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SUMMARY 

2 Z / o a n 2 2 
b L k a ' 2 

where r e f e r s t o t h e p e r c e n t a g e p o i n t s o f t h e s tandard normal d i s -

t r i b u t i o n such t h a t P(Z > Z / o ) = <v/2, and a' i s t h e v a r i a n c e o f the 

otl£ 
p r i o r d i s t r i b u t i o n o r , t h e p r i o r v a r i a n c e o f the t r u e sampl ing mean, |i. 

The r e s e a r c h i s devoted t o modify ing t h e Bayes ian t e c h n i q u e s 

a s s o c i a t e d w i t h de termin ing t h e minimum sample s i z e r e q u i r e d t o con

s t r u c t i n t e r v a l e s t i m a t e s o f t h e t r u e mean o f an e x p e r i m e n t a l or sampling 

p r o c e s s which i s modeled by a normal d i s t r i b u t i o n w i t h unknown parameters , 

The procedure c o n s i d e r s o n l y t h e c a s e where t h e p r i o r i n f o r m a t i o n can be 

r e p r e s e n t e d by a normal d i s t r i b u t i o n w i t h known mean and known v a r i a n c e . 

Rigorous Bayes ian a n a l y s i s o f t h i s s i t u a t i o n would r e s u l t i n 

u s i n g a p o s t e r i o r d i s t r i b u t i o n which has a normal-gamma d e n s i t y t o c o n 

s t r u c t i n t e r v a l e s t i m a t e s . In order t o c ircumvent t h e obvious d i f f i 

c u l t i e s o f working w i t h t h i s r a t h e r complex d e n s i t y , a p r o c e d u r e , which 

i s f e l t t o be more compat ib le t o t h e U. S. Army O p e r a t i o n a l T e s t i n g 

env ironment , i f o f f e r e d f o r approximating t h e r e q u i r e d Bayes ian sample 

s i z e . 

2 

I f t h e v a r i a n c e o f t h e sampling or e x p e r i m e n t a l p r o c e s s , <j 5 were 

known, t h e minimum Bayes ian sample s i z e r e q u i r e d t o c o n s t r u c t an i n t e r v a l 

e s t i m a t e about t h e t r u e mean, | i , w i t h c o n f i d e n c e c o e f f i c i e n t , o/5 and 

w i d t h , k, i s : 
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S u b s t i t u t i n g t h e sample v a r i a n c e , S , f o r t h e t r u e p r o c e s s 

v a r i a n c e and the term t / o , n* - 1 f o r Z / i n t h e above e x p r e s s i o n , 

and d e f i n i n g t h e w i d t h o f t h e c o n f i d e n c e i n t e r v a l as a f u n c t i o n o f t h e 

sample v a r i a n c e , i . e . , k = 6S, r e s u l t s i n t h e f o l l o w i n g e x p r e s s i o n f o r 

t h e approximate Bayes ian sample s i z e : 

where n* i s t h e c l a s s i c a l sample s i z e r e q u i r e d t o c o n s t r u c t an i n t e r v a l 

e s t i m a t e o f w id th k about t h e t r u e mean, o f t h e sampling p r o c e s s . 

The term t (o/2, n * c - l ) r e f e r s t o t h e p e r c e n t a g e p o i n t s o f t h e S t u d e n t ' s 

t d i s t r i b u t i o n w i t h n * c - 1 d e g r e e s o f freedom such t h a t P [ ( t > t(o//2, 

n * c - 1)] = a/2. 

The e x p r e s s i o n f o r t h e approximate Bayes ian sample s i z e i s s o l v e d 

I t e r a t i v e l y , s t a r t i n g w i t h a f r a c t i o n o f t h e c l a s s i c a l sample s i z e 

r e q u i r e d f o r t h e i n t e r v a l e s t i m a t e o f the same s p e c i f i e d c o n f i d e n c e 

and a c c u r a c y , as t h e f i r s t approx imat ion . The i t e r a t i v e procedure i s 

programed f o r a UNIVAC 1108 computer and a p p l i e d t o a h y p o t h e t i c a l 

example t o demonstrate t h e e f f e c t i v e n e s s o f t h e methodology. 

I f a c c u r a t e p r i o r i n f o r m a t i o n i s a v a i l a b l e , t h e r e s u l t s a c h i e v e d 

by t h e procedure d e v e l o p e d t o approximate t h e Bayes ian sample s i z e a.nd 

c o n s t r u c t i n t e r v a l e s t i m a t e s o f t h e unknown sampling mean, | i , of 

s p e c i f i e d c o n f i d e n c e and accuracy are comparable t o the r e s u l t s o b t a i n e d 

u s i n g c l a s s i c a l t e c h n i q u e s . These r e s u l t s , however, are a c h i e v e d u s i n g 

s m a l l e r samples s i z e s than r e q u i r e d f o r t h e c l a s s i c a l c a s e . A p r o -

2 t( a/2, n * c - l ) 2 

c 
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oedure was suggested for examining the accuracy of the p r io r information 

and ascertaining whether or not Bayesian analysis was appropriate for 

a given sampling or experimental s i t u a t i o n . However, the expected 

resul ts of using t h i s procedure were not obtained. 



CHAPTER I 

INTRODUCTION 

The General Problem 

This s t u d y i s an i n v e s t i g a t i o n o f t h e problem o f de termin ing 

the minimum sample s i z e o f an e x p e r i m e n t , t h a t i s , t h e minimum number 

of r e p l i c a t i o n s o f t h e exper iment , r e q u i r e d t o e s t i m a t e t h e mean o f t h e 

e x p e r i m e n t a l v a r i a b l e t o w i t h i n a predetermined accuracy . In g e n e r a l , 

t h e s t u d y i s l i m i t e d t o a c e r t a i n type o f t e s t i n g s i t u a t i o n which has 

t h e f o l l o w i n g c h a r a c t e r i s t i c s : 

a. The t e s t v a r i a b l e , whose mean i s t o be e s t i m a t e d , can be 

modeled by a normal d i s t r i b u t i o n w i t h unknown mean and unknown v a r i a n c e . 

b . Informat ion i s a v a i l a b l e , p r i o r t o sampling or e x p e r i m e n t i n g , 

from which a p r o b a b i l i t y d i s t r i b u t i o n o f t h e mean o f t h e t e s t v a r i a b l e 

can be c o n s t r u c t e d . 

c . This p r i o r i n f o r m a t i o n can be r e p r e s e n t e d by a normal d i s -

2 
t r i b u t i o n w i t h known mean, m 1 , and known v a r i a n c e , , a* . 

The S p e c i f i c Problem 

A U. S. Army O p e r a t i o n a l Test (OT) i s an o v e r a l l e v a l u a t i o n of 

a sys tem which has been deve loped f o r g e n e r a l u s e w i t h i n t h e U. S . Army 

s t r u c t u r e ( 2 ) . In t h i s c o n t e x t , a "system" may be not o n l y hardware, 

but a l s o d o c t r i n a l c o n c e p t s , and i s u s u a l l y a mixture o f b o t h . The 

t e s t i s conducted i n an environment which d u p l i c a t e s or c l o s e l y 

s i m u l a t e s t h o s e c o n d i t i o n s under which t h e sys t em w i l l be employed i f 
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i t is adopted fo r general use. I t is th is fac t that general ly d i f f e r e n 

t i a t e s OT from engineering, developmental, pre-product ion, and other 

tests which may be conducted on the same system and which are usual ly 

a part of the t o t a l development scheme of the system. I n f a c t , OT is 

required to be an independent evaluat ion of the system. Thus, OT is a 

v i t a l par t of the process by which new equipment and concepts are 

incorporated into the U. S. Army s t ructure . 

An Operational Test is i n essence a systematic plan for evaluating 

the t o t a l system being tes ted . I t is composed of numerous subtests 

which address speci f ic issues (unknown parameters) which are considered 

c r i t i c a l or paramount to the t o t a l evaluat ion of the system (3). The 

spec i f ic c r i t i c a l issues to be evaluated by each subtest and the order 

of these tests govern the o v e r a l l structure of the Operational Test. 

Once the speci f ic structure of the Operational Test has been 

establ ished, a decision must be made as to the number of rep l ica t ions 

of each subtest to conduct i n order to properly evaluate the c r i t i c a l 

issue in question. Time and budget constraints place emphasis on con

ducting the minimum number of rep l ica t ions possible; whi le the disastrous 

consequences tha t could resu l t i f a c r i t i c a l issue is not properly 

evaluated, make i t imperative tha t accuracy is not sacr i f i ced for 

economy. Thus, the problem reduces down to one of determining the 

minimum number of rep l ica t ions of each subtest to conduct i n order to 

evaluate the c r i t i c a l issues i n question to w i th in a predetermined 

accuracy. 

Current procedural and po l icy documents governing the conduct 

of Operational Tests (3, h9 11) suggest tha t for the most p a r t , sample 
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sizes are determined using non-Bayesian or c lass ica l s t a t i s t i c a l methods. 

These methods do not consider p r io r information ava i lab le concerning 

the var iab le being tes ted ; there fore , inferences and decisions about 

the var iab le are based e n t i r e l y on the experimental or sampling r e s u l t s . 

Bayesian techniques, on the other hand, attempt to use both the pr io r 

information and the experimental resul ts i n making inferences and 

decisions about the v a r i a b l e . Thus, th is invest igat ion is essent ia l l y 

a search fo r a p r a c t i c a l procedure for applying Bayesian techniques to 

Operational Test ing. The p r i n c i p a l Operations Research tools used in 

t h i s study are s t a t i s t i c a l inference and estimation techniques to 

develop the methodology, and computer simulation techniques to demon

s t ra te the procedures developed. 

Operational Testing is an expensive undertaking which must 

operate in an environment constrained by budget and time considerations. 

The author bel ieves that a methodology which e f f e c t i v e l y reduces the 

number of rep l ica t ions required to evaluate the c r i t i c a l issues 

addressed by each subtest and also maintains the accuracy and confidence 

desired of the t e s t , is a worthwile pursuit d i r e c t l y appl icable to the 

Operational Testing environment. 

Background 

During the l a s t decade, there has been an increasing emphasis 

and dr ive w i th in the m i l i t a r y community to develop and formalize a 

methodology to adequately i d e n t i f y and evaluate the r isks associated 

wi th the development and procurement of major weapons systems. The 

underlying premise which i n i t i a t e d th is act ion was that unanticipated 
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cost and time over-runs and performance shortcomings, which had become 

increasingly preva lent , were the resu l t of inadequate assessment of 

the r isks involved wi th the mater ie l acquis i t ion process. The metho

dology which grew out of t h i s e f f o r t is known as decision r i s k analysis . 

In a report prepared for the Army Mater ie l Systems Analysis Agency 

(AMSAA), Atz inger , Brooks, et a l . , (6) present a b r i e f h is tory and 

descr ipt ion of the major concepts of the decision r i s k analysis process. 

The authors define r i s k analysis as fo l lows: "Decision r i s k analysis 

is a d i s c i p l i n e of systems analys is , which i n a structured manner, pro

vides a meaninfgul measure of the r isks associated w i th various a l t e r 

natives . " The purpose of the report is to structure th is decision r i s k 

analysis process so tha t the t rade-of fs inherent i n the a l te rnat ives 

are v isab ly and meaningfully displayed. I t c i tes the fol lowing four 

major areas as the underlying concepts of decision r i s k analysis: 

a. Subjective Probab i l i t y 

b. Monte Carlo Methods 

c. Network Analysis 

d. Bayesian S t a t i s t i c s 

Bayesian s t a t i s t i c s and Bayes Theorem have a t t rac ted renewed 

in te res t i n many f i e l d s of appl ied and t h e o r e t i c a l s t a t i s t i c s in recent 

years. This theorem is essen t ia l l y a mechanism for combining new 

information wi th previously ava i lab le information so that decisions or 

inferences can be based on a l l the information ava i l ab le . Over the 

years, a controversy has developed between the Bayesian and the more 

orthodox c l a s s i c a l s t a t i s t i c a l concepts. Anscombe ( l ) provides a b r i e f 
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but concise history of the development of both philosophies. 

During the las t few years there has been a r e v i v a l of in te res t 
among s t a t i s t i c a l theor is ts in a mode of argument going back to the 
Reverend Thomas Bayes 1 (1702-61), Presbyterian minister at Tunbridge 
Wells i n England, who wrote an "Essay Towards Solving a Problem i n 
the Doctrine of Chances," which was published i n 17&3 a f t e r his 
death. Bayes work was incorporated i n a great development of pro
b a b i l i t y theory by Laplace and many others, which had general 
currency r igh t in to the ear ly years of the century. Since then 
there has been an enormous development of t h e o r e t i c a l s t a t i s t i c s , 
by R. A. F isher , J . Neyman, E.S. Pearson, A. Wald and many others, 
i n which the methods and concepts of inference used by Bayes and 
Laplace have been re jec ted . 

The orthodox s t a t i s t i c i a n , during the l a s t twenty- f ive years or 
so, has sought to handle inference problems (problems of deciding 
what the f igures mean and what ought to be done about them) w i th 
the utmost o b j e c t i v i t y . He explains his f a v o r i t e concepts, s i g n i 
f icance l e v e l , confidence c o e f f i c i e n t , unbiased estimates, e t c . , i n 
terms of what he c a l l s p r o b a b i l i t y , but his notion of p r o b a b i l i t y 
bears l i t t l e resemblance to what the man i n the s t ree t means ( r i g h t l y ) 
by p r o b a b i l i t y . He is not concerned wi th probable t r u t h or p l a u s i 
b i l i t y , but he defined p r o b a b i l i t y i n terms of frequency of occur
rence in repeated t r i a l s , as in a game of chance. He views his 
inference problems as matters of rou t ine , and t r i e s to devise pro
cedures that w i l l work w e l l i n the long run. Elements of personal 
judgment are as f a r as possible to be excluded from s t a t i s t i c a l 
ca lcu la t ions . Admittedly, a s t a t i s t i c i a n has to be able to exer
cise judgment, but he should be discreet about i t and at a l l costs 
keep i t out of the theory. I n f a c t , orthodox s t a t i s t i c i a n s show 
a great d i v e r s i t y i n t h e i r p r a c t i c e , and in the explanations they 
give for t h e i r p rac t ice ; and so the above remarks, and some of the 
fol lowing ones, are no bet ter than crude genera l iza t ions . As such, 
they a re , I be l i eve , defensible . (Perhaps i t should be e x p l i c i t l y 
said tha t F isher , who contributed so much to the development of the 
orthodox school, nevertheless holds an unorthodox posi t ion not fa r 
removed from the Bayesian; and that some other orthodox s t a t i s t i 
c ians, notably Wald have made much use of formal Bayesian methods, 
to which no p r o b a b i l i s t i c s igni f icance is a t tached. ) 

The revived in te res t i n Bayesian inference s tar ts wi th another 
posthumous essay on "Truth and P r o b a b i l i t y , " by F. P. Ramsey^ (1903-
30), who conceived of a theory of consistent behavior by a person 
faced w i th uncer ta inty . Extensive developments were made by B. de 
F ine t te and (from a rather d i f ferenc point of view) by J . Je f fe rys . 
For mathematical s t a t i s t i c i a n s the most thorough study of such a 
theory is that of L. J . Savage3>^. r # Schlai fer^ has persuasively 
i l l u s t r a t e d the new approach by reference to a v a r i e t y of business 
and i n d u s t r i a l problems. Anyone curious to obtain some insight 
in to the Bayesian method, without mathematical hardship, cannot do 
bet ter than browse in Sch la i fe r ' s book. 
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The Bayesian s t a t i s t i c i a n attempts to show how the evidence of 
observations should modify previously held be l ie fs i n the formation 
of r a t i o n a l opinions, and how on the basis of such opinions and of 
value judgments a r a t i o n a l choice can be made between a l t e rna t i ve 
ava i lab le act ions. For him p r o b a b i l i t y r e a l l y means p r o b a b i l i t y . 
He is concerned wi th judgments in the face of uncerta inty , and he 
t r i e s to make the process of judgment as e x p l i c i t y and order ly as 
possible . 

Atz inger , Brooks, et a l . , (6) obviously consider Bayesian 

s t a t i s t i c a l procedures to have great p o t e n t i a l i n the decision r i s k 

analysis process; they s t a t e : 

Bayesian s t a t i s t i c s enjoys a unique posi t ion i n r i s k analysis . 
There f requent ly ex is t s i tuat ions where the analysist has both data 
and expert judgment to draw upon i n constructing the p r o b a b i l i t y 
d i s t r i b u t i o n of in te res t in the consolidation a c t i v i t y . Bayesian 
s t a t i s t i c s provides the analyst w i th a t o o l for synthesizing a l l 
of th i s information into one p r o b a b i l i t y d i s t r i b u t i o n which can 
then be used to d i r e c t l y estimate r i s k s . 

Review of the L i te ra ture 

The s t a t i s t i c a l l i t e r a t u r e dealing wi th sample size determination 

is quite extensive, p a r t i c u l a r l y i n the area of c l ass ica l techniques. 

Bayes, T . , Essay Towards Solving a Problem i n the Doctrine of Chances, 
repr in ted w i th b ib l iographica l note by G. A. Barnard, Bioraetrika, 
i + 5 ( 1 9 5 8 ) , 2 9 3 - 3 1 5 . 

Ramsey, F. P . , The Foundations of Mathematics, London: Rowtledge and 
Kegan Paul , 1 9 3 1 . 

Savage, L. J . , The Foundations of S t a t i s t i c s , New York, John Wiley, 
1 9 5 4 . 

Savage, L. J . , Subjective Probab i l i t y and S t a t i s t i c a l Pract ice , to 
be published in a Mehtuen Monograph. 

Sch la i f e r , R., Probabi l i ty and S t a t i s t i c s for Business Decisions: 
An Introduct ion to Managerial Economics Under Uncertainty, New York, 
McGraw-Hil l , 1 9 5 9 -
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Mace (12) provides an excel lent and thorough coverage of c lass ica l pro

cedures for determining the optimum sample size of a research experiment. 

This pub l ica t ion is appl icat ions oriented and provides procedures, 

formulas, and tables for determining economical sample sizes for some 

f o r t y d i f f e r e n t types of research object ives . Unfortunately, the 

author considers only one rather l i m i t e d appl icat ion of Bayesian tech

niques to sample size determination. The l i m i t a t i o n i n t h i s p a r t i c u l a r 

example, that the variance of the sampling process must be known, seems 

to occur quite f requent ly i n the l i t e r a t u r e of Bayesian techniques for 

determing minimum sample s izes . 

There has been extensive research i n the appl icat ion of Bayesian 

techniques to r e l i a b i l i t y engineering and qua l i t y con t ro l . White (15) 

presents a promising methodology for periodic r e l i a b i l i t y assessment 

using Bayesian techniques to combine a n a l y t i c a l predict ions wi th l i m i t e d 

t e s t resul ts to obtain greater precis ion in the r e l i a b i l i t y estimate. 

The main l i m i t a t i o n of th is paper is that i t considers only the gamma 

d i s t r i b u t i o n i n the analysis . Gi lbreath (8) has devised sampling 

procedures for use in sequential sampling models which have d i rec t 

app l ica t ion i n q u a l i t y control and i n economic l o t size determination. 

These techniques, however, are more applicable to hypothesis test ing 

than to the estimation problem. 

Atzinger and Brooks (5) provide an excel lent comparison of 

Bayesian and c lass ica l decision making under uncerta inty for a class 

of problems where the decision var iab le is the Bernoul l i success pro

b a b i l i t y , p. I f the outcome of any p a r t i c u l a r tes t or experiment is 
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viewed as a success or f a i l u r e , the resu l t ing data c l a s s i f i c a t i o n is 

character is t ic of a Bernoul l i process. The authors persuasively argue 

that h i s t o r i c a l l y , one of the major objectives in tes t and evaluation 

processes has been to estimate th is unknown Bernoul l i success parameter. 

Unfortunately , such an analysis does not address the actual parameters 

of the sampling or experimental process i t s e l f . 

Winkler ( l 6 ) provides a rather de ta i led and complete development 

and treatment of Bayesian appl icat ions to inference and decision theory 

at the introductory l e v e l . Although the concepts developed in t h i s 

publ ica t ion are very thoroughly covered, the scope of the mater ia l is 

ra ther l i m i t e d . That i s , only two speci f ic sampling processes are 

analyzed i n d e t a i l : the sampling process modeled by the Bernoul l i 

d i s t r i b u t i o n , and the sampling process represented by the normal d i s 

t r i b u t i o n w i th known var iance. 

R a i f f a and Schla i fer (13) provide an extensive mathematical 

development of Bayesian technqiues applied to s t a t i s t i c a l decision 

theory. However, once again, extensive analysis of the normal d i s 

t r i b u t i o n is genera l ly r e s t r i c t e d to the case where the variance of 

the sampling population is known. 

Thus, Bayesian appl icat ions to the problem of sample-size deter 

mination deal only w i th very specia l ized s i tuat ions i n the current 

l i t e r a t u r e . There appears to be no substant ia l research into the 

examination of the general problem. On the other hand, c lass ica l 

s t a t i s t i c a l techniques commonly apply i t e r a t i v e type algorithms to the 

to the general problem of sample size determination. The author believes 

tha t these techniques can be v a l i d l y extended to Bayesian analysis and 
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produce equal ly v a l i d r e s u l t s . The aim of t h i s invest iga t ion , then, is 

to extend the appl ica t ion of these w e l l known techniques to the general 

sampling s i tua t ion using Bayesian analysis . 
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CHAPTER I I 

THE TEST METHODOLOGY 

The Assumptions of Normality 

The normai l i ty assumptions stated in the introduct ion introduction 

are c r u c i a l , a l b e i t r e s t r i c t i v e , to th is inves t iga t ion . The assumption 

that the p r i o r d i s t r i b u t i o n , which represents the d i s t r i b u t i o n of the 

mean of a random v a r i a b l e , is normally d is t r ibuted has sol id support 

in the Central Limit Theorem. Hines and Montgomery (9) s ta te the 

essence of th is important theorem as fo l lows: 

I f X., , X p . . . , X is a sequence of n independent random 
n 2 

var iables w i t h E(X^) = ^ and V(X^) = cr (both f i n i t e ) and Y = X 1 

+ X 0 + . . . + X , then under some general conditions 2 n 
Y 'I H 

z = 1=1 

n n 

71 <>? 
i = l 

has an approximate N ( 0 , l ) d i s t r i b u t i o n as n approaches i n f i n i t y . 
The "general conditions" mentioned in the theorem are informal ly 

summarized as fo l lows: The terms X^, taken i n d i v i d u a l l y , c o n t r i 
bute a neg l ig ib le amount to the variance of the sum, and i t is not 
l i k e l y tha t a single term makes a large contr ibut ion to the sum. 

The p r i n c i p a l impl icat ion of th is theorem, then, is that i n 

general the sum of n independent random var iables is approximately 

normally d is t r ibu ted for s u f f i c i e n t l y large n, regardless of the d i s 

t r i b u t i o n of the n ind iv idua l random v a r i a b l e s . Unfortunately, the 
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assumption that the random var iab le to be tested is normally d is t r ibu ted 

is much more r e s t r i c t i v e . However, i n many cases, rea l -wor ld s i tuat ions 

can be s a t i s f a c t o r i l y approximated by a normal process. Also, s t a t i s t i 

ca l inference and estimation procedures, p a r t i c u l a r l y those concerning 

the mean of random v a r i a b l e s , are genera l ly robust ( insens i t ive ) to the 

normality assumption ( 1 2 ) . 

The Pr ior Information 

At f i r s t glance, the requirement that Operational Testing be 

independent of other t es t ing conducted on the same system may seen an 

insurmountable obstacle in attempting to obtain adequate p r i o r i n f o r 

mation. This , however, is usual ly not the case; other sources of p r i o r 

information do e x i s t . For example, most new systems undergoing tes t ing 

have been s p e c i f i c a l l y designed to replace older or outmoded systems 

which are cur rent ly a par t of the U. S. Army s t ructure . These older 

systems represent a vast source of h i s t o r i c a l data from which p r i o r 

d is t r ibut ions f o r near ly any c r i t i c a l issue can be developed. In 

those rare cases where no h i s t o r i c a l data ex is t from which to construct 

a p r i o r d i s t r i b u t i o n for a spec i f ic c r i t i c a l issue, the Delphi technique 

or other proven methods of developing subjective assessments of uncer

t a i n t i e s can be used to develop the p r i o r d i s t r i b u t i o n ( 6 ) . 

I n any event, to the Bayesian s t a t i s t i c i a n , the p r i o r information 

represents the best ava i lab le estimate about an uncertain quant i ty , 

regardless of i t s source. This f a c t even suggests tha t i t is reason

able and l o g i c a l to modify the pr io r d i s t r i b u t i o n developed from 

h i s t o r i c a l data to r e f l e c t the improved design character is t ics of the 
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new system. Suppose, for example, tha t one of the c r i t i c a l issues being 

evaluated during OT of a new weapons system is the accuracy of the 

weapon at a speci f ied range. The d i s t r i b u t i o n of the mean-error of 

s imi la r weapons current ly in use can be determined from h i s t o r i c a l 

data . I f the new system is expected to be s i g n i f i c a n t l y more accurate 

because of new design charac te r i s t i cs , the mean of the p r i o r d i s t r i 

bution developed from the h i s t o r i c a l data can be adjusted to r e f l e c t 

the expected increase i n the performance of the new system. In d i s 

cussing techniques for the assessment of p r i o r d is t r ibut ions and the 

use of d i f fuse p r i o r d is t r ibut ions to represent the s i t u a t i o n where no 

p r i o r information is a v a i l a b l e , Winkler ( l 6 ) s ta tes : 

I t should be stressed tha t i n genera l , there is no such thing as 
a " t o t a l l y informationless" s i t u a t i o n and the use of p a r t i c u l a r 
d is t r ibu t ions to represent d i f fuse p r i o r states of information is 
a convenient approximation tha t is applicable only when the p r io r 
information is "overwhelmed" by the sample information. I n most 
rea l -wor ld s i t u a t i o n s , non-negl igible p r i o r information (non-
neg l ig ib le r e l a t i v e to the sample information) is a v a i l a b l e , and 
the concept of a d i f fuse p r io r d i s t r i b u t i o n is not appl icable . 

The Basic Al ternat ives of Determining Sample Size 

This study considers only two basic approaches to determining 

the appropriate sample size i n an experimental process. One approach 

is to simply disregard any p r i o r knowledge or information ava i lab le 

about the var iab le of i n t e r e s t , and use c lass ica l s t a t i s t i c a l techniques 

to solve the problem. The other approach i s to combine the p r i o r 

information wi th the resul ts of a l i m i t e d number of rep l ica t ions of 

the experiment, i f possib le , and then use these resul ts to solve the 

problem. 
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The Classica l Method 

Classical estimation procedures and techniques are w e l l documented 

i n the l i t e r a t u r e (9? 10, 1 2 ) . This method uses only the resul ts of 

the sampling or experimental process i n the estimation procedures and 

ignores a l l p r i o r information. Star t ing from the basic assumption that 

the sampling process is normally d is t r ibu ted w i th unknown mean, JJL, and 
2 

unknown var iance, a , the random var iab le representing the outcome of 

the sampling process can be represented by: 

2 2 ~ N((i, a ) , w i th ( i , cr unknown 

Let (X^, X^, . . . , X ) represent the resul ts of n rep l ica t ions 

of the experiment. The sample s t a t i s t i c s based on the speci f ic n 

values obtained from the sampling process can be expressed as: 

and 

n 
- I V X a= — ^ X^ , the sampl 

i = l 

n 
^ 2 

e mean 

2 i = 1 
S = j , the sample variance 

The appropriate expression for a ( l - a) percent confidence 

i n t e r v a l about the unknown mean, (i , for a process which is normally 

d is t r ibu ted and for which the variance is unknown is constructed using 

the Student's t d i s t r i b u t i o n , i . e . ; 
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P(X - t ( c r / 2 , n - l ) — £ u £ X + t ( a / 2 , n - l ) — ) = 1-q, (2 -1) 

where the expression t ( a / 2 , n - 1 ) refers to the percentage points of the 

Student's t d i s t r i b u t i o n wi th n-1 degrees of freedom such that P( t > 

t ( a / 2 , n - 1 ) = a / 2 . 

Recal l from the introduct ion that the c l a s s i c a l i n t e r p r e t a t i o n 

of p r o b a b i l i t y d i f f e r s considerably from the Bayesian i n t e r p r e t a t i o n . 

Thus, the i n t e r p r e t a t i o n of equation (2 -1 ) is based on long-run con

s idera t ions . That i s , the c lass ica l s t a t i s t i c i a n would say that i f a 

confidence i n t e r v a l based on a sample size of n is constructed each 

t ime, then in the long run, 1-a percent of such in terva ls would contain 

the t rue mean of the normally d i s t r i b u t e d sampling process. The value 

of a, which is preselected at some low value, can then be thought of 

as protect ion against f a i l u r e of the i n t e r v a l to include the t rue 

value of the mean of the sampling process. The va lue , a - 0 .05 , is 

of ten selected for s t a t i s t i c a l inference and est imation problems because 

of t r a d i t i o n a l useage. The second type of error tha t can occur in 

i n t e r v a l est imation problems is tha t the i n t e r v a l constructed based 

on a set of spec i f ic sample resul ts may to too wide, even though the 

i n t e r v a l does include the t rue value of the mean of the sampling pro

cess. This , then , is a problem of the accuracy associated w i th the 

confidence i n t e r v a l . Protect ion against t h i s type of error Is accom

pl ished by cont ro l l ing the width of the confidence i n t e r v a l constructed. 

The width of each speci f ic confidence i n t e r v a l is dependent on the 
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sample size and the value of a spec i f ied . 

The terms 

UL = X - t(a/2, n-1) — 
J n 

and 

UU = X + t ( a / 2 , n-1) - ~ , 

J n 

which are rea l -va lued functions of the sample r e s u l t s , are the lower 

and upper l i m i t s , respect ive ly , of the i n t e r v a l est imate. The Student's 

t d i s t r i b u t i o n is very s imi lar to the standard normal d i s t r i b u t i o n , and 

for degrees of freedom, v = n-1 > 20 , the two d is t r ibut ions are v i r t u a l l y 

ind is t ingu isab le . And i n f a c t , the Student's t d i s t r i b u t i o n is i d e n t i c a l 

to the standard normal d i s t r i b u t i o n for degrees of freedom, v = oo (10 ) . 

This fac t allows accurate approximations i n computing the minimum 

sample size by approximating the value of t ( a / 2 , n - 1 ) by t ( a / 2 , • ) = 

Zq/2 for moderate sample s izes . The experssion Zq/2 re fers to the 

percentage points of the standard normal d i s t r i b u t i o n such that 

P(Z > Zq /2) = a / 2 . 

For the moment, l e t the preselected width of the confidence 

i n t e r v a l be simply equal to k. Then from equation ( 2 - 1 ) , the h a l f -

i n t e r v a l width can be expressed as: 
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Solving t h i s equation for n, resul ts i n the fol lowing expression for 

the minimum sample size required for a confidence i n t e r v a l width equal 

to k. 

n * = 
c 

2 t ( o / 2 , n* -i)s -2 
c (2-2) 

I t is more convenient to express the width of the confidence i n t e r v a l 

i n terms of the sample standard deviat ion in order to s impl i fy equation 

(2-2). Thus, i f k = 6S is subst i tuted into the equation, the minimum 

sample size required can then be expressed as: 

2 t ( o / 2 , n * -1 ) 2 
n * c = [ ii — ] (2"3) 

Equation (2-3) cannot be solved e x p l i c i t l y for n* , since the 

value of t (a / 2 ,n* - l ) is a funct ion of the sample size n* . But since 

the value of t(<y/2, n * - l ) is approximately equal to t(<y/2, o o ) , which 

is equal to Zq,/2, for moderate sample sizes a good f i r s t approximation 

for the solut ion of equation (2-3) is obtained by subst i tut ing the 

value of Zq/2 fo r the value t(a/2, n* - l ) . This f i r s t approximation 

is known to be too smal l , although for large sample sizes i t is quite 

close to the actual value of n* . Using th is f i r s t approximation, 

c a l l i t n^, to evaluate t ( o / 2 , n 0 - l ) and to solve equation (2-3) again, 

to obtain a bet te r second approximation for the value of n* . This 

i t e r a t i v e procedure can be used to approximate the value of n * c to any 

desired accuracy; however, there is usual ly no s ign i f i can t improvement 

in the approximation a f t e r the second or t h i r d i t e r a t i o n . 
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Table 1 shows t h e v a l u e s o f n * c o b t a i n e d for a 95 p e r c e n t (<* = 

0.05) c o n f i d e n c e i n t e r v a l f o r v a r i o u s v a l u e s o f 6 u s i n g t h i s i t e r a t i v e 

p r o c e d u r e . Because o f the premimum p l a c e d on a c c u r a t e e s t i m a t e s i n 

O p e r a t i o n a l T e s t i n g , v a l u e s o f 6 > 1.0 were not c o n s i d e r e d . The v a l u e s 

shown i n t h e t a b l e under t h e heading P(K) are t h e approximate proba

b i l i t i e s o f a s i n g l e o b s e r v a t i o n from t h e sampling p r o c e s s f a l l i n g 

between t h e lower and upper l i m i t s o f t h e c o n f i d e n c e i n t e r v a l , i . e . , 

P(K) = P(UL £ x £ UU). This v a l u e g i v e s a p r o b a b i l i s t i c measure o f 

the a c c u r a c y (width) o f t h e c o n f i d e n c e i n t e r v a l . The v a l u e s of n * c 

i n the t a b l e have been rounded up t o t h e next h i g h e s t i n t e g e r . As 

i l l u s t r a t e d i n Table 1, e q u a t i o n (2-3) p o i n t s out t h a t i n order t o 

d e c r e a s e t h e w i d t h o f a c o n f i d e n c e i n t e r v a l by o n e - h a l f , t h e sample 

s i z e must be i n c r e a s e d approx imate ly by a f a c t o r o f f o u r . 

Table 1. Minimum Sample S i z e - C l a s s i c a l Method 

6 P (K) 
c 

1.0 
0.9 
1.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.383 
0.347 
0.311 
0.274 
0.236 
0.197 
0.159 
0.119 
0.080 
0 . 040 

18 
22 
27 
34 
46 
64 
99 

174 
387 
1537 
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A Bayesian Approximation 

Bayes Theorem for Continuous Random Var iables. The essence of 

Bayes Theorem for continuous random var iables is depicted i n Figure 1 

shown below. The densit ies f(0) and f ( 8 | y ) represent the p r i o r d i s 

t r i b u t i o n and the poster ior d i s t r i b u t i o n respect ive ly , and f(y|e) 
represents the l i ke l ihood or sampling funct ion. I t is important to 

keep in mind always that i t is the p r i o r d i s t r i b u t i o n or the s t a t i s t i 

cians p r i o r s ta te of knowledge that is modified by the sampling resul ts 

and not the reverse. 

e e f(e) f(y|e) f(e|y) 
Figure 1. Bayes Theorem for Continuous Random Variables 

The p r i o r and poster ior d is t r ibut ions must be proper density 

funct ions. That i s , they must possess the fol lowing mathematical 

propert ies appl icable to the density funct ion of any continuous random 

v a r i a b l e , x , which has range space or domain, R : 

( i ) f (x) 2> 0 for a l l xeR 

( i i ) f f ( x )dx = 1 
J R 

x 
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The l i ke l ihood or sampling funct ion, f(y |e), represents the p r o b a b i l i t y 

of obtaining a given va lue , y , for the range of possible values of 9. 

The l i ke l ihood funct ion is not a proper density function because the 

events f ( y | © ) are not mutually exclusive over the range of 0. 

As suggested i n Figure 1 , Bayes Theorem is essentual ly a process 

of combining the p r i o r d i s t r i b u t i o n wi th the sample information to 

y i e l d the poster ior d i s t r i b u t i o n . The resul tant poster ior density has 

the fol lowing form: 

f(9|y) = ffrl°> (2-10 
j f(e) f(y|e)de 

This resu l t can be expressed in words as: 

poster ior density normalizing |~ p r i o r "1 [~ l i ke l ihood 1 
L constant J L density J L function J 

r 
where the normalizing constant, l / J f(0)f(y|e)d9, is needed to make 

the poster ior d i s t r i b u t i o n a proper density funct ion. 

Before the advent of the high speed computer which g rea t l y eased 

the computational burden involved w i th numerical in tegra t ion techniques, 

appl ica t ion of equation (2-K) to revise density functions in the l i g h t 

of sample information of ten proved extremely d i f f i c u l t because of the 

in tegra t ion required to compute the normalizing constant. For t h i s 

reason, Bayesian s t a t i s t i c i a n s developed the concept of "conjugate" 

d i s t r i b u t i o n s , which are fami l ies of d is t r ibu t ions that ease the compu

t a t i o n a l burden when they are used as pr io r d is t r ibut ions ( l 6 ) . Of 
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course t h e r e s u l t a n t form o f t h e p o s t e r i o r d i s t r i b u t i o n depends on the 

l i k e l i h o o d f u n c t i o n as w e l l as t h e p r i o r d i s t r i b u t i o n . Thus, c o n j u g a t e 

p r i o r d i s t r i b u t i o n s are s e l e c t e d on t h e b a s i s o f t h e s t a t i s t i c a l p r o 

p e r t i e s o f t h e model chosen t o r e p r e s e n t t h e sampl ing p r o c e s s . When 

t h e p r i o r d i s t r i b u t i o n i s c o n j u g a t e t o t h e l i k e l i h o o d or sampling 

f u n c t i o n , t h e r e s u l t a n t p o s t e r i o r d i s t r i b u t i o n i s a l s o a member of 

t h e same c o n j u g a t e f a m i l y o f p r i o r d i s t r i b u t i o n s . 

Bayes Theorem f o r Normal D i s t r i b u t i o n s . I f i t i s p o s s i b l e t o 

model t h e p o p u l a t i o n or p r o c e s s b e i n g sampled by a normal d i s t r i b u t i o n , 

t h e proper c h o i c e f o r a f a m i l y o f c o n j u g a t e p r i o r d i s t r i b u t i o n s depends 

on t h e s t a t i s t i c i a n ' s knowledge o f t h e parameters o f t h e normal data 

g e n e r a t i n g p r o c e s s u s e d . R a i f f a and S c h l a i f e r (13) summarize t h e 

e f f e c t s o f t h e s t a t i s t i c i a n ' s knowledge o f t h e two parameters of t h e 

normal d i s t r i b u t i o n s on t h e proper c h o i c e o f c o n j u g a t e p r i o r d i s t r i 

b u t i o n s as f o l l o w s : 

Case ( i ) u, known, cr unknown: The a p p r o p r i a t e f a m i l e o f c o n j u g a t e 
d i s t r i b u t i o n s have a gamma-2 d e n s i t y . 

Case ( i i ) a known, u unknown: The a p p r o p r i a t e f a m i l e o f c o n j u g a t e 
d i s t r i b u t i o n s have a normal d e n s i t y . 

2 
Case ( i i i ) both u- and a unknown: The a p p r o p r i a t e f a m i l y o f c o n j u 
g a t e d i s t r i b u t i o n s have a normal-gamma d e n s i t y . 

An Approximation Procedure . S i n c e i t was assumed t h a t w i t h i n 

t h e c o n t e x t o f t h i s s t u d y t h e model r e p r e s e n t i n g t h e sampling p r o c e s s 

i n O p e r a t i o n a l T e s t i n g was normal ly d i s t r i b u t e d w i t h unknown mean, | i , 

2 

and unknown v a i r a n c e , a , t h e a p p r o p r i a t e f a m i l y o f conjugate d i s t r i 

b u t i o n s t o use i n t h i s c a s e have a normal-gamma d e n s i t y . In order t o 

overcome t h e obv ious d i f f i c u l t i e s a s s o c i a t e d w i t h computing i n t e r v a l 
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estimates w i th the normal-gamma densi ty , a procedure is suggested here 

to modify the Bayesian analysis of th is sampling process so that the 

fami ly of conjugate p r io r d is t r ibut ions have a normal density funct ion; 

as i s the case when the variance of the population or sampling process 

is known. 

Assume for the moment that the variance of the sampling process 

is known. Then the conjugate p r io r d i s t r i b u t i o n has a normal density 

funct ion of the form: 

/ x 1 -(LL - m') /2cr' 

V 2 m * 

where the prime ( ' ) is used to s ign i fy a parameter or constant which 
2 

Is associated w i th the p r i o r d i s t r i b u t i o n . Thus, a ' is the variance 

of the p r i o r d i s t r i b u t i o n or , the pr io r variance of the unknown para

meter, (j,; and m' is the mean of the pr io r d i s t r i b u t i o n of th is para

meter . 

I f n rep l ica t ions of the experiment were now conducted and a 

sample mean, 

n i r1 „ m = - ) X. , n I 
i=l 

and a sample var iance, 

n 

S 2 = -V 7 (X. - m ) 2 , n-1 U l 
i = l 

were observed, the resu l tant poster ior d i s t r i b u t i o n would also have a 
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normal density funct ion of the form: 

f W ( , | y ) . T i _ e - ( , - m " ) 2 / 2 a " 2 

2 T T O - " 2 

where y represents the sample r e s u l t s , and the double prime (") is 

used to indicate a parameter or constant which is associated wi th the 

poster ior d i s t r i b u t i o n . Thus, a" is the poster ior variance of \i, 

and m" is the mean of the poster ior d i s t r i b u t i o n of \i. These poster ior 

parameters can be computed from the fol lowing formulas: 

1 + 4 (2-5) „2 ,2 2 
( J O G 

and 

m" o f l / o ' V + ( ° / g 2 ? » (2.6) 

( l / o ' 2 ) + ( n / a 2 ) 

Equations (2-5) and (2-6) indicate that the rec iproca l of the 

poster ior variance is equal to the sum of the rec iprocal of the p r i o r 
2 

var iance, a' , and the rec iprocal of the variance of the sample mean, 
2 

a/n. The poster ior mean is a weighted average of the p r i o r mean, m' , 

and the sample mean, m. The weights being the rec iproca l of the res 

pect ive var iances. 

As depicted in Figure 2 . , an important feature of the poster ior 

d i s t r i b u t i o n is that the poster ior mean, m", always l i e s between the 
2 

p r i o r mean, m' , and the sample mean, m. The poster ior var iance, a" , 
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Is always smaller than the p r io r var iance, crT (l6). From equation 

(2-5)j i f the variance of the p r i o r d i s t r i b u t i o n , o*T , decreases, the 

amount of p r i o r uncerta inty decreases, and the p r i o r information is 

given more weight i n the determination of the poster ior d i s t r i b u t i o n . 

S i m i l a r l y , as the variance of the sample mean, a / n , decreases, the 

sampling information is given more weight i n the determination of the 

poster ior d i s t r i b u t i o n . 

m" m 

Figure 2. Bayes Theorem for Normal Dist r ibut ions 

A d i f f e r e n t parameterizat ion of th is problem might help c l e a r i f y 

the resul ts obtained. 

2 
l e t n' = ^-p 

a* 

Then the p r io r variance can be w r i t t e n i n terms of n f and the process 

or sampling var iance, thus: 



2k 

S i m i l a r l y , i f 

2 

t h e n 

S u b s t i t u t i n g t h e s e r e s u l t s i n t o e q u a t i o n s (2-5) and ( 2 - 6 ) , t h e p a r a 

meters o f t h e p o s t e r i o r d i s t r i b u t i o n are t h e n 

or s i m p l y , 

n" = n' + n 

and 

m" = ( n ' / g 2 ) m ' + (n/cr 2)m 

( n ' / a 2 ) + ( n / a 2 ) 
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or simply, 

= n'm- + nm ( } 

n' + n ^ 

In his i n t e r p r e t a t i o n of the resul ts obtained by using these 

new parameters, Winkler ( l 6 ) suggests that the p r io r d i s t r i b u t i o n can 

be thought of as roughly equivalent to the information contained i n a 

sample of size n 1 w i th a sample mean of m1 from a normal sampling pro-

2 
cess w i th variance cr . That i s , n 1 appears to be the sample size 

2 
required t o produce a variance of cr' for a sample mean equal to m 1 , 

since the variance of the sample mean from a sample size n' is equal 

to a / n ' . Winkler also considers equations (2-7) and (2-8) as formulas 

fo r pooling the information from the two samples. Under th is i n t e r 

p r e t a t i o n , the poster ior or pooled sample size is equal to the sum of 

the two ind iv idua l sample s i zes , one from the p r io r d i s t r i b u t i o n 

and one from the sampling process. The poster ior or pooled sample mean 

is equal to a weighted average of the two ind iv idua l sample means. 

This pooling process suggests that a reasonable estimate of the 

sample mean, based on a l l the information a v a i l a b l e , is the poster ior 

or pooled mean, m". Notice that i f n' > n, then the poster ior or pooled 

mean is closer to the p r i o r mean than to the sample mean. That i s , 

the p r i o r information is given more importance than the sample resul ts 

i n the determination of the poster ior parameters. Of course, the 

poster ior mean is closer to the sample mean i f n > n ' ; and i f n' = n, 

the poster ior mean is exact ly midway between the p r i o r mean and the 
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sample mean. Notice also tha t since the sample mean, m, is as equally-

l i k e l y to f a l l above as i t is to f a l l below the true population or 

sampling mean, p,; i t is then equal ly l i k e l y that the sample mean and 

the mean of the p r i o r d i s t r i b u t i o n , m' , to be on the same or opposite 

sides of When m' and m f a l l on the same side of JJL, the mean of the 

poster ior d i s t r i b u t i o n , m", w i l l be fur ther from \i than the sample mean. 

That i s , the poster ior mean w i l l be a less accurate estimate of the t rue 

populat ion mean than the sample mean. When mT and m are on opposite 

sides of then i t cannot be determined whether the poster ior mean w i l l 

be closer or fur ther from JJ, than the sample mean. Each speci f ic case 

must be examined separately; the resul ts w i l l depend on the sample 

s i z e , the spec i f ic value of the p r i o r mean, and the variances of the 

p r i o r and sampling d i s t r i b u t i o n s . 

Since the point estimate of |j, based on a l l information ava i lab le 

is the poster ior mean which is normally d is t r ibu ted wi th mean, m", and 

var iance, a" , the s t a t i s t i c 

has a standard normal d i s t r i b u t i o n , i . e . , Z ~ N (0 , l ) . Therefore the 

appropriate expression fo r a ( l - a) percent i n t e r v a l est imation of |JL 

for t h i s case is constructed using the standard normal d i s t r i b u t i o n , 

i . e . , 

Z = 

P(m" - Z a" £ ^ £ m" + Z a/2 a") = 1 - a ( 2 - H ) 
a, 
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The lower and upper l i m i t s of the confidence i n t e r v a l i n th is case are 

UL = m" - Z / o a" and UU = m" Z / o cr", respect ive ly . 

I f , as was done i n the c lass ica l case, the width of the con

fidence i n t e r v a l for the general case is set equal to k, then from 

equation ( 2 - l l ) the h a l f - i n t e r v a l width can be expressed as: 

2 

Now subst i tu t ing the expression for cr" from equation (2 -5) into the 

above expression resul ts in the fo l lowing: 

V2 
1 

l . 
- i 2 

1 / V 2 + n / a 2 

? ? — r q ct T - ̂  
V* 1 a2

 + na'2 J = 2 

Z « / 2 CT'CT 1 2 2 . ,2 
k/2 J = CT + n C T 

and f i n a l l y , 

n * b = 
^ 2Z , a n 2 

ot/e-
k (2-12) 

This then, is the Bayesian solut ion for the minimum sample size 

required to es tab l ish a confidence i n t e r v a l of width k about the mean 

of the sampling process under the special condit ion that the variance 
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of the sampling process is known. Several character is t ics of equation 

(2-12) deserve mention. F i r s t of a l l , the f i r s t term i n the equation, 

[2 Z / cr/k] , is i n fac t the exact expression for the c lass ica l solut ion 01/ <-
to the problem of determining the minimum sample size required to 

es tab l ish a confidence i n t e r v a l of width k about the mean of a sampling 

process w i th known variance. Second, the l a s t term i n the equation, 

2 2 
a /o~' , is the expression developed e a r l i e r for n 1 i n equation (2-7). 
Recal l Winkler 's i n t e r p r e t a t i o n of n' as being roughly the equivalent 

sample s i z e , r e l a t i v e to the sampling process, of the information con-
2 2 

ta ined in the p r i o r d i s t r i b u t i o n . The r a t i o o~ / a ' = 0 is also used to 
def ine a d i f fuse p r i o r d i s t r i b u t i o n , i . e . , an informationless pr io r 

2 
s t a t e . Assuming tha t the variance of the sampling process, o~ > 0, 

2 2 
the r a t i o a / a ' = 0 only i f the variance of the pr io r d i s t r i b u t i o n , 
2 

a' = oo. I n t h i s case, the variance of the p r i o r d i s t r i b u t i o n would 
2 2 

represent a condit ion of t o t a l uncerta inty and since n 1 = a /o"' = 0, 

equation (2-12) would y i e l d the same resul ts as i n the c lass ica l case. 

Tying a l l these facts together, equation (2-12) can be i n t e r 

preted as fo l lows: the minimum Bayesian sample size required to esta 

b l i s h an i n t e r v a l estimation of the mean of any speci f ied width or 

accuracy is equal to the minimum sample size required to establ ish 

the same i n t e r v a l est imation using c lass ica l methods, minus the value 

of the p r i o r information i n terms of an equivalent sample s i z e . Or, 

more c l e a r l y : 
n * = n* - n 1 

b c 



29 

Now, consider once again equation (2-12) i n order to address the 

fac t tha t the variance of the sampling process is in fac t not known. 

Subst i tut ing the sample variance for the variance of the sampling pro

cess and the term t(o/2, n * c - l ) for l n equation (2-12), and once 

again def ining the width of the confidence i n t e r v a l as k = 6S, resul ts 

in the fol lowing expression for the approximate Bayesian sample s i z e : 

where 

(2-13) 

and m is equal to the sample mean based on n*^ observations. 

Examination of equation (2-13) reveals that the f i r s t term i n 

the equation is i d e n t i c a l to equation (2-3), the c lass ica l solut ion 

to the minimum sample size problem for a normal sampling process w i th 

unknown var iance. The l a s t term i n the equation is an approximation 

of the equivalent sample size of the information contained i n the p r i o r 
2 2 

d i s t r i b u t i o n , where the value of n 1 = a / a 1 is approximated by n' = 
2 2 

S / a ' . Of course equation (2-13) cannot be evaluated e x p l i c i t l y , even 
though the value of the f i r s t term i n the equation is exact ly known 

from the resul ts obtained using the c l a s s i c a l method, since the value 
2 

of S depends on the speci f ic observations obtained during the sampling 

process. 
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Before suggesting a procedure for approximating a solut ion to 

equation (2-13) for the general case, i t may be more appropriate at 

th is point to examine the general implications of using the poster ior 

d i s t r i b u t i o n to construct cofidence i n t e r v a l estimates about the mean 

of the sampling process. An i n t e r v a l estimation based on the poster ior 

d i s t r i b u t i o n has as i t s midpoint the poster ior mean, m"; while the mid

point of an i n t e r v a l estimation based on the sampling process alone is 

the sample mean, m. Referr ing to Figure 2, i t is obvious, then, that 

an i n t e r v a l estimate of width 6S which is based on the poster ior d i s 

t r i b u t i o n w i l l not include the sample mean, m, i f m" and m are separated 

by more than ^6S. A large separation between m" and m is ind icat ive of 

p r i o r information which is not very compatible to the resul ts obtained 

from the sampling or experimental r e s u l t s . I n other words, the p r i o r 

information does not predict the behavior of the sampling process very 

w e l l . This is an important consideration i n Operational Test ing, since 

i t i s important to decide whether or not to use the p r i o r information 

i n estimating the mean of the sampling or experimental process. 

I t would seem appropriate then, to develop at l eas t a heur is t ic 

ru le to r e j e c t the use of p r i o r information which causes the poster ior 

and sampling means to d i f f e r beyond some pre-establ ished l i m i t . The 

general form of such a ru le would be of the form: 

|m" - m| £ q6S 

where the value of q is s leeted in a manner such tha t i f the inequa l i ty 



3 1 

were not s a t i s f i e d , t h e a p p l i c a t i o n o f Bayes ian t e c h n i q u e s would be 

a b o r t e d and t h e a p p r o p r i a t e sample s i z e f o r t h e s p e c i f i c s i t u a t i o n would 

be determined by u s i n g c l a s s i c a l t e c h n i q u e s . 

Returning now t o t h e problem of c o n s t r u c t i n g an i n t e r v a l e s t i m a t e 

o f w i d t h 6S f o r t h e mean o f t h e sampling p r o c e s s u s i n g Bayes ian t e c h n i 

ques , t h e f o l l o w i n g procedure i s s u g g e s t e d as a r e a s o n a b l e approach t o 

approximat ing t h e s o l u t i o n o f e q u a t i o n ( 2 - 1 3 ) f o r t h e g e n e r a l c a s e . 

a . Determine t h e minimum sample s i z e , n * C J r e q u i r e d f o r the 

c l a s s i c a l method. This v a l u e , c a l l i t n^, i s t h e upper l i m i t o f t h e 

Bayes ian sample s i z e . 

b . As a f i r s t approximat ion t o t h e Bayes ian sample s i z e , l e t 

n l =
 rlo/(i• ^ t i e r e t h e v a l u e o f d i s s e l e c t e d w i t h c o n s i d e r a t i o n g i v e n 

t o t h e c l a s s i c a l sample s i z e b e i n g u s e d . That i s , for s m a l l v a l u e s of 

n * c , d shou ld be chosen a t some low v a l u e (such as 2 or k) i n order t h a t 

n^ be l a r g e enough t o y i e l d s u i t a b l e sample s t a t i s t i c s . For l a r g e 

v a l u e s o f n* c ? d may be i n c r e a s e d s i n c e t h e r e s u l t i n g n^ samples would 

s t i l l y i e l d s u i t a b l e s t a t i s t i c s . The o b j e c t i v e here i s t o approximate 

t h e Bayes ian sample s i z e c o n c e r v a t i v e l y w h i l e i n s u r i n g t h a t t h e a p p r o x i 

mat ion d e c i d e d upon i s l a r g e enough t o y i e l d r e a s o n a b l y v a l i d sample 

s t a t i s t i c s . 

c . Conduct t h e n^ r e p l i c a t i o n s of t h e experiment and from t h e 

r e s u l t s compute t h e sample s t a t i s t i c s : 
n 
^ X L \ 

1=1 
1 n. 
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and 
n 

(X t - m 1 ) 
n 2 

S 
L 

2 i = l 1 n± - 1 

d. Use t h e s e s t a t i s t i c s t o compute t h e approximat ions 

s 2 
n 1 = ~ 

0" 

and 

n ' m 1 + n-m.. 
^ t t _ l l l 
m _ = — : — 

1 n i n i 

e . Determine t h e second approximat ion o f t h e Bayes ian sample 

s i z e by u s i n g t h e v a l u e o b t a i n e d f o r t h e f i r s t approximat ion and t h e 

f o l l o w i n g r e l a t i o n s h i p : 

"2 = n l + * ( n0 " NV 

where A i s chosen w i t h t h e same c o n s i d e r a t i o n s as was t h e v a l u e o f d. 

The e x p r e s s i o n f o r t h e approximat ion o f t h e Bayes ian sample s i z e 

i s : 

n = n + i ( n Q - n' ) 

f. Determine i f s u f f i c i e n t r e p l i c a t i o n s o f t h e experiment have 
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been conducted after each iteration by comparing the computed approxi

mation of the Bayesian sample size to the classical sample size minus 

the computed value of n'. That is, continue the iterative procedure 

until n. Jt n r t - n'., 
j 0 j 
g. After computing the final approximation of the Bayesian 

sample size, determine if the prior information should be accepted or 

rejected. That is, if |m" - m| <: q6S, use the n. replications already 

conducted to construct the interval estimate of the mean of the expert 

mental process using Bayesian techniques. If |m" - m| > q&S, reject 

the use of the prior information; conduct the remaining n^ - n̂ . repli

cations of the experiment and construct the desired interval estimate 

of the mean of the experimental process using classical techniques. 



3h 

CHAPTER I I I 

DEMONSTRATION OF THE METHODOLOGY 

Programming the Model 

The model developed f o r approximating the minimum Bayesian sample 

size for the special t e s t s i t u a t i o n described i n Chapter I is programmed 

for the UNIVAC 1108 computer using standard Fortran IV language. The 

program consists of four basic segments designed to perform the fo l low

ing funct ions: generate the required data and compute the sample 

s t a t i s t i c s ; compute the minimum c lass ica l sample size required for an 

i n t e r v a l est imation of speci f ied wid th ; compute the approximate Bayesian 

sample size required for the same i n t e r v a l w id th ; and construct the 

confidence in te rva ls desired based on the sampling r e s u l t s . 

The Box and Mueller technique (7) is used to generate the normally 

d is t r ibu ted pseudo random numbers representat ive of a normal process 

w i th speci f ied mean and var iance. The random number generator was tested 

fo r various sample sizes and values of the model parameters using the 

chi-square goodness-of - f i t t e s t fo r normal i ty . The resul ts of these 

tes ts were quite favorable and are summarized i n Table 2. 

Equation (2-3) is solved i t e r a t i v e l y for the minimum c lass ica l 

sample size by using two standard UNIVAC MATH-STAT l i b r a r y functions 

(ik). The funct ion TINORM is used to compute the value of the inverse 

of the standard normal d i s t r i b u t i o n given the value of the p r o b a b i l i t y 

fo r which the ordinate is to be ca lculated. The funct ion STUDIN is 



Table 2. Test of Normal Random Generator 

Speci f ied 
Mean and 
Variance 

Number of 
Observations 
per T r i a l 

Number of 
T r i a l s 

Number of T r i a l s Accepted at 
the & = .05 Signif icance Level 

-120.0 500 30 27 
250 30 27 

: 81.0 100 30 29 
25 30 26 

-5.0 500 30 26 
250 30 27 

: 4.0 100 30 28 
25 30 24 

0.0 500 30 27 
250 30 28 

: 1.0 100 30 29 
25 30 23 

57.0 500 30 30 
250 30 27 

: 64.0 100 30 28 
25 30 25 

200.0 500 30 28 
250 30 29 

: 400.0 100 30 27 
25 30 24 

225.0 500 30 26 
250 30 30 

: 25.0 100 30 27 
25 30 23 



Table 2. (Continued) 

Speci f ied 
Mean and 
Variance 

Number of 
Observations 
per T r a i l 

Number of 
T r ia ls 

Number of T r ia ls Accepted a t 
the Qf = '05 Signif icance Level 

p, = 297.72 
CT2 = 173.18 

337 30 28 

M» = 199.5 

a 2 = 46.32 

p, = 45.3 

a 2 = .78 

(j, = 1542.0 

CT2 = 57*2.6 

483 

13 

486 

30 

30 

30 

29 

24 

28 
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used to calculate the inverse of the Student's t d i s t r i b u t i o n for a 

given confidence c o e f f i c i e n t . The results obtained from the subroutine 

used to calculate the c lass ica l sample size for each speci f ied value of 

6 are shown i n Table 1 . 

Approximations for the Bayesian sample size for a given value of 

de l ta are computed using the i t e r a t i v e procedure developed in the p re 

ceding chapter. The value of the c lass ica l sample size computed for a 

given value of d l e t a is input to t h i s subroutine which uses th is value 

to ca lculate the f i r s t approximation of the Bayesian sample s i ze . 

Confidence in terva ls are computed by using the STUDIN l i b r a r y 

funct ion to calculate the value t ( o / 2 , n * - l ) , where n* is the computed 

c lass ica l or Bayesian sample s i ze . The subroutine then computes the 

lower and upper l i m i t s of the confidence i n t e r v a l , i . e . , 

S 
UL = m - t ( o / 2 , n* - l ) c 

and 

S 
UU = m + t ( o / 2 , n * - 1) c 

for the c l a s s i c a l case, and 

UL = m" - t ( o / 2 , n * b - l ) 

and 
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UU = m" + t ( o / 2 , n * - l ) — — 
b 

for the Bayesian case. 

Demonstrating the Model 

I n order to demonstrate the model developed to approximate the 

Bayesian sample size i n the preceding chapter, various values of the 

constants, d, A, and q used i n the i t e r a t i v e procedure were t r i e d i n 

pre l iminary simulat ions. The values d = k, A = l A ? and Q. = 3/8 were 

chosen for the fol lowing reasons: 

a. Values of d < h tended to produce f i r s t approximations of 

the Bayesian sample size which were too large when working wi th small 

values of the c lass ica l sample s i z e , n_. That i s , n, 2: n„ - n 1 . a f t e r 
0 1 0 j 

the f i r s t approximation. Larger values of d produced more conservative 

f i r s t approximations of the Bayesian sample size for small values of 

n Q , but at the same time resul ted i n u n r e l i a b l e , i . e . , g rea t l y v a r i a b l e , 

sample s t a t i s t i c s . 

b. Values of A < l/h were re jected because for large values of 

n Q the number of i t e ra t ions required to compute the approximate Bayesian 

sample s ize was considerably increased. I t was f e l t t h a t t h i s resu l t 

was undesirable in an Operational Testing mode and, of course, i t also 

meant increased computer times to solve the approximation. A scheme 

of using a var iab le value for A was t r i e d , i . e . , A was decreased by 

one-half a f t e r each i t e r a t i o n . This scheme was also re jec ted because 
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f o r l a r g e r v a l u e s o f t h e i t e r a t i v e procedure q u i c k l y e v o l v e d i n t o 

a s e q u e n t i a l t ype o f sampling procedure . 

c . The v a l u e o f q = 3/8 was s e l e c t e d as a r e a s o n a b l e c h o i c e 

based on t h e i l l u s t r a t i o n shown i n Figure 3. The i n t e r v a l a-d r e p r e 

s e n t s an i n t e r v a l e s t i m a t i o n based on t h e p o s t e r i o r d i s t r i b u t i o n . Then 

from p r e v i o u s d e f i n i t i o n s , a-d = 6S , and t h e i n t e r v a l s a-m" • m"-d = 

l/2 fiS. Then i f t h e i n t e r v a l s a-b = c -d = l/8 6S, t h e sample mean, m, 

i s r e q u i r e d t o be w i t h i n t h e i n t e r v a l b-c = 3 / 4 6S, i . e . , |m" - m| £ 

3/8 6S i s t h e p r e r e q u i s i t e f o r i n c o r p o r a t i n g t h e p r i o r i n f o r m a t i o n 

i n t o t h e e s t i m a t i o n p r o c e d u r e s . I t was f e l t t h a t l/8 6S would a l l o w 

f o r s u f f i c i e n t v a r i a t i o n o f t h e sample mean due t o d i f f e r e n c e s i n 

sample r e s u l t s . 

F igure 3. S e p a r a t i o n o f t h e P o s t e r i o r and Sample Means 
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The procedure to approximate the Bayesian sample size was demon

s t ra ted using a hypothet ical case having the fol lowing charac te r is t ics : 

2 2 

a. the r a t i o a /CT1 = l 6 . 

b. |m' - p,| = 5 and |m' - p,| = 10. 
where p, and a are the true (but assumed unknown) values of the para-

2 

meters of the sampling process and m1 and a 1 are the parameters of the 

p r i o r d i s t r i b u t i o n . 

The f i r s t t e s t of the procedure involved a computer simulation 

of 100 runs for each value of d e l t a from 1.0 to 0 .2 . The model was not 

tes ted for the value of de l ta equal to 0.1 i n t h i s or subsequent tests 

of the procedure because the large sample sizes involved required an 

excessive amount of computer t ime. The resul ts of th is f i r s t t es t are 

summarized i n Table 3 for the case where (m1 - p, j = 5 and i n Table k 

fo r the case where |m' - p,| = 10. These resul ts appear quite favorable 

as shown in the percentage of reduction achieved over the c lass ica l 

sample s izes . Note that the computed Bayesian sample size does not 

depend on the value of |m' - p , | . That i s , the Bayesian sample sizes 

are i d e n t i c a l i n Tables 3 and k for a given value of d e l t a . The con

fidence and accuracy of the i n t e r v a l estimates produced, i . e . , the 

number of times the t rue mean of the sampling process is contained 

w i t h i n the i n t e r v a l and the width of the i n t e r v a l constructed, is 

comparable to the resul ts obtained using c lass ica l methods for the 

case where |m' - p, | = 5 . For the case where |m f - p, | = 10, the desired 

confidence is not achieved u n t i l the s i tua t ion involving the two largest 

cample s izes . The separation between the poster ior and sample means 



Table 3. Data for the Bayesian Approximation Model Based 
on One Hundred Runs for Each Value of Del ta 

a 2 / a ' 2 = 16, |m« - u-| = 5 

Number of Percent Reduction 
Times i n Sample Size 

D <: q6S 

1.0 18 96 6.7 97 5.589 75 61.1 
0.9 22 96 8.9 97 4.814 76 59.1 
0.8 27 95 12.6 98 4.355 79 51.9 
0.7 34 96 18.7 98 2 .541 90 4 4 . 1 
0.6 46 98 32.4 96 2.175 95 28.3 
0.5 64 93 52.8 93 1.185 100 17.2 
0.4 99 97 87.7 9* 0.756 100 11 .1 
0.3 174 96 163 . I 98 0 .470 100 5.7 
0.2 387 97 376.4 98 0.217 100 2.6 

Specif ied 
Width of 
Confidence 
I n t e r v a l 

Computed 
Classica l 
Sample 
Size 

Number of 
Times 
UL <m<£JU c c 

Average 
Computed 
Bayesian 
Sample 
Size 

Number of 
Times 
UL b^n^UU b 

Average 
Value of 
lm" -ml 

n*. 



Table k. Data for the Bayesian Approximation Model Based 
on One Hundred Runs for Each Value of Delta 

c2/o'2 = 16, |mf - \i\ = 10 

Specif ied 
Width of 
Confidence 
I n t e r v a l 

Computed 
Classical 
Sample 
Size 

Number of 
Times 

UL <m<:UU c c 

Average 
Computed 
Bayesian 
Sample 

Number of 
Times 

ULb<m<:UUb 

Average 
Value of 

Number 
Times 

Percent Reduction 
i n Sample Size 

m" - m| D <: q8S 

n*. 

1.0 18 96 6.7 75 8.300 54 61.1 
0.9 22 96 8.9 74 6.008 51 59.1 
0.8 27 96 12.6 86 6-993 49 51.9 
0.7 3h 96 18.7 77 4.438 75 44.1 
0.6 1+6 98 32.4 86 3.874 77 28.3 
0.5 6h 9* 52.8 88 2.359 97 17.2 
0.4 99 98 87-7 88 1.545 100 11.1 
0.3 174 95 163.1 95 0.930 100 5.7 
0.2 387 97 376.4 95 0 . 416 100 2.6 
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decreases as the sample size increases and the sampling information is 

given more weight i n the determination of the poster ior d i s t r i b u t i o n . 

For t h i s reason, the t e s t suggested for determining whether or not to 

use the p r i o r information does not work w e l l at a l l . For both the case 

where |mT - p, | = 5 and |mT - p, | = 10, the t e s t re jects the p r io r i n f o r 

mation too of ten for small sample sizes and erroneously allows the use 

of the p r io r information i n large sample s izes . I t appears that a 

be t te r decision ru le as to whether or not to re jec t the p r i o r information 

should consider the di f ference between the p r i o r mean (rather than the 

poster ior mean) and the sample mean. The accuracy of the approximation 

procedure is quite good; the o v e r a l l average reduction i n the sample 

size fo r a l l values of de l ta is 12.0 samples, which equates to approxi

mately 75 percent of the t rue di f ference between the c lass ica l and the 

Bayesian sample s izes , which is ]_6 samples for th is p a r t i c u l a r case. 

The second tes t of the procedure involved computing the Bayesian 

sample size required for each value of de l ta and for various values of 

|m' - [ i \ ranging from one standard deviat ion below the t rue mean of the 

sampling process to one standard deviat ion above th is va lue. The spec

i f i c values chosen fo r |m' - p, | and the resul ts of the t e s t are shown 

In Table 5 . The resul ts obtained when the value of Im1 - p, | is w i th in 

one-half standard deviat ion on e i ther side of p, are quite favorable, 

w i th only three cases out of the t o t a l of 63 t r i a l s where the Bayesian 

i n t e r v a l estimate d id not include the t rue value of the mean of the 

sampling process. O v e r a l l , there were a t o t a l of 2h cases, out of the 

99 t o t a l t r i a l s , where the Bayesian i n t e r v a l estimate d id not include 



Table 5 . Data for the Bayesian Approximation Model Based 
on Various Values of |m' - p, | 

a 2 / c r ' 2 = 16 

Specif ied Classica l Computed Bayesian Sample Size for 
Value of Sample the Speci f ied Value of |m' - p,| 
Delta Size 

6 n * -20 -15 -10 -5 -2 0 2 5 10 15 20 

1.0 18 7* 5* 7 5 5 11 5 5 5 5* 5* 
0.9 22 6* 10* 12 19 6 18 6 6 6 13 6* 
0.8 27 15 7* 10 14 7 23 20 7 17* 15* 21 
0.7 3h 23* 22 18* 12 17 21 24 17 9 9* 19* 

36* 0.6 46 38* 39* 35 37 36 31 40 32 36 40 
19* 
36* 

0.5 64 51 48 52 h9 52 57 58 55 54 52 53* 
0.4 99 85* 87* 88 89 87 91 91 90 93 85 87 
0.3 174 159 164* 159 163 162 166 164 161 166* 163 164* 
0.2 387 378 379 376 375 376 376 377 377 376 376* 378 

Figures marked wi th an a s t r i c ( * ) indicate cases where the confidence i n t e r v a l based on the 
Bayesian sample size did not contain the ture value of the mean of the sampling process. 
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the t rue value of the mean of the sampling process. 

The f i n a l t es t conducted on the model was to f i x the value 

|m' - |j, | = 5 and to compute the Bayesian sample size required for each 

2 2 

value of d e l t a and for various ra t ios of the variances, cr /cr' . The 

speci f ic values chosen for the r a t i o of the variances and the resul ts 

of the t e s t are shown in Table 6. The resul ts obtained when the r a t i o 

of the sampling and the p r i o r variances was 4 or greater are good, w i th 

only one case out of a t o t a l of 63 t r i a l s where the Bayesian i n t e r v a l 

estimate did not include the true value of the mean of the sampling 

process. O v e r a l l , there were a t o t a l of seven cases out of the 99 

t r i a l s where the Bayesian i n t e r v a l estimate did not include the t rue 

value of the mean of the sampling process. 



T a b l e 6 . Da ta f o r t h e B a y e i s a n A p p r o x i m a t i o n Model Based 
on V a r i o u s Va lues of t h e R a t i o o f t h e V a r i a n c e s 

|m f - p. | = 5 

S p e c i f i e d Value Computed B a y e s i a n Sample S i z e f o r 
o f t h e R a t i o of t h e S p e c i f i e d Value o f D e l t a 
t h e V a r i a n c e s 

cr /cr ' 1 .0 0 . 9 0 . 8 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3 0 .2 

32 5 6 7 13 22 33 6 9 * 144 368 
16 5 10 7 22 39 48 87 164 379 

8 14 16 16 29 4 1 58 9h 167 382 
7 5 2 1 23 29 43 58 95 170 382 
6 14 6 16 30 44 60 95 170 384 
5 17 2 1 26 33 44 6 1 97 173 385 
4 11 19 25 34 45 64 97 173 385 
3 16 1 6 * 2 5 * 31 45 6 4 * 98 1 7 3 * 385 
2 17 2 1 27 33 45 64 99 1 7 3 * 385 
1 18 22 27 • 33 46 64 99 1 7 4 * 387 

C l a s s i c a l Sample 
S i z e 18 22 27 34 46 64 99 174 387 

F i g u r e s marked w i t h an a s t r i c (*) i n d i c a t e c a s e s where t h e c o n f i d e n c e i n t e r v a l b a s e d on t h e 
B a y e s i a n sample s i z e d i d n o t c o n t a i n t h e t r u e v a l u e of t h e mean of t h e s a m p l i n g p r o c e s s . 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

C o n c l u s i o n s 

The r e s u l t s of t h i s s t u d y i n d i c a t e t h e f o l l o w i n g c o n c l u s i o n s . 

1 . The s u g g e s t e d p r o c e d u r e t o a p p r o x i m a t e B a y e s i a n sample s i z e s 

and c o n s t r u c t i n t e r v a l e s t i m a t e s f o r t h e mean of t h e s a m p l i n g p r o c e s s 

s h o u l d be u s e d f o r t h e no rma l s a m p l i n g p r o c e s s when a c c u r a t e p r i o r 

I n f o r m a t i o n i s a v a i l a b l e . That i s , when t h e p r i o r mean i s w i t h i n o n e -

h a l f s t a n d a r d d e v i a t i o n of t h e t r u e mean of t h e s a m p l i n g p r o c e s s . 

2 . I n t h e w o r s t c a s e , t h e p r o c e d u r e w i l l y i e l d t h e same sample 

s i z e s as would c l a s s i c a l t e c h n i q u e s . I n t h i s c a s e , t h e i n t e r v a l e s t i 

m a t e s s h o u l d be b a s e d on t h e c l a s s i c a l m e t h o d , s i n c e i n e s s e n c e , t h e 

p r i o r i n f o r m a t i o n h a s been r e j e c t e d . 

3 . The a c c u r a c y and c o n f i d e n c e l e v e l s a s s o c i a t e d w i t h t h e 

i n t e r v a l e s t i m a t e s b a s e d on t h e a p p r o x i m a t i o n p r o c e d u r e a r e c o m p a r a b l e 

t o t h o s e o b t a i n e d by u s i n g c l a s s i c a l t e c h n i q u e s i f t h e p r i o r i n f o r m a t i o n 

i s a c c u r a t e . 

h. The h e u r i s t i c r u l e s u g g e s t e d t o d e t e r m i n e w h e t h e r o r n o t 

t o u s e t h e p r i o r i n f o r m a t i o n d i d n o t work w e l l b e c a u s e t h e v a l u e 

|m" = ml i s a f u n c t i o n of t h e sample s i z e as w e l l a s b e i n g a f u n c t i o n 

o f t h e v a l u e of t h e p r i o r mean, m T . 

5 . The r e s u l t s o b t a i n e d i n t h e d e m o n s t r a t i o n of t h e p r o c e d u r e 

f o r t h e v a l u e s o f d e l t a s e l e c t e d , i n d i c a t e t h a t t h e p r o c e d u r e t o a p p r o x i -



mate t h e B a y e s i a n sample s i z e and c o n s t r u c t i n t e r v a l e s t i m a t e s i s a 

v i a b l e c o n c e p t w h i c h h a s d i r e c t a p p l i c a b i l i t y and v a l u e i n O p e r a t i o n a l 

T e s t i n g . 

Re c ommendat i ons 

As i n mos t c a s e s i n v o l v i n g r e s e a r c h of a l i m i t e d s c o p e , p e r h a p s 

more p r o b l e m s a r e u n e a r t h e d t h a n a r e r e s o l v e d i n t h i s s t u d y . The 

l i m i t e d r e s u l t s o b t a i n e d , however , show some m e r i t and a p p l i c a b i l i t y 

t o O p e r a t i o n a l T e s t i n g . As a m a t t e r o f f u t u r e r e s e a r c h i n t h e a r e a 

c o v e r e d by t h i s s t u d y , t h e f o l l o w i n g r ecommenda t ions a r e s u g g e s t e d . 

1 . F u r t h e r e f f o r t s a r e r e q u i r e d t o improve t h e i t e r a t i v e p r o 

c e d u r e u s e d t o a p p r o x i m a t e t h e B a y e s i a n sample s i z e . A r e f i n e d p r o 

c e d u r e s h o u l d t a k e i n t o a c c o u n t t h e need t o t r e a t l a r g e and s m a l l 

sample s i z e s a s s e p a r a t e p r o b l e m s . P e r h a p s t h e i n c r e m e n t added t o t h e 

a p p r o x i m a t i o n a t a n y s p e c i f i c i t e r a t i o n s h o u l d be some f u n c t i o n o f t h e 

number o f i t e r a t i o n s a l r e a d y c o n d u c t e d . Care mus t be t a k e n , howeve r , 

t h a t any p r o c e d u r e d e v e l o p e d f o r t h i s s i t u a t i o n be c o m p a t i b l e t o t h e 

O p e r a t i o n a l T e s t i n g e n v i r o n m e n t , where e a s e o f a p p l i c a t i o n and s i m i l i -

c i t y a r e p r i m e o b j e c t i v e s . 

2 . The sample s t a n d a r d d e v i a t i o n , S , i n e q u a t i o n ( 2 - 1 3 ) , i s t h e 

o n l y v a r i a b l e i n t h e e q u a t i o n f o r a s p e c i f i c sample s i z e . Th i s p a r t i 

c u l a r random v a r i a b l e i s r e l a t e d t o t h e c h i - s q u a r e d i s t r i b u t i o n . P e r 

h a p s f u r t h e r work w i t h t h i s p a r t i c u l a r e l e m e n t of t h e e x p r e s s i o n f o r 

t h e a p p r o x i m a t e B a y e s i a n sample s i z e would l e a d t o more a c c u r a t e 

a p p r o x i m a t i o n s o f t h e e q u a t i o n . 

3 . A w o r k a b l e d e c i s i o n r u l e f o r d e t e r m i n i n g w h e t h e r o r n o t t o 
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u s e t h e p r i o r i n f o r m a t i o n i s n e e d e d . I t i s s u g g e s t e d t h a t t h e r e l a t i o n 

s h i p be tween t h e p r i o r and sample means , i . e . , |m' - m | , w i l l y i e l d 

more v i a b l e r e s u l t s t h a n t h e t e c h n i q u e u s e d i n t h i s s t u d y . O b v i o u s l y , 

w h a t e v e r r u l e i s d e v e l o p e d , i t must t r e a t t h e d i f f e r e n c e s a s s o c i a t e d 

w i t h l a r g e and s m a l l sample s i z e s s e p a r a t e l y . 

4 . There a r e o b v i o u s l i m i t a t i o n s i n a p p l y i n g t h i s p r o c e d u r e t o 

O p e r a t i o n a l T e s t i n g . A l t h o u g h t h e p r o c e d u r e h o l d s some p o t e n t i a l of 

r e d u c i n g c o s t s a s s o c i a t e d w i t h O p e r a t i o n a l T e s t i n g by r e d u c i n g t h e 

number o f r e p l i c a t i o n s r e q u i r e d of a s p e c i f i c t e s t s , a n y i t e r a t i v e 

s a m p l i n g scheme i s i n h e r e n t l y d i f f i c u l t and c o s t l y t o a p p l y b e c a u s e of 

t h e p r o b l e m s i n v o l v e d w i t h m u l t i p l e s c h e d u l i n g and s e t - u p c o s t s . The 

p r o c e d u r e seems b e t t e r s u i t e d t o t h o s e t e s t i n g s i t u a t i o n s where a l a r g e 

number o f s a m p l e s a r e r e q u i r e d and t h e c o s t o f s a m p l i n g i s r e l a t i v e l y 

l ow . Fo r t h e s e r e a s o n s , a scheme t o i n c o r p o r a t e t h e c o n c e p t of l o s s 

f u n c t i o n s i n t o t h i s p r o c e d u r e i s needed b e f o r e i t can assume t h e c l o a k 

of a t r u e d e c i s i o n making p r o c e d u r e . 



APPENDIX I 

FORTRAN PROGRAM FOR THE APPROXIMATE 

BAYESIAN PROCEDURE 



5 1 

RFOR, IS '-IAIN 

CO'- '^i /ONE/ X (2 .100" ' ) , NCM 
COV'.C'i/TWO/ XVEANI3), XVARO) 
COMMON/THPEF/ XHAT(3). ?HAT(3> 
C0M"~N/F I VP/ ALPHA, ML ( 3 ) , L" U 3 ) 
W 'CN/SEVEM/ NC(5) . DELTA 
CO'-OXN/E I0HT/ H3I1! 1 ) , NPRTM(lC). D I FF 
CO'V-ON/NINE/ WIDTH (2 ) 
COM'-'ON/TEN/ LO0P(2) . K FY • DMAX 
EXTERNAL UN IF 

C * * * * K Pt-'AO IN PASIC PARAMETERS 
S FORMAT ( ) 

READ(5»B) ALPHA 
RFAO(0.8) NSU 
REA^OfS) XVFAN(l), XVAR(l) 
RCAD(5.P) XVEAN(2)» XvAR(2) 

C»***» ART UP UNIFORM GFMFRATOR TO RANDO" IZ F STARTW DOINIT 
DO K' J = l , N5U 

0= UNIF(A) 
10 CONTIN'ir 

DO 100 KK= 1» 30 

REAOCi. fl. ENP = 999) DELTA 

C***** DETER VTNF THF MINI^U" CLASSICAL ? A WPL F «X T 7 T 
CALL CLASS( M( 1 ) ) 
CALL RAiVDN ( 1 ) 

C***-»* DETERMINE THE MINIMUM BAYFSI AN SAMPLF S I 7 F . IF APPROPRIATE 
CALL f3AYFS( Nf 1 ) » N( 2 ) ) 

C«**** COVPUTF CONFIDENCE INTERVALS FOR THE DATA P R ^ r r c c r ? 
CALL CONFTDC N( 3) . 3 ) 
CALL ORDEPU) 
CALL CO**FID( N( 1 ) . 1 ) 

C**#** PRINT OUTPUT 
CALL OUTPUT 

100 CONTINUE 

999 CONTINUE 
l\'RITF(6.7fM 

7 0 FORMAT(1H1) 

5 TOP 
END 
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-RFOR.IS RANDN 

C*»***THIS SUBROUTINE GENERATES NORMALLY 01 STR I BUTFD PSEUDS-RANDOM 
C NUMBERS HAVING A SPECIFIED MFAN AND VARIANCE 
C 
C * * * * * A R G U E M E N T D E F I N I T I O N 
C X I S THE ARRAY OF RANDOM NUMBERS ( O U T P U T ) 
C N I S THE NUMBER OF RANDOM NUMBERS D E S I R F D ( I N P I ' T ) 
C XMEAN I S THE MEAN OF THE RANDOM NUMBERS ( I N P U T ) 
C XVAR I S THE VARIANCE O F \ T H E RANDOM NUMBERS ( I N P U T ) 
C 
C***#*THIS SUBROUTINE USES THE BOX AND MUELLER METHOD Fn<? 
C G^NFRAT TON OF NORMAL PSEUDO-RANDOM NUWRFRS 

SUBROUTINE RANDN(J) 

COMMON/ONE/ X ( 2 » 1 0 0 0 ) , N(3) 
COMMON/TWO/ XMEAN ( 3 ) , XVARO) 

EXTERNAL UN I F 

TPI=6 .2831852 
DO 100 1 = 1 , N ( J ) , 2 

A= UNIF( 1 ) 
B= UNIF(2) 
X ( 1 , I ) = XMFAN(2)+ SQRT(-2.0*XVAR(2)*ALOG(A))*COS(Tpy*B) 
X ( 2 ,1 ) = X < 1 ,1 ) 
11= 1+ 1 
X ( 1 , 1 I ) = XMEAM(2)+ SORT(-2.0*XVAR(2)*ALOr,( A) ) *M N < TPI *n > 
X ( 2 ,1 I J = X ( 1 ,1 I ) 

100 CONTINUE 

RETURN 
END 

-RFOR, i s UNIF 

FUNCTION UNIF(A) 
DATA I Y / 9 6 5 8 1 / 
IY=IY*3 1 25 
I F ( I Y ) 5 , 6 , 6 

5 IY=IY+l+34359738367 
6 YFL = I Y 

UNIF= YFL*2 .0**( -35 ) 

R r TU^N 
END 
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-RFOR.IS ORDER 

C**»** THIS SUBROUTINE SORTS A GIVEN SET OE DATA FROM TH^ LOWEST 
C VALUE TO THE HIGHEST, AND COMPUTES THE SAMPLE STATISTICS 
C (MEAN AND STANDARD DEVIATION) OF THE DATA PROCESS 
C 
C*#### ARGUEMENT DEFINITION 
C X= THE ARRAY OF DATA VALUES TO BE SORTED (INP"T/OUTPUT) 
C N= THE NUMBER OF DATA POINTS (INPUT) 
C XHAT = THE SAMPLE MEAN OF THE DATA PROCESS (OUTPUT) 
C SHAT = THE SAMPLE STANDARD DEVIATION OE THE DATA 
C PROCESS (OUTPUT) 

SUBROUTINE ORDER(K ) 

COMMON/ONE/ X ( 2 » 1 0 0 0 ) , N O ) 
COMMON/THREE/ XHAT(3 ) , SHAT(3) 

NM1= N(K)- 1 
DO 200 1 = 1 , NM1 

IP1=1+1 
DO 100 J= IP1 , N(K) 
IE( X(K»I) .LE. X(K.J ) ) GO TO 100 
T F M P = X ( K • I ) 
X ( K , I ) = X(K,J) 
X(K»J)= TEMP 

8 100 CONTINUE 
200 CONTINUE 

C#*#** COMPUTE THE SAMPLE STATISTICS FOR THE DATA PROCESS 
SUM 1 = 0 .0 
SUM2=0.0 
DO 300 1 = 1 , N(K ) 

SUM1= SUM 1+ X(K , I ) 
5UM2= SUM2+ X (K » I )**2 

300 CONTINUE 

YN= NIK) 
XHAT(K)= SUM1/YN 
RN= YN- 1.0 
SUM22= SUM2- (SUM1**2)/YN 
SHAT(K)= SORT(SUM22/RN) 

8 RETURN 
END 
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-RFOR »IS CLASS 

C#*#*# THIS SUBROUTINE CALCULATES THF MtNtMUM CLASSICAL CAWPLF SIZE 
C REQU t RED TO CONSTRUCT A CONFIDENCE iNTFRVAL OF GIvFN WIDTH 
C ABOUT THE MEAN OE A NORMAL SAMPLING POPULATION OF UNKNOWN 
C VARIANCE 
C***** ARGUEMANT DEFINITION 
C ALPHA = THE CONFIDENCE COEFFICIENT (INPUT) 
C DELTA= A FUNCTION OF THE INTERVAL WIDTH (INPUT) 
C NCLASS= THE COMPUTED SAMPLE SIZE (OUTPUT) 

SUBROUTINE CLASS(NCLASS) 

COMMON/FIVE/ ALPHA. UL I 3 ) , UU(3) 
COMMON/SEVEN/ NC(5 ) . DELTA 
COMMON /T EN / LOQp(2W KEY » DMAX 

C#***# COMPUTE THF FIRST APPROXIMATION OF THE CLASSICAL «AMPL* 
C SIZE. N C ( 1 ) , BASFD ON THE STANDARD NORMAL DISTRIBUTION, WHICH 
C IS IDENTICAL TO THF T DISTRIBUTION WITH INFINITE nFGREFS 
C OF FREEDOM 

ALPHA 1= ALPHA/2,0 
S= TINORv(ALPHA 1, $15) 
GO TO 18 

15 WRITE(6,17) 
17 FORMAT( / / , lOXi 68H ERROR MESSAGE—OVERFLOW ON T Nv FRc F NORMAL DIST 

IRIBUTION--FORMAT 15 ) 
CALL EXIT 

18 CONTINUE 
REALC= (2.0*S/DELTA)**2 
NC ( 1> = INT(REALC) 
IF( NC(1) . L T . REALC ) NC(1)= NC(1)+ 1 

C***** COMPUTE THF SUCCEEDING APPROXIMATIONS OF THE CLASSICAL SAMPLE 
C SIZE, N C ( J ) , BASED ON THE T DISTRIBUTION WITH DEGREES OF 
C FREEDOM EQUAL TO N C ( J - l ) - 1 . STOP THE ITFPATIV r oROCmuPF 
C WHEN N(J) IS EQUAL TO N ( J - l ) 

DO 30 J = 2 , 10 
NDF = N C ( J - l ) - 1 
T= STUD IN(ALPHA, NDF, $21) 

GO TO 24 

21 WRITE(6,23) 
23 FORMAT?//, lOX, 74H ERROR MESSAGE—OVERFLOW ON STUDENTS T DI.STRIBu 

1TI0N FUNCTION—FORMAT 21 ) 
CALL EXIT 

24 CONTINUE 
REALC= (2.0*T/DELTA)**2 

NC(J)= I NT(REALC) 
IF( NC(J) . L T . REALC ) NC(J)= NC(J)+ ] 
IF ( NCU) .EO. N C ( J - l ) ) GO TO 35 



8 30 CONTINUE 

( . •*#•* ASSIGN THE COMPUTED SAMPLE SIZE TO NCLASS 
35 NCLASS- NCIJ) 

LOOP(n = J 
RETURN 
END 
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-RFOR.IS BAYES 
C THIS 
C IF AP 

THIS SUBROUTINE CALCULATES THE MINIMUM BAYESIAN SAMPLF SIZE. 
IF APPROPRIATE. TO CONSTRUCT A CONFIDENCE INTERVAL OF GIVEN 
WIDTH ABOUT THF MEAN OF A NORMAL SAMPLING POPULATION 
WITH UNKNOWN VARIANCE 

C WIDTH 
C WITH 
C 
C***** ARGUE 
C K = 
C NB 

ARGUEMANT DEFINITION 
K = THE MINIMUM CLASSICAL SAMPLE SIZE (INPUT) 
NBAYES= THE COMPUTED SAMPLE SIZE (OUTPUT) 

SUBROUTINE BAYES ( K. NBAYES ) 

COMMON /ONE / X ( 2 . 1 0 0 U ) . N O ) 
COMMON/TWO/ XMEAN(3). XVAR(3) 
COMMON/THREE/ XHAT(3)» SHAT(3) 
COMMON/SEVEN/ NC(5) . DELTA 
COMMON/EIGHT/ NB(10) . NPRIM(IO). DIFF 
COMMON/TEN/ LOOP(2). KEY » DMAX 

C#*»** COMPUTE THE FIRST APPROXIMATION. N ( l ) . OF THE BAYESIAN 
C SAMPLE SIZE 

REALB= FLOAT(K)/4.0 
NB(1)= INK REALB ) 
IFt NB(1) . L T . REALB ) NB(1)= NB(1)+ 1 
N 12)= NB( 1 ) 

< : •*•*• TAKE N ( l ) SAMPLES AND COMPUTE THE SAMPLE STATISTICS FOR THE 
C DATA PROCESS AND THE POSTERIOR PARAMETERS BASED ON THESE 
C N ( l ) OBSERVATIONS 

CALL ORDER(2) 
APPN= SHAT(2)**2/XVAR(1) 
NPRIM(1)= I NT( APPN ) 
IF( NPRIM(I) . L T . APPN ) NPRIM(1)= NPRIM(1)+ 1 
XMEAN(3)= ( NPRIMt1)*XMEAN(1)+ NB(1)*XHAT(2) ) / 

1 FLOAT( NPRIM(1 )+ NB ( 1 ) ) 
DIFF= ABS( XMEAN(3)- XHAT(2) ) 
DMAX= DIFF 
KEY = 1 
IF( N(2) .GE. K- NPRIM(l) ) GO TO 55 

C***** COMPUTE THE SUCCEEDING APPROXIMATIONS. N ( J ) . OF THE BAYESIAN 
C SAMPLE SIZE. STOP THE ITERATIVE PROCEDURF WHEN NP(J) IS 
C GREATER THAN OR EQUAL TO K- NPRIM(J) 

DO ICO J = 2 . 20 
RINC= FL OAT ( K- NPRIM(J- l ) )/<f.O 
INC= I NT( RING ) 
IF{ INC . L T . RINC ) INC= INC + 1 
NB(J)= NB(J -1 )+ INC 
N(2)= NB{J) 

C***** TAKE EACH SUCCEEDING N(J) SAMPLES AND COMPUTE THF SAMPLE 
C STATISTICS FOR THE DATA PROCESS AND THE POSTERIOR PARAMETERS 
C BASED ON THESE N(J ) OBSERVATIONS 

CALL ORDER(2 ) 
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APPN = 5HAT(2)**2/XVAR(1) 
NPRIM(J)= INK APPN ) 
IF( NPRIM(J) .LT . APPN ) NPRIM(J)* NPRIM(J)+ 1 
XMEAN(3)= ( NPRIMIJ) *XMEAN( 1) + NB(J)*XHAT(2 ) ) / 

1 ELOAK NPR1M(J)+ NB(J) ) 
DIFE= ABS( XMEAN(3)- XHAT(2 ) ) 
IE( DIFF . L E . DMAX ) GO TO 35 
DMAX= DIFF 
K.EY= J 

35 CONTINUE 
IF( N(2) .GE. K- NPRIM(J) ) GO TO 45 

100 CONTINUE 

C»*##* ASSIGN THE SAMPLE SIZE COMPUTED ABOVE TO N&AYES ANO DETERMINE 
C THE POSTERIOR (POOLED) SAMPLE SIZE 

55 CONTINUE 
NBAYE S= N(2) 
IE( NBAYFS .GT. K ) NBAYES = K 
N ( 3 ) = NBAYES+ NPRIM(1) 
XHAK3)= XMEAN13) 
SHAT(3)= SHAT12) 
L00P(2)= 1 
GO TO 999 

45 CONTINUE 
NBAYES= NB(J) 
IF( NBAYES .GT. K ) NBAYES= K 
N(3)= NBAYES+ NPRIM(J) 
XHAT(3)= XMEAN(3) 
SHAT(3)= SHAK2) 
LOOP(2 )= J 

999 RETURN 
END 



58 

-RFOR•IS CONFID 

C####* THIS SUBROUTINE CALCULATES A CONFIDENCE INTERVAL FOR THE MEAN 
C OF A NORMAL POPULATION WHEN THE VARIACE IS UNKNOWN 
C 
C#*#*# ARGUEMENT DEFINITION 
C N= THE NUMBER OF DATA POINTS IN THE SAMPLE (INPUT) 
C ALPHA= THE CONFIDENCE COEFFICIENT (INPUT) 
C XHAT= THE SAMPLE MEAN OF THE DATA PROCESS (INPUT) 
C SHAT = THE SAMPLE STANDARD DEVIATION OF THE DATA 
C PROCESS (INPUT) 
C UL= THE LOWER CONFIDENCE LIMIT FOR THE MFAN (OUTPUT) 
C UU= THE UPPER CONFICENCE LIMIT FOR THF MEAN (OUTPUT) 

SUBROUTINE CONFIDtN. J ) 
COMMON/THREE/ XHA T(3 ) . SHAT(3) 
COMMON/FIVE/ ALPHA. U L ( 3 ) . UU(3) 

C***** COMPUTE THE DEGREES OF FREEDOM ASSOCIATED WITH THF ^A^PLE 
NDF = N-1 

C***»# DETERMINE THE VALUE OF THE 5TUDENT(S T DISTRIBUTION AT A 
C SIGNIFICANCE LEVEL = ALPHA 
C NOTE — THIS OPERATION USES A STAT*PACT FUNCTION CA[ LED STUDIN 
C TO CALCULATE THE INVERSE STUDENTS T VALUE GIVEN THE 
C CONFIDENCE COEFFICIENT ALPHA 

T= STUD IN(ALPHA . NDF. $10) 
GO TO 700 

10 WRITE(6.15) 
15 FORMAT ( / / . l OX. 7<.H ERROR MESSAGE—OVERFLOW ON STUDENT (S T DISTRIBU 

1TION FUNCTION—FORMAT 700 , ) 

CALL EXIT 

700 CONTINUE 

YN = N 

C***** COMPUTF THF LOWER CONFIDENCE LIMIT 
UL(J)= XHAT(J)- T*(SHAT(J)/SQRT(YN) ) 

C***** COMPUTE THE UPPER CONFIDENCE LIMIT 
UU(J)= XHAT(J)+ T*(SHAT(J)/SQRT(YN) ) 

RETURN 
END 

-RMAP 
LIB S Y S T E M i * M A T H S T A T• 
-XQT 
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-RFOR * IS OUTPUT 

SUBROUTINE OUTPUT 

COMMON/ONE/ X < 2 . 1 0 0 0 ) . N(3> 
COMMON/TWO/ XMEAN( 3 ) . XVAR(3) 
COMMON/THREE/ XHATO). SHAT(3) 
COMMON/FIVE/ ALPHA. UL(3 ) . UU(3) 
COMMON/SEVEN/ NC<5). DELTA 
COMMCN/EIGHT/ NB( lO) . NPRIM(IO). DIFF 
COMMON/NINE/ WIDTH(2) 
COMMON/TEN/ LOOP(2)• KEY• DMAX 

c » # # # # PRINT HEADINGS FOR PRINTED OUTPUT 
DO 100 J = l . 2 
WRITE(6.15) 

15 FORMAT{1 HI) 
1F( J .EG. 2 ) GO TO 40 

35 FORMAT^/ / ! 40X. 45H DATA VALUES USED IN THE CLASSICAL ANALYSIS I 
GO TO 50 

40 WRITE(6.45) 
45 FORMAT(/ / / . 40X. 45H DATA VALUES USED IN THE BAYESIAN ANALYSIS ) 

C*»**» PRINT BASIC PARAMETERS ASSOCIATED WITH EACH DATA PROCESS 
50 CONTINUE 

WRITE(6.52) N(J) 
52 FORMAT(// / . 10X. 26H NUMBER OF OBSERVATIONS = . I'M 

WRITE(6.54) XMEAN(2) 
54 FORMAT(1 OX . 19H LIKELIHOOD MEAN = . F 8 . 3 ) 

8 IF( J .EQ. 2) WRITE(6.56) XMEAN(1) 
56 FORMAT(1H+. T82. 14H PRIOR MEAN = • F 8 . 3 ) 

WRITE(6t58> XVAR(2) 
58 FORMAT(lux. 23H LIKELIHOOD VARIANCE = . F 8 . 3 ) 

IF( J . E C 2) WRITE(6.60) XVAR ( 1 ) 
60 FORMAT(1H+, T82 . 18H PRIOR VARIANCE = . F 8 . 3 ) 

WRITE(6.62) DFLTA 
62 FORMAT(1UX. 9H DELTA = . F 4 . 2 ) 

C***#* PRINT THE DATA VALUES GENFRATED BY RANON 
WRITE(6»65) ( X U . I ) . 1 = 1 . N(J) ) 

65 FORMAT( / / / . 10(3X. F 8 . 3 ) ) 

C**»** PRINT THE SAMPLE STATISTICS OF THE DATA PROCESS 
IF( J .EG. 2 ) WRITE(6,72) XHAT(3) 

72 FORMAT(// / . lOX. 47H THE MCAN OF THE POSTERIOR DISTRIBUTION, M— = 
1 , F 1 0 . 5 ) 
WRIT"I 6 . 7 5 ) XHA T(J ) » SNA T(J ) 

75 I- ORN* AT ( / / / » U'X, 45H THE SAMPLE MT AN Of- THF DATA PRnr>c,r,, y H A r = , 
1 Fl . 5 . / / / . 1 )X, 5QH THr SAMPLf" STANDARD D rV I A T1 ON OF TUP DATA p 
2R0Cf SS » SHAT = , F10 • 5 ) 
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<.**#*# PRINT THE ( 1 -ALPHA) CONFIDENCE INTERVAL ASSOCIATE* WITH FACH 
C PROCESS 

WlDTH(J>= DFLTA*SHAT(J ) 
WKITEJ6.85) WIDTH(J) 

65 FORMAT( / / » 10X. 52H THE DESIRED WIDTH OF THE CONFIDENCE INTERVAL I 
IS = . F6 .2 ) 

UL(2)= UL(3) 
UU(2)= UU(3) 
WRITE(6.95) ALPHA. U L { J ) . UU(J) 

95 FORMAT(//» 10X. 47H THE (1-ALPHA ) CONFIDENCF INTERVAL FOP THF MEAN 
1 . / . 10x . 38H WITH CONFIDENCE COEFFICIENT. ALPHA = , F 4 . 3 , 
2 8H, IS = ( . F 8 . 3 . 2H, , F 8 . 3 . IH) ) 

IF( J •EQ« 1) GO TO 97 

WRITE(6.98) DIFF 
98 FORMAT(//. ] 0 x . 71H THE ABSOLUTE DIFFERENCE BETWEEN THE POSTERIOR 

1 AND SAMPLE MEANS. DIFF = . F 6 . 3 ) 
WRITEC6.99) DMAX» KEY 

99 FORMAT!//. 10x . 7H DMAX = . F 6 . 3 . 10H AT LOOP = . 1 2 ) 

97 CONTINUE 
WRITE(6.96) LOOP(J) 

8 96 FORMAT(//. 10x . 9H LOOPS = . 1 2 ) 

1UJ CONTINUE 

RETURN 
END 
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-RFOR* IN CHISQ 
C***** THIS SUBROUTINE TAKES A SET OF ORDERED DATA (ARRAMGFD FR^V 
C THE LOWEST TO THE HIGHEST VALUE) AND 
C (1) ESTABLISHES K EOUAL-PROBABIL I TV CELLS, '-'HERE K DEPENDS ON 
C THE SAMPLE SIZE, I . E . » K= 20 FOR N .GE. 100 , K= 1" FOP N . GE. 
C 5u .AND. ) L T • 10!), AND K= 5 FOR M . L T . 50 
C (2) PERFORMS A CHI-SOHARE GOODNESS-OF -FIT TEST FoR NORMALITY 
C ON THE DATA SAMPLE AND DFTERMIMFS THE SIGNIFICANCE LEVEL 
C AT WHICH WE CAN ASSUME THAT THE DATA SAMPLF IS IN FACT 
C REPRESENTATIVE OF A NORMAL PROCESS 
C***** ARGUEMENT DEFINITION 
C X= THE ARRAY OF DATA VALUES TO BE TESTED (INPUT) 
C N = THF NUMbER OF DATA PIONTS (INPUT) 
C K = THE NUMBER OF CELLS INTO WHICH THE DATA IS nIvIDED (INPUT 
C XHAT = THE SAMPLE MEAN OF THF DATA PROCESS 
C SHAT = THE SAMPLE STANDARD DEVIATION OF THE DATA PROCESS 
C CHIS= THE CHI-SQUARE STATISTIC COMPUTED FROM 
C THE DATA (OUTPUT) 
C SIGL= THE SIGNIFICANCE LEVEL OF THE TEST (Ol»TP"T) 

SUBROUTINE CHI SO 
COMMON/ONE/ X(500 ) , N 
COMMON/TWO/ XMEAN, XVAR 
COMMON/FOUR/ K, KLESS1, CHIS, SIGL 
COMMON/5 I X/ CBSTRD(19), CBN0RM(19), KOUNT(20) 
DIMENSION ALPHA(19) 

C***** SET ALL CFLL COUNTERS TO ZERO 
DO 5 1 = 1 , K 

KO'INT ( I ) = 0 
5 CONTINUE 

v>#*#* COMPUTE THE CELL-BREAK POINTS FOR THE GIV F N DATA 
C NOTE — THIS OPERATION USES A STAT-PACT FUNCTION C A | LED TI'lORM 
C TO COMPUTE THE VALUE OF THE INVERSE OF THE NORMAL ( ^ , 1 ) DISTR. 

I F ( K - 1 J ) 1 0 , 2 n , 30 
i J DO 15 1=1 , KLESS1 

ALPHA(I)= n . 2 * I 
15 CONTINUE 

GO TO 5 0 
20 DO 25 1 = 1 , KLESS1 

ALPHA(I )= 0 .1*1 
25 CONTINUE 

GO TO 50 
30 DO 35 1=1 , KLESS1 

ALPHA(I)= 0 .05*1 
35 CONTINUE 
5J DO U.) 1 = 1, KLES51 

CbSTRD(I)= T1 NORM(ALPHA(I ) , $70) 
CBMORM(I)= CBSTRD( I )*SQRT( XVAR )+ X'H Af 
GO TO I J C 

7) -'R I TE ( 6 ) 
9.) r- ORMAT ( / / , 1 iiX,68H [ RROR f-T S r AG*—0\'f Rf •" l IO" r ^M ' '•'•',[. "> I ; 

1TRlBUT ION — FORMAT 10f ) 

Hn CON 1 INUL 
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C#***# COUNT THE NUMUER OF OBSERVATIONS FALLING IN EACH rFLL 
DO 3<u 1=1 , N 

DO 2 JO J = l» K L ESS 1 
IF( X( I ) .GT. CONORM(J) ) GO TO 190 
<OUNT ( J } = <0')MT ( J ) +1 
GO TO 300 

19 ; I F ( J . C Q . KLFSS1) <OUNT(<)= KCl»NT(K)+l 
20') CONTINUE 
3(3 J CONTINUE 

COMPUTE THE CHI-SOUARE STATISTIC, CHIS 
CHI l = u.C 
RM= FLOAT( N ) / FLOAT ( K ) 
DO 5 J . J I = l» rC 

CHU= CH I 1+ ( KOUNT ( I ) -RN)**2 
50., CONTINUE 

CHIS= CHI1/RN 
C***»* i; F T P R '-11 N r THE SIGNIFICANCE LEVEL OF THE T F ST 
C NOTE — THIS OPERATION HSFS A STAT-PACT FACTION C A| LFD CHT TO 
C DETERMINE THE CHI-SOUARE DISTRIBUTION GIVEN THF P^INT AND 
C THF f) E G R F E S OF FRFEDOM 

NDF = K.-3 
CUXD= CHI( CHIS, NDF, 5600 ) 
SIGL= 1 .0 - CU^D 
GO TO 69 0 

b*><> '// R I T ' ( 6 , 6 1 0 ) CHIS 
6 l J FORMAT(//, 1 OX , 74H ERROR MESSAGE—OVERFLOW ON CHl-SO"ARE DISTRICT 

HON FUNCTION—FORMAT 600 ,2AH CHI-SOUARE STATISTIC = , F 5 . 2 ) 

CONTINUE 

69 ) RETURN 
END 
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