Supplemental Materials to "Emergence Scoring to Identify Frontier R&D Topics and Key Players"

Section A. Search Strategies

A1. Overview: The 4 Topics.

The search strategies reflect Boolean searches. To give a sense of these, we provide some details here. We note that exact replication is extremely challenging. The databases continue to update their content for years post-publication; search engines are modified over time; and most of these searches entail multiple strategies.

Two of the topics – DSSCs and NEDD – have roots in broader nanotechnology searches. We have searched within "nano" to develop initial datasets to jumpstart searching on nano sub-topics. Porter et al. (2008) and Arora et al. (2013) detail the search strategy refinement process. This entails several steps, notably:

- Download "nano*" items
 - Remove irrelevant records from that download (e.g., NaNO₂)
- Download 6 select other Boolean searches to capture nano-related topics
- Apply two tiers of contingency relationships to boost precision (relevance to molecular scale activity).
- Retrieve articles published in select journals.

A2. NEDD Search

For NEDD, Zhou et al. (2014) detail the search strategy development and deployment, including how this was initiated in conjunction with the nano search. Excerpts here from that paper aim to provide the strategy and a sense of how it was implemented. See Zhou et al. (2014) for more complete details. [NOTE: The Tables, Figures, and Appendix are not copied here.]

In <u>Table 1</u>, we classify NEDD terms into seven main categories and several subgroups according to their functions. NEDD centers on "nano-enabled"—i.e., taking advantage of molecular scale properties of matter. Following a series of early search and retrieval trials, with topical expert review, the "N" (nano) portion of the search is broadened beyond explicit use of "nano*" terms, as seen in <u>Appendix A.¹⁰</u> Here we note, <u>Figure 1</u> and <u>Appendix A</u> include all NEDD search terms in our current research. Such complexities pose a challenge to retrieve are representative set of NEDD research records. Our logic is to use terms in combination to operationalize "NEDD." We seek a high recall rate (i.e., capturing a high percentage of the relevant records pertaining to most important NEDD research topics), with reasonably good precision (i.e., by applying selection criterion to exclude undue noise).

To retrieve a suitable set of publications to characterize NEDD research activity, we focus on pharmaceutical/cargo $(P)^1$, nanodelivery-vehicle (N), characteristics of the delivery ap- proach (D), and drug cargo target (T), but largely set aside the B (biological processes), I (imaging), and H (helpers) categories. Including these would introduce high complexity and confounding issues (e.g., where to draw the line on imaging-related research?). Take the "T" category as an example—on one hand, searching for these terms will increase the search scope. On the other hand, incorporating particular diseases, like cancer, may distort the NEDD search results (by retrieving disproportionately more cancer-related publications).

After considerable probing and consultation, we key on two general search strategies: "D + P + N" and "D + T + N." For test and evaluation, we searched variations of term combinations two ways: 1) directly from three databases: Web of Science ("WOS"; specifically its Science Citation Index Expanded), Medline, and Derwent Innovation Index ("DII"); 2) from a WOS nano data set compiled at Georgia Tech¹⁰ that covers the "N" element with suitable term combinations.

This approach reflects a "Tech Mining" perspective that favors high recall at the expense of some precision. The logic is that later cleaning and text analyses can remove noise to conform to analytical aims. This process yielded the seven search strings indicated in Table 1-S. As detailed in Zhou et al. (2014), these are variously applied within the Georgia Tech nano search and/or the full external databases – Web of Science and MEDLINE, of interest presently.

Table 1-S. Search Phrases for the Base NEDD Downloads

- 1 TS=((deliver* or vehicle* or carrier* or vector* or "control* releas*") Near/4 (Drug* or pharmac))
- 2 TS=((deliver* or vehicle* or carrier* or vector* or "control* releas*" or transduct* or transfect* or transport* or translocat*) Near/4 agent*)
- 3 TS=((deliver* or vehicle* or carrier* or vector* or "control* releas*" or transfect*) Near/4 formulation*)
- 4 TS=((deliver* or vehicle* or carrier* or vector* or treat* or therap* or "control* releas*" or transduct* or transfect* or transport* or translocat*) Near/4 (siRNA or "short interfering RNA"))
- 5 TS= (deliver* or vehicle* or carrier* or vector* or treat* or therap* or "control* releas*" or transduct* or transfect* or transport* or translocat*) Near/4 (DNA or gene)
- 6 TS= (deliver* or vehicle* or carrier* or vector* or treat* or therap* or "control* releas*" or transduct* or transfect* or transport* or translocat*) Near/4 (Dox or Doxorubicin*)

7 TS=((deliver* or vehicle* or carrier* or vector* or treat* or therap* or "control* releas*"or transfect*) Near/4 ("RNA interference" or RNAi))

A3. DSSC Search

For **DSSCs**, Guo et al. (2012) note:

Boolean search phrasing is adjusted to suit particular database search configurations; here is the key: (((dye-sensitized or dye-sensitized" or "dye sensitized" or DSSC) WN KY) AND ((DSSC or "solar cell" or "solar cells" or photovoltaic or photovoltaics or photoelectrode or photoelectrochem* or photocurrent) WN KY)). We did discover a few other uses of "DSSC" (especially in telecommunications) and removed those records.

For the present analyses, Table 1 tallies records by time periods analyzed.

A4. Big Data Search

This presentation of the search strategy draws upon Huang et al. (2015). Figure 1 lays out the strategy. The paper details issues and our approach. Table 2-S summarizes the main search.

Figure 1. The framework of our search strategy for science

Table 2-S. The final search strategy.

No	Search Strategy		Search Terms
1	Core L	Lexical	TS= ("Big Data" or Bigdata or "Map Reduce" or MapReduce or Hadoop or Hbase or Nosql or
	Query		Newsql)

2	Expanded Lexical	TS=((Big Near/1 Data or Huge Near/1 Data) or "Massive Data" or "Data Lake" or "Massive Information" or "Huge Information" or "Big Information" or "I are scale Data" or Petabyte or
	Query	Exabyte or Zettabyte or "Semi-Structured Data" or "Semistructured Data" or "Unstructured
		Data")
		TS=("Cloud Comput*" or "Data Min*" or "Analytic*" or "Privacy" or "Data Manag*" or "Social
		Media*" or "Machine Learning" or "Social Network*" or "Security" or "Twitter*" or "Predict*"
		or "Stream*" or "Architect*" or "Distributed Comput*" or "Business Intelligence" or "GPU" or
		"Innovat*" or "GIS" or "Real-Time" or "Sensor Network*" or "Smart Grid*" or "Complex
		Network*" or "Genomics" or "Parallel Comput*" or "Support Vector Machine" or "SVM" or
		"Distributed" or "Scalab*" or "Time Serie*" or "Data Science" or "Informatics*" or "OLAP")
3	Specialized	The papers published in these specialized journals are not indexed by WOS
	Journals	
4	Cited Reference	The publications, which were cited more than 20 times, did not fulfill the criteria for inclusion
		(see paragraph "Cited Reference Analysis")

A5. Non-Linear Programming Search

This search algorithm was relatively straightforward, focusing on the phrase, "non-linear programming." The Web of Science search checked record relevance between use of keyword fields (Keywords-Author and/or Keywords-Plus) versus title and abstract Natural Language Processing (NLP) phrases. Review by two Georgia Tech faculty found the quality of emergent terms comparable from both.

A6. Search References

Arora, S.K., Porter, A.L., Youtie, J., and Shapira, P. (2013), Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs, *Scientometrics*, 95 (1), 351-270. DOI: 10.1007/s11192-012-0903-6.

Y. Guo, C. Xu, L. Huang, A.L. Porter, "Empirically informing a technology delivery system model for an emerging technology: Illustrated for dye-sensitized solar cells, *R&D Management*, 42 (2) (2012) 133-149.

Porter, A.L., Youtie, J., Shapira, P., and Schoeneck, D.J., Refining Search Terms for Nanotechnology, *Journal of Nanoparticle Research*, Vol. 10 (5), 715-728, 2008. [Online First: 10.1007/s11051-007-9266-y].

X. Zhou, A.L. Porter, D.K.R. Robinson, M.S. Shim, Y. Guo, Nano-enabled drug delivery: A research profile, *Nanomedicine: Nanotechnology, Biology and Medicine.* 10 (5) (2014) 889-896; <u>http://dx.doi.org/10.1016/j.nano.2014.03.001</u>.

Figure 1-A. High ESc5 Terms scoring above 1.77 with record counts for the 7-year active period

			>1.77			
	#		ESc5		#	
	Records	Non-Linear Terms			Records	Big Data Terms
1	106	mixed integer	5.261	1	622	big data
2	25	operating cost	4.304	2	119	data analytics
3	18	Mixed Integer Non-Linear Program MINLP	4.081	3	600	MapReduce
4	17	linear behavior	3.968	4	80	big data analytics
5	22	novel approach	3.257	5	436	Hadoop
6	12	model results	3.24	6	73	social media
7	16	non-linear function	3.123	7	61	Big Data process
8	7	mixed integer linear program MILP	2.933	8	151	framework MapReduce
9	15	non-linear behavior	2.8	9	130	social network
10	16	scheduling problem	2.747	10	66	Hadoop cluster
11	8	non-linear response	2.693	11	128	high performance
12	45	mixed integer non-linear program	2.671	12	175	large amount
13	10	computational experiment	2.66	13	50	big data application
14	17	heuristic algorithm	2.625	14	110	distributed file system
15	73	mixed integer non-linear	2.581	15	185	data process
16	12	present work	2.556	16	63	cloud environment
17	50	integer non-linear program	2.292	17	47	NoSQL database

18	8	fuel cost	2.247	18	146	file system
19	8	manufacturing system	2.244	19	48	extensive experience
20	7	useful tool	2.134	20	65	hadoop MapReduce
21	42	production	2.096	21	67	Hadoop distributed file system
22	19	MINLP problem	2.07	22	57	File System HDFS
23	10	Mixed Integer Non Linear Programming MINLP problem	2.021	23	48	Apache Hadoop
24	8	planning problem	2.011	24	54	distributed file system HDFS
25	9	real data	2.004	25	68	HBase
26	10	annual cost	1.905	26	50	Hadoop Distributed File System
27	9	calculated results	1.84	27	53	MapReduce job
28	7	non-linear term	1.828	28	35	cloud platform
29	35	total cost	1.801	29	145	recent vear
				30	27	private Cloud
				31	127	organizers
				32	47	improved performance
				33	44	Mapreduce application
				34	35	public cloud
				35	51	analytics
				36	56	process large scale data
	#		ESc5	50	50	process large-scale data
	" Records	Dve-Sensitized Solar Cell Terms	LDCJ			
1	179	power conversion	13.063	41	20	cvanoacrylic acid
2	174	power conversion efficiency	11.978	42	48	transfer resistance
3	94	organic dve	9.278	43	62	high efficiency
4	121	electrochemical impedance	8.495	44	137	charge transfer
5	197	photovoltaic performance	8.185	45	38	diffusion length
5	177	photo voltate performance	7.07	15	50	electrochemical impedance
6	128	electron microscopy		46	37	spectroscopy EIS
7	68	TiO(2)	7.066	47	41	optical property
8	51	extinction coefficient	6.714	48	76	cyclic voltammetry
9	46	TiO(2) film	6.428	49	17	TiO(2) nanoparticles
10	71	density functional theory	6.196	50	22	charge collection
11	54	solar cell application	6.174	51	36	high performance
12	51	TiO2 nanotube	6.16	52	28	photocatalytic activity
13	35	dve sensitized solar cell application	5.657	53	20	DSSC application
14	149	surface area	5.542	54	23	field emission
15	85	glass substrate	5.466	55	26	surface morphology
16	148	efficient conversion	5.338	56	19	nanocrystalline $TiO(2)$ film
17	126	impedance spectroscopy	5.033	50 57	56	dve adsorption
18	291	open circuit voltage	4.966	58	17	quasi solid state DSSC
19	95	electrochemical impedance spectroscopy	4.742	50 59	14	nanocrystalline $TiO(2)$
20	74	tin oxide	4.211	60	25	overall light
21	3/	molar extinction coefficient	3.917	61	17	electronhoretic deposition
21	9 4 81	X ray diffraction	3.863	62	17	photoelectric conversion efficie
22	30	nanotube array	3 839	62 63	115	polymer electrolyte
23	50 87	nanotube array	3 727	64	115	alactrochamical impadance spor
24	02 22	TiO2 penetube error	3.686	0 4 65	13	portiolo sizo
25	22	noz halotube allay	3 681	66	40	particle size
20	22	due N710	3 635	00 67	/1 29	budnethermel method
27	31 10C	dye N/19	3.61	0/	28	nyarotnermai metnoa
28	100	Subjected	3.563	08	20	
29 20	132	Tauticated	3.505	09 70	20	
30 21	40		3.520	70	24	molecular structure
31	27	electron microscopy SEM	J.47J 2 221	/1	134	counter electrode
32	80	electron lifetime	2.227	72	47	transmission electron microscop
33	41	density functional theory DFT	5.521	13	17	high molar extinction coefficier

34	28	microscopy SEM	3.247	74	94	efficiency eta
35	75	short circuit current	3.221	75	40	low cost
36	75	circuit current	3.221	76	18	electron diffusion length
37	22	ZnO nanorod	3.039	77	51	ionic liquid electrolyte
38	38	impedance spectroscopy EIS	3.004	78	12	nanostructure ZnO
39	45	charge transfer resistance	2.996	79	34	fluorine doped tin oxide
40	42	sensitized solar cell DSSC	2.985	80	415	open circuit
				81	23	enhanced performance

Figure 2-A. Normalized vs. Total EScores for Leading Organizations Publishing on DSSCs

Figure 3-A. Total EScores for Leading Organizations Publishing on DSSCs by Number of Publications

Figure 4-A. Normalized EScores for Leading Organizations Publishing on DSSCs by Number of Publications

Figure 5-A. Normalized vs. Total EScores for Leading Organizations Publishing on Big Data

Figure 6-A. Total EScores for Leading Organizations Publishing on Big Data by Number of Publications

Figure 7-A. Normalized EScores for Leading Organizations Publishing on Big Data by Number of Publications

Figure 8-A. Normalized vs. Total EScores for Leading Organizations Publishing on Non-Linear Programming

Figure 9-A. Total EScores for Leading Organizations Publishing on Non-Linear Programming by Number of Publications

Figure 10-A. Normalized EScores for Leading Organizations Publishing on Non-Linear Programming by Number of Publications

Cutting-Edge Authors: Graphs for Total and Normalized EScoring

Figure 11-A. Normalized vs. Total EScores for Leading Authors Publishing on DSSCs

Figure 12-A. Total EScores for Leading Authors Publishing on DSSCs by Number of Publications

Figure 13-A. Normalized EScores for Leading Authors Publishing on DSSCs by Number of Publications

Figure 14-A. Normalized vs. Total EScores for Leading Authors Publishing on Big Data

Figure 15-A. Total EScores for Leading Authors Publishing on Big Data by Number of Publications

Figure 16-A. Normalized EScores for Leading Authors Publishing on Big Data by Number of Publications

Figure 17-A. Normalized vs. Total EScores for Leading Authors Publishing on Non-Linear Programming

Figure 18-A. Total EScores for Leading Authors Publishing on Non-Linear Programming by Number of Publications

Figure 19-A. Normalized EScores for Leading Authors Publishing on Non-Linear Programming by Number of Publications

Figure 20-A. Collaboration among Prolific Big Data Authors

Visualizations of Country-level Total and Normalized EScoring for the 3 Test Datasets

Figure 21-A. Normalized vs. Total EScores for Leading Countries Publishing on DSSCs

Figure 22-A. Total EScores for Leading Countries Publishing on DSSCs by Number of Publications

Figure 23-A. Normalized EScores for Leading Countries Publishing on DSSCs by Number of Publications

Figure 24-A. Normalized vs. Total EScores for Leading Countries Publishing on Big Data

Figure 25-A. Total EScores for Leading Countries Publishing on Big Data by Number of Publications

Figure 26-A. Normalized EScores for Leading Countries Publishing on Big Data by Number of Publications

Figure 27-A. Normalized vs. Total EScores for Leading Countries Publishing on Non-Linear Programming

Figure 28-A. Total EScores for Leading Countries Publishing on Non-Linear Programming by Number of Publications

Figure 29-A. Normalized EScores for Leading Countries Publishing on Non-Linear Programming by Number of Publications

NEDD Cutting Edge Players: US Organizations

Second-order Emergence Indicators: Emergent Players

4] We analyze 50,745 articles on NEDD indexed by Web of Science, generating emergent terms, and then our secondorder indicators of emergence for countries, organizations, and authors. Table 1 illustrates for author organizations (as a work in progress; we are working to translate the results into charts and visuals to communicate the key facets of emergence). This chart shows U.S. organizations most actively incorporating emergent NEDD terms in their author keywords or Keywords-Plus from the Web of Science records. Not shown, of the 60 organizations reaching our threshold to be identified as emergent, 24 are Chinese, followed by the 15 American ones shown. This indicator suggests that China is a leader, not a follower, in cutting-edge NEDD research.

Table 1 shows that some of those U.S. organizations have been pushing NEDD frontiers (i.e., their articles are rich in our identified emergent terms) for both time periods. Others show up for 2009 and drop below threshold for 2012. Vice-versa, some organizations not present in 2009 "emerge" in 2012.

Emergent Organizations	Frontier in 2009	Top Emergent TermFrom2009in 2		Top Emergent Term 2012		
Harvard Univ	Yes	6 Magnetic nanoparticle	Yes	7 iron oxide nanoparticle		
Univ Washington	Yes	10 quantum dot	Yes	15 iron oxide nanoparticle		
MIT	Yes	9 quantum dot	Yes	10 cellular uptake		
Univ Calif Los Angeles	Yes	6 Mesoporous Silica	Yes	6 Mesoporous Silica nanoparticle		
Northwestern Univ	Yes	9 Carbon Nanotube	Yes	9 cellular uptake		
Emory Univ	Yes	7 quantum dot	Yes	9 iron oxide nanoparticle		
Univ Michigan	Yes	6 quantum dot	No	N/A		
Stanford Univ	Yes	6 quantum dot	No	N/A		
Univ Massachusetts	Yes	9 Gold Nanoparticle	No	N/A		
Georgia Inst Technol	Yes	7 quantum dot	No	N/A		
Northeastern Univ	Yes	7 Nanocarrier	No	N/A		
Univ Utah	No	N/A	Yes	6 cellular uptake; pH; siRNA delivery		
Univ Calif San Diego	No	N/A	Yes	13 Mesoporous Silica nanoparticle		
Purdue Univ	No	N/A	Yes	7 siRNA delivery		
Rutgers State Univ	No	N/A	Yes	7 cellular uptake		

Table 1-E. Emergent U.S. Research Organizations in Nano-Enabled Drug Delivery

Notes: Numbers in the "Top Emergent Term" columns indicate how many articles contained that most frequent term for the organization in that time period. This provides a simple pointer to the prevalent research thrusts.