No	4	0	2	1	3	1.252500)4 115.245	2876	177.6479777
5	No	5	Н	1	2	3	1.136733	84 108.789	7784	-93.4811400
6	No	6	0	1	2	3	2.737394	46 100.744	2720	-99.7541008
7	No	7	Н	6	1	2	0.995871	0 84.1434	394	-61.7353933
8	No	8	Н	6	1	2	3.01476	71 71.4629	824	-83,4016880
9	No	9	0	4	2	1	2.743333	36 110.547	3579	-40.8114210
10	No	10	H	9	4	2	0.984912	22 6.08230	42 150 1164	122
11	No	11	0	6	1	2	2,904121	9 76 2295	846	55.5933924
12	No	12	Ĥ	11	6	1	0.972800	07 8.50864	69 -141.2840	0269
13	No	13	Н	11	6	1	0.970169	06 97.5131	631	-14.6318128
14	No	14	F	1	2	3	1.348755	51 112.109	3574	26.0413859

£5. 08	F(13)	(H(5) (H(5)) (T(17)) (4) (2(2))	H(10 (14) (15)	H(12) H(13)						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					•		
2	No	2	С	1			1.5631222			
3	No	3	0	2	1		1.2414680	116.72256	508	
4	No	4	0	2	1	3	1.2576920	114.32357	709	178.3798520
5	No	5	Н	1	2	3	1.1450822	109.01167	741	-116.1533087
6	No	6	0	1	2	3	2.6943677	109.08793	312	-127.4852595
7	No	7	Н	6	1	2	0.9949167	84.265983	38	-70.4643380
8	No	8	0	4	2	1	2.7584686	117.49988	330	-4.8304468
9	No	9	Н	8	4	2	0.9651446	104.17115	535	59.3810378
10	No	10	Н	8	4	2	0.9850926	5.0996531	140.92608	389
11	No	11	0	3	2	1	2.9430135	92.052894	19	69.8290427
12	No	12	Н	11	3	2	0.9764795	86.227151	2	41.1623826
13	No	13	Н	11	3	2	0.9683257	16.387302	27	-150.9591316
14	No	14	0	6	1	2	2.8328006	83.289723	38	19.4075055
15	No	15	Н	14	6	1	0.9695544	93.301424	12	-42.5857146
16	No	16	Н	14	6	1	0.9787395	9.1832195	5 160.53830)25
17	No	17	F	1	2	3	1.3433604	112.92963	389	4.8957580
18	No	18	F	1	2	3	1.3555387	110.35983	389	125.6196862
Transitio	on state for	CHBr2CO	O-HOradi	cal with 1	explicit wa	ter molecu	ıle			
<u>,</u>	9) H(8)	2(6)			-					

Transition state for CHF2COO-HOradical with 3 explicit water molecules

0(9) H(3) H(10) H(7)	0(6)
0(4)	H(5)
C(2)	C(1) = r(11)

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5727336	5		
3	No	3	0	2	1		1.2350559	116.47398	377	
4	No	4	0	2	1	3	1.2590939	113.89047	788	179.6842941
5	No	5	Н	1	2	3	1.1475834	109.80370)50	176.3439783
6	No	6	0	1	2	3	2.5952437	96.016823	32	178.9171038
7	No	7	Н	6	1	2	0.9856147	76.824762	24	9.7324199
8	No	8	Н	6	1	2	2.0689591	89.352042	20	-68.3455155
9	No	9	0	6	1	2	2.9278877	83.946117	70	-59.3448486
10	No	10	Н	9	6	1	0.9685690	77.724376	50	54.3024822
11	No	11	Br	1	2	3	1.9433830	112.49349	915	58.9508453
12	No	12	Br	1	2	3	1.9501061	111.29993	380	-68.2490656

Transition state for CHBr2COO-HOradical with 2 explicit water molecules

Br(11)	н(14) н(14) н(5) (с((15) H(7) = 1) = ?(2) 1) = ?(2) 1) = ?(3) Br(1)	0(4) (1)	H(9)						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	C							
2	No No	2	C	1	1		1.5676855	116 9250	702	
3 4	No	3 4	0	2	1	3	1.2526917	110.8239	795 417	-178 9275149
5	No	5	H	1	2	3	1.1502382	112.7342	725	-158.8391709
6	No	6	0	1	2	3	2.6530793	113.7769	692	-160.2686938
7	No	7	Н	6	1	2	0.9952563	94.46780	75	-48.4277862
8	No	8	0	4	2	1	2.7237660	126.4701	656	16.6763389
9	No	9	H	8	4	2	0.9645526	108.1884	450	68.0574228
10	No	10	H Br	8 1	4	2	0.9850703	5.215552	0 118.70924 683	-41 1284608
12	No	12	Br	1	$\frac{2}{2}$	3	1.9443029	109 2011	230	84 8753175
13	No	13	0	6	1	2	2.8930357	82.16176	30	33.5188541
14	No	14	Н	13	6	1	0.9722288	13.97270	13	137.6925370
15	No	15	Н	13	6	1	0.9702470	87.036333	22	-39.6242768
0(4) Row	C(3) H(10) Highlight	H(14) 0(5) - H (9) Tag	(3) (3) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	15) 2) 0(11) H(7) NA	NB	NC	Bond	Angle	Dihedral	
Row 1	No	1 ag	C	NA	NB	NC	Bond	Angle	Dinedral	
2	No	2	Ĉ	1			1.5161956			
3	No	3	С	2	1		1.5419552	116.0113	458	
4	No	4	0	3	2	1	1.2484262	117.7894	069	140.5228400
5	N0 No	5 6	О Н	5 1	2	1	1.27/6584	117.7025	702 046	-41.38/5402
0 7	No	0 7	п Н	1	2	3	1 1998513	109 574/	540 643	62 6034603
		/	11	1	2	3	1.1990313	114 2015	281	52 4060600
8	No	8	Н	1	2	5	1.0/242/00	117.201 /	<u> </u>	-33.4009099
, 8 9	No No	8 9	H H	1 2	1	3	1.0980921	109.5845	201	-121.7679093
, 8 9 10	No No No	8 9 10	H H H	1 2 2	2 1 1	3 3	1.0924220 1.0980921 1.0966319	109.5845 109.3829	201 709	-121.7679093 122.1008843
, 9 10 11	No No No No	8 9 10 11	Н Н Н О	1 2 2 1	1 1 2	3 3 3	1.0924220 1.0980921 1.0966319 2.5367571	109.5845 109.3829 101.7824	201 709 641	-121.7679093 122.1008843 54.9953543
8 9 10 11 12	No No No No	8 9 10 11 12	Н Н О Н	1 2 2 1 11	2 1 1 2 1	3 3 3 2	1.0924220 1.0980921 1.0966319 2.5367571 0.9959291	109.5845 109.3829 101.7824 79.87523	201 709 641 13	-33.4069699 -121.7679093 122.1008843 54.9953543 -29.6919381
8 9 10 11 12 13	No No No No No	8 9 10 11 12 13	H H O H O	1 2 2 1 11 5	2 1 1 2 1 3	3 3 3 2 2 2	$\begin{array}{c} 1.0924220\\ 1.0980921\\ 1.0966319\\ 2.5367571\\ 0.9959291\\ 2.8523876\\ 0.0726926\end{array}$	109.5845 109.3829 101.7824 79.87523 116.1159	201 709 641 13 227	-33.4009099 -121.7679093 122.1008843 54.9953543 -29.6919381 72.3321718

Transition state1 for CH3CH2COO-HOradical with 2 explicit water molecules

0(13) H(14)	13	O(11) H(12) H(8) C(3)	Fi(1) (7) (1) H (2(2) (10)	(0) 9)						
Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5154993			
3	No	3	С	2	1		1.5401776	115.9378	143	
4	No	4	0	3	2	1	1.2463967	117.9760	965	142.1826350
5	No	5	0	3	2	1	1.2817228	117.7755	810	-39.7765113
6	No	6	Н	1	2	3	1.0934895	113.4071	773	177.8494823
7	No	7	Н	1	2	3	1.1932854	109.3636	180	62.7501031
8	No	8	Н	1	2	3	1.0923646	114.3571	952	-53.0211468
9	No	9	Н	2	1	3	1.0974344	109.1239	824	-121.0831645
10	No	10	Н	2	1	3	1.0963796	109.5674	754	122.3802148
11	No	11	0	1	2	3	2.5482114	99.99892	50	56.0806240
12	No	12	Н	11	1	2	1.0025914	78.81220	06	-36.5122571
13	No	13	0	5	3	2	2.8316905	113.9992	677	73.4832523
14	No	14	Н	13	5	3	0.9750654	11.98577	19	80.1568161
15	No	15	Н	13	5	3	0.9658696	88.95774	53	-107.1123328
16	No	16	0	11	1	2	2.8355541	88.91279	11	49.5874091
17	No	17	Н	16	11	1	0.9775986	6.492514	8 115.38235	540
18	No	18	Н	16	11	1	0.9642810	96.67446	65	-90.9545877

Transition state1 for CH3CH2COO-HOradical with 3 explicit water molecules

10	No	10	Н	2	1	3	1.0964681 109.6582576	122.2139267
11	No	11	0	1	2	3	2.5550517 99.4902912	54.6033644
12	No	12	Н	11	1	2	1.0117437 76.9629381	-40.8968101
13	No	13	0	5	3	2	2.8556698 107.0437002	82.1716198
14	No	14	Н	13	5	3	0.9738328 6.5616991 108.80	46512
15	No	15	Н	13	5	3	0.9759794 98.5634578	-122.7997255
16	No	16	0	11	1	2	2.8596009 91.3530513	43.2598946
17	No	17	Н	16	11	1	0.9751834 7.8079223 111.51	92471
18	No	18	Н	16	11	1	0.9643717 95.1242427	-88.9864337
19	No	19	Н	11	1	2	1.8251415 95.2622905	-139.8458228
20	No	20	0	11	1	2	2.7987803 93.5145566	-137.3283753
21	No	21	Н	20	11	1	0.9649038 104.5263213	152.9035296

Transition state2 for CH3CH2COO-HOradical with 1 explicit water molecule

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	Ċ					C		
2	No	2	С	1			1.5360063	;		
3	No	3	0	2	1		1.2507980	115.72363	329	
4	No	4	0	2	1	3	1.2704258	3 118.13766	642	178.2063005
5	No	5	Η	1	2	3	1.1592884	106.15588	348	162.3558136
6	No	6	0	1	2	3	2.5854317	95.348183	37	174.1470925
7	No	7	Η	6	1	2	0.9861328	3 73.675715	58	14.4119272
8	No	8	Н	1	2	3	1.0952489	110.98027	732	47.6694472
9	No	9	Η	6	1	2	2.0758527	92.097428	35	-61.2083400
10	No	10	0	4	2	1	2.8901206	6 103.89955	565	68.7445390
11	No	11	Η	10	4	2	0.9717248	8 18.636320)5	106.7567706
12	No	12	С	1	2	3	1.5228095	112.87857	766	-78.5126554
13	No	13	Н	12	1	2	1.0959715	5 110.03007	786	62.1024359
14	No	14	Н	12	1	2	1.0939352	2 111.34315	520	-178.4074633
15	No	15	Н	12	1	2	1.0944824	111.11204	10	-57.4505512

177.2192739

-114.0921613

-116.5045670

-28.7825085

8	No	8	Н	1	2	3	1.0946082 109.8635020	136.1495370
9	No	9	Н	6	1	2	2.6561801 76.1739683	-93.8656420
10	No	10	0	4	2	1	2.7465573 117.1150079	6.3198230
11	No	11	Н	10	4	2	0.9845257 2.9211698 103.74	38848
12	No	12	0	3	2	1	2.9560306 89.8769034	71.5975066
13	No	13	Н	12	3	2	0.9711740 90.7212322	5.4297266
14	No	14	Н	12	3	2	0.9714687 11.6508992	178.6363737
15	No	15	С	1	2	3	1.5175608 117.0358267	5.4799765
16	No	16	Н	15	1	2	1.0942844 110.9618346	-178.7923996
17	No	17	Н	15	1	2	1.0929000 111.0263127	-57.9909450
18	No	18	Н	15	1	2	1.0962590 110.5026579	61.7112233

Transition state2 for CH3CH2COO-HOradical with 3 explicit water molecules

Row	Highlight	Tag	Symbol	NA	NB	NC	Bond	Angle	Dihedral	
1	No	1	С							
2	No	2	С	1			1.5343462			
3	No	3	0	2	1		1.2530900	118.26023	67	
4	No	4	0	2	1	3	1.2724199	117.21176	526	179.5054190
5	No	5	Н	1	2	3	1.1462174	105.36232	284	-125.6694231
6	No	6	Н	1	2	3	1.0956659	109.04474	24	123.0547221
7	No	7	0	1	2	3	2.7094283	106.99196	60	-133.6937350
8	No	8	Н	7	1	2	0.9960068	85.243644	0	-67.6624737
9	No	9	0	4	2	1	2.6866377	118.01115	51	-1.2101089
10	No	10	Н	9	4	2	0.9648969	106.80145	570	60.7724196
11	No	11	Н	9	4	2	0.9941746	4.0884612	2 108.58220)93
12	No	12	0	3	2	1	2.9136887	92.857902	24	79.8113703
13	No	13	Н	12	3	2	0.9771523	89.877087	'6	30.2056087
14	No	14	Н	12	3	2	0.9708366	12.984552	.9	-171.5157841
15	No	15	0	7	1	2	2.8376560	83.347237	2	20.8335262
16	No	16	Н	15	7	1	0.9730415	90.546190)7	-41.7350974
17	No	17	Н	15	7	1	0.9784949	10.612070)1	146.3603513
18	No	18	С	1	2	3	1.5191149	116.72619	27	-5.4207093
19	No	19	Н	18	1	2	1.0954359	110.89043	00	63.0550075
20	No	20	Н	18	1	2	1.0943028	110.71662	208	-177.3195043
21	No	21	Н	18	1	2	1.0935090	110.80579	937	-56.8534975

APPENDIX G: DEVELOPMENT OF ADOX2TM FOR OZONE AND OZONE/HYDRPGEN PEROXIDE ADVANCED OXIDATION PROCESS SIMULATION SOFTWARE

This appendix addresses the background knowledge and software manual for Adox2TM for ozone and ozone/hydrogen peroxide process simulation software. This software enables one to simulate reaction kinetics during ozonation and ozone/hydrogen peroxide processes. This also includes several options for mitigating bromate formation.

Introduction to Bromate and THMs Formation Software during Ozonation and O_3/H_2O_2 Advanced Oxidation Process.

Ozonation has been widely used as a disinfectant to inactivate microorganisms for potable water. Ozonation was in part replaced chlorine, chloramines or chlorine dioxide at the pre-oxidation and main-oxidation stages in many cities around the world, including Los Angeles, Barcelona, Singapore, Paris, and Zurich. Because a molecular ozone is such a strong oxidant in the aqueous phase ($E^0 = 2.07$ V), ozone has shown its superior ability against inactivate microorganisms (e.g. Cryptosporidium, Giardia lamblia cysts, E. Coli, Poliovirus and Rotavirus) to chlorine, chloramines and chlorine dioxide. In addition, ozonation does not form trihalomethanes (THMs) which is regulated under the current drinking water standard. It is well-known fact that ozonation produces biodegradable dissolved organic compounds (BDOC), and therefore, it is common practice to implement ozonation along with the subsequent biological treatment (e.g. GAC and BAC). When the aqueous ozone is degraded at higher pH (>7.5), more strong oxidant (HO radical) (i.e. $E^0 = 2.59$ V (aqueous)) is produced. The HO radical is also
formed by the reactions of ozone with natural organic matter (NOM). Therefore, ozonation works as one of Advanced Oxidation Processes (AOPs) and is expected to oxidize refractor trace organic compounds. Although ozonation hardly achieves a mineralization of toxic organic compounds, it is possible to degrade organic compounds into carbon dioxide, water, and minerals when used with hydrogen peroxide (H₂O₂) and ultraviolet (UV). As a consequent, ozonation and/or ozone based AOPs (i.e. O_3/H_2O_2 , O_3/UV , $O_3/UV/H_2O_2$) are attractive and promising technologies.

When bromide ion (Br') is presented in the source waters, ozonation forms bromate ion (BrO₃⁻) which is regulated under the current drinking water standard (U.S., Japan, and WHO, <10 μ g/L). As a result, many studies have exploited the strategies to reduce formation of BrO₃⁻ kinetically (e.g. pH depression, NH₃ addition, Cl₂-NH₃ process) or remove BrO₃⁻ physically after ozonation (e.g. BAC, GAC, membrane-filtration). In engineering point of view, it would be ideal to control the formation of BrO₃⁻ kinetically without installing an additional treatment process. Designing inexpensive ozonation and/or O₃/H₂O₂ processes to control the BrO₃⁻ formation for commercial applications requires the determination of important design and operational variables. Carefully controlled laboratory and/or pilot plant studies can be used to design bromate mitigation processes. However, these studies can be time consuming and expensive if they are not properly planned. A complementary approach is taking advantage of the predictive capabilities of mathematical models that can effectively simulate the dynamics of ozonation and O₃/H₂O₂ system.

According to Peyton (1990), AOPs can be mathematically modeled at several different levels, depending on the amount of known kinetic information, computer

resources available and motivation for the application. Compared to other types of mathematical models, a kinetic model gives the most information and provides the best check of the model against actual laboratory data, because all defined or proposed reactions in the system are considered and the rate equations are written for all the main species in solution.

In the last decades, several models are developed to describe the kinetics of O_3 degrdation and O_3/H_2O_2 AOP combined with a bromate formation model. These kinetic modes were able to predict concentration of some contaminants as a function of time in different strategies of bromate mitigation. Although most of models that have been developed can be applied to laboratory scale reactors with different levels of success, their widespread application is limited for one or more of the following reasons: i) invoking pseudo-steady state assumption to simplify the governmental equations with the expense of losing accuracy and ii) constant pH though several important equilibrium reactions (e.g. OBr-/HOBr, HO_2^-/H_2O_2) significantly affect the bromate formation.

AdOxTM was developed to aid design engineers in the design of AOPs. Compared to most of the previous models, AdOxTM does not invoke the pseudo-steady-state and constant pH assumptions and thus provides a more accurate simulation of real systems. AdOxTM includes the following capabilities:

- (1) AdOxTM provides a comprehensive understanding of the impact of key design and operational variables on process performance.
- (2) AdOxTM can dynamically simulate parent organic compound destruction and O₃
 (and/or H₂O₂) consumption in both completely mixed batch reactors, completely

mixed flow reactors in series and plug flow reactors. (Steady state solutions are also provided.)

- (3) AdOxTM can analyze dye study results to determine the number of tanks that are required in the tanks in series model to simulate non-ideal mixing in the photochemical reactor.
- (4) AdOxTM includes all identified and reasonably proposed chemical reactions with regard to the degradation of parent organic compounds so it is the most comprehensive model to date.
- (5) AdOxTM can simulate the destruction of all of the target compounds whose reaction mechanism and corresponding rate constants are known.

The AdOxTM software is designed for the Microsoft WindowsTM environment with a graphical user interface (GUI) in order to maximize user-friendliness. Making use of the Microsoft Windows interface, with its built-in file and hardware control features, frees the engineer from concerns over printer drivers and other "machine" issues and allows you to give more attention to the computational algorithms. The GUI consists of a front-end shell written in Visual BasicTM that calls FORTRAN subroutines to perform the calculations.

This manual presents a description of the $AdOx^{TM}$ software capabilities including theoretical development, model descriptions and sample calculations where applicable. The manual also presents a description of the windows in the software and an example problem in order to aid the user.

References to specific commercial product, processes, or services by trademark, manufacturer, or otherwise does not necessarily constitute or imply

endorsement/recommendation by the authors or the respective organizations under which the software was developed.

Description of the Models

Ozonation and O₃/H₂O₂ Model Combined with Bromate Formation Model (Background)

An original kinetic model of bromate formation was developed by von Gunten and Hoigné (1994) using a non-linear differential equation solver, LARKIN, based on the experimental studies (Haag and Hoigné, 1983). Since then, a von Gunten's group has developed a kinetic model of bromate formation using ACUCHEM software by including different reaction mechanisms, such as bromate formation in ozone-based AOPs (von Gunten and Oliveras, 1998), bromate minimization using pH depression and NH₃ addition (Pinkernell and von Gunten, 2001), bromate control with the chlorine-ammonia process (2004). Other kinetic model combining ozone decomposition with bromate formation was developed by Westerhoff (1998; 1994).

Although most of models that have been developed can be applied to laboratory scale reactors with different levels of success, their widespread application is limited for one or more of the following reasons: i) invoking pseudo-steady state assumption to simplify the governmental equations with the expense of losing accuracy and ii) constant pH though several important equilibrium reactions (e.g. OBr-/HOBr, HO₂⁻/H₂O₂) significantly affect the bromate formation. For example, Mariñas's group has developed a software with which cryptosporidium parvum oocyst inactivation and bromate formation are simultaneously predicted (Kim et al., 2007). This software includes the hydrodynamics in each chamber of the ozone contactor and implements the steady-state

governing equations for the concentrations of dissolved ozone, fast ozone demand (i.e. a portion of water constituents that consume dissolved ozone at a relatively fast rate during the initial phase of ozonation), gas-phase ozone, viable microorganisms, and bromate. However, this software does not invoke either i) or ii).

Elementary Reactions

Table A-G1 summarizes all elementary reactions implemented in this model with

the reaction rate constants reported in the literature.

	Elementary reaction	Rate constant	References
1	$O_3 + OH^- \rightarrow HO_2 \bullet + \bullet O_2^-$	$k_1 = 70 M^{-1} s^{-1}$	Staehelin and Hoigné, 1982
2	$O_3 + \bullet O_2^- \rightarrow \bullet O_3^- + O_2$	$k_2 = 1.6 \times 10^9 M^{-1} s^{-1}$	Bühler et al., 1984
3	$HO_3 \bullet \rightarrow HO \bullet + O_2$	$k_3 = 1.1 \times 10^5 s^{-1}$	Bühler et al., 1984
4	$O_3 + HO_2^- \rightarrow HO \bullet + \bullet O_2^-$	$k_4 = 2.2 \times 10^6 M^{-1} s^{-1}$	Staehelin and Hoigné, 1982
5	$HO \bullet + HO \bullet \rightarrow H_2O_2$	$k_5 = 5.0 \times 10^9 M^{-1} s^{-1}$	Staehelin et al., 1984
6	$HO \bullet + \bullet O_2^- \rightarrow OH^- + O_2$	$k_6 = 1.0 \times 10^{10} M^{-1} s^{-1}$	Staehelin et al., 1984
7	$\mathrm{HO} \bullet + \mathrm{HO}_{3} \bullet \to \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}_{2}$	$k_7 = 5.0 \times 10^9 M^{-1} s^{-1}$	Staehelin et al., 1984
8	$HO_3 \bullet + HO_3 \bullet \rightarrow H_2O_2 + 2O_2$	$k_8 = 5.0 \times 10^9 M^{-1} s^{-1}$	Staehelin et al., 1984
9	$HO_3 \bullet + \bullet O_2^- \rightarrow OH^- + 2O_2$	$k_9 = 1.0 \times 10^{10} M^{-1} s^{-1}$	Staehelin et al., 1984
10	$O_3 + HO \bullet \rightarrow HO_2 \bullet + O_2$	$k_{10} = 2.6 \times 10^8 M^{-1} s^{-1}$	Staehelin et al., 1984
11	$\mathrm{HO} \bullet + \mathrm{H}_{2}\mathrm{O}_{2} \to \mathrm{HO}_{2} \bullet + \mathrm{H}_{2}\mathrm{O}$	$k_{11} = 2.7 \times 10^7 M^{-1} s^{-1}$	Buxton <i>et al.</i> , 1988
10			
12	$\mathrm{HO} \bullet + \mathrm{HO}_{2}^{-} \to \bullet \mathrm{O}_{2}^{-} + \mathrm{H}_{2}\mathrm{O}$	$k_{12} = 7.5 \times 10^9 M^{-1} s^{-1}$	Christensen <i>et al.</i> , 1982
13	$\mathrm{HO}_{2} \bullet + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{HO} \bullet + \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}$	$k_{13} = 3 M^{-1} s^{-1}$	Koppenol et al., 1978
14	$\bullet O_2^- + H_2O_2 \rightarrow HO_2 \bullet + O_2 + OH^-$	$k_{14} = 0.13 M^{-1} s^{-1}$	Judith et al., 1979
15	$\mathrm{HO} \bullet + \mathrm{HO}_{2} \bullet \to \mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}$	$k_{15} = 6.6 \times 10^9 M^{-1} s^{-1}$	Sehested et al., 1968
16	$HO_2 \bullet + HO_2 \bullet \rightarrow H_2O_2 + O_2$	$k_{16} = 8.3 \times 10^5 M^{-1} s^{-1}$	Bielski et al., 1985
17	$HO_2 \bullet + \bullet O_2^- \rightarrow HO_2^- + O_2$	$k_{17} = 9.7 \times 10^7 M^{-1} s^{-1}$	Bielski et al., 1985
18	$H_2O_2 + O_3 \rightarrow H_2O + O_2$	$k_{18} = 0.0065 M^{-1} s^{-1}$	Neta et al., 1988

Table A-G1: Elementary reactions

19	$HO \bullet + HCO_3^- \rightarrow CO_3 \bullet^- + H_2O$	$k_{19} = 8.5 \times 10^6 M^{-1} s^{-1}$	Buxton et al., 1988		
20	$HO \bullet + CO_3^2 \rightarrow CO_3 \bullet^- + OH^-$	$k_{20} = 3.9 \times 10^8 M^{-1} s^{-1}$	Buxton <i>et al.</i> , 1988		
21	$HO \bullet + NOM \rightarrow$	$k_{21} = 1.9 \times 10^4 (\text{mg/L})^{-1} s^{-1}$	Westerhoff et al., 2007		
22	$\operatorname{CO}_3 \bullet^- + \operatorname{CO}_3 \bullet^- \to \operatorname{CO}_2 + \operatorname{CO}_4^{2-}$	$k_{22} = 2.0 \times 10^7 M^{-1} s^{-1}$	Westerhoff et al., 1997		
23	$\operatorname{CO}_3 \bullet^- + \bullet \operatorname{O}_2^- \to \operatorname{CO}_3^{2-} + \operatorname{O}_2$	$k_{23} = 6.5 \times 10^8 M^{-1} s^{-1}$	Holcman et al., 1982		
24	$\mathrm{CO}_3 \bullet^- + \bullet \mathrm{O}_3^- \to \mathrm{CO}_3^{2-} + \mathrm{O}_3$	$k_{24} = 6.0 \times 10^7 M^{-1} s^{-1}$	Buxton and Elliot, 1986		
25	$CO_3 \bullet^- + HO \bullet \rightarrow CO_2 + HO_2^-$	$k_{25} = 3.0 \times 10^9 M^{-1} s^{-1}$	Westerhoff et al., 1997		
26	$\operatorname{CO}_3 \bullet^- + \operatorname{HO}_2^- \to \operatorname{CO}_3^{2-} + \operatorname{HO}_2 \bullet$	$k_{26} = 5.6 \times 10^7 M^{-1} s^{-1}$	Crapski et al., 1999		
27	$\mathrm{CO}_3 \bullet^- + \mathrm{H}_2\mathrm{O}_2 \rightarrow \mathrm{HCO}_3^- + \mathrm{HO}_2 \bullet$	$k_{27} = 8.0 \times 10^5 M^{-1} s^{-1}$	Crapski et al., 1999		
28	$O_3 \bullet^- + H_2 PO_4^- \rightarrow HPO_4^{2-} + HO_3 \bullet$	$k_{28} = 2.1 \times 10^8 M^{-1} s^{-1}$	Bühler et al., 1984		
29	$\mathrm{HPO}_{4}^{2-} + \mathrm{HO}_{3} \bullet \rightarrow \mathrm{O}_{3} \bullet^{-} + \mathrm{H}_{2}\mathrm{PO}_{4}^{-}$	$k_{29} = 2.0 \times 10^7 M^{-1} s^{-1}$	Bühler et al., 1984		
30	$\mathrm{HPO}_{4}^{2-} + \mathrm{HO} \bullet \to \mathrm{OH}^{-} + \mathrm{H}_{2}\mathrm{PO}_{4} \bullet^{-}$	$k_{30} = 1.5 \times 10^5 M^{-1} s^{-1}$	Maruhamuthu and Neta, 1978		
31	$H_2PO_4^- + HO \bullet \rightarrow H_2O + H_2PO_4 \bullet^-$	$k_{31} = 2.0 \times 10^4 M^{-1} s^{-1}$	Maruhamuthu and Neta, 1978		
32	$O_3 + Br^- \rightarrow OBr^- + O_2$	$k_{32} = 160 M^{-1} s^{-1}$	Sehested et al., 1984		
33	$O_3 + OBr^- \rightarrow Br^- + 2O_2$	$k_{33} = 330 M^{-1} s^{-1}$	Sehested et al., 1984		
34	$O_3 + OBr^- \rightarrow BrO_2^- + O_2$	$k_{34} = 100 M^{-1} s^{-1}$	Sehested et al., 1984		
35	$O_3 + HOBr \rightarrow BrO_2^- + O_2 + H^+$	$k_{35} = 0.013 M^{-1} s^{-1}$	Haag and Hoigné, 1983		
36	$O_3 + BrO_2^- \rightarrow BrO_3^- + O_2$	$k_{36} = 5.7 \times 10^4 M^{-1} s^{-1}$	Sehested et al., 1984		
37	$O_3 + Br \bullet \rightarrow Br O \bullet + O_2$	$k_{37} = 1.5 \times 10^8 M^{-1} s^{-1}$	von Gunten and Oliveras, 1998		
38	$HO \bullet + HOBr \rightarrow BrO \bullet + H_2O$	$k_{38} = 2.0 \times 10^9 M^{-1} s^{-1}$	Nicoson et al., 2002		
39	$HO \bullet + OBr^- \rightarrow BrO \bullet + OH^-$	$k_{39} = 4.2 \times 10^9 M^{-1} s^{-1}$	Sidgwick, 1952		
40	$BrO \bullet + BrO \bullet + H_2O \rightarrow BrO_2^- + OBr^-$	$+2 \mathrm{H}^{+} k_{40} = 5.0 \times 10^{9} M^{-1} s^{-1}$	Sidgwick, 1952		
41	$Br_3^- \rightarrow Br_2^- + Br^-$	$k_{41} = 8.3 \times 10^8 \ s^{-1}$	Mamou et al., 1977		
42	$Br_2 + Br^- \rightarrow Br_3^-$	$k_{42} = 1.0 \times 10^{10} M^{-1} s^{-1}$	Mamou et al., 1977		
43	$Br_2^{\bullet-} + Br_2^{\bullet-} \rightarrow Br_3^- + Br^-$	$k_{43} = 2.0 \times 10^9 M^{-1} s^{-1}$	Kläning and Wolff, 1985		
44	$OBr^- + Br \bullet \rightarrow BrO \bullet + Br^-$	$k_{44} = 4.1 \times 10^9 M^{-1} s^{-1}$	Nicoson et al., 2002		
45	$\text{BrO}_2^- + \text{HO} \bullet \rightarrow \text{BrO}_2 \bullet + \text{OH}^-$	$k_{45} = 1.9 \times 10^9 M^{-1} s^{-1}$	von Gunten and Oliveras, 1997		
46	$BrO_2 \bullet + BrO_2 \bullet \to Br_2O_4$	$k_{46} = 1.4 \times 10^9 M^{-1} s^{-1}$	Amichai and Treinin, 1970		

47	$Br_2O_4 \rightarrow BrO_2 \bullet + BrO_2 \bullet$	$k_{47} = 7.0 \times 10^7 s^{-1}$	Amichai and Treinin, 1970	
48	$Br_2O_4 + OH^- \rightarrow BrO_2^- + BrO_3^- + H^+$	$k_{48} = 7.0 \times 10^8 M^{-1} s^{-1}$	Sidwick, 1952	
49	$\operatorname{BrO}_2 \bullet + \operatorname{HO} \bullet \to \operatorname{BrO}_3^- + \operatorname{H}^+$	$k_{49} = 2.0 \times 10^9 M^{-1} s^{-1}$	Amichai and Treinin, 1970	
50	$BrO \bullet + BrO_2^- \rightarrow OBr^- + BrO_2 \bullet$	$k_{50} = 4.0 \times 10^8 M^{-1} s^{-1}$	Schwarz and Bielski, 1986	
51	$Br_2^{\bullet-} + BrO_2^{-} \rightarrow OBr^{-} + BrO \bullet + Br^{-}$	$k_{51} = 8.7 \times 10^7 M^{-1} s^{-1}$	Sidwick, 1952	
52	$\operatorname{Br} \bullet + \operatorname{Br}^- \to \operatorname{Br}_2^{\bullet-}$	$k_{52} = 1.0 \times 10^{10} M^{-1} s^{-1}$	Haag and Hoigné, 1983	
53	$\operatorname{Br}_2^{\bullet-} \to \operatorname{Br} \bullet + \operatorname{Br}^-$	$k_{53} = 1.0 \times 10^5 s^{-1}$	Haag and Hoigné, 1983	
54	$HO \bullet + Br^- \to BrOH^{\bullet-}$	$k_{54} = 1.1 \times 10^{10} M^{-1} s^{-1}$	Haag and Hoigné, 1983	
55	$BrOH^{\bullet-} \rightarrow HO \bullet + Br^-$	$k_{55} = 3.3 \times 10^7 M^{-1} s^{-1}$	Haag and Hoigné, 1983	
56	$OBr^- + CO_3 \bullet^- \rightarrow BrO \bullet + CO_3^{2-}$	$k_{56} = 4.3 \times 10^7 M^{-1} s^{-1}$	Sidwick, 1952	
57	$\operatorname{BrO}_2^- + \operatorname{CO}_3^- \to \operatorname{BrO}_2^- \bullet + \operatorname{CO}_3^{2-}$	$k_{57} = 1.1 \times 10^8 M^{-1} s^{-1}$	Sidwick, 1952	
58	$HOBr + H_2O_2 \rightarrow Br^- + H_2O + O_2 + H^+$	$k_{58} = 7.0 \times 10^4 M^{-1} s^{-1}$	von Gunten and Oliveras, 1997	
59	$OBr^- + H_2O_2 \rightarrow Br^- + H_2O + O_2$	$k_{59} = 1.2 \times 10^6 M^{-1} s^{-1}$	von Gunten and Oliveras, 1997	
60	$HOBr + HO_2^- \rightarrow Br^- + H_2O + O_2$	$k_{60} = 7.6 \times 10^8 M^{-1} s^{-1}$	Buxton and Dainton, 1968	
61	$HO_2 \bullet + Br_3^- \rightarrow Br_2^- + H^+ + Br^- + O_2$	$k_{61} = 10^7 M^{-1} s^{-1}$	Bielski et al., 1985	
62	$\bullet O_2^- + Br_3^- \rightarrow Br_2^- + Br^- + O_2$	$k_{62} = 3.8 \times 10^9 M^{-1} s^{-1}$	Bielski et al., 1985	
63	$BrOH^{\bullet-} + H^+ \rightarrow Br \bullet + H_2O$	$k_{63} = 4.4 \times 10^{10} M^{-1} s^{-1}$	Haag and Hoigné, 1983	
64	$HO_2 \bullet + Br_2 \rightarrow Br + Br^- + O_2 + H^+$	$k_{64} = 1.1 \times 10^8 M^{-1} s^{-1}$	Bielski et al., 1985	
65	$\bullet O_2^- + HOBr \rightarrow Br \bullet + OH^- + O_2$	$k_{65} = 3.5 \times 10^9 M^{-1} s^{-1}$	Beckwith et al., 1996	
66	$BrOH^{\bullet-} \rightarrow Br \bullet + OH^-$	$k_{66} = 4.2 \times 10^6 M^{-1} s^{-1}$	Haag and Hoigné, 1983	
67	$Br_2 + H_2O \rightarrow HOBr + H^+ + Br^-$	$k_{67} = 97 s^{-1}$	Neta et al., 1988	
68	$\mathrm{HOBr}^{+}\mathrm{H}^{+}+\mathrm{Br}^{-}\rightarrow\mathrm{Br}_{2}^{+}\mathrm{H}_{2}\mathrm{O}$	$k_{68} = 1.6 \times 10^{10} M^{-1} s^{-1}$	Neta et al., 1988	
69	$BrOH^{\bullet-} + Br^- \rightarrow Br_2^{\bullet-} + OH^-$	$k_{69} = 2.0 \times 10^8 M^{-1} s^{-1}$	Zahavi and Rabani, 1972	
70	$HOBr + NH_3 \rightarrow NH_2Br + H_2O$	$k_{70} = 7.5 \times 10^7 M^{-1} s^{-1}$	Wajon and Morris, 1982	
71	$OBr^{-} + NH_{3} \rightarrow NH_{2}Br + OH^{-}$	$k_{71} = 7.6 \times 10^4 M^{-1} s^{-1}$	Wajon and Morris, 1982	
72	$OH^{-} + NH_{2}Br \rightarrow NH_{3} + OBr^{-}$	$k_{72} = 7.5 \times 10^6 M^{-1} s^{-1}$	Pinkernell and von Gunten, 2001	
73	$2\rm{NH}_2\rm{Br} \rightarrow \rm{NHBr}_2 + \rm{NH}_3$	$k_{73} = 250 s^{-1}$	Pinkernell and von Gunten, 2001	
74	$\text{NHBr}_2 + \text{NH}_3 \rightarrow 2\text{NH}_2\text{Br}$	$k_{74} = 100 M^{-1} s^{-1}$	Pinkernell and von Gunten, 2001	
75	$HOCl + Br^{-} \rightarrow HOBr + Cl^{-}$	$k_{75} = 1550 M^{-1} s^{-1}$	Kumar and Margerum, 1987	
76	$OCl^- + Br^- \rightarrow OBr^- + Cl^-$	$k_{76} = 0.001 M^{-1} s^{-1}$	Kumar and Margerum, 1987	
77	$NH_2Br+3O_3 \rightarrow NO_3^-+Br^-+3O_2+2H^+$	$k_{77} = 40 M^{-1} s^{-1}$	Haag et al., 1984	

78	$HOCl+NH_3 \rightarrow NH_2Cl+H_2O$	$k_{78} = 4.2 \times 10^6 M^{-1} s^{-1}$	Morris and Issac, 1983
79	$\rm NH_2Cl + Br^- \rightarrow NH_2Br + Cl^-$	$k_{79} = 0.014 M^{-1} s^{-1}$	Trofe et al., 1980
80	$Br \bullet + OH^- \rightarrow BrOH^{\bullet-}$	$k_{80} = 1.3 \times 10^{10} M^{-1} s^{-1}$	Nicoson et al., 2002
81	$Br \bullet + NOM \to Br^-$	$k_{81} = 8.3 \times 10^4 M^{-1} s^{-1}$	Pinkernell and von Gunten, 2001
82	$\rm NH_2Br + NOM \rightarrow$	$k_{82} = 0.0017 M^{-1} s^{-1}$	Assumed
83	$HOCl+NOM \rightarrow$	$k_{83} = 0.0004 M^{-1} s^{-1}$	Westerhoff et al., 2004
84	$HOBr + NOM \rightarrow$	$k_{84} = 0.011 M^{-1} s^{-1}$	Westerhoff et al., 2004
85	$\text{HO} \bullet + \text{NH}_2\text{Cl} \rightarrow$	$k_{85} = 5.0 \times 10^8 M^{-1} s^{-1}$	Johnson et al., 2002
	$HO_2 \bullet \leftrightarrow O_2 \bullet^- + H^+$	$pK_a = 4.8$	Staehelin and Hoigné, 1982
	$HO_3 \bullet \leftrightarrow \bullet O_3^- + H^+$	$pK_a = 8.2$	Bühler et al., 1984
	$H_2O_2 \leftrightarrow HO_2^- + H^+$	$pK_a = 11.6$	Staehelin and Hoigné, 1982
	$H_2CO_3 \leftrightarrow HCO_3^- + H^+$	$pK_a = 6.38$	Stumm and Morgan, 1996.
	$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$	$pK_a = 10.3$	Stumm and Morgan, 1996.
	$H_3PO_4 \leftrightarrow H_2PO_4^- + H^+$	$pK_a = 2.1$	Stumm and Morgan, 1996.
	$H_2PO_4^- \leftrightarrow HPO_4^{2-} + H^+$	$pK_a = 7.2$	Stumm and Morgan, 1996.
	$\mathrm{NH_4^+} \leftrightarrow \mathrm{NH_3} + \mathrm{H^+}$	$pK_a = 9.3$	
	$HOC1 \leftrightarrow OC1^- + H^+$	$pK_a = 7.5$	
	$HOBr \leftrightarrow OBr^- + H^+$	$pK_a = 8.8$	Haag and Hoigné, 1983; von Gunten and Hoigné, 1994
86	$[TTHMs] = [Cl_2] \{A_{TTHM}(1-exp(-kt))\}$	see Equation.XX	Sohn et al., 2004

The Mechanisms of Aqueous Ozone Decomposition and O_3/H_2O_2 Process for Bromate Formation

Chemical reactions for mechanistic representation of ozone decomposition and bromate formation consist of four categories of reactions: i) reactions responsible for ozone self-decomposition and corresponding production of secondary oxidants such as HO radical, ii) O₃/H₂O₂ process as one of AOPs, iii) reactions leading to the formation of bromate from bromide, and iv) reactions involving carbonate and phosphate species. In the presence of natural organic matter (NOM), additional reactions involving NOM need to be considered in each category.

Ozone Self-Decomposition

The elementary reactions of ozone decomposition were extensively studied in 1970s and 1980s using the technique of pulse radiolysis (one group Hert & one group from Steahelin Buhler Hoigne). There are mainly two representative models to formulate the ozone decomposition, such as SBH model (Staehelin and Hoigné) and TFG model (Tomiyasu et al., 1985). The SBH model is established based on the experiments conducted in the solutions from weak acid to weak base, whereas the TFG model was from the experiments in the base solutions.

Figures A-G1 and A-G2 show the overview of SBH and TFG model. Figures include the elementary reactions used in each SBH and TFG model. In the both model, ozone initially reacts with hydroxyl ion, producing either hydroxyl peroxyl radical or hydrogen peroxide ion, respectively. Hydrogen peroxide ion is in equilibrium with super oxide anion at $pK_a = 4.8$. In the solutions from neutral to base, the superoxide anion is dominant, which produces an ozonide radical in both the SBH and the TFG model. The ozonide radical further produces HO radical. In the SBH model, an O₃OH radical is produced by the reaction of ozone with hydroxyl radical. The O₃OH radical reacts with hydroxyl proxyl radical, reproducing ozone. In the TFG model, the ozonide radical reacts with hydroxyl radical, reproducing ozone. In both the SBH and the TFG model, as a total, three moles of ozone produce two moles of hydroxyl radical through the radical chain reactions ($3O_3 + OH + H^+ \rightarrow 2HO + 4O_2$).

	0.	$O_3 + OH^- \rightarrow HO_2 \cdot + \cdot O_2^-$	70	k_{I}	Staehelin and Hoigné, 1982
_ L	OH-	$HO_2 \cdot \leftrightarrow \cdot O_2 + H^+$	$pK_a = 4.8$		Staehelin and Hoigné, 1982
	$HO_{2} \stackrel{\bullet}{\rightarrow} HO_{2} \stackrel{\bullet}{\rightarrow} HO_{$	$HO_2 + O_3 \rightarrow HO + O_2 + O_2$	2.2×10^{6}	k_2	Staehelin and Hoigné, 1982
		$O_3 + \cdot O_2 \rightarrow \cdot O_3 + O_2$	1.6×10 ⁹	k 3	Bühler et al., 1984
		$\cdot O_3 + H^+ \leftrightarrow HO_3 \cdot$	$pK_a = 8.2$		Bühler et al., 1984
		$HO_3 \cdot \rightarrow HO \cdot + O_2$	1.1×10 ⁵	k_{4}	Bühler et al., 1984
		$ {\boldsymbol{\cdot}} ~ \mathrm{OH} + \mathrm{O}_3 {\rightarrow} \mathrm{O}_3 \mathrm{OH} ~ {\boldsymbol{\cdot}} \\$	2.0×10 ⁹	k 5	Staehelin et al., 1984
Ιr		$ \bullet \operatorname{OH} + \ \bullet \operatorname{OH} \to \operatorname{H}_2\operatorname{O}_2 $	5.0×10 ⁹	k 6	Staehelin et al., 1984
١٨		$ \bullet \operatorname{OH} + \ \bullet \operatorname{O_2}^* \to \operatorname{OH}^* + \operatorname{O_2} $	1×10^{10}	k 7	Staehelin et al., 1984
		$ {\boldsymbol{\cdot}} \operatorname{OH} + \operatorname{HO}_3 {\boldsymbol{\cdot}} \ {\boldsymbol{\rightarrow}} \operatorname{H}_2\operatorname{O}_2 + \operatorname{O}_2 $	5.0×10 ⁹	k_8	Staehelin et al., 1984
		$\mathrm{HO}_3 \ \cdot \ + \ \mathrm{HO}_3 \ \cdot \ \rightarrow \mathrm{H}_2\mathrm{O}_2 + 2\mathrm{O}_2$	5.0×10 ⁹	k_g	Staehelin et al., 1984
•0,-	$O_3 + O_2 + H_2O$ O_3OH O_3OH $O_3 + O_2 + H_2O$ HO_2	$HO_3 \cdot + \cdot O_2 \rightarrow OH^2 + 2O_2$	1×10^{10}	k 10	Staehelin et al., 1984
~ 3		$O_3OH \cdot \rightarrow HO_2 \cdot + O_2$	2.8×10^{4}	k 11	Staehelin et al., 1984
п+		$\mathrm{O_3OH} \boldsymbol{\cdot} + \mathrm{O_3OH} \boldsymbol{\cdot} \rightarrow \mathrm{H_2O_2} + \mathrm{2O_3}$	5.0×10 ⁹	k 12	Staehelin et al., 1984
"\		$\mathrm{O_3OH} \boldsymbol{\cdot} + \mathrm{HO_3} \boldsymbol{\cdot} \rightarrow \mathrm{H_2O_2} + \mathrm{O_3} + \mathrm{O_2}$	5.0×10 ⁹	k 13	Staehelin et al., 1984
		$\mathrm{O_3OH} \boldsymbol{\cdot} + \mathrm{HO} \boldsymbol{\cdot} \rightarrow \mathrm{H_2O_2} + \mathrm{O_3}$	5.0×10 ⁹	k 14	Staehelin et al., 1984
*		$\mathrm{O_3OH} \boldsymbol{\cdot} + \mathrm{HO_2} \boldsymbol{\cdot} \rightarrow \mathrm{O_3} + \mathrm{O_2} + \mathrm{H_2O}$	1×10^{10}	k 15	Staehelin et al., 1984
HO ₃	$OH-, VO_3$	$O_3OH \cdot + \cdot O_2 \rightarrow OH + O_3 + O_2$	1×10^{10}	k 16	Staehelin et al., 1984
	$ \begin{bmatrix} 0_2 & 0_2 \\ 0 & f \end{bmatrix} $	$\mathrm{H}_{2}\mathrm{O}_{2}=\mathrm{HO}_{2}^{-}+\mathrm{H}^{+}$	$pK_a = 11.65$		Staehelin and Hoigné, 1982
O_2	HO H_2O_2				

Figure A-G1: Ozone decomposition reaction scheme and elementary reactions of SBH model

Figure A-G2: Ozone decomposition scheme and elementary reactions of TFG model.

Figure A-G3 demonstrates the scheme of ozone decomposition in this model. Figure A-G3 also includes the scheme of species that are involved in O_3/H_2O_2 process (detailed explanation of O_3/H_2O_2 AOP will be given in the subsequent session).

Figure A-G3: Ozone decomposition scheme

In the presence of NOM, O₃ directly reacts with NOM to produce low levels of HO radical (initiation reaction) via the following reaction:

 $O3 + NOM \rightarrow HO \bullet + byproducts$

The HO radical that may be produced from the reaction above may also be quenched by the reaction with NOM as shown below:

 $HO \bullet + NOM \rightarrow by products$

The quenching of HO radical with NOM is usually more important than quenching by bicarbonate and carbonate (discussed later) or metal species. Therefore, in this model, only quenching reaction is implemented (21). In fact, moieties of NOM react with HO• to form carbon centered radical which subsequently reacts with aqueous oxygen to produce peroxyl radical. The peroxyl radical eventually end up with super oxide anion radical $\cdot O_2^-$ or hydroperoxyl radical HO₂• by uni- or bi-molecular reactions. This process is called "promotion reaction" (Staehelin and Hoigné, 1985). The detailed reaction scheme is demonstrated in Figure A-G4. The extent of initiation, promotion, and

scavenging reactions depends on the types of NOM. Due to the complex and ambiguity of NOM structure, this model only consider the scavenging reaction of HO• with NOM.

Figure A-G4: Ozone decomposition reaction scheme in the presence of initiators, promoters, and scavengers.

O₃/H₂O₂ model

In the presence of hydrogen peroxide (H_2O_2), hydroperoxide ion (HO_2^-), a disprotonated form of H_2O_2 , reacts with O_3 to produce HO• (i.e. initiation reaction) (Staehelin and Hoigné, 1982). The pKa of hydrogen peroxide is 11.65. Consequently, hydroperoxide ion is dominant at around neutral pH, which produces HO radical in the reaction with ozone (4). However, it should be noted that hydrogen peroxide or hydrogen peroxide ion also reacts with HO radical, producing hydrogen peroxide radical (11 and 12). Therefore, excess dose of hydrogen peroxide is detrimental to production of HO radical.

Bromate Formation Mechanisms

When ozone is used as an oxidant, bromate ion (BrO_3^-) is formed from the oxidation of bromide ion (Br^-) through a combination of ozone and HO radical reactions. Because bromine (Br) is transformed into 6 oxidation states (Br⁻(oxidation state; -I), Br• (0), HOBr (+I), OBr⁻ (+I), BrO• (+II), BrO₂⁻ (+III), BrO₃⁻ (+V)), the whole reaction contributing to the formation of bromate ion is extremely complicated. The past extensive studies have revealed the general reaction pathway for the formation of bromate ion (shown in Figure A-G5).

Figure A-G5. Bromate formation scheme via ozone and HO radical

Three major pathways have been identified for the formation of bromate ion, including

- i) Br- $\stackrel{O_3}{\rightarrow}$ OBr⁻/HOBr $\stackrel{O_3}{\rightarrow}$ BrO₃⁻
- ii) $OBr^{-}/HOBr \xrightarrow{HO\bullet} BrO^{\bullet} \xrightarrow{O_3} BrO_2^{\bullet} \xrightarrow{O_3} BrO_3^{-}$
- iii) $\operatorname{Br}^{-} \xrightarrow{\operatorname{HO}_{\bullet}} \operatorname{Br}_{\bullet} \xrightarrow{\operatorname{O}_{3}} \operatorname{BrO}_{\bullet} \xrightarrow{\operatorname{O}_{3}} \operatorname{BrO}_{2} \xrightarrow{\operatorname{O}_{3}} \operatorname{BrO}_{3}^{-}$

Because the equilibrium constant between hypobromite (OBr⁻) and hypobromous acid (HOBr) is 8.8, HOBr is dominant for the typical drinking water treatment conditions (i.e.

pH = 6.5-8.0). OBr⁻ undergoes two reactions with O₃: i) attack of O₃ on the oxygen atom to produce OOBr⁻ and eventually Br⁻ (33) and ii) attack of O₃ on the bromine atom to produce BrO₂⁻ (34). The reported reaction rate constants of (33) and (34) indicate that one-fourth of OBr⁻ is oxidized by O₃ leading to BrO₂⁻ and eventually BrO₃⁻ (von Gunten, 2003) (pathway i). Although HOBr undergoes the oxidation by O₃, the reaction rate constant for HOBr is approximately 5 magnitudes of order smaller than that for OBr⁻. As a result, lowering pH is one of the strategies to reduce the BrO₃⁻. The detailed discussion on the bromate mitigation will be given in the subsequent session. The OBr⁻/HOBr is oxidized by HO radical to produce BrO• (38 and 39). The BrO• disproportionates to bromite ion (BrO₂⁻) and eventually to BrO₃⁻ (pathway ii). The Br- is oxidized by HO radical to produce a bromine radical (Br•), which subsequently reacts with O₃ to produce BrO• (pathway iii). The Br• also undergoes the several reactions that radical species involved and eventually produces OBr⁻/HOBr (41, 42, 52, 53, 64, 65, 67).

It is important to notice that BrO_3^- is not produced without O3. This is ensured by the fact that the BrO• is only formed from Br• in the presence of O₃. Furthermore, the BrO_2^- is only oxidized by O₃ to produce BrO_3^- . As a consequent, where HO radical is the only oxidant (e.g. UV/H₂O₂ process, gamma-irradiation), the BrO• does not play any roles. In this manner, the Br• only reacts with Br- to produce OBr⁻/HOBr, which is the decisive intermediate, BrO•.

Because the reaction pathway of the formation of BrO_3^- is not linear, it is not intuitive to predict the formation of BrO_3^- . Nevertheless, the known elementary reactions enable us to estimate the fraction of Br^- and $OBr^-/HOBr$ oxidized by O_3 and HO radical, respectively, with use of the ratio of HO radical to O_3 . It is straight-forward to examine

the fraction for the pH-independent Br-. The equation for the oxidation of Br⁻ can be expressed as below:

$$\frac{d\left[\operatorname{Br}^{-}\right]}{dt} = -k_{32}[\operatorname{O}_{3}][\operatorname{Br}^{-}] - k_{54}[\operatorname{HO}\bullet][\operatorname{Br}^{-}]$$

By using the ratio, $R_c = [HO\bullet]/[O_3]$, the fraction of Br⁻ reacting with O₃ and HO•,

 $f_{\rm HO^{\bullet}\,of\,Br^{-}}$ and $f_{\rm O_{3}\,of\,Br^{-}}$, can be written as below, respectively,:

$$f_{\rm HO• of Br^{-}} = \frac{k_{54} R_c}{k_{32} + k_{54} R_c}$$

$$f_{\rm O_3 \ of \ Br^-} = \frac{k_{32}}{k_{32} + k_{54} \ R_c}$$

Figure A-G6 represents the fraction of Br⁻ reaction with O₃ and HO• as a function of Rc (= [HO•]/[O₃]), respectively, calculated from the equations above. It is observed that only for higher Rc > 10^{-7} , a relatively larger amount of HO• oxidizes Br⁻. In the range of typical drinking water treatment (i.e. Rc $\approx 10^{-8}$), most part of Br- is oxidized by O₃.

Figure A-G6: Fraction of Br- reaction with O3 and HO• as a function of Rc (= [HO•]/[O3])

For the case of the pH-dependent OBr⁻/HOBr species (pKa = 8.8), the fraction of OBr-/HOBr reacting with O₃ and HO• dramatically changes with pH and the Rc (Figure 7). At lower pH (<7.0), almost entire oxidation of OBr⁻/HOBr takes place by HO radical (i.e. HOBr is major oxidized species). At the neutral pH, approximately 80% of OBr⁻/HOBr is oxidized by HO radical when the typical drinking water treatment Rc value is applied. As increase of pH (i.e. increase the fraction OBr-), O₃ contributes more to the oxidation of OBr⁻/HOBr at the lower Rc. Although there is significant difference in reactivity of O₃ and HO radical with OBr⁻/HOBr (i.e. magnitude of 7 for OBr⁻ (33 and 39) and of 11 for HOBr (35 and 38)), increase of pH considerably leads to the larger fraction of O₃ reacting with OBr⁻/HOBr. Equation below represents the fraction of HO radical reacting with OBr⁻/HOBr as an example.

 $f_{\rm HO\bullet of \, OBr-/HOBr} =$

 $\frac{(k_{\text{HOBr/HO}} \text{[HO]}[\text{HOBr}] + k_{\text{OBr-/HO}}[\text{HO]}[\text{OBr}^{-}])}{(k_{\text{HOBr/HO}} \text{[HO]}[\text{HOBr}] + k_{\text{OBr-/HO}}[\text{HO]}[\text{OBr}^{-}]) + (k_{\text{HOBr/HO}} \text{[O]}[\text{HOBr}] + k_{\text{OBr-/HO}}[\text{O]}[\text{OBr}^{-}])}$

Figure A-G7: Fraction of HO radical and O_3 reacting with OBr⁻/HOBr as a function of Rc (=[HO•]/[O₃])

The investigations in the fraction of HO• and O₃ reacting with OBr⁻/HOBr reveals that those ratios significantly depend on the Rc ratios. In the initial reaction phase of ozonation (i.e. higher Rc $\approx 10^{-7}$), Br⁻ is oxidized by HO radical to produce Br•. At around neutral pH, OBr⁻/HOBr undergoes further oxidation from HO radical to produce BrO• and eventually to BrO₃⁻. At the secondary phase of ozonation (Rc $\approx 10^{-8}$ - 10^{-9}), Br⁻ is significantly oxidized by O₃ to produce OBr⁻/HOBr. The HO radical oxidizes OBr-/HOBr to produce BrO•. The disproportionation of BrO• occurs and BrO₂⁻ produced is further oxidized by O₃ to produce BrO₃⁻.

In the presence of NOM, Br• reacts with NOM to produce Br⁻ or bromo-organic compounds (81). Thus, the reactions of Br• with NOM fall into the same order of magnitude as those of Br• with bromide or ozone (e.g. 52 and 37). OBr⁻/HOBr also interfere with NOM (84). Little is known about the quantitative formation mechanisms

of bromo-organic compounds. As a result, products are not considered in the kinetic model.

In Advanced Oxidation Processes (AOPs) where HO radical is a main oxidant, bromate formation is dominated by the HO radical induced in the pathway ii) and iii). When hydrogen peroxide (H₂O₂) is used as an oxidant, the reactions of OBr⁻/HOBr with HO_2^- (H₂O₂) leading to Br- are important reactions (von Gunten, 2003).

Effect of Carbonate and Phosphate

The mechanism of carbonate species scavenging HO radical has been investigated by several researchers (Glaze *et al.*, 1988, 1989, Peyton *et al.*, 1988). Carbonate and bicarbonate ions (CO_3^{2-}/HCO_3^{-}) react with HO radical to produce carbonate radicals, CO_3^{\bullet} and HCO_3^{\bullet} , respectively. In this model, these two reactions are reported to be similarly active (Chen *et al.*, 1975; Larson *et al.*, 1988), and therefore, can be referred to as one term, CO_3^{\bullet} (19, 20). The CO_3^{\bullet} reacts itself, superoxide anion radical, $\bullet O_2^{-}$, ozonide ion radical, $\bullet O_3^{-}$, and HO radical, respectively, at the comparable reaction rates to other radial involving reactions (22-25). In the O_3/H_2O_2 AOP, the reaction of $CO_3^{\bullet}^{-}$ with H_2O_2 to form superoxide radical, HO_2^{\bullet} , is significant (27). Since $CO_3^{\bullet}^{-}$ is a weak oxidant, it may react with some target organic compounds. But for the treatment of most organic pollutants, these reactions are ignored because this reaction is insignificant.

The role of phosphate ions is similar to that of carbonate ions. Hydrogen phosphate ion, $HPO_4^{2^-}$, reacts with HO_3^{\bullet} and HO^{\bullet} (29, 30), whereas dihydrogen phosphate ion, $H_2PO_4^{-}$, reacts with $\bullet O_3^{-}$ and HO^{\bullet} (28, 31) to form phosphate radical ions and reactive oxygenated species (ROS) further. In general, the reactions of phosphate ions do not significantly affect ozone-self decomposition.

The CO₃•⁻ also reacts with OBr⁻ (56) and BrO_2^{-} (57) at the comparable rate to the other ions which are produced from ozone self-decomposition.

Although the typical reaction rates that are induced from carbonate/bicarbonate ion or carbonate radicals are one or two magnitude of order smaller than those of HO•, the relatively higher concentrations of carbonate/bicarbonate present in the environmental waters make the scavenging reaction of carbonate/bicarbonate ions with HO• significant.

Bromate Mitigation Strategies

pH depression

Lowering pH shifts OBr-/HOBr equilibrium towards HOBr, and therefore, BrO_3 precursor, BrO_2 -, is less produced by the reactions of O_3 with HOBr (35) as compared to those with OBr- (34). In addition, as was observed in Figure X, OBr-/HOBr oxidation is dominated by HO radical. As a consequence, lowering pH leads to the smaller fraction of O_3 reacting with OBr-/HOBr and reduces the formation of BrO_3 -.

In addition to shifting the OBr-/HOBr equilibrium by lowering pH, it slows the O₃ degradation because of (1). As a result, integral of O₃ concentration as a function of time (i.e. $\int [O_3]dt$, ozone exposure) will be larger, whereas $\int [HO\bullet]dt$, HO radical exposure, will be constant. Accordingly, a ratio of $\int [HO\bullet]dt$ and $\int [O_3]dt$ (i.e. R_{ct} (von Gunten and reference)) will be smaller. Pinkernell and von Gunten (2001) observed a reduced bromate formation at lower R_{ct} values. Although the R_{ct} values do not have linear relationship with the bromate formation, the R_{ct} would be one of the important factors to assess the bromate formation.

Because the initial fast transformation of O_3 into HO radical is almost independent of pH, lowering pH does not lead to the significant decrease of the initial BrO_3^- formation. Accordingly, the effect of pH depression is expected to be small.

Ammonia addition

The addition of ammonia (NH₃) only interferes with OBr⁻/HOBr producing monobromamine (NH₂Br) (70 and 71) (Figure A-G8). As was discussed, Br⁻ is dominantly oxidized by HO radical in the initial phase at the neutral pH. The Br• undergoes the oxidation by O₃ to produce BrO• and eventually to BrO₃⁻. In this process, the NH₃ addition is not effective to reduce BrO₃⁻. As a result, the NH₃ addition is only effective to the secondary phase of ozonation. Because the reaction of NH₃ with OBr⁻ is a base-catalyzed equilibrium reaction (72), it is not effective if source waters already have high levels of NH₃.

Figure A-G8: Bromate mitigation by adding ammonia and/or hypochlorous acid

Cl₂-NH₃ process

A Cl_2 -NH₃ process is comprised of three major steps: i) pre-chlorination, ii) ammonia addition, and iii) mono-bromamine oxidation. With the condition that [NH₃] > [HOCI] > [Br⁻], Br⁻ is initially oxidized by hypochlorous acid (HOCI) to HOBr (75 and 76). The HOBr is masked by the addition of NH₃ to form NH₂Br (70 and 71). The NH₃ added in this step also reacts with the excess HOCl to produce monochloramine (NH₂Cl) (78). The reaction of NH₃ with HOCl does not compete with those of NH₃ with HOBr due to the 20 times smaller reaction rate constants. The NH₂Br undergoes the oxidation by O₃ to form nitrate (NO₃-) and Br- (77). An advantage of the Cl₂-NH₃ process over the single NH₃ addition is a hindrance of the reaction of HO radical with Br⁻ producing Br• during the initial phase.

It should be noted that the presence of NH_3 in the source waters significantly affect the efficacy of the Cl_2 - NH_3 process. The NH_3 reacts with HOCl to produce NH_2Cl before reacting with Br^- according to (75) and (78). The NH_2Cl further reacts with Br^- to produce monobromamine, which is negligible due to the smaller reaction rate constant (79).

In addition to the hindrance of HO radical pathway for the BrO₃⁻ formation, the presence of NOM significantly contributes to the reduction of BrO₃⁻ by hindering HO radical. According to Buffle et al., (2004), two NOM-involving mechanisms could explain a decrease of HO radical by adding HOCl in the NH₃-containing source waters: i) HOCl and/or NH₂Cl oxidizes specific and reactive moieties of NOM toward O₃ and ii) HOCl or its oxidation or substitution products scavenge HO radical. NOM undergoes the oxidation by HOCl (83) and HOBr (84). The latter reaction producing total organic brominated compounds (TOBr) also contributes to minimize the BrO₃⁻ formation.

complex reactions of NOM. For the reaction mechanism ii), the HO radical scavenge reaction by NH₂Cl is represented (85).

Formation of TTHMs and TOX

The addition of HOCl and the presence of HOBr lead to the formation of

halogenated organic compounds (TOX or THMs) by reacting with NOM (Figure A-G9).

Figure A-G9: TOX and TTHMs formation scheme in the presence of NOM

Several empirical power function models are available for predicting totaltrihalomethanes (TTHMs). Amy et al. developed models implemented in EPA 1998 models that were based on lower chlorine doses applied to either raw/untreated waters or chemically coagulated (conventionally treated) waters (Amy et al., 1998). This software implemented the improved EPA 1998 model developed by Sohn et al. (2004). In this improved model, chlorine consumption is splited into two phases, including i) fast initial phase of chlorine consumption (< 5h) and ii) the following second phase of slow chlorine consumption (5 h <).

The TTHMs predicting model in the initial phase is used. The empirical parameters were determined using the EPA 1998 database.

$$[TTHMs] = [Cl_2] \{A_{TTHM}(1 - exp(-kt))\}$$

where,

$$\ln(k) = 5.41 - 0.38 \ln\left(\frac{[Cl_2]}{[DOC]}\right) + 0.27 \ln([NH_3-N]) - 1.12 \ln(Temp) + 0.05 \ln([Br-]) - 0.05 \ln([Br-]) -$$

0.854 ln(pH)

$$\ln(A_{\text{TTHM}}) = -2.11 - 0.87 \ln\left(\frac{[\text{Cl}_2]}{[\text{DOC}]}\right) - 0.41 \ln([\text{NH}_3 - \text{N}]) + 0.21 \ln([\text{Cl}_2]) + 1.98 \ln(\text{pH})$$

[TTHM]=predicted trihalomethane conc. in initial phase (~5h), μ g/L

[Cl₂]=applied chlorine dose, mg/L

[DOC] = dissolved organic carbon, mgC/L

[NH₃-N] = ammonia-nitrogen conc., mg/L as N

[Br-]= bromide concentration, $\mu g/L$

Temp = temperature, $^{\circ}C$

t = reaction time, h

The reactions of HOCl, HOBr, and NH₂Br with NOM to form the total organic halides (TOX) are complex due to the ambiguity of NOM properties. There are little studies attempted in the quantitative formation analysis of TOX. Therefore, in this model, the products from these reactions are not considered (82-84). Although the TOX is not currently regulated under the drinking water standard, the toxicity of TOX was reported much higher than bromate ion.

Modeling Equations

Kinetic Rate Expressions

Based on the elementary reactions in Table X, the overall kinetic rate expressions can be written as below. These species include: O_3 , $HO_3 \bullet / \bullet O_3^-$, $\bullet O_2^- / HO_2 \bullet$, $HO \bullet$,

 H_2O_2/HO_2^- , $HPO_4^{\bullet-}$, $H_2PO_4^-/HPO_4^{2-}$, Br^- , $OBr^-/HOBr$, BrO_2^- , BrO_3^- , $Br0^{\bullet-}$, $BrO^{\bullet-}$, Br_2^- , Br_3^- , $Br_2^{\bullet-}$, $BrOH^{\bullet-}$, Br_2O_4 , NH_2Br , $NHBr_2$, OCl-/HOCl, NH_4^+/NH_3 , NH_2Cl , and NOM.

$$\frac{d[0_3]}{dt} = -k_1[0_3][HO^-] - k_2[\bullet O_2^-][O_3] - k_4[HO_2^-][O_3] - k_{10}[HO\bullet][O_3] - k_{18}[H_2O_2][O_3] \\ + k_{24}[CO_3\bullet^-][\bullet O_3^-] - k_{32}[O_3][Br^-] - k_{33}[O_3][OBr^-] - k_{34}[O_3][OBr^-] - k_{35}[O_3][HOBr] \\ - k_{36}[O_3][BrO_2^-] - k_{37}[O_3][Br\bullet] - 3k_{77}[O_3][NHBr_2] \\ \frac{d[HO_3\bullet]}{dt} = -k_3[HO_3\bullet] - k_7[HO\bullet][HO_3\bullet] - k_8[HO_3\bullet][HO_3\bullet] - k_9[HO_3\bullet][\bullet O_2^-] \\ + k_{28}[\bullet O_3^-][H_2PO_4^-] - k_{29}[HO_3\bullet][HPO_4^{2-}] \\ \frac{d[\bullet O_3^-]}{dt} = k_2[\bullet O_2^-][O_3] - k_{24}[CO_3\bullet^-][\bullet O_3^-] - k_{28}[\bullet O_3^-][H_2PO_4^-] + k_{29}[HO_3\bullet][HPO_4^{2-}] \\ \frac{d[\bullet O_2^-]}{dt} = k_1[O_3][HO^-] - k_2[O_3][\bullet O_2^-] + k_4[O_3][HO_2^-] - k_6[HO\bullet][\bullet O_2^-] \\ - k_9[HO_3\bullet][\bullet O_2^-] + k_{12}[HO\bullet][HO_2^-] - k_{14}[\bullet O_2^-][H_2O_2] - k_{17}[HO_2\bullet][\bullet O_2^-] \\ - k_{23}[CO_3\bullet^-][\bullet O_2^-] - k_{62}[\bullet O_2^-][Br_3^-] - k_{65}[\bullet O_2^-][HOBr] \\ \frac{d[HO_2\bullet]}{dt} = k_1[O_3][HO^-] + k_{10}[HO\bullet][O_3] + k_{11}[HO\bullet][H_2O_2] - k_{17}[HO_2\bullet][H_2O_2] \\ + k_{14}[\bullet O_2^-][HO_2^-] - k_{15}[HO\bullet][HO_2\bullet] - k_{16}[HO_2\bullet][HO_2\bullet] - k_{17}[HO_2\bullet][H_2O_2] \\ + k_{16}[CO_3\bullet^-][HO_2^-] + k_{27}[CO_3\bullet^-][H_2O_2] - k_{16}[HO\bullet][\bullet O_2^-] \\ + k_{26}[CO_3\bullet^-][HO_2^-] + k_{27}[CO_3\bullet^-][H_2O_2] - k_{16}[HO_2\bullet][HO_2\bullet] - k_{17}[HO_2\bullet][H_2O_2] \\ + k_{14}[\bullet O_2^-][HO_2^-] - k_{15}[HO\bullet][HO_2\bullet] - k_{16}[HO_2\bullet][HO_2\bullet] - k_{17}[HO_2\bullet][H_2O_2] \\ + k_{16}[HO_3\bullet] - k_{16}[HO_3] - k_{16}[HO_3] - k_{16}[HO_2\bullet][HO_2\bullet] - k_{17}[HO_2\bullet][HO_2\bullet] \\ - k_{26}[HO_3\bullet] - k_{16}[HO_2\bullet] - k_{16}[HO_2\bullet] - k_{16}[HO_2\bullet][HO_2\bullet] \\ - k_{26}[HO_3\bullet] - k_{16}[HO_3] - k_{16}[HO_3] - k_{16}[HO_2\bullet] - k_{17}[HO_2\bullet][HO_2\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_3] - k_{16}[HO_2\bullet] - k_{16}[HO_3\bullet] - k_{26}[HO_3\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_3] - k_{16}[HO_2\bullet] - k_{16}[HO_2\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_3] - k_{16}[HO_0\bullet] - k_{26}[HO_0\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_0] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] \\ - k_{26}[HO_0\bullet] - k_{26}[HO_0] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] - k_{26}[HO_0\bullet] \\ - k_{26}[H$$

$$\frac{d\left[\mathrm{HO}_{2}^{-}\right]}{dt} = -k_{4}[\mathrm{O}_{3}][\mathrm{HO}_{2}^{-}] - k_{12}[\mathrm{HO}_{2}][\mathrm{HO}_{2}^{-}] + k_{17}[\mathrm{HO}_{2}\bullet][\bullet\mathrm{O}_{2}^{-}] + k_{25}[\mathrm{CO}_{3}\bullet^{-}][\mathrm{HO}_{2}][\mathrm{HO}_{2}^{-}] = -k_{26}[\mathrm{CO}_{3}\bullet^{-}][\mathrm{HO}_{2}^{-}] - k_{60}[\mathrm{HO}_{2}^{-}][\mathrm{HOBr}]$$

$$\frac{d[H_2O_2]}{dt} = k_5[HO\bullet][HO\bullet] + k_7[HO\bullet][HO_3\bullet] + k_8[HO_3\bullet][HO_3\bullet] - k_{11}[HO\bullet][H_2O_2] \\ - k_{13}[HO_2\bullet][H_2O_2] - k_{14}[\bullet O_2^{-}][H_2O_2] + k_{16}[HO_2\bullet][HO_2\bullet] - k_{18}[H_2O_2][O_3] \\ - k_{27}[CO_3\bullet^{-}][H_2O_2] - k_{58}[H_2O_2][HOBr] - k_{59}[H_2O_2][OBr^{-}]$$

$$\frac{d[O_{2}]}{dt} = k_{2}[\bullet O_{2}^{-}][O_{3}] + k_{3}[HO_{3}\bullet] + k_{6}[HO\bullet][\bullet O_{2}^{-}] + k_{7}[HO\bullet][HO_{3}\bullet] + 2k_{8}[HO_{3}\bullet][HO_{3}\bullet] \\ + 2k_{9}[HO_{3}\bullet][\bullet O_{2}^{-}] + k_{10}[HO\bullet][O_{3}] + k_{13}[HO_{2}\bullet][H_{2}O_{2}] + k_{14}[\bullet O_{2}^{-}][H_{2}O_{2}] + k_{15}[HO\bullet][HO_{2}\bullet] \\ + k_{16}[HO_{2}\bullet][HO_{2}\bullet] + k_{17}[HO_{2}\bullet][\bullet O_{2}^{-}] + k_{18}[H_{2}O_{2}][O_{3}] + k_{23}[CO_{3}\bullet^{-}][\bullet O_{2}^{-}] \\ + k_{32}[O_{3}][Br^{-}] + 2k_{33}[O_{3}][OBr^{-}] + k_{34}[O_{3}][OBr^{-}] + k_{35}[O_{3}][HOBr] + k_{36}[O_{3}][BrO_{2}^{-}] \\ + k_{37}[O_{3}][Br\bullet] + k_{58}[H_{2}O_{2}][HOBr] + k_{59}[H_{2}O_{2}][OBr^{-}] + k_{60}[HO_{2}^{-}][HOBr] \\ + k_{61}[HO_{2}\bullet][Br_{3}^{-}] + k_{62}[\bullet O_{2}^{-}][Br_{3}^{-}] + k_{64}[HO_{2}\bullet][Br_{2}] + k_{65}[\bullet O_{2}^{-}][HOBr] + 3k_{77}[NHBr_{2}]3[O_{3}]$$

$$\frac{d\left[\mathrm{HCO_{3}^{-}}\right]}{dt} = -k_{19}[\mathrm{HO}\bullet][\mathrm{HCO_{3}^{-}}] + k_{27}[\mathrm{CO_{3}}\bullet^{-}][\mathrm{H}_{2}\mathrm{O}_{2}]$$

$$\frac{d\left[\mathrm{CO_{3}^{2-}}\right]}{dt} = -k_{20}[\mathrm{HO}\bullet][\mathrm{CO_{3}^{2-}}] + k_{23}[\mathrm{CO_{3}}\bullet^{-}][\bullet\mathrm{O}_{2}^{-}] + k_{24}[\mathrm{CO_{3}}\bullet^{-}][\bullet\mathrm{O}_{3}^{-}] + k_{26}[\mathrm{CO_{3}}\bullet^{-}][\mathrm{HO}_{2}^{-}]$$

$$+k_{56}[\mathrm{CO_{3}}\bullet^{-}][\mathrm{OBr}^{-}] + k_{57}[\mathrm{CO_{3}}\bullet^{-}][\mathrm{BrO_{2}^{-}}]$$

$$\frac{d\left[CO_{3}\bullet^{-}\right]}{dt} = k_{19}[HO\bullet][HCO_{3}^{-}] + k_{20}[HO\bullet][CO_{3}^{2-}] - k_{22}[CO_{3}\bullet^{-}][CO_{3}\bullet^{-}] - k_{23}[CO_{3}\bullet^{-}][\bullet O_{2}^{-}] \\ - k_{24}[CO_{3}\bullet^{-}][\bullet O_{3}^{-}] - k_{25}[CO_{3}\bullet^{-}][HO\bullet] - k_{26}[CO_{3}\bullet^{-}][HO_{2}^{-}] - k_{27}[CO_{3}\bullet^{-}][H_{2}O_{2}] \\ - k_{56}[CO_{3}\bullet^{-}][OBr^{-}] - k_{57}[CO_{3}\bullet^{-}][BrO_{2}^{-}] \\ \frac{d\left[CO_{4}^{2-}\right]}{dt} = k_{22}[CO_{3}\bullet^{-}][CO_{3}\bullet^{-}]$$

$$\frac{d[CO_2]}{dt} = k_{22}[CO_3 \bullet^{-}][CO_3 \bullet^{-}] + k_{23}[CO_3 \bullet^{-}][HO\bullet]$$

$$\frac{d[H_2PO_4^{-}]}{dt} = -k_{28}[\bullet O_3^{-}][H_2PO_4^{-}] + k_{29}[HO_3\bullet][HPO_4^{2-}] - k_{31}[HO\bullet][H_2PO_4^{-}]$$

$$\frac{d[HPO_4^{2-}]}{dt} = k_{28}[\bullet O_3^{-}][H_2PO_4^{-}] - k_{29}[HO_3\bullet][HPO_4^{2-}] - k_{30}[HO\bullet][HPO_4^{2-}]$$

$$\frac{d[HPO_4^{--}]}{dt} = k_{30}[HO\bullet][HPO_4^{2-}] + k_{31}[HO\bullet][H_2PO_4^{-}]$$

$$\frac{d[OBr^{-}]}{dt} = k_{30}[O3][Br^{-}] - k_{30}[O3][OBr^{-}] - k_{30}[OBr^{-}] - k_{30}[HO\bullet][OBr^{-}]$$

$$+ k_{40}[BrO\bullet][BrO\bullet] - k_{44}[OBr^{-}][Br\bullet] + k_{50}[BrO\bullet][BrO_2^{-}] + k_{51}[Br_2^{-}][BrO_2^{-}]$$

$$- k_{50}[OBr^{-}][CO_3^{--}] - k_{50}[OBr^{-}][H_2O_2] - k_{71}[OBr^{-}][NH_3] + k_{72}[OH^{-}][NH_2Br]$$

$$+ k_{70}[OC1^{-}][Br^{-}]$$

$$\frac{d[HOBr]}{dt} = - k_{35}[O_3][HOBr] - k_{36}[HOA][HOBr] - k_{58}[H_2O_2][HOBr] - k_{60}[HO_2^{-}][HOBr]$$

$$+ k_{75}[Br^{-}][HOC1] - k_{64}[Br_2][H_2O] - k_{68}[HOBr][DH^{-}] - k_{70}[NH_3][HOBr]$$

$$+ k_{75}[Br^{-}][HOBr] + k_{67}[Br_2][H_2O] - k_{68}[HOBr][H^{+}][Br^{-}] - k_{70}[NH_3][HOBr]$$

$$+ k_{75}[Br^{-}][HOBr] + k_{67}[Br_2][H_2O] - k_{68}[HOBr][DH^{-}] - k_{50}[BrO_4] - k_{50}[BrO_5]] + k_{40}[BrO_5][BrO_5]$$

$$\frac{d[BrO_2^{--}]}{dt} = k_{34}[O_3][OBr^{-}] + k_{35}[O_3][HOBr] - k_{36}[O_3][BrO_2^{-}] + k_{40}[BrO_6][BrO_4]$$

$$- k_{65}[HO0_2^{-}][BrO_2^{-}]$$

$$\frac{d[BrO_3^{--}]}{dt} = k_{56}[O_3][BrO_2^{-}] + k_{48}[Br_2O_4][OH^{-}] + k_{60}[BrO_2^{-}] - k_{51}[Br_2^{--}]$$

$$+ k_{65}[BrO_4^{--}][H^{+}] + k_{65}[HOBr][OBr^{-}] - k_{52}[Br_6][Br^{-}] + k_{53}[Br_2^{--}]$$

$$+ k_{65}[BrO_4^{--}][H^{+}] + k_{65}[HOBr][0OF^{-}] - k_{66}[BrO_4^{+-}] - k_{50}[Br_6][OH^{-}] - k_{50}[Br_6][OH^{$$

$$\frac{d[\operatorname{Br}O^{\bullet}]}{dt} = k_{37}[O_{3}][\operatorname{Br}\bullet] + k_{38}[\operatorname{HO}\bullet][\operatorname{HOBr}] + k_{39}[\operatorname{HO}\bullet][\operatorname{Br}O^{+}] - k_{a0}[\operatorname{BrO}\bullet][\operatorname{BrO}\bullet][\operatorname{BrO}\bullet]$$

$$\frac{d[\operatorname{Br}_{1}^{-}]}{dt} = -k_{41}[\operatorname{Br}_{3}^{-}] + k_{42}[\operatorname{Br}_{2}][\operatorname{Br}^{-}] + k_{43}[\operatorname{Br}_{2}^{+*}][\operatorname{Br}O_{2}^{-}] + k_{54}[\operatorname{CO}_{3}^{+*}][\operatorname{Br}_{3}^{-}] - k_{62}[\bullet O_{2}^{-}][\operatorname{Br}_{3}^{-}]$$

$$\frac{d[\operatorname{Br}_{2}^{+-}]}{dt} = -k_{41}[\operatorname{Br}_{3}^{--}] + k_{42}[\operatorname{Br}_{2}][\operatorname{Br}_{2}^{+-}] + k_{43}[\operatorname{Br}_{2}^{+*}][\operatorname{Br}O_{2}^{-}] + k_{52}[\operatorname{Br}\bullet][\operatorname{Br}^{-}] - k_{63}[\operatorname{Br}_{2}^{+-}]$$

$$\frac{d[\operatorname{Br}_{2}^{+-}]}{dt} = -k_{43}[\operatorname{Br}_{2}^{+-}][\operatorname{Br}_{2}^{+-}] - k_{53}[\operatorname{Br}_{2}^{+*}][\operatorname{Br}O_{2}^{-}] + k_{52}[\operatorname{Br}\bullet][\operatorname{Br}^{-}] - k_{53}[\operatorname{Br}_{2}^{+-}]$$

$$\frac{d[\operatorname{Br}_{2}^{+-}]}{dt} = -k_{43}[\operatorname{Br}_{3}^{-}] - k_{42}[\operatorname{Br}_{3}][\operatorname{Br}^{-}] - k_{64}[\operatorname{HO}_{2}\bullet][\operatorname{Br}_{2}] + k_{52}[\operatorname{Br}\bullet][\operatorname{Br}^{-}] - k_{53}[\operatorname{Br}_{2}^{+-}]$$

$$\frac{d[\operatorname{Br}O_{2}^{+-}]}{dt} = k_{41}[\operatorname{Br}_{3}^{--}] - k_{42}[\operatorname{Br}_{3}][\operatorname{Br}^{-}] - k_{64}[\operatorname{HO}_{2}\bullet][\operatorname{Br}_{2}] - k_{67}[\operatorname{Br}_{3}][\operatorname{H}_{2}O]$$

$$+ k_{69}[\operatorname{BrOH}^{+-}][\operatorname{Br}^{-}]$$

$$\frac{d[\operatorname{Br}O_{2}^{-}]}{dt} = k_{41}[\operatorname{HO}_{2}\bullet][\operatorname{Br}_{3}^{-}] + k_{62}[\operatorname{BrO}_{2}\bullet][\operatorname{Br}O_{2}\bullet][\operatorname{Br}O_{2}\bullet] + k_{77}[\operatorname{Br}_{2}O_{4}] - k_{69}[\operatorname{BrO}_{2}\bullet][\operatorname{OH}^{-}]$$

$$\frac{d[\operatorname{BrO}_{2}\bullet]}{dt} = k_{43}[\operatorname{HO}\bullet][\operatorname{BrO}_{2}\bullet] - k_{43}[\operatorname{BrO}_{2}\bullet][\operatorname{BrO}_{2}\bullet] + k_{77}[\operatorname{Br}_{2}O_{4}] - k_{69}[\operatorname{BrO}_{2}\bullet][\operatorname{OH}^{-}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{43}[\operatorname{BrO}_{2}\bullet][\operatorname{BrO}_{2}\bullet] - k_{47}[\operatorname{Br}_{2}O_{4}] - k_{68}[\operatorname{BrO}_{2}\bullet][\operatorname{OH}^{-}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{43}[\operatorname{BrO}_{2}\bullet][\operatorname{BrO}_{2}\bullet] - k_{47}[\operatorname{Br}_{2}O_{4}] - k_{48}[\operatorname{BrO}_{2}\bullet][\operatorname{OH}^{-}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{46}[\operatorname{BrO}_{2}\bullet][\operatorname{Br}_{2}] - k_{47}[\operatorname{BrO}_{4}\bullet] - k_{48}[\operatorname{BrO}_{1}^{+}][\operatorname{OH}^{+}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{56}[\operatorname{BrO}_{1}^{+-}][\operatorname{Br}_{2}] - k_{53}[\operatorname{BrO}_{1}\bullet] - k_{63}[\operatorname{BrO}_{1}^{+}][\operatorname{OH}^{+}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{56}[\operatorname{BrO}_{1}^{+-}][\operatorname{Br}_{2}] - k_{56}[\operatorname{BrO}_{1}^{+-}] - k_{56}[\operatorname{BrO}_{1}^{+-}][\operatorname{Br}_{2}]$$

$$\frac{d[\operatorname{BrO}_{1}^{+-}]}{dt} = k_{56}[\operatorname{HO}_{1}^{-}][\operatorname{Br}_{2}] - k_{56}[\operatorname{OH}^{+-}_$$

$$\frac{d[\text{HOCl}]}{dt} = -k_{75}[\text{HOCl}][\text{Br}^{-}] - k_{78}[\text{HOCl}][\text{NH}_{3}] - k_{83}[\text{HOCl}][\text{NOM}]$$

$$\frac{d[\text{OCl}^{-}]}{dt} = -k_{76}[\text{OCl}^{-}][\text{Br}^{-}]$$

$$\frac{d[\text{Cl}^{-}]}{dt} = k_{75}[\text{HOCl}][\text{Br}^{-}] + k_{76}[\text{HOCl}^{-}][\text{Br}^{-}] + k_{79}[\text{NH}_{2}\text{Cl}][\text{Br}^{-}]$$

$$\frac{d[\text{NO}_{3}^{-}]}{dt} = k_{77}[\text{NH}_{2}\text{Br}]3[\text{O}_{3}]$$

$$\frac{d[\text{NH}_{2}\text{Cl}]}{dt} = k_{78}[\text{HOCl}][\text{NH}_{3}] - k_{79}[\text{NH}_{2}\text{Cl}][\text{Br}^{-}] - k_{85}[\text{NH}_{2}\text{Cl}][\text{NOM}]$$

$$\frac{d[\text{NOM}]}{dt} = -k_{21}[\text{NOM}][\text{HO}] - k_{81}[\text{NOM}][\text{Br}] - k_{82}[\text{NOM}][\text{NH}_{2}\text{Br}] - k_{83}[\text{NOM}][\text{HOCl}]$$

The equlibrium relationships implemented in this model are as follows:

$$[HO_{2}^{-}] = \frac{K_{1}[H_{2}O_{2}]}{[H^{+}]}$$
$$[\bullet O_{3}^{-}] = \frac{K_{3}[HO_{3}\bullet]}{[H^{+}]}$$
$$[OBr^{-}] = \frac{K_{18}[HOBr]}{[H^{+}]}$$
$$[NH_{3}] = \frac{K_{22}[NH4^{+}]}{[H^{+}]}$$
$$[OCl^{-}] = \frac{K_{25}[HOCl]}{[H^{+}]}$$

$$[\bullet O_{2}^{-}] = \frac{K_{59}[HO_{2}\bullet]}{[H^{+}]}$$
$$[CO_{3}^{2-}] = \frac{K_{60}[HCO_{3}^{-}]}{[H^{+}]}$$
$$[HPO_{4}^{2-}] = \frac{K_{61}[H_{2}PO_{4}^{-}]}{[H^{+}]}$$
$$[HCO_{3}^{-}] = \frac{K_{62}[H_{2}CO_{3}]}{[H^{+}]}$$
$$[H_{2}PO_{4}^{-}] = \frac{K_{63}[H_{3}PO_{4}]}{[H^{+}]}$$

The ordinary differential equations resulting from the substitution of above rate expressions into the mass balances are solved using a backward differentiation formula method (Gear's method) called DGEAR. DGEAR and the associated nuclei are adaptations of a package designed by A.C.Hindmarsh based on C.W.Gear's subroutine DIFSUB (Hindmarsh, 1974).

Reactor Specific Equations

The mass balance for a species, "A", in a completely mixed batch reactor (CMBR) or a completely mixed flow reactor (CMFR) yields following two ordinary differential equations:

$$\frac{dC_{a}}{dt} = r_{a}$$
(CMBR)
$$\frac{dC_{a}}{dt} = \frac{1}{\tau}(C_{ao} - C_{a}) + r_{a}$$
(CMFR)

Where C_{ao} is the influent concentration of species A, C_a is the concentration of A at time t, τ is the hydraulic retention time of the reactor, and r_a is the overall kinetic rate expression of the species A in the reaction system.

Model equations for a plug flow reactor (PFR) and a real flow reactor (RFR) which has mixing characteristics somewhere between CMFR and PFR, can also be solved using the DGEAR algorithm using a Tanks-in-Series model. The same rate expressions describing the kinetics of the H₂O₂/UV process can also be used for modeling a PFR or RFR. The program can determine how many tanks are needed for modeling PFR or RFR according to dye study data provided by you.

Kinetic Parameters

The use of the AdOx software requires kinetic information and physicochemical properties of the target compounds. AdOxTM contains a database in which you can get information for more than 600 types of compounds. Kinetics parameters needed for the modeling are listed below.

- Dissociation constant(s) of the compound if dissociation(s) of that compound exists.
- Rate constants of the reaction between target compounds with OH⁺, HO₂⁺, O₂⁺, radicals.
- Rate constants of the reaction between the dissociated formats of target compound with OH⁻, HO₂⁻, O₂⁻ radicals (default as 0 if not applicable).

References

Amichai, O.; Treinin, A. J.Phy.Chem. On the oxybromine radicals. 1970, 74, 3670-3674.

Amy, G.; Siddiqui, M.; Ozekin, K.; Zhu, H.W.; Wang, C. Empirically based models for predicting chlorination and ozonation by-products: Trihalomethanes, haloacetic acids, chloral hydrate, and bromated. EPA-815-R-98-005. 1998.

Beckwith, R.C.; Wang, T.X.; Margerum, D.W. Equilibrium and Kinetics of Bromine Hydrolysis. *Inorg. Chem*, 1996, *35*, 995-1000.

Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of perhyroxyl/superoxide radicals in aqueous solution. *J.Phys.Chem. Ref. Data*, 1985, *14*(4), 1041-100.

Böhler, R.E.; Staehelin, J.; Hoigné, J. Ozone decomposition in water studied by pulse radiolysis. 1. HO₂/O₂- and HO₃/O₃- as intermediates. *J. Phys. Chem.* 1984, *88*, 2560-2564.

Buffle, M-O.; Galli, S.; von Gunten, U. Enhanced bromated control during ozonation: The chlorine-ammonia process. *Environ. Sci. & Technol.* 2004, *38*, 5187-5195.

Buxton, G.V.; Greenstock, C.L.; Helman W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxy radical (•HO/•O-) in aqueous solution. J.*Phys.Chem. Ref. Data.* 1988, *17*(2), 513-886.

Buxton, G.V.; Dainton, F.S. The radiolysis of aqueous solutions of oxybromine compounds; the spectra and reactions of BrO and BrO₂. *Proc. R. Soc. London A*, 1968, *304*, 427-439.

Buxton, G.V.; Elliot, A. J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions. *Radiat.Phys.Chem.* 1986, *27*, 241-243.

Christensen, H.S.; Sehested, K.; Corftizan, H. Reaction of hydroxyl radicals with hydrogen peroxide at ambient temperatures. *J.Phys.Chem.* 1982, *86*, 15-88.

Crapski, G.; Lymar, S.V.; Schwarz, H.A. Acidity of the carbonate radical. *J.Phy.Chem A*, 1999, *103*, 3447-3450.

Gear, C.W. The automatic integration of ordinary differential equations. *Comm. ACM.* 1971, *14*(3), 176-179.

Haag. W. R.; Hoigné, J. Ozonation of bormide-containing waters: Kinetics of formation of hypobromous acid and bromate. *Environ. Sci. & Technol.* 1983, *17*, 261-267.

Haag. W. R.; Hoigné, J.; Bader, H. Improved ammonia oxidation by ozone in the reference of bromide ion during water treatment. *Wat. Res.* 1984, *18*, 1125-1128.

Hindmarsh, A.C. (1974), *GEAR: Ordinary Differential Equation System Solver*, Lawrence Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif. Holcman, J.; Sehested, K.; Bjergbakke, E.; Hart, E.J. Formation of ozone in the reaction between the ozonide radical ion, O3-, and the carbonate radical ion, CO3-, in aqueous alkaline solutions. *J. Phys. Chem.* 1982, *86*, 2069-2072.

Johnson, H.D.; Cooper, W.J.; Mezyk, S.P.; Bartels, D.M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. *Radiat.Phys.Chem.* 2002, *65*, 317-326.

Judith, W.; Bielski, B.H.J. Kinetics of the interaction of HO2 and O2- radicals with hydrogen peroxide. *J.Am.Chem. Soc.* 1979, *101*, 58-62.

Kläning, U.K.; Wolff, T. Laser flash photolysis of HCIO, CIO-, HBrO, and BrO in aqueous solution. Reactions of Cl- and Br atoms. *Ber.Bunsen-Ges. Phy.Chem*, 1985, *89*, 243-245.

Koppenol, W.H.; Butler, J.; Leeuwen, V.; Johan, W.L. The Harber-Weiss cycle. *Photochem.Photobiol.* 1978, 655-660.

Kumar, K.; Margerum, D.W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. *Inorg. Chem.* 1987, *26*, 2706-2711.

Mamou, A.; Rabani, J.; Behar, D. On the oxidation of aqueous Br- by OH radicals, studied by pulse radiolysis. *J. Phy. Chem*, 1977, *81*, 1447-1448.

Maruthamuthu, P.; Neta, P. Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds. *J. Phy. Chem.* 1978, *82*(6), 710-713.

Morris, J.C.; Isaac, R.A. In Water Chlorination: Environmental Impact and Health Effects; Jolly, R.L., Brungs, W.A., Cotruvo, J.A., Cumming, R.B., Mattice, J.S., Jacobs V. A., Eds; Ann Arbor Science: Ann Arbor, MI, 1983; Vol. 4, pp 49-62.

Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solutions. *J.Phy.Chem. Ref. Data*, 1988, *17*, 1027-1284.

Nicoson, J.S.; Wang,L.; Becker, R.H.; Huff Hartz, K.E.; Muller, C.E.; Margerum, D.W. Kinetics and mechanisms of the ozone/bromide and ozone/chlorite reactions. *Inorg. Chem.* 2002, *41*, 2975-2980.

Peyton, G.R. Guidelines for the Selection of a Chemical Model for Advanced Oxidation Processes. *A symposium on advanced oxidation processes for the treatment of contaminated water and air (proceedings)* June 4&5, 1990, Toronto.

Pinkernell, U.; von Gunten, U. Bromate minimization during ozonation: Mechanistic considerations. *Environ.Sci. & Technol.* 2001, *35*, 2525-2531.

Schwarz, H.A.; Bielski, B.H. Reactions of HO₂ and O₂- with iodine and bromine and the I₂- and I atom reduction potentials. *J.Phy.Chem.* 1986, *90*, 1445-1448.

Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E.J. A pulse radiolytic study of the reaction OH+O₃ in aqueous medium. *J.Phy.Chem*, 1984, *88*, 4144-4147.

Sehested, K.; Rasmussen, O.L.; Fricke, H. Rate constants of OH with HO₂, O₂- and H_2O_2 + from hydrogen peroxide formation in pulse-irradiated oxygenated water. *J.Phys.Chem.* 1968, *72*, 626-631.

Sidgwick, N.V. The Chemical Elements and Their Compounds: Vol. II; Oxford Press: Oxford, 1952.

Sohn, J.; Amy, G.; Cho, J.; Lee, Y.; Yoon, Y. Disinfectant decay and disinfection byproducts formation model development: chlorination and ozonation by-products. *Wat.Res.* 2004, *38*, 2461-2478.

Staehelin, J.; Hoigné, J. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. *Environ. Sci. & Technol.* 1982, *16*, 676-681.

Stumm, W.; Morgan, J.J. Aquatic Chemistry. John Wiley & Sons, Inc.3rd ed. 1996, New York.

Trofe, T.W.; Inman, G.W., Jr.; Johnson, J.D. Kinetics of monochloramine decomposition in the presence of bromide. *Environ.Sci.* & *Technol.* 1980, *14*, 544-549.

von Gunten, U.; Oliveras, Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. *Environ.Sci. & Technol.* 1998, *32*, 63-70.

von Gunten, U.; Oliveras, Y. Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. *Wat. Res.* 1997, 31(4), 900-906.

von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. *Environ.Sci. & Technol.* 1994, *28*, 1234-42.

Wajon, J.E.; Morris, J.C. Rates of formation of N-bromo amines in aqueous solution. *Inorg.Chem.* 1982, *21*, 4258-4263.

Westerhoff, P.; Chao, P.; Mash, H. Reactivity of natural organic matter with aqueous chlorine and bromine. *Wat.Res.* 2004, *38*, 1502-1513.

Westerhoff, P.; Mezyk, S.P.; Cooper, W,J.; Minakata, D. Electron pulse radiolysis determination of hydroxyl radical rate constants with suwanee river fulvic acid and other dissolved organic matter isolates. *Environ. Sci. & Technol*, 2007, *41*, 4640-4646.

Westerhoff, P.; Song, R.; Amy, G.; Minear, R. Application of ozone decomposition models. *Ozone Sci & Eng.* 1997, *19*, 55-73.

Zehavi, D.; Rabani, J. The oxidation of aqueous bromide ions by hydroxyl radicals. A pulse radiolytic investigation. *J.Phy.Chem.* 1972, *76*, 312-319.

Haag, W.R.; Hoigné, J. Ozonation of bromide-containing waters: Kinetics of formation of hypobrmous acid and bromated. *Environ. Sci. & Technol.* 1983, *17*, 261-267.

von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. *Environ. Sci. & Technol.* 1994, *28*, 1234-1242.

von Gunten, U.; Oliveras, Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. *Environ. Sci. & Technol.* 1998, *32*, 63-70.

Pinkernell, U.; von Gunten, U. Bromate minimization during ozonation: Mechanistic consideration. *Environ. Sci. & Technol.* 2001, *35*, 2525-2531.

Westerhoff, P.; Song, R.; Amy, G.; Minear, R. Numerical kinetic models for bromide oxidation to bromine and bromated. *Wat.Res.* 1998, *32*(5), 1687-1699.

Westerhoff, P.; Ozekin, K.; Siddiqui, M.; Amy, G. Kinetics modeling of bromated formation in ozonated waters: Molecular ozone versus HO• radical pathways. J.AWWA. 1994, 901-920.

VITA

Daisuke Minakata

Daisuke Minakata was born in Wakayama, Japan. He attended School of Global Enginnering and received a B.A., and Environmental Engineering, Graduate School of Engineering and received a M.A. from Kyoto University, Japan. He began with his Ph.D. program at the Department of Civil and Environmental Engineering, Arizona State University in Fall, 2005. He transferred to the Department of Civil and Environmental Engineering, Georgia Institute of Technology in Spring, 2009. He loves swimming, biking and running. He enjoys playing with a dog, Kuro.