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SUMMARY

This dissertation presents a closed-loop, on-line, identification
and control scheme for discrete time systems. The control system con-
sists of an identification algorithm and a deterministic controller.

The identification algorithm identifies unavailable plant states as well
as unknown plant parameters that are either constants, or that vary
slowly with time in some unknown manner., The latest identified values
are used in recomputing the feedback control,

In this thesis, the application of the above scheme to the control
of two important classes of problems is investigated; the linear state
regulator system, and the perturbation control of nonlinear systems.

The state regulator problem was chosen not only because of its
importance, but also because the calculation of the closed-loop control
is well known. It is shown that, if all plant states are available,
then the identification algorithm simplifies to a set of linear simul-
taneous equations which, except for singular or ill-conditioned solutions,
converge to the correct answer in one iteration. Methods of handling
the singular and ill-conditioned cases are also examined. If all the
plant states are not available, then the identification algorithm does
not simplify to a set of simultaneous equations and must converge in an
iterative fashion to the correct solution. For this case, it is showm
that there is a range of initial parameter and plant state estimates

sufficient to ensure convergence; however, when convergence occurs, it
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occurs in a quadratic manner.

The systems comprising the second class are those which employ a
linear perturbation controller to control a nonlinear plant for small
deviations from a nominal trajectory. The identification algorithm is
used in this case to identify not only all unavailable plant states, but
also all the unknown, time-varying, parameters of the linearized system
coefficient matrix, The effectiveness of this perturbation control scheme
is demonstrated for a practical example. The example chosen concerns

the problem of controlling the startup of a thermal nuclear reactor,



CHAPTER T

INTRODUCT ION

Introduction and Problem Description

The major contribution of this dissertation is the presentatiom
and thorough evaluation of a closed-loop, on-line, identification and
control scheme for discrete time systems.

Parameter identification is a major problem area in control system
theory because mathematical models which adequately characterize the dy-
namic performance of physical systems are essential for most control
optimization methods. 1In some instances there is insufficient a priori
information about the system and the topology of the model must be deter-
mined from experimental tests, or defined by assuming some empirical form.
In other cases, the functional form of the model, and perhaps some of the
parameters, are known from theoretical analysis or previous tests. How-
ever, in almost all cases, complete specification of the model requires
identification of the unknown parameters. The problem is made more diffi-
cult when on-line identification is desired, especlally if the unknowm
parameters vary with time. Systems requiring such identification are
those whose normal operation is either impossible or impractical to inter-
rupt. For example, such systems include aircraft autopilots, adaptive
chemical and industrial process controls, adaptive communication links,

and others.



Further complications are encountered when attempts are made to
optimize a closed-loop control law according to some cost or performance
criterion. The added difficulty arises because the optimized feedback
control law is usually a function not only of the unknowm parameters,
but also of some unavailable plant states, Thus, to find an optimum
closed-loop control law, one must find that combination of parameter and
state identification and control which satisfies some system performance
index. Unfortunately, except for a small class of problems, the com-
plexity of the optimum functional equations obtained which satisfies
this combination renders most methods impractical. Consequently, most
approaches are directed toward finding suboptimal solutions that can be
implemented. These solutions are suboptimal in the sense that some de~-
gree of arbitrary separation of the identification and control aspects
is involved. A number of these suboptimal solutions have been developed
and, depending on the specific characteristics of the system involved,

applied with varying degrees of success.

History of the Problem

Historically, the on-line identification and closed-loop control
problem has been approached by one of three methods: estimation tech-
niques, identification schemes, or adaptive control procedures, The
choice of a particular method has largely been based on the amount of
information available about the system and the peculiarities of that
system.

The first approach uses estimation techniques to identify the un-

known parameters. The identification process is then used in conjunction



with a deterministic controller. Since, as shown by the work of A, A.
Fel'dbaun [l], complex results are obtained when trying to optimize both
identification and control, work on this problem is generally directed
to determining whether a separation principle holds or to finding some
suboptimal solution.

The existence of a separation principle allows one to obtain the
optimal overall system by cascading an optimum estimation algorithm with
the optimum deterministic controller, Numerous articles [2,3,4] have
been written which describe conditions for which the separation principle
holds; however, in general, for nonlinear plants, very little is known
about the structure of the optimal solution. For this reason, useful
suboptimal solutions have been sought.

A variety of suboptimal solutions have been developed. For the
case when a complete separation of identification and control is assumed,
one of the more important techniques is that of least square estimation
[5,6]. This scheme has been generalized in numerous articles [7,8] under
the heading of "stochastic approximation." For nonlinear systems, another
useful suboptimal technique is to expand the nonlinear system equations
about some deterministic nominal trajectory [9,10,11]. There are a number
of other less important suboptimal estimation techniques [12,13,14,15,16,
17] but each is limited to problems with specific characteristics.

The second class of approaches to the on-line identification and
control problem involves extensions of some of the classical process
jdentification schemes; i.e., a test signal is applied to the plant from

which, by various methods, identification of the unknown parameters is



achieved [18,19]. Many methods apply an impulse, step, or sinusoidal
test input to the system and analyze, by vérious methods, the correspond-
ing output [20,21,22]. Others introduce either a random or pseudorandom
noise input and then cross correlate this with the corresponding output
(23,24,25].

Finally, an adaptive control approach is often used to solve the
problem. Most adaptive control approaches result in suboptimal perform-
ance. Two types of adaptive schemes that relate to the proposed problem
are the model reference and learning model approaches. In the model
reference approach [26,27,28,29,30,31,32,33], the model is a representa-
tion of the desired system. A controller compares the output of the
plant with the output of the reference model, and uses the difference to
adjust controller parameters to force the plant response to closely match
that of the reference model.

The learning model approach is more applicable to the proposed
problem than any of the other techniques. This approach makes possible
the design of a complete control system for a specific requirement with-
out compromising the design of the controller for the range of parameter
variations. In the learning model approach [26,34,35], the controller
also compares the output of the plant with the output of a model. How-
ever, here the difference is used to adjust the model parameters to cause
the model to behave as much like the process as possible. Parameters of
the model are, therefore, descriptive of the process and thus may be used
in an optimum controller design. To date, the theoretical justification

for the design of systems based on this approach has not been sufficiently



well developed to permit extensive analysis related to performance char-
acteristics and limitations. In addition, almost all previous work has
been done for analog systems. Most attempts to convert this work to a
digital format have led to complicated and inefficient designs [36,37],
which do not make effective use of the characteristics of a digital sys-
tem. Also, previous work has always employed a complete separation of
the identification and control functions. Thus, a need exists for a new
approach to the design of on-line, discrete-time, identifier-controller
systems which make more efficient and optimum use of the digital nature

of the problem,

Qutline of the Thesis

The major emphasis in this research is not only the development
of an identification algorithm, but also combining identification and
control to strive to achieve an overall optimum closed-lcop control law.
Chapter II presents the basic mathematical problem formmlation and also
the derivation of a general identification algorithm. The proof of the
existence of a solution to the identification problem and the classifi-
cation of systems for which the algorithms developed in this thesis are
applicable, are also presented in this chapter.

The combining of identification and control is developed in in-
dividual chapters depending upon the class of systems considered and
whether only some or all of the plant states are available. Chapter ITI
deals with state-regulator systems in which all of the plant states are
available, whereas Chapter IV considers these systems when only scme of

the plant states are available, 1In Chapter V, a linear perturbation



control scheme employing the identification algorithm is developed.
This scheme is then applied in Chapter VI to control the startup of a
thermal nuclear reactor. Finally, Chapter VII summatrizes the conclusions

and presents recommendations for further work.



CHAPTER II

PROBLEM FORMULATION AND BASIC THEORY

Introduction

In this chapter a new approach to the closed-loop, on-line,
identification and control problem described in Chapter I is developed.
In the process of developing the basic mathematical formulation, a
description of the class of systems for which the algorithms are ap-
plicable is also made. The basis of the approach is a general identi-
fication algorithm, This algorithm consists of a sequence of functions,
where each member of the sequence is determined by split boundary con-
ditions. Since the boundary conditions are split, it is not evident
a priori that for nonlinear systems a unique solution actually exists,
Thus, the problem of the existence and uniqueness of a solution must be

proven.

Basic Problem Formulation

Figure 1 shows a general block diagram of the system considered.
Besides the plant, the system is comprised of a parameter adjustable
mathematical model, an identification algorithm, and a deterministic
controller. The mathematical model is used very much like the learning
model discussed in Chapter I. 1In converging to the proper solution, the
parameters of the model are adjusted to cause the model to behave like

the plant, so that the parameters of the model are descriptive of the
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parameters of the plant., To determine the proper adjustments, the identi-
fication algorithm compares the outputs of the model with the outputs
available from the plant. Based on this comparison, the algorithm updates
its estimates of both the unknown plant states and parameter values.
The updated estimates are then used not only to adjust the mathemztical
model but also to determine the optimum closed-loop control according to
some prespecified performance criterion. Because the use of the mathe-
matical model is so closely associated with the identification algorithm,
it will be considered as part of the identification algorithm in all
future references,

It is assumed that the plant can be described by a vector differ-

ence equation of the form

x(j+l) = £[x(3),a(i),ud)], (2.1)

where x(j) represents the n-dimensional state vector, a(j) an m-
dimensional unknown parameter vector, and u(j) a single control input.
The dimensions n and m are assumed known. Equation (2.1) can be either

linear or nonlinear but must satisfy the following conditions:

1) £[x(3),a(i),u(i)) is a continuous function of x(j),

a(j), and u(j).

ii) ﬁz(j)[ﬁ(j)sﬂ(j):u(j)] and ﬁé(j)[z(j),i(j),u(j)] both
exist and are continuous.
iii) fx(j)[g(j),g(j),u(j)] satisfies a Lipschitz condition

with respect to x(j); while fa(j)[g(j),g(j),u(j)] satisfies

a Lipschitz condition with respect to a(j).
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Mathematical models which describe most practical systems in-
herently satisfy the above conditions, Thus these conditions, which are
necessary for the mathematical development of the algorithm, do not re-
strict the applicabllity of the procedure for most systems.

The only restriction imposed on the parameters of a(j) is that they
are elther unknown constants, or that they are slowly varying with time
in an unknown manner.

For many systems, all of the plant states are not available as
system outputs, To indicate this, an s-dimensional vector of output

measurements is given by
(i) = H x(j), (2.2)

where H is an s X n constant matrix, Since all the plant states may not
be available, it must be assumed that the system represented by (2.1) and
(2.2) be observable, not only for the identification algorithm to converge
to the desired unknown parameters, but also so that the unknown plant
states can be computed in order to construct a feedback control.

Since, for practical systems, the control interval is never infi-
nite, the systems considered are not required to be controllable. This
arises because the contribution of the uncontrollable states to the per-
formance functional is always finite provided the control interval is
finite,

The problem can now be restated as follows: for the plant described
by (2.1), with the output measurements given by (2.2), identify the un-
known parameter vector a(j) and the unavailable plant states, and use the

identified values to determine an optimum closed-loop control of the form
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u(j) = v[x(}),2(j)] which minimizes some performance criterion.

There is a large class of systems for which a closed-loop control
of the form expressed above can be found. Some of the most important
members of this class are linear systems for which optimum closed-loop
controls are found that minimize a quadratic performance criterion; i.e.,
the performance criterion is of the form

|
I=3) (M) + v i, (2.3)
j=0
where Q is an n x n matrix that must be at least positive semidefinite.
Systems of this type are typically called state-regulators for they tend
to keep the states near zero.

1f, for a system, a closed-loop control of the form u(j) =
Y[E(j),ﬂ(j)] is not possible, a possible suboptimal alternative is to use
a so-called perturbation control scheme. For this scheme an optimal open-
loop control is found satisfying the desired performance criterion. Then
a feedback control is developed about the optimal trajectory by minimizing
a second cost function which is quadratic in deviation from the nominal
trajectory and control, i.e., the deviation functional is of the form

jg-1
J =% Z {ax" (Daax() + s’ (D). (2.4)
j=0
Both the state-regulator and perturbation control schemes will be inves-
tigated in this thesis.

Throughout this work, a scalar control, u(j), is used. The exten-

sion to a vector control, u(j), is straightforward, but results not only
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in increased complexity in the identification and control algorithms, but

also, as shown in the Appendix, an increased use of computer time needed

for system simulations.

Identification Algorithm

The identification algorithm is based on a Taylor Series expansion

of an equation of the form of equation (2.1). Consider the (N+l)th itera-

tion of such an equation,

Gy = £y, MG e I (2.5)

o
Expanding (2.5) in a Taylor Series about the N h iteration,

S = )N ew + = () (2.6)
— x=x (i)
ﬂ=aN(j)
O %f— 2™y - 2N,
— x=x (i)
a=a(§)

where it is assumed that the control, u(j), is known over the identifica-
tion interval. By considering (2.6) over just one identification cycle,

the following equation can be adjocined,

N+1

a1y = a" W), (2.7

where

Kk = j - NS(£-1). (2.8)
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The integer NS indicates the number of discrete time intervals per iden-
tification period (the calculation of which is shown later), and

£ =1,2,,.,, indicates which identification interval is involved. A
clearer understanding of the relationship between j, k, and £ can be ob-
tained by studying Figure 2. This figure depicts three identification
cycle periods for a system in which the integer constant NS = 2. Notice
that the integer variable k is used to index the discrete time periods

for each identification cycle.

One
Identification

Cycle Period
- *J

L=l —P— =2 —P— L =3 —P

[\ %]

o +—

o
= — L

o

Figure 2. An Example Showing the System's Index Relationships

The set of equations (2.6), (2.7) can now be written in the form

a1 = DN N ) + v, (2.9)
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where _ - - | -
xN+1 of Eg
- (34 I 0a
._Z.N+1 — , DN(k) I B N"l‘ ___li ,
N+1 0 | I
and — - — l -
f f T
£lx 0 ,a" () ,u k)] - g—— gN(k) o x (k)
N a Ox
v (k) = N N

9

The solution of equation (2.9), subject to the appropriate boundary condi-
tions, solves the identification problem. The boundary conditions in this
case consist of the available plant outputs. Consider one identification
cycle in the process. ®Given as initial conditions are the plant states
that are available and either an initial guess of the value of a or the
value of a obtained from the previous cycle. The solution of (2.9) is

given by (labeling the initial time as k=k0)
N+1 N+1 N+1 N+1
2 = kdz (k) 4 p (), (2.10)

N+
where ¢N+1(k,ko) represents the homogeneous solution and p 1(k) repre-

sents the particular solution. The homogeneous solution is the fundamen-

tal solution matrix of

N+1

M,k = 0N o™ k) (2.11)

N+1 _ .
¢ T (kyoky) =15
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whereas, the particular solution is generated by the equation

2N+1(k+1) _ DN(k)BN+1(k) N !N(k) (2.12)

N+1 _

The initial cendition vector EN+1(k0) is obtained from the boundary con-

ditions by solving

<c, (), (8% G, k)2 Tk + 2T k)] > = b, s (2.13)

where ki = ko,kl,...,kf ;

ij =1,2,3,...,(n+tm) ; bij denotes a boundary
condition, which are the available plant state outputs; and <,> denotes
an inner product. The vector gij is used to select those elements of
[¢N+1(ki,k0)gy+l(k0) + EF+1(ki)] which represent the appropriate boundary
conditions. For example, if only the plant state Xp (k) was available as

1
a boundary condition, then

T _

¢ (k) —\[1 00 o;.
Y
n-Hn

The latest unknown parameter and unavailable plant state estimates
obtained from solving (2.9) subject to the boundary conditions of (2.13),
are used to update the value of the closed-loop control according to some
performance index. The mathematical details of this updating are re-
served for the next three chapters where they can be developed more

thoroughly,
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Existence and Uniqueness

Ne mention has been made concerning the important question of
whether a unique solution actually exists when solving nonlinear plant
equations. With the split boundary conditions depicted in equation
(2.13), it is not immediately evident that there is such a solution.
Therefore, in this section, a proof of the existence and uniqueness of a
solution is given.

Consider adjoining the plant equation, equation (2.1), and an
equation representing the actual variations of the unknown parameters

over an identification cycle; i.e., let

z(k+1) = glz(k),uk)], (2.14)
where
x (k)
z(k) = .
a(k)

Assume that a(k) is continuous. From previous assumptions, it is obvious
that
1) g[g(k),u(k)] is a continuous function of z(k) and u(k).

) gg(k)[g(k),u(k)]exists and is continuous.

3) E[E(k),u(k)] satisfies a Lipschitz condition with respect to
z(k); i.e., there exists a number M such that
Iglz) ®),u()] - glz,(),uGll s Ml 2, (&) - 2,0 I,
where || || denotes a norm.

The proof of the existence of a unique solution is based on the

use of the principle of contraction mappings. This principle gives a
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sufficient condition that the nonlinear operator equation

z =Tz (2.15)

has a unique solution. In what follows, no attempts shall be made to be
any more general than is necessary.

The vector z belongs to a set of vectors comprising a complete
normed linear space S. An operator T mapping the normed space S into it
self is said to be a contraction mapping on the space if there is a number

@, 0 <ao<1, such that for all z, 6 ¢ S

T8 - Tzl <8 -2

. (2.16)

Obviously, every contraction mapping is continuous, for if Eﬁ - z (mean-
ing ”EF - 2z|| » 0), then equation (2.16) implies HTEF -Tz || -0 as
N> +o; i.e., TEF-% Tz.

Theorem I: The Principle of Contraction Mappings

Every contraction mapping T defined on a complete normed linear
space § has one and only one fixed point (i.e., z = Tz has exactly one
*
solution).
The solution of equation (2.14) can be put in the form

k-1

200 = ) hlz@)). @2.17)
r=0

Thus, Tz in this case is defined by the right side of equation (2.17).

*
The proof can be found on page 43 of a book by Kolmogorov and
Fomin [38].
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If T is a contraction mapping on the space S, then Theorem I provides the

required proof of existence and uniqueness.

It is thus necessary to determine when T is a contraction mapping

on S. First, consider the equation

k-1

To() - v = ) {hle(m] - hly@I}.
r=0

Taking the norm of both sides, the following equation results:

| ToG) - T || < k| hloG] - blv@] |-

Then, if the Lipschitz condition is used,

ITo (k) - Tyl = k M| 8k} - v(KIf.

Equation (2.21) is the same form as equation (2.16) provided «

(2.19)

(2.20)

(2.21)

k M,

If k M< 1, the mapping is contracting; hence, the existence of a unique

answer is proved. In a later chapter, the convergence of the linearized

identification algorithm, equation (2.9), to the unique solution of

(2.14) will be proven using the above results.
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CHAPTER III

THE STATE REGULATOR SYSTEM WITH ALL PLANT STATES AVAILABLE

Introduction

This chapter examines the identification and control of state
regulator systems in which all of the plant states are available as
system outputs. It will be shown that, for this case, the identification
algorithm simplifies to a set of simultaneous algebraic equations which,
except for singular or ill-conditioned solutions, converge to the correct
answer in one iteration. The singular and ill-conditioned cases are also
examined and two methods of handling these problems are discussed. Com-

puter simulated examples are included to verify the analytical work.

Mathematical Development

Let the linear system be represented by

x(j+1) = A(a)x{(j) + bu(j) (3.1)

x(0) = x,,

where A(a) is an n X n matrix containing, as some of the elements, the
unknown parameters, and b is an n-dimensional vector. Since all of the
plant states are available as outputs, the output measurement vector be-

comes

y(3) = x(3). (3.2)
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For the quadratic¢ cost functional
Jf'l
1 T,. . 2,.
5=3 ) wem « vmi, (3.3)
j=0
the derivation of the optimum closed-loop control can be found in many

sources [39,40]. The resulting control is

u(i) = b [ @1 e - ol x(h), (3.4)
where
T AT (a)P(§+1)bbY P(i+1)A(a)
P(j) = Q+ A"()P(j+1)A(a) - = — = (3.5)
(1 + b P(+1)B]
with P(jf) = {0]. Equation (3.5), called the Riccati equation, is solved

backward in time from jf, with each iteration being stored for use in
equation (3.4) at the appropriate time. Using (3.4) in (3.1), the system

trajectories are represented by the equation
. T;, -1 T . .
x(3+1) = {A@ - bb [A" (@) ] [P(3) - Q} x(D). (3.6)

Note that the Riccati equation (equation 3.5}, the control {(equa-
tion 3.4), and the system trajectories (equation 3.6) are all a function
of the unknown parameter vector a. In view of this fact, a description
of the system operation is as follows. First, the unknown parameter vec-
tor a is identified. Using this latest estimate of a, the Riccati equa-

tion is reiterated backward in time to yield an updated Riccati gain.
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This gain is then used to recompute the optimum closed-loop control. The
system trajectories can next be computed from (3.6). In this manner, the
control used is always based on the latest estimates of the unknown par-
ameters.

It was stated in the introduction that the identification algorithm
simplifies to a set of simultaneous algebraic equations. These equations
are derived in the following manner. Consider the [§F+l(j) - §F(j)] term
in equation (2.6). Since all of the plant states are available at each
discrete time interval, this term is equal to zero. Then, by adjoining
the unknown parameter vector to the plant states over an identification

cycle as was done in Chapter II, equations (2.6), (2.7) can be rewritten

as
N
) = Fod Lt +w (W), (3.7)
where
]
£N+l 0 : %‘E
N+1 N —-l
q9 = ) F(k) = — N|
Ry —+
= 01 I
and _
£ () ,g_N(k)] - gN(k)T
—_— ba N
W (k) = .
9

As before, the solution of (3.7), subject to the appropriate boundary
conditions, solves the identification problem. The solution is given by

an equation similar to (2.10), and is
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1

kg k) v R, (3.8)

N+1
g k)=
N+
where again ¢ 1(k,ko) represents the homogeneocus solution and 2F+1(k)
represents the particular solution.
For this case, identification can be accomplished by considering
only one discrete time interval. In considering such an interval, the

homogeneous solution equation, (2.11), simplifies to

¢N+l N+1 (k

N
(egtloky) = Fr (k)@ (kg k) = F (k) (3.9)
and the particular solution equation, (2.12), also simplifies to

PV ) = B R ) + (k) = W (k) (3.10)

Using (3.9) and (3.10) in (3.8), the solution becomes

N+1 N+l N+1 N+1
g (k1) = @7 (kptl kg (kg) + o (kgHl),
or
Sk 1) = Pk g™ Hlk) +w (k). (3.11)
0 0 0 0
The term gF+l(kO) above is obtained from the boundary conditions
by solving

< G @I Gk ) + 2] > = by (), (3.12)
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where 1 = ko,k0+1; hj = 1,2,...,n; and bhj(i) denotes a boundary condi-
tion. For i = ko, equation (3.12) yields no new information, since the
boundary conditions at ko have already been incorporated into the equa-
. N+l N B
tions by setting x (ko) =X (ko) = E?(ko)’ where Ep(ko) are the output
plant states at ko. However, for i = k0+1, equation (3.12) yields a very
valuable result; namely, that the [-] term is the same as the argument of
difference equation (3.11). Thus, with bhj(k0+1) equal to the plant
states at time (k0+l), the vector ghj(k0+1) chosen to yield those equa-
tions of (3.12) which are equal to the plant outputs, and with the defini-
. N N+1 N . . .
tions of F (ko), q (kO)’ and w (ko) previously given, equation (3.12)

with i = k.,+1 simplifies to

0
£ £
= (k) x=x (k)
a2 (0 a=a’ (k)
or
£ £
_2;2. k) = x (k) +1) + g_g‘ EN(RO) i E[EN(ko)sEN(kO)] C Ga
=z (0 = (k)
=2 () a=a’ (k)
Equation (3.13) is of the form
¢ a" k) = a0 (3.14)

which, provided GN(k) is nonsingular, yields for the unknown parameter

vector

Al = [l w). (3.15)
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Since a is an m-dimension vector while x is an n-dimension vector,
the ability to solve (3.15) for 5F+l(k) depends not only on whether the
rank of GN(k) is m, but also on the dimension of the plant states. If
n = m and the rank of GN(k) is m, GN(k) will be nonsingular and no diffi-
culty will be encountered in solving equation (3.15). If n > m, the sys-
tem of equations represented by equation (3.14) will, in general, contain
(n-m) dependent equations. This system must be reduced to minimal order
(rank = m) in order for equation (3.15) to be solved. This is accomplished
by considering just the first m independent equations available. 1If
n < m, the system of equations represented by (3.14) will not contain
enough independent equations to be solved. However, since §F+l(k+1) =
§F+1(k) and Eﬁ(k0+1) = §F+1(k0+1) = X, k0+1), additional independent
equations are made available by adjoining the equations obtained from the
next discrete time period. Additional equations must be generated in
this manner until m independent equations have been obtained, thus allow-
ing equation (3.15) to be solved in a straightforward manner.

To provide some insight into the amount of computational time re-
quired to implement the identification and control scheme, and hence a
ballpark estimate of the allowable system bandwidth, the analysis of the
Appendix is presented. In the Appendix, the computation time required to
implement one identification cycle is obtained as an explicit function of
the dimensions of the system's state, unknown parameter, and control vec-
tors. As an example, a third-order system is considered with three un-
known parameters and a second-order control. It is shown that a computa-

tion time of approximately 0.08 sec is required for the implementatione



25

a figure compatible with the on-line implementation claim, This also
suggests that, for this example, the system Nyquist rate is approximately
6.25 radians/sec. When only a scalar control is used, the computation

time is cut to 0.047 sec.

Convergence Analysis

In this section, it will be demonstrated that, except for singular
or ill-conditioned solution, the identification algorithm converges to
the correct solution in one iteration. For a general system configura-
tion, with unknown parameters possible in any or all elements of the sys-
tem matrix, a general convergence proof is not possible. However, for a
specific configuration with a priori assigned locations of unknown param-
eters, a convergence proof can be given. The following development exem-
plifies establishment of convergence for a specific system.

The system chosen features the case where n < m, so that additional
equations must be adjoined from the next discrete time period in order to
solve the identification algorithm. The true plant parameters and states
are indicated with a subscript P; whereas the superscript indicates the
iteration number. Standard matrix element row-column notation is also
employed. Consider the following second order system model that contains,

N N
as unknown parameters, the elements allN(k)’ al, (k), and 2y, k),

x," () = a (K%, (0 + alzN(k)xPZ(k) + b uk) (3.16)
1

sz(k+1) - a21N(k)xP1(k) + apzz(k)xpz(k) + byu(k).
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Since m = 3, one more equation must be obtained from the next time period

and is, since gy(k+1) =

N N N
X (k+2) = a1 (k)xpl(k+1) +a, (k)xPZ(k+l) + blu(k+1).

a (k)

(3.17)

Using (3.16) and (3.17) in the identification algorithm (3.13), the fol-

lowing is obtained

where

1
xPz(kO) 0 a; (k)
0 x, (k) alzl(ko)
1
1
xPz(k0+1) 0 a, (k)
a (kD)x, (k) + a {(k )x_ (k) + b ulk.)
By, 07RO P, 07 P, 0 1Yo
ag (kJ)x, (k) + a; (k.)x; (k) + bu(k,)
P, 07 P "0 P,, 0" 7P, 0 24%g
a kDx, (k.+1) + a (k. Yx_ (k.+1) + b ,u(k.+1)
IS A P, 077P, 0 1"
= T
xpl(ko) xpz(ko) 0 ay; (ky)
0
0 0 xpl(ko) aj, (k)
0
xPl(k0+1) xPz(kO+1) a5, (ko)
J O dx. (k) + a, 2k )x, (k) + b ulk.)
211 Yo’*p Yo 12 “0”p, "0 1'%

1

0 0
41 (ko)xPl(ko) +a,yy (kgdxg

(kO) + b2u(k0)

2

allo(ko)xPl(k0+l) + alZO(kO)xP

2

(ko+ 1) + blu (k0+ 1)

(3.18)

J
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x. (k) x_ (k) 0
P1 P2
= 0 0 xP (k)
- xsz(k) 1
i Xp (l+1) Xp {lt+1) 0
a=a (k) L 1 2

By combining terms on the right hand side of the above equation, and pre-

multiplying both sides by [bﬁ/bg]-l, equation (3.18) becomes

alll(ko) allo(ko)
alzl(ko) = alzo(ko) + (3.19)
‘5‘211(ko) a210(k0)
- _ - _
1 L]
2
xpl(ko)xpz(ko)xPl(ko+1) - [xpl(ko)] xPZ(k0+l)
-xPl(kO)xPZ(k0+1) 0 xPI(kO)xpz(ko)
2
xPl (ko)xP2 (ky+1) 0 - [xP1 (k) 1 .
~Xp (k)xP (k0+1)
1 2
0 0
+xP2(k0)xP1(k0+1) _{
e
[ 0 0 ]
0
0 .
{aPll(kO) ; allo(ko)}xpl(k0+1) + {aplz(ko) - a, (ko)}xpz(ko+l)
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Performing the indicated multiplication and combining terms yields the

desired results; namely,

B 1 - » =
211 (ko) apll(ko)
a121(1<0> = | a z(ko) (3.20)
1
1
2y, (kg) LaPZI(kO) .

It should be noted that the same procedure--i.e., writing the model
equations as in equation (3.16), finding b;/bg, then using both in the
identification equation (3.13)--can be used to show one step convergence

for other specific system configurationms.

Singular and I1l1-Conditioned Systems

Analysis of the example used in the last section shows that, if

the term

©x, (Ox, (k+l) - [x (K)1%. (k+l) (3.21)
R P By *P,

(which is the value of the determinant of »f/da) is equal to zero, then
the matrix bi/bg, hence GN(k) in (3.14), is singular and equation (3.14)
cannot be sclved to find §N+1(k).

If the value of (3.21) is near zero, the matrix is considered to
be ill-conditioned. Ill-conditioning occ¢urs when the rows or columns of
{(3.14) are nearly dependent. Trouble is encountered when working with

ill-conditioned equations in that small errors in the value of the ele-

ments in the coefficient matrix GN(k), or in the elements of the vector
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gﬁ(k), can cause large errors in the solution vector. These small errors
can be introduced in a number of ways. For example, the value of the
elements of the coefficient matrix are usually known only to a certain
degree of accuracy, and this tolerance may not be small enough to prevent
large errors in the solution. Even if known exactly, many numbers cannot
be correctly represented when stored in a computer. Other sgurces of
error include roundeoff errors produced in the process of forming equation
(3.14) and inaccuracies and noise encountered in the measuring of the
plant states.

Since difficulties are encountered in applying the identification
algorithm to both singular and ill-conditioned sets of equations, con-
sideration must be given to methods that circumvent these types of prob-
lems. Two such methods are discussed. The method implemented throughout
this thesis is based on an approach in which an attempt is made to salve
the set of equations represented by (3.14) using a Gauss-Jordan elimina-
tion scheme with maximal pivoting by columns. However, before the com-
plete solution is found, the value of the determinant of G is calculated.
Since the Gauss-Jordan scheme diagonalizes the left hand side of equation
(3.14), the value of the determinant is merely the product of the trans-
formed diagonal g elements.

If the matrix G is singular (which implies that at least two equa-
tions of (3.14) are linearly dependent) then the transformed diagonal g
elements of all but one of the dependent equations will be zero. Like-
wise, if the matrix G is nearly singular (ill-conditioned) the transformed
diagonal g elements of all but one of the nearly dependent equations will

be close to zero. A value "close to zero'" is somewhat arbitrary. A
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general rule of thumb is the following: if the value of the coefficient
elements can be measured accurately to { decimal places, then * 10-5 is
considered sufficiently close to zero [41]. A value of the matrix deter-
minant of less than * 10_4 is used in this thesis to indicate an ill-
conditioned matrix. Thus, by checking the value of the transformed di-
agonal g elements, a determination is made not only whether the matrix is
singular or ill-conditioned, but also which equations are causing the
trouble. Once detected, the dependent or nearly dependent equations are
removed from the set (3.14). Since §N+l(k+l) = §F+l(k), new equations
from the next discrete time period are added to take the place of those
removed. The determinant of the new set is then tested as before. This
process 1s continued until a well-conditioned matrix GN(k) is found.

This method is not without some drawbacks. For one, adding equa-

+
N l(k) increases the time required for

tions by enforcing EN+1(k+l) =a
one identification period. This, in effect, lowers the allowable time
variations of those unknown parameters that are to be identified. 1In
addition, there is a small but finite probability that a set of well-
conditioned equations cannot be found over the entire length of time that
the system is running. In this case identification of the unknown param-
eters would never be accomplished. However, in all the simulations used
for this thesis, this condition was never encountered.

A second method that can be used to circumvent the singular or
ill-conditioned matrix problem is to use a generalized inverse to obtain
[GN(k)]_l. There have been a number of excellent articles written [42,
43,44] which discuss the use of a generalized inverse in solving linear

sets of equations, so only a few brief comments will be made here concern-

ing its use.
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Basically, the generalized inverse G+ will provide a least-squares
fit solution to (3.14) when the rank of G is not m. 1In other words,
whether G is rectangular, ill-conditioned, or singular, a = G+g will have
minimum norm among those a that minimize ||Ga - g”z. Furthermore, G = ¢!
when the rank is m. If the designer can tolerate a least-squares solution,
this method might be preferable over the other because it would allow a
greater time variation in the unknown parameters to be identified.

This suggests that the two methods may be combined to provide a
solution for which there is a trade-off of accuracy in identifying the
unknown parameters versus the allowable time variations of these param-
eters, Equations can be obtained over an identification interval whose
maximum length is dictated by parameter variation considerations. If
sufficient independent equations can be cbtained, then [GN(k)]-1 can be
found and the exact values of a determined. However, if G is still singu-
lar or ill-conditioned, then there are more data (equations) for which a
least-squares solution can be obtained, hence a more accurate answer.

Of course, the trade-off must be weighed by the designer for specific

system specifications.

Numerical Examples

In this section two of a number of examples simulated to verify
the énalytical results are presented. One simulates the case for n = m.
The other simulates the case m > n, so that additional equations must be
obtained in order to solve the identification algorithm. 1In addition,
for the latter example, the initial conditions and parameter values are

chosen so that the initial G matrix is singular. This tests the algor-
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ithm's ability to handle singular matrices.
Example I:
This example simulates the case where n = m = 2., Consider the

following model equation

Xl(j+1) _ —5111 1 rxl(j) . 1.0 (' 429
xz(j+l) LO a5, _Xz(j) 0.5 uliy, (3.22)
—xP 0] [ 2.0
xPZ(O) -1 1.0|°

where the constant parameters all and a,, are unknown. The true plant

parameters are a = 0.8 and a = 0.5. A closed-loop control is de-
11 22

sired for the above model which minimizes the following cost functional

f
1 0 2
-1 o £G) + oC (D] (3.23)
=0 1
Initial estimates of the unknown parameters are assumed to be allo = 0.9

0 . ) . .
and ayy = 0.3. These estimates are used to calculate the Riccati gain,

equation (3.5}, which in turn is used to find u(0). Once the control is

known, the identification algorithm is used to solve for alll and 3221.

As expected, the identification algorithm yields

11 Pll

22 P22
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in just one iteration. The Riccati equation is then reiterated with the
correct parameter values from which the optimum conmtrol is found for the
duration of the system run time.

Example TT1:

For this example n = 2 and m = 3. The model equations are

x, (j+1 a a %, (] 1.0
1(3' PP ESRSl u(i), (3.24)
x2(3+1) a, 0.5 XZ(J) 0.5
xPl(O) 2.0
x, @] |[1.0]°
where now the constant parameters all’ a5 and a2l are unknown. Let
a, = 0.8, a, = 1.0, and a, = 0.4, From equation (3.19), it can be
11 12 21

ascertained that the ipnitial G matrix will be singular. Therefore, this
example tests the algorithm's ability to handle singular (and ill-
conditioned) matrices. Again, a closed-lcop control is desired to mini-

mize the cost functional (3.23). Initial unknown parameter estimates are

0

12 = 1.2, and a 0 = 0.3. These estimates

21

are used to find the Riccati gain and to find not only u{0) but also

0
assumed to be a;, = 0.9, a
u(l). This is necessary because two discrete time periods are required
-1 .
to obtain sufficient equations to solve for G . As expected, a singular
condition is encountered in attempting to solve the identification algor-
ithm as initially structured. The algorithm then replaces the boundary

condition x_, (2) with X (2) and yields
P 2




1 _
al1 = aP = 0.8
1 11
a = a = 1.0
121 P12
a = a = 0.4
21 P21

in one iteration. The Riccati equation is then reiterated, the closed-
loop control found, and the identification algorithm resclved to detect
possible parameter changes in the duration of the system run. For these
examples constant parameter values are assumed. Later examples test the

algorithm's capability of tracking varying parameters.

Conclusions

It has been shown that, for the linear regulator system in which
all of the plant states are available, the identification algorithm of
Chapter II simplifies to a set of simultaneous equations. Except for
singular or ill-conditioned cases, this set of equations converges to the
correct answer in one iteration. Two methods of handling the singular
or ill-conditioned problem are discussed with their associated advantages
and disadvantages. Computer simulated examples have been worked to

verify the analytical results.
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CHAPTER IV

THE STATE REGULATOR SYSTEM WITH INCOMPLETE

PLANT STATE KNOWLEDGE

Introduction

In the previous chapter the state regulator problem was examined
for those systems for which all of the plant states are available as
outputs. This chapter explores this problem when only some of the plant
states are available., Conditions will be derived that ensure convergence
of the identification algorithm to the proper solution. It will also be
shown that, when convergence occurs, it occurs in a quadratic manner. As
in Chapter III, computer simulated examples are included to verify the

analytical results.

Mathematical Development

Let the linear system be represented again by equation (3.1).
Now, however, since all of the plant states are not available as outputs,

the output measurement vector must be written as

y(3) = Hx(j). (4.1)

The desire is still to derive an optimum closed-loop control which will
minimize the quadratic cost functional of equation (3.3). A control u(j)
of the form of equation (3.4) is the solution, except now estimates of the
unavailable plant states must be used in x(j). This implies that the

identification algorithm must identify not only the unknown parameters,
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but also the unavailable plant states.

Unfortunately, for this case the identification algorithm usually
does not simplify to a set of linear algebraic equations as it does when
all the plant states are available. The reason is because a sufficient
number of boundary conditions is not available to solve the identifica-
tion algorithm by considering just one discrete time interval, Thus,
the method of solution outlined in Chapter II must be followed.

Since all of the plant states are not available as outputs, the
question of system observability arises. For a system to be observable,
it must be possible to determine the state of an unforced system from
the knowledge of the output of the system over some time interval, Since
a knowledge of the states of the system is necessary if a closed-loop
control is desired and alsp if identification is to be accomplished, the
systems considered in this thesis must be observable. However, since the
control interval for any realistic system is never infinite, the systems
considered in this thesis do not have to be controllable.

With the aid of the functional flow diagram of Figure 3, a general
description of the system operation will now be given. Initially, esti-
mates of the unknown parameters and unavailable plant states are used by
the controller to compute the closed-loop control. The system is con-
trolled in this manner while data, consisting of the available plant out-
puts, are collected to determine boundary conditions for the identifica-
tion algorithm. Once sufficient boundary conditions are accumulated, the
identification algorithm is iterated until it converges to the correct

solution of the multiple point boundary-value identification problem.
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The newly identified parameter and plant state values are then used by
the controller to generate an updated optimum closed-loop control for the
next identification period. This process is successively repeated in
order to track time varying parameters. In this manner, the system con-
trol is always based on the latest identified parameter and plant state
values.

A more detailed discussion will now be given concerning how the
identification algorithm is implemented for the computer simulated ex-
amples used in this thesis. Central to the discussion will be the flow
diagram of Figure 4. This diagram shows the implementation of the iden-
tification algorithm for the state regulator problem in which all of the
plant states are not available as system outputs. The description which
follows uses the nomenclature of the figure and the identification al-
gorithm equations expressed in Chapter II.

Basically, the identification algorithm represents a transforma-
tion of the nonlinear multiple point boundary-value identification prob-
lem into a more readily solwvable linear, nonstationary boundary-value
problem. This results from expanding equation (2.5) in a Taylor Series
expansion and ignoring the higher order terms. In fact, from equation
(2.10), the solution for gy+l(k) is just an initial condition equation

)

N+1
which is easily solved once 5N+1(k0) is known. The vector 2z (k0
obtained from solving the boundary condition equation (2.13). This

equation is of the form

WMy = b, 4.2)
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Flow Diagram Nomenclature

the n-dimension state vector

the m-dimension unknown parameter vector
final system time

number of unavailable plant states

true plant A matrix

the unknown parameter vector a

known plant states at time zero

the input vector b

estimated plant states at time zero

integer variable representing the iteration number for each
identification cycle

integer variable indicating each discrete period of the
identification cycle

integer variable indicating the number of simultaneous
equations collected

integer constant representing the number of plant states
available

integer constant representing the number of simultaneous
equations needed

sum of n plus m

integer constant representing the number of discrete time
periods per identification cycle

solution vector at the Nth iteration, composed of ALPHA and
XPE

th | .
solution vector at the (N+1) iteration

subroutine which updates the ALPHA estimates in A and computes
AT, A"]‘, [A-].]T

Figure 4. (Continued)
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homogeneocus solution ¢N(k,k0)

particular solution RN(k)

subroutine to calculate the Riccati gain
stores X(I) over time

equals bﬁ/bg N
equals df/dx N
model state wvariables

plant state variahles

same terms as defined in (2.9)

matrix representing the simultanecus equation of (2.13)

real number representing maximum difference in the solution
vectors allowable to indicate convergence

Figure 4. {Concluded)
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which, provided WN+1 is of proper ramk, can be solved as discussed in

Chapter III to give

_Z_N+1(k0) = 1L, . 3)

The formulation and solution of equation (4.2) are thus the crux
of the implementation of the identification algorithm, This equation con-
tains NSE (representing the m-dimensional unknown parameter vector plus
the ups-dimensional unavéilable plant state vector) linearly independent
simultaneous equations. Since only up to XPA (plant states available)

boundary conditions are available per each discrete time period, the mini-

mum length of one identification cycle is

ns = [ 2= (4.4)
discrete time periods, where NS means the number of steps and [-] means
the next highest integer. As pointed out in Chapter III, the matrix
WN+1 might be singular or ill-conditioned, so additional equations must
be obtained--possibly requiring additional discrete time periods to be
added which lengthens the identification cycle.

To obtain the set of simultaneous equations only those values of
¢N+1(k,k } and EN+1(k) necessary to compute gﬁ+l(k0) from (2.13) are re-
tained in memory until the evaluation is completed. Once §F+l(k0) is

calculated, the (N+1)th trajectory, EF

+1(k), is generated from equation
{2.9). This trajectory will satisfy the boundary conditions but will not

in general satisfy (2.1), since a linearization assumption is used in

N
deriving (2.9). However, §§+1(k) is used for evaluating D (k) and Ey(k)
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[hence ¢N+l(k,ko) and EF+1(k)] for the next iteration.

By using this iterative procedure, the sequence Ey(k), under proper
conditions, converges to the correct solution for this multiple point
boundary value problem. Convergence is checked by examining the rate of

N+1

(k)

change of the initial condition Es(ko)‘ If the difference between z; 0
and ziN(kO) is less than ERROR (10-4 for the simulations in this thesis)
for all i, then the process is considered to have converged. In the next
section it will be shown that, if this procedure converges, then the con-
vergence occurs in a gquadratic manner. (Quadratic convergence is defined
to exist when the error of any one iteration is proportional to the square
of the error of the previous iteration.) It will also be shown that there

is a range of initial estimates of the unknown parameter and state variable

values for which convergence is ensured.

Convergence Analysis

In Chapter II it was proven that there exists a unique scolution to
the problem of solving nonlinear plant equations subject to split boundary
conditions. In this section it will be shown that the identification
algorithm, equation (2.9), under proper conditions, converges to this
unique solution. It will also be shown that, when convergence occurs,
it occurs in a quadratic manner. This analysis is presented in this
chapter because, even though the state regulator equations are linear in
X, the identification problem is nonlinear. The nonlinearity arises be-
cause unknowns of the form aiijjN appear in the model equations.

First, consider the two equations comprising the identification

algorithm [equations (2.5) and (2.7)]




46

ey = £ 0,8 ) ,u) ], (4.5)

and

ey = a™ . (4.6)

As was done in Chapter II, let

N+1

|

N+1

N+1| ° (4.7

(13

I»

Then equations (4.5) and (4.6) can be combined into the following equation
ey = gl e u 1. (4.8)

Expanding (4.8) in a Taylor Series about the Nth iteration, assuming the

control u(k) is known, the following is obtained

N+l

Get1) = glz () u@)] + 7 ¢ [2 @ - 2 W], 4.9)
z (k)
where J N is the Jacobian matrix defined by
z (k)
_oglzNw) ]

= (4.10)
N N

z (k) 2z (k)
It is obvious that equation (4.9) represents another way of expressing
the identification algorithm of equation (2.9). Consider the Nth itera-

tion of (4.9),



47

gN(kH) = g[_Z;N'l(k) u()] + 3 -[EN(k) - EN'I(k)]. (4.11)
z (k)
Subtracting (4.11) from (4.9),
2 1) - 2N (kel) = alz ) ,ul] - glzh T ,u)] (4.12)
e B P I A (S VIS IR Pt (S U Y B
z (k) z (k)

Now, because of the restrictions i) - iii)} listed in Chapter II that the
plant must satisfy, Taylor's formula with remainder can be applied to part

*
of (4.12) as

gl2(0,u0] - gl ] -3 20 - 2] 4.13)

z (k)
n+Hm ng
=% Z g.[EN(k) - EN'I(k)]T 21 [g_N(k) - EN_I(k)],
1
i=1 02 5

where the e, are the natural basis vector (for example, g§==[0 10 ...0D,

and 8§ lies between Ey(k) and EN_l(k). Using (4.13) in (4.12), the follow-

ing equation is obtained

2y - ) =3y L2 - 2w (4.14)
z (k)
n+m b2g
vz y e 200 - 27l (=] 12N - 2wl
i=1 0z |,

*
This formula can be found in Athans [45].



One form of solution of (4.14) is

o - Mo - Z {1y 1Mo - S

z (r)
n+m ng

+ s .Zl e[z - 2 )’ bzzl N - o)
1= —_

The next step is to take the norm of both sides of equation {4.15).

fine the norm in the following manner

[ N+1 N+1

127 - 2 )] = max
k

Using this definition, the following notation is used

i

The norm of both sides of (4.153) then becomes

N+1

12% 00 - ool = k1% - Aol

J
2 () 2 (k)

L 20020 - el 0+ o - 2Ry’
1

+ o0 . .4 (||EN(k) - gN'lck)llR )2]},
n+m

where

® -2 @I - Nl
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(4.15)

De -

(4.16)

(4.17)

(4.18)
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The matrix HEF(k) - EN_l(k)HR is just a scalar constant times
N N-1 t
lz"(k) - 2= “(k)||, or
N N-1 N -
2" - 2ol = v,z - 2. 4.19)
i

Taking the largest ¢i for the Ri above, and letting

125 0 - 2Nl = 1270 - 2@, equation (4.18) be-
J J
EN (k) EN (k)
comes
12500 - ol <k v 1240 - ) (4. 20)

+ 5 @y A2 - e’

Solving (4.20) for |2V (k) - 2|,

% (n+m) k¢‘2

12700 - 210§~ 1120 - 2 Haoll” (4.21)

=K ||z ) - 2 )l

Equation (4.21) shows that convergence is gquadratic if there is conver-
gence at all., This is because the error at the (N+1)th iteration is pro-

th , . .
portional to the square of the error of the N iteration. Rewrite equa-
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tion (4.21) as

12 a0 - 2Nl = kN - 2N ) ?

12 ) - 2 ool s k12w - 2N a2

2 1 1 1]
12°() - 2 @l < K1z (k) - 20l
By the use of simple substitutions,

12410 - 2l < k12N - 2ol

< kKK 2V - 22w s ..

the following inequality can be obtained:

N N
1290 - 2Nl = kK Tgzta - 2Cao)? ) (4.22)

N
= [k 2 () - Eo(k)ll]yK.

If the quantity [K Hzl(k) - zo(k)H] < 1, the right hand side of (4.22)
will approach zero as N increases. Consequently, EN(k) will approach a

function z(k) and (4.9) is reduced to
z2(k+1) = glz () ,u()], (4.23)

the solution of which satisfies the original equation (2.14).
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Observe from equation (4.21) that, for a given value of k (k here
is representative of the number of discrete time intervals per identifica-
tion cycle), an initial approximation Ep(k) can theoretically be chosen

so that [K Hgl(k) - Ep(k)H] is less than one and convergence is assured.

Numerical Examples

In order to verify the analytical results presented in this
chapter, two computer simulated examples are presented. The first example
illustrates the fact that the system does not have to be contrecllable in
order to apply the identification algorithm. In the second, initial con-
dition estimates are wvaried to show that there is a definite range of
initial values for which the identification algorithm will converge to
the correct solution.

Example TIII:

Consider the following model equations

x. (j+1) a 1 x. () 1

lN - 1N + u(j), (4.24)
X, (+1) 0 aso || *; &) 1]
Y@ =X @, xp ©) = 2.0,

where the parameters all’ a22, and the state xz(j) are unknowns. This
set of equations represents an uncontrollable system. The desire is to
identify these unknown values and use them to calculate a closed-loop

control which minimizes the following cost functional



;=1 Ef
)
j=0

{x (J)

0

x(J) + ¥ (D},

1
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(4.25)

From the discussion of this chapter, it is expected that identification

can be accomplished,

Let the true values of the unknowns be a

I

x_ (0)
Py

x20(0)

I

1.0. Using initial estimates of a

1

0
1

Pll

= 0.9,

a = 0.4,

22

and

1.4, Table 1 shows the iterative values of the unknown quanti-

ties. As expected, the unknown quantities converge to the correct wvalues

in just a few iterations.

Table 1. Iterative Values of the Unknown Quantities

of Example III

, N N N

Iteration a4 a5, X, (0)

Initial 0.90000 0.40000 1.40000

1 0.93939 0.98254 0.72121

2 0.79444 0.29952 1.01110

3 0.78902 0.444179 1.02194

4 0.79981 0.49816 1.00037

5 0.79999 0.49999 1.00000

Real Value 0.80000 0.50000 1.00000
Example IV:

In the convergence

definite range of initial

analysis section, it was shown that there is a

estimates of the unknown quantities for which

the identification algorithm will converge.

To illustrate this fact,
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consider the following observable and controllable model

x, (3+1) a 1 x, () 1.0

N, o IN N u(i), (4.26)
Xy (i+1) 0 a | | %, (1) 0.5
y(3) = x,(3), xPl(O) = 2.0.

The cost functional of equation (4.25) is again used. Table 2 shows the

iterative values of the unknown quantities for two sets of initial esti-

0 0

mates. In Table 2a, when initial estimates of a = 0.9, a5, = 0.4, and

11

0
X, (0) = 1.4 are used, it is seen that the unknowns converge quadratically

to the correct values of a = 0.8, a

P p = 0.5, and X5 (0) = 1.0. How-

11 22 2
0

ever, in Table 2b, where the initial estimates are allo = 1.0, 2,9 = 0.3,
and xzo(O) = 1.4 convergence does not occur. Apparently, in Table 2b,

the increase in the initial estimates of a, and a,, away from the true
values is enough so that the range of initial estimates necessary to en-
sure convergence is exceeded. Unfortunately, for an on-line system,

there is no rigorous mathematical procedure for generating initial esti-
mates that ensure convergence. The best estimates can probably be ob-
tained from an in-depth knowledge of the system and its parameters. How-
ever, if the system can be run on a trial basis, or if the system can be

accurately simulated, then there exist numerous techmiques of obtaining

better initial estimates.




Table 2. Iterative Values of the Unknown Quantities
of Example IV
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. N N N
Iteration all 322 Xy ()]
Initial 0.90000 0.40000 1.40000
1 0.86810 0.47401 0.86379
2 0.74798 0.51485 1.10403
3 0.79360 0.50190 1.01279
4 0.79986 0.50003 1.00026
5 0.80000 0.49999 0.,99999
Real Value 0.80000 0.50000 1.00000

(a)

. N N N
Iteration ag 259 X, (0)
Initial 1.00000 0.30000 1.40000
1 0.93136 0.43902 0.73726
2 1.17463 0.39279 0.25073
3 1.23192 0.28413 0.35215
4 1.31059 0.20376 0.51629
5 1.19242 0.29325 0.40357
Real Value 0.80000 0.50000 1.00000

(b)
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Conclusions

In this chapter the implementation of the identification algorithm
of Chapter II to linear regulator systems in which only some of the plant
states are available has been examined. These systems must be observable,
but need not be controllable. Analytically it has been shown that there
is a range of initial unknown parameter and state variable estimates for
which the identification algorithm converges. This range is a function,
among other things, of the order of the system, the number of unknown
parameters that must be identified, and the length of the identification
period required, and is fixed once the system model equations are estab-
lished. It was also shown that, when convergence cccurs, it occurs in a
quadratic manner. Computer simulated examples have been included which

verified the analytical results.
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CHAPTER V

APPLICATION OF THE IDENTIFICATION ALGORITHM TO A LINEAR

PERTURBATION CONTROL SCHEME

Introduction

For many systems a closed-loop control of the form u(j) =
Y[E(j),g(j)] cannot be found. Yet, some form of feedback is usually
desirable. One solution to this problem is the use of a perturbation
control scheme. For this scheme an optimal (nominal) open-loop control
is found which minimizes some desired performance criterion. A feedback
control is then developed about the optimal trajectory by minimizing a
second cost function which is quadratic in deviation from the nominal
trajectory and control, This chapter examines the use of the perturbation
control scheme in conjunction with the identification algorithm of Chap-
ter II. Only the mathematical development will be given in this chapter,
while a practical example utilizing this scheme is presented in Chapter

VI.

Mathematical Development

There are many systems for which the designer knows the desired
nominal trajectory he would like the system to follow. For example, the
trajectory might result from physical constraints imposed by the problem,
such as the critical re-entry path followed by spacecraft vehicles. Or,

more commonly, the trajectory is a result of some optimal control problem
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in which nominal parameter values have been assumed. To be more specific,
if nominal parameter (and unknown state) values are assumed, equation

{(2.1) can be rewritten as

x(3+1) = £[x(@),u(D]. (5.1)

The optimal control problem is then to find a nominal input, uo(j), such

that the following cost functional is minimized

jgm1

3, =% ) L)) (5.2)
j=0

In either case, there are systems in which the designer desired to mini-
mize the perturbations about the nominal trajectory. One method of ac-
complishing this minimization is to use a linear perturbation control
scheme.

There are several excellent articles written [28,45] which describe
the linear perturbation control scheme. Basically, this scheme is just a
feedback contreol, developed about the nominal trajectory by minimizing a
second cost functional, JZ’ which is quadratic in deviation from the
nominal trajectory and control. The nominal trajectory and control are

related by

%, (3+1) = £[x, (1) uy (D] (5.3)

By considering equations (5.1) and (5.3), the deviation of the state and

control variables about the nominal trajectories are expressed as
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ax(j) = z(3) - 2,() (5.4)

and

du(j) = u(j) - ug (3) - (5.5)

The linearized perturbation equation can thus be represented as

8x(3+1) = A (DAx() + by(§au(i), (5.6)
where
£
Ay == (5.7
=1 %, (5
ug (3

is an n X n time-varying matrix which is obtained by evaluating the ele-
ments of the Jacobian matrix bﬁ/bﬁ along the known (precomputed) time

functions 50(3) and UO(J), and

by () == (5.8)
zo(j)
ug (3)

is an n-dimensional time-varying wvector which is obtained by evaluating
bé/bu along the same nominal trajectory and control. The perturbation
control problem is to find a Au(j), using the constraint equation (5.6),
such that the quadratic cost functiomnal

1

jf-
J =% Zo [AzT(j)QOAg(j) + Auz(j)] (5.9)
J_
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is minimized. This problem is similar to the problem considered in

Chapter III, so the solution has the same form as equation (3.4), and is
Au(j) = - b T(j)[A'lcj)JT[P (1 - Q] ax(®) (5.10)
=0 0 otd) - G 2xld), '

where

Ay (1), (G+1)bby By (+1)4, (3)

P30 = @ + Ay (DB (G+DALG) - ,(5.11)

T .
1 + EO PO(J+1)§0

with Po(jp) = [o].

The design of the closed-locp controller is complete when Ao(j)
and Qo(j) are evaluated about the nominal trajectories, Q0 is selected,
and the associated Riccati equation, equation (5.11), is solved. The
nominal trajectory, control, and time-varying gains are stored and
used, on-line, to complete the perturbation controller design.

The main practical disadvantage of the above scheme is that, for
many systems, all of the plant states are not available as system out-
puts, so Ax(j) of equation (5.4) cannot be calculated. Thus, some type
of state estimation scheme is required for these systems in order for the
perturbation feedback control to be implemented.

If the system contains unknown parameters that must be identified,
then additional difficulties will be encountered in applying most pertur-
bation control schemes. The trouble occurs because the time-varying ma-
trix, Ao(j), and the time-varying vector, Qo(j), will, in most instances,
contain the unknown parameters as elements. Most perturbation control

schemes circumvent this problem by evaluating AU(j) and PO(j) using only
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the nominally assumed parameter values, This scheme is clearly suboptimal
if the actual parameter values differ from the nominally assumed ones.

The optimum linear perturbaticn centrol scheme would track the varying
parameter values, and use the latest estimates in evaluating, on-line,
AO(j) and Ro(j). The updated values of Ao(j) and Qo(j) would then be
used to recompute the feedback control.

Thus, the parameter and state identification algorithm developed
in Chapter II may be used in conjunction with the perturbation control.
Figure 5 shows a block diagram of the composite system. The parameter
and state identification portion of the system functions as described in
Chapter IV. The updated parameter values, a(j), are fed to the controller
where they are used to reevaluate Ao(j) and Eo(j) about the nominal tra-
jectories. Then Ao(j) and Qo(j) are used in recomputing the Riccati

equation, and hence, the time-varying feedback gain
r(§) = - by (NI, IR G) - Q) (5.12)
3 bytitay G ol %

that will be used over the next identification interval. Thus, the feed-
back gain used over each identification cycle is computed from the latest
identified parameter values.

Meanwhile, the state perturbation vector, Ax(j), is calculated
by subtracting the stored nominal state vector, §O(j), from the estimated

state vector, %(j). The perturbation control is then merely

au(j) = r(iaxd). (5.13)




x(J) y(i)
—» Plant :D H $
u(j)
Identification x(3)
Algorithm
Nominal + + Nomaziiaiizte
Control —-b® I v
Storage é(j) T orage
{_
au(j) ax(j)
Controller

uo(j) T 1? _:EO(J)

Figure 5. Combined Identifier-Linear Perturbation Control System Block Diagram

19
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This control, added to the stored nominal control, uo(j), provides the
updated input control, u(j), to the plant. For each identification cycle
the above process is repeated.

The linear perturbation control scheme described above is still not
optimal. This occurs because the exact parameter and state values are
only available at the end of each identification interval., In the interim,
the mathematical model portion of the identification algorithm is used to
provide state estimates based on the latest identified values. Although
the proposed perturbation control scheme is suboptimal, it is obvious that
it provides a better feedback controller than if just the nominally as-
sumed parameter values are used.

The disadvantage of the proposed scheme is, of course, that the
time-varying feedback gain must be recomputed for each identification
cycle. Thus, the designer is faced with a trade-off between accuracy in
tracking the nominal trajectory versus the amount of computing time avail-

able to obtain the desired accuracy.

Conclusions
In this chapter a linear perturbation control scheme has been
developed for systems in which all of the plant states are not available
as system outputs. A distinct feature of this scheme is that all unknown
parameter values are continuously identified, with the latest values being
used in the calculation of the optimal feedback control. A practical ex-

ample utilizing this scheme is developed in the next chapter.
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CHAPTER VI

PERTURBATION CONTROL OF THE STARTUP OF A THERMAL NUCLEAR REACTOR

Introduction

In this chapter the linear perturbation control scheme developed
in the last chapter will be applied to the control of the startup of a
thermal nuclear reactor which has no temperature feedback. The system
is modeled by a set of kinetic equations in which disturbances due to
coolant flow through the core is represented as a random parameter vari-
ation. The identification algorithm is used to track the value of these
variations in order to effect an optimum linear perturbation contreol of

the deviations about the nominal trajectories.

*
Description of a Thermal Nuclear Reactor

A nuclear reactor depends for its operation on a continued chain-
reaction involving fission of heavy nuclei and release of neutrons.
Fission takes place as a result of neutron capture by the heavy nuclei.
One product of the fission process is additional neutrons which take part
in further capture--fission reactions, thus producing a chain-reaction.
If conditions are such that each fission process leads, on the average,

to one additional fission, the reactor is said to be critical. Super-

*This description was condensed from Schultz [46] and Masters and
Sage [49].
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critical and subcritical are defined accordingly. There are a number of
factors which affect the reactivity (criticality) of an operating pile,
Among these are the nature of the fuel, the geometry of the reactor, the
presence of neutron-absorbing substances known as poisons, the presence
of certain neutron-producing materials known as enriching materials,
environmental conditions such as temperature and pressure, the presence
of a moderating substance (added to slow the neutrons to a desirable
energy), and the position of control rods or devices used for regulation
and control of the reactor. Two distinct types of neutrons take part in
a chain reaction. The vast majority of the neutrons produced (about 99
percent) are "prompt" neutrons produced at the instant of fission. These
particles give rise to dynamic effects characterized by relatively shert
time constants. The other type of neutron involved in a chain reaction
is the '"delayed" neutron which is released from the fission products at
some time after the fission process and gives rise to effects exhibiting
relatively long time constants. Despite the small proportion of delayed
neutrons produced, their effects are extremely important to the dynamic
aspects of reactor control. This importance is due to the fact that the
delay time of the particles which produce the delayed neutroms is rela-
tively long, thus allowing these particles to accumulate, Furthermore,
since the reactor is normally operated near critical, small changes in

neutron flux density are important.

Problem Formulation

For the purposes of the following analysis, the principle measure

of reactor criticality will be the reactivity, p. The reactivity is a
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measure of the excess neutrons generated by the chain reaction and is a
funetion of (among other factors) the position of the control rods. For
this reason, p will be the input variable. Between the time that a
fission reaction takes place and the time that a delayed neutron is pro-
duced, the delayed meutron can be considered to reside in an intermediate
particle known as a precursor. The fission process produces, in addition
to prompt neutrons, a number of precursors which, in turn, decay at a
later time, to emit a delayed neutron. The delayed neutrons are found

to be divided into a number of groups, each with its own decay constant
and relative concentration. If the composite reactor 1s considered as
an entity, it is possible to formulate a deterministic point-model for

its dynamic characteristics. These kinetic equations can be written as

*
follows:
d]]dtgtl - [ﬂ.@)A_‘E:I n(t) +zi Ay € (E) 6.1)
de,(t) B,
Tar - 1®) - Ay (), (6.2)
where
TN(t) = Neutron flux density (l/cmB);

3
ci(t) = Precursor density (1l/em™);
p(t) = Reactivity (input variable);

Average fraction of precursors formed;

w
]

* a .

A rigorous derivation of these equations can be found in Ash [47].
These equations are of academic interest only, but are used to illustrate
the system features.
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A

Effective neutron lifetime (secs);

A,
i

Decay constant for precursor ci(t).

The fraction of precursors formed is subtracted from the reactivity and
the rate of production of delayed neutrons by precursor decay 1s added

to the rate of change of neutron flux density. The above equations com-
prise a set of coupled, first order equations. Due to the fact that p(t)
enters as the product p (t)N(t), these equations are nonlinear if any at-
tempt at closed loop control is made. Typically, one studies the macro-
scopic viewpoint of a nuclear reactor so that the precursors are considered
to be lumped into a single "average'" group with density c¢(t), decay con-
stant A, and relative fraction B. Also, Thie [48] has observed that
thermal nuclear reactors have random disturbances in the reactor flux due
to coolant flow through the core, and that these disturbances can have a
peak value of five to ten percent of the average flux. Thus, the model

for the reactor hecomes

d1(]1‘(:t) - [D(t) + i(t) - B] NCE) + he(t) .3
428 = B q¢e - hew), 6.4)

where E (t) represents the random disturbances in the reactor flux,
Using a first difference approximation for the derivatives, the digital

model of the reactor dynamics becomes:

D =1+ Ly + 5 - 81| 16 + me 6.5)
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c(3+1) = L0y + (1ame), (6.6)

where T (j) = N(jT) and T is the sampling period.
The nominal model equations are obtained by considering a system
with no random disturbance, and using typical parameter values for By As

and A. For U235 the typical parameter values used for g, A, and A are

g = 0.0064
A =0.1 sec

A= 0.001 sec .

Considering these values, and a sampling period of 0.025 sec, equations

{6.5) and (6.6) become

M(i+L) = [0.84 + 25.0p(§) IN(4) + 0.0025¢(j) (6.7)

e(j+l) = 0.16N(j) + 0.9975¢c(3). (6.8)
For the startup problem, the desire is to find the control, p(j),
which will increase the output power (the neutron flux density) from an
initial state to a terminal state in some optimum manner. The_manner
chosen is to minimize the energy required to drive the control rods. It
can also be shown [28, p. 514] that this minimization tends to minimize
the reactor period, which is a very desirable physical objective. To

define the problem more specifically, for the equations (6.7) and (6.8),
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let the initial states be ﬂO(O) = 0.5 kw and cO(O) = 32.0 kw and find
the reactivity, Po> such that at tf = 1 sec, ﬂo(tf) = 5.0 kw, and the

performance index

39
2,
3| = 0.0125 Z pg (1) (6.9)

j=0
is minimized.

As explained in Chapter V, this problem is a nonlinear two-point
boundary value problem which can be solved by several off-line numerical
iterative techniques. For this particular problem, quasilinearization
is used to obtain the solution. The nominal control and trajectory results
are shown in Figure 6. These curves represent the desired ideal response

of the System.

Qpen-Loop Response

An investigation is made into the open-loop response of the system
to the nominal control, Po> when the random disturbance in the reactor
flux due to coolant flow through the core is included. Thie [48] has
determined that this disturbance is correlated, and has a typical auto-
correlation function as shown in Figure 7. For this thesis, a simulation
of this autocorrelation function is produced by passing gaussian white
noise through a one-pole filter with a cutoff frequency chosen to produce

-1,57

an autocorrelation function of R{t) = e How well this simulates

the actual autocorrelation function is also shown in Figure 7.

Using this disturbance in equation (6.5), with a wvariance of 0,001,
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the open-loop response of the system to the nominal control is again
obtained. The results for a single time function are shown in Figure 8.
Notice that the disturbance causes the trajectories to deviate as much

as 12 percent from their nominals. To obtain a better picture of the
extent with which the disturbance affects the open-loop response, a Monte
Carlo simulation representing 100 time runs was performed. Figure 9
shows a plot of the ensemble mean and standard deviation of these runs.
By inspection of the ensemble standard deviation, it is obvious that the
random disturbance greatly affects the open-loop trajectories. In fact,
for this application, the effect of the random disturbance is so great

that the open-loop system is unacceptable.

Perturbation Control Response

From the curves shown in Figure 9, it is obvious that some form
of feedback is required. In this section, the perturbation control scheme
developed in Chapter V is used to provide this feedback. For the sake
of clarity, the general perturbation control block diagram of Figure 5
is specialized for the nuclear reactor problem in Figure 10. Notice that
the input to the nuclear system is the sum of the nominal control, the
perturbation control, and the reactivity disturbance. However, as can be
seen from equation (6.5), this disturbance can be modelled as a randomly
varying parameter. Since the precursor concentration cannot be measured,
H=[1 0). Thus the identification algorithm must estimate the parameter
E(j) and the plant state c(j).

The scheme is implemented as described in Chapter V. The perturba-

tion controlled trajectories for a single time function are also shown
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in Figure 8 so that they can be easily compared with the open-locp results,
Notice that the closed=loop trajectories track the nominal trajectories
extremely well. Another important feature to note is that even though

an initial estimate of the precursor density is taken to be 30 kw instead
of the actual 32 kw, the true value is identified in just one identifica-
tion period. As was done with the open-loop response, a Monte Carlo simu-
lation representing 100 runs was performed to evaluate, more thoroughly,
the ability of the perturbation control scheme to track the nominal tra-
jectory. Figure 11 shows a ploet of the ensemble mean and standard devia-
tion. It can be seen that the standard deviation represents a maximum
deviation from the nominal of only two percent.

In order to demonstrate the effect continuous parameter updating
has on the accuracy obtained by a linear perturbation controller, a Monte
Carlo simulation representing 100 runs was again performed on the system,
except now only the assumed nominal parameter values are used in evaluating
Ao(j) and ho(j) about the nominal. There is still a need to use the state
estimator portion of the identification algorithm to identify the un-
available precursor concentration state. Figure 12 shows a plot of the
resulting ensemble mean and standard deviation. Notice that, without
continuous parameter updating, the maximum deviation of the standard
deviation curve from the nominal is approximately five percent. Thus,
for this system, by continuously updating the parameter values, the ac-
curacy with which the linear perturbation controller tracks the nominal
tfajectory is approximately 2 1/2 times greater than the accuracy obtained

by using just the assumed nominal parameter values.
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To obtain some insight into the allowable parameter variations,
the curves of Figure 13 are presented. The abscissas represent the time
constant, 1/u, of the correlation function, R(r) = cze-u|T|, of the input
disturbance, E(j). Thus, going from right to left, the disturbance be-
comes more uncorrelated. The ordinate represents the magnitude of the
gaussian white noise variance being fed to the correlation filter. The
curves, representing three different noise ensembles, divide the graph
into regions in which the identification algorithm converges to the cor-
rect solution and regions in which the algorithm diverges. As explained
in Chapter IV, divergence occurs when the range on initial parameter
estimates necessary to insure convergence for any identification cycle
is exceeded. In obtaining these curves, once divergence occurs for any
identification cycle, the complete system run is considered tc be divergent.
The graph can be interpreted in the following manner, The relatively flat
portion of the curves in the lower left-hand region represents a threshold
below which convergence occurs no matter how uncorrelated the disturbance.
The reason the threshold exists is that no matter what the parameter val-
ues are at the beginning of each identification cycle, the change of these
values from the previous cycle is always less than the range on the initial
parameter estimates necessary to ensure convergence. As the noise be-
comes more correlated, a larger noise variance can be tolerated and still
have the change in parameter values from one identificationm cycle to the
next be within the range necessary for convergence. This explains why
the curve has a positive slope. Notice that the slope of the curve changes
at approximately one radian/sec. A plausible explanation for this behavior

is based on the consideration that the closed-loop nuclear system, although
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time varying, has a bandwidth of approximately one radian/sec. Conse-
quently, as the noise sequence becomes more correlated, more noise energy
is concentrated in the lower frequencies, and hence within the bandwidth
of the system. The more concentrated the noise energy appearing within
the system bandwidth, the more likely that it will cause the identifica-
tion algorithm to diverge. Thus, the rate of change of the variance
must be reduced.

It would be desirable to have, for every correlation time, a histo-
gram of the magnitudes of noise variances necessary to produce divergence
for a number of noise ensembles. Unfortunately, the amount of computer

time required to obtain such histograms is prohibitive.

Conclusions

This chapter has examined the effectiveness of the linear perturba-
tion contrel scheme developed in Chapter V in controlling the startup of
a thermal nuclear reactor, The reactor model equations consisted of a
couple of first-order nonlinear equations, in which one of the plant
states was not available as a system output, and a disturbance due to
coolant flow through the core was represented as a random parameter
variation.

First, by ignoring the disturbance, an optimum (nominal} open-loop
control was found which minimized the energy required te drive the con-
trol rods while increasing the output power from 0.5 kw to 5 kw in one
second. However, when the disturbance was included in a Monte Carlo

system simulation, the resulting trajectories varied widely about this

nominal.
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To prevent such wide variations, the linear perturbation controller
of Chapter V was employed. Besides identifying unavailable plant states,
this controller tracks unknown parameter variations and uses the latest
identified values in determining the optimum perturbation control. A
Monte Carlo simulation of the nuclear system using this feedback con-
troller resulted in an ensemble standard deviation curve which varied a
maximum of two percent from the nominal. As a comparison, a Monte Carlo
simulation of a perturbation control scheme employing only the assumed
nominal parameter values resulted in a deviation of the ensemble standard
deviation curve from the nominal of as much as five percent. Thus, a more
accurate perturbation controller can be obtained if the unknown parameter
values are continuously identified and used to update the perturbation
control. The disadvantage, of course, is the increase in computer time
necessary to accomplish this updating.

Finally, to obtain a feeling of the allowable parameter variations
for the nuclear system, several noise ensemble curves were presented.
These curves showed that if the change in the magnitude of the parameter
values from one identification period to the next is sufficiently small,
then rapidly time varying parameters can be accommodated. However, as
the magnitude of the change in the parameter values increases, the time

variation of the parameters must decrease.
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CHAPTER VII

CONCLUS IONS AND RECOMMENDATIONS

Conclusions

This dissertation presents a closed-loop, on-line, parameter
identification and control scheme for discrete time systems. Emphasis
has been placed not only in developing the identification algorithm, but
also coordinating the identification and control functions to strive to
achieve an overall optimum closed-loop control law. The salient features
of the scheme developed are that it:

1. Provides on-line identification.

2. Identifies not only unavailable plant states, but also unknown
constant or slowly varying parameters.

3. Requires no external test signal.

4. Applies to both linear and nonlinear systems.

5. Always employs a control based on the latest parameter and
plant state values.

6. Is digitally implemented.

7. Substantiated by theoretical analysis.

The general class of applicable systems is described in Chapter II.

Basically, the plant must be described by a vector difference equation

of the form

x(3+1) = £[x(j),a(3),u(id)] , (7.1)
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where x(j) is the state vector, a(j) the unknown parameter vector, and
u(j) the control input. This equation can be either linear or nonlinear,
but the function must be continuous for both x(j) and a(j), £§(j) and

Eg(j) must exist and be continuous, and ;E(j) must satisfy a Lipschitz
condition with respect to x(j), while Ei(j) must satisfy a Lipschitz
condition with respect to a(j). The system must also be observable, but
need not be controllable. The only constraints placed on a(j) is that

the parameters must either be unknown constants, or values that slowly

vary with time.

The scheme functions as follows: for the plant described by
equation (7.1), all available plant states are used by an identification
algorithm in estimating the unavailable plant states and unknown parameters.
These identified values are then used to determine an optimum closed-
loop control of the form u(j) = y[x(j),a(i)]. In this manner, the feed-
back control is always based on the latest identified wvalues.

The identification algorithm is based on a Taylor Series expansion
of an equation of the form of equation (7.1). To this expansion is ad-
joined an equation which restricts the unknown parameter vector, a(j),
to remain constant over the identification interval. The combined equa-
tions thus represent a set of first order, linear, difference equations,
the solution of which, subject to the appropriate boundary conditions,
solves the identification problem., The boundary conditions are composed
of the available plant outputs. In general, the combined parameter and
state identification problem is nonlinear. Since a linearized identifica-

tion algorithm is being used, this algorithm must be iterated so that,
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under proper conditions, it will converge uniformly to the correct solu-
tion. Chapter IV presents a proof that such an iterative, linearized
algorithm can converge to the correct solution, and indicates that there
is a range of initial unknown parameter and state variable estimates for
which convergence will occur. It is also shown that when convergence
occurs, it occurs in a quadratic manner.

As previously stated, the latest identified parameter and plant
state values are used to update closed-loop controls of the form
u(j) = v[x(j),a(j)]. There are a large class of systems for which closed-
loop controls of the form expressed above can be found. This thesis in-
vestigates, thoroughly, one of the most important constituents of this
class-~-namely, linear systems for which optimum closed-loop controls are
found that minimize a quadratic performance criterion (so-called state-
regulator systems).

In Chapter III, state-regulator systems for which all of the plant
states are available are considered. It is shown that, for this case,
the identification algorithm simplifies to a set of simultaneous algebraic
equations which, except for singular or ill-conditioned solutions, con-
verge to the correct solution in one iteration. Two methods of handling
the singular or ill-conditioned solutions are considered. The method
implemented throughout the thesis detects, then removes, the dependent
or nearly dependent equations from the set. Additional equations are then
added from the boundary conditions available at each discrete time period
until a well-conditioned set of equations are obtained. The disadvantage

of this scheme is that the length of the identification interval is
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increased, such that the allowable parameter variations that can be
tracked are reduced. The second method is to use a generalized inverse

on the data available. Here, of course, a least-squares solution is
generated which might, or might not, be acceptable to the designer. The
latest identified parameter values are then used in recomputing the well
known Riccati equation, from which an updated feedback control is ob-
tained. The limitations in applying the identification and control scheme
in this case depend on several factors Including the order of the system
versus the number of unknown parameters, the accuracy with which the set
of simultaneous equations can be solved, and the time available between
discrete time periods so that the identification and control updating can
be accomplished. Considering all, it is felt that up to a twentieth order
system can be accommodated with 10-15 unknown parameters.

The state-regulator case in which only some of the plant states
are avallable is considered in Chapter IV. Unfortunately, for this case,
the identification algorithm usually does not simplify to a set of linear
algebraic equations as it did above. Thus the identification algorithm
must be employed as previously described. This case has the same limita-
tions as the previous case, but in addition, a range of initial parameter
and plant state estimates necessary to ensure convergence must be con-
sidered. It was shown that this range is a function, among other things,
of the order of the system and the number of unknown parameters that must
be identified. The larger the system and/or the greater the number of
unknown parameter and plant state values that must be identified, the

smaller the initial estimate tolerance allowed for each parameter and
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plant state value. Considering the tolerance allowed for the second
order system of Chapter IV with three unknown values, it is felt that
only up to a tenth order system with a maximum of five unknown parameter
and plant state values can be considered and still have a reasonable
tolerance on the initial value estimates,

For those systems in which a closed-loop control of the form
u(j) = y[ﬁ(j),g(j)] is not possible, this thesis has considered in Chapter
V the use of the identification algorithm in conjunction with a linear
perturbation controller. Besides identifying all unavailable plant states,
the identification algorithm also tracks questionable parameter variations,
with the latest values being used in the calculation of the perturbation
control. Thus, the use of the identification algorithm with a linear
perturbation controller is very similar to its use for state-regulator
systems,

In Chapter VI, the effectiveness of the perturbation control
scheme mentioned above is examined for the practical problem of controlling
the startup of a thermal nuclear reactor. The reactor is modeled by two
first-order nonlinear equations, in which one of the plant states is not
available as a system output, and a disturbance due to coolant flow through
the core is represented as a random parameter variation. By ignoring the
disturbance, an optimum (nominal) open-loop control is found which mini-
mizes the energy required to drive the control rods while increasing the
output power from 0.5 kw to 5 kw in one second. However, when the dis-
turbance is included in a Monte Carlo system simulation, the resulting
trajectories vary widely about the nominal. The identification-linear

perturbation controller is then employed to minimize these variations.
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A Monte Carlo simulation using this feedback controller results in an
ensemble standard deviation curve which varies a maximum of two percent
from the nominal. As a comparison, a Monte Carlo simulation of a per-
turbation control scheme employing only assumed nominal parameter values,
results in a deviation of the ensemble standard deviation curve from the
nominal of as much as five percent. Thus, a more accurate perturbation
controller can be obtained if the unknown parameter values are continuously
identified and used to update the perturbation control. The disadvantage,
of course, is the increase in computer time necessary to accomplish the
updating.

Finally, to obtain a feeling of the allowable parameter variations
for the nuclear system, several noise ensemble curves are presented.
These curves show that if the change in the magnitude of the parameter
values from one identification period to the next is sufficiently small,
then rapidly time varying parameters can be accommodated. However, as
the magnitude of the change increases, the time variation of the parameters

must decrease.

Recommendations

There are several areas of study for extensions of the research
presented in this dissertation, These extensions deal with increasing
the applicability of the scheme developed.

One of the biggest problems in applying the identification algo-
rithm is obtaining initial parameter and state estimates for each identi-

fication cycle that fall within the range of values necessary to insure
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convergence. Methods, such as perhaps, differential approximation, should
be sought that can provide, on-line, better initial estimates.

Secondly, methods can be applied which cut down the computation
time needed in recomputing the closed-loop control. Such methods usually
take advantage of the fact that the Riccati gain for a time invariant

system approaches a constant value rapidly.
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APPENDIX
COMPUTATION REQUIREMENTS FOR AN IDENTIFICATION CYCLE

In this appendix, the computational requirements necessary to
implement one identification cycle for the systems considered in Chapter
III are obtained. These systems are linear systems for which all the
plant states are available as system outputs. As shown in the chapter,
the identification algorithm converges to the correct solution in one
iteration., The work of this appendix is directly applicable to systems
for which convergence requires more than one iteration--the computation
time being proportional to a multiple of the computation time required
for one iteration. The computational requirements are obtained as ex-
plieit funetions of the dimensions of the system's state vector (n-
dimensional), unknown parameter vector (m-dimensional), and control vector
(r-dimensional).

This appendix is based on an article written by Jerry M. Mendel
[50]. In the article, Mendel defines the computation time required to
implement a discrete Kalman filter in terms of a unit cycle time (Tu),
and the dimensions of the system's state, measurement, and disturbance
vectors. The work considers not only the number of multiplications and
additions needed for the implementation, but also the amount of logic
time required for properly controlling and sequencing the operations for
an assumed computer configuration. The number of multiplications, the

number of additions, and the logic time requirements of this appendix are




based solely on this article.

The equations implemented include the identification algorithm,
equation (3.13); a Riccati equation based on a vector control, analogous
to equation (3.5); the Riccati equation, equation (3.5); the feedback
control equation, equation (3.4); and the state equation, equation (3.1).
Tables 3-7 indicate the computation requirements for these equations.

The total computational time requirement for a vector control (CTV) is
given by
CcT, = [ 4+ {jf - j}Ml + M

5 +M3) * MUL + 2{A +[jf - j}Al +A, +A3)

+(L+{Jf-J}L1+L2+L3)]-Tu,
where jf =« j is the number of discrete time periods remaining until the
end of the system run, MUL is the execution time (in unit times) required
for multiplication, and Tu denotes the basic unit time. As an example of
the time required, let n=m= 3, T = 2, jf - j=10, MUL = 6, DIV = 12,

and Tu = 1 psec, The total computation time required is then

CT, = [(18 +10 - 135 + 8L +27) - 6 + 2(18 + 10 * 117 + 72 + 24)
+ (4,370 + 10 - 5,818 + 4,980 + 608)] 107° sec ,
cT, = [ 1476 * 6 +2 * 1284 + 68,138] 107° sec,

CTv = 0.079562 >~ 0.08 sec .




Table 3. Computational Requirements for the Identification Algorithm

*
Defining Equation: G (k)a" L(k) = r(k + 1) + NeyaN ) - £xN k) ,a (k)]
Computations Number of Number of Logic Time
Multiplications Additions
M (k)a" (k) w? w? -m | 10 +  6m® + 37m
GNya (k) - £[x(k),a (k)] m | 27 + Sm + ML
N, . N
xk +1) +6 (02 (k) - £ o | 27 + Sm + MUL
N7t o o 10 + 41m° + 140m® + 92m + MMORE "
[GN(k) Tl[EP + GN(k)gN(k) - ] m2 m2 -m 10 + 6m2 + 37m
Total M= A = L=
m + 2m° w +2m2 | 84 + 4lm> + 152m° + 142m

*
Assumes £[§N(k),§'(k)] and GN(k) are precomputed.
*MMORE = 7.5m" + DIV(2m> + m) + MUL(0.5m> + 2.5m)

+ 2MUL + MMORE

L6



Table 4.

Computational Requirements for the Riccati Equation Based on a Vector Control

Defining Equation: P(k) = Q + ATP(k+1)[I + BR

1

BLP(k+1) ] "L

Computations Number of Number of Logic Time
Multiplications Additions
- 3 2
BR 1BTP(k+l) n3 n3 - n2 10 + 6n" + Zln™ + lé6n
I + BR™YBLP (k+l) n? 27 + 52 + MUL
- - *%
[T + 8RBTy = X nd 10 + 41n° + 140n° + 92n + MORE
XA n3 n3 - n2 10 + 6n3 + 21n2 + 1l6n
ATpxa 2n° > - 2 20 + 120° + 420° + 32n
Q + Alpxa n’ 27 + 572 + MUL
3 3 2
Total M1 = 5n Al = L1 = 104 + 65n~ + 234n” + 156n
5n3 - 2n + 2 MUL + MORE

* -
Assumes BR 1T
4

ek
MORE = 7.5 n

B~ is precomputed.
+ DIV(2n2 +n) + MUL(O.Sn2 + 2.5n).
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Table 5, Computational Requirements for Updating the Control
. . T,,-1.T *
Defining Equation: u(k) = - B'[A "] [P(k) - Qlx(k)
Computations Number of Number of Logic Time
Multiplications Additions
2 2
P(k) - Q n 27 + 5n + MUL
2 2 2
[P(k) - QIx(k) n n -n 10 + 6n + 37n
- *k
T .~ n° 10 + 41n°> + 140n° + 92n + MORE
[A'I]T[p(k) - Qlx(k) n n> - nl 10 + 6n° + 2In” + 16n
- 3T e ) - Qlxk) n’r n’c - nr |10 + 6n’r + 2lor + 16n
3 2
Total Mﬁ = A2 =2n +n -n L2 = 67 + 470 + 172n" + 16ln
2n3+n2+nr +nr -nr +6n2r+21nr+MUL+M)RE

*
Assumes (- BT) is precomputed.

*k 4
MORE = 7.5n

+ DIV(Zn2 + n) + MUL(O.Sn2 + 2.5n).
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Table 6, Computational Requirements for Updating the State-Vector

Defining Equation: x(k+l) = Ax(k) + Bu(k)

Computations Number of Number of Logic Time
Multiplications Additions
Bu(k) n2r n2r - n2 10 + 6n2r + 21n2 + 16n
Ax(k) n2 n2 -n 10 + 6112 + 37n
2 2
Ax(k) + Bu(k) n 27 + O5n + MUL
1 = A, = L—47+62r+32n2+53n
Tota M3 = 3 = 3 = n
n2r+n:2 n2r+n2-n + MUL

oot




Table 7.

Computational Requirements for the Riccati Equation Based on a Scalar Control

Defining Equation: P(k) = Q + ATP(k+1)A -

ATP(k+1)bb P (kt1)A

1 + b P(k+1)b

Computations Number of Number of Logic Time
Multiplications Additions
ATP(k+1)bb TP (k+1)A 50° 50> - 5n° 50 + 300> + 105n2 + 80n
bR (k+1)b 2% 2n% - 2a 20 + 120% + Z4n
1 + brP(k+l)b 1| 32 + MUL
1
= = Y 10 + DIV
1 + b P(k+l)b
YATP (k+1)bb P (k+1)A = Z n? 8n
T 2 2
Q +APk+lIA + 2 2n 54 + 10n + 2 MUL
3 2 3 2
Total M4 = A4 =5n" -n L4 = 166 + 30n~ + 107n" + 163n
5n° + 3n -2+ 1 + 3 MUL + DIV

*
Assumes gg? is precomputed,
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When only a scalar control is required, computation time can be
saved by using the Riccati equation of Table 7. The savings arise because
there is no inverse to compute as there is for the Riccati equation of

Table 4. The total computation time requirement (CTS) is now given by
CT_ = [ + M, + My +[jf - j]Ma) - MUL
+ 208 + A, tAy +{ig - 33A.)
+ (L +L, + Ly + {jf - j}L4)] " T, -

Considering the same example as before with the exception of a scalar

control, the total computation time required is now
CT = [(18 + 10 - 162 + 72 +18) * 6 + 2(18 + 66 + 15 + 10 - 121)

+ (4,370 + 4,863 + 544 + 10 ° 2,458)] 1076 sec ,

cr, = [1728 - 6 +2 - 1309 + 34,367] 1078 sec ,

i

CTs 0.047353 sec == 0,047 sec .

The quantity jf - j = 10 was chosen because seldom would a designer
continue to compute the Riccati gain in the manner illustrated in the
tables past jg - j = 10. Instead, he would take advantage of the fact

that the Riccati gain quickly reaches a steady-state value.
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