
Abstract
We have come to regard the human user, manipulating
physical input devices as the sole driver of interaction in
the graphical workspace. It is conceivable that for a vari-
ety of applications, such as help and tutorial systems,
macro-by-example systems, session-playback systems and
in collaborative work, we may require an alternative agent
to perform tasks on the workspace, alongside the user. In
this paper we describe a relatively non-intrusive and porta-
ble scheme for supporting such “synthesized interaction”
on the X window system, and illustrate how toolkits may
be instrumented to cooperate with such an agent at runt-
ime, by providing information about the location of
objects in their interfaces. In particular we describe the
integration of synthesized interaction in the Artkit toolkit,
which is structurally similar to most modern toolkits and
should serve as relevant example.

Keywords: synthesized interaction, interaction tech-

niques, animated help, event generation, X window sys-

tem, X event, user-interface toolkits.

1. Introduction
Although we have come to regard the “simulated world”
metaphor rather than the “conversational” metaphor as the
dominant paradigm in user-interfaces [8], we continue to
view the human user as the sole initiator of actions in the
workspace. As in the real world, there is an opportunity in
this simulated world to make life simpler by deploying
general-purpose, programmable agents that can interact
with interfaces and are capable of performing tasks, mim-
icing the user or demonstrating a facility. It is conceivable
that in this closed world, such an agent, with easy access
to knowledge about objects in the workspace, could actu-
ally out-perform the user in a variety of tasks.

1.1 Motivation
Consider the following scenario - an all too common
occurrence in a world of changing software (see Fig. 1):

Joe is learning to use a new editor and wants to know how
to select multiple items. Fortunately, Joan is around and
can show him how. She takes the mouse from him and

walks him through the process. Not wishing to disturb his
work, she creates a separate frame and draws a pair of
objects - an arrow and an ellipse. She then says, “Watch,
here I have two objects that I need to group.” (box i) “I
move to the top left corner.” (box ii) “I press the left button
and drag the mouse, and a little box appears.” (box iii) “I
drag the box until it encloses all the objects,” (box iv) “
and I release the button. Everything gets selected.” (box v)
“Then I go to the toolbox, and click on ‘Group’” (box vi)
“So, now they are all grouped together,” (box vii) “ and
we can move them around..” (box viii) She then deletes the
new frame and leaves his editor in its original state.

There is nothing that precludes a computer program from
doing whatever Joan just did. She made use of no real
world knowledge. All her actions could be translated into
mouse moves, mouse button clicks and key presses. She
needed to look at the interface often to find out where
objects were and to make sure things were happening
according to plan. She may have made use of objects in
Joe’s context to do the task more intelligently, but such
state information and details of the interface layout are
available with the application and the window-system, and

Synthesized Interaction on the X Window System
Krishna Bharat Scott Hudson Piyawadee Sukaviriya

GVU Center, College of Computing
Georgia Tech, Atlanta GA 30332-0280

{kb, hudson, noi}@cc.gatech.edu

i ii iii

iv v vi

vii viii

?

Figure 1. Demonstrational Help - Do we really
need a human ?

should be within the reach of other programs. She punctu-
ated her actions with verbal explanation, which could be
recorded in audio files and played back.

In addition to the aboveanimated help example, we could
apply a synthetic interaction facility to a variety of tasks:

o Recording and playback of a session or a demo, tolerat-
ing minor changes in layout and at a different speed.

o Enabling handicapped users to operate on conventional
interfaces with an agent driven by speech input.

o In Collaborative Work. Actions performed on one inter-
face may be copied over and performed on another inter-
face, at a later time.

o Task Automation. Given a simple scripting language
users would be in a position to automate tasks, like starting
up a tool and initializing its settings or repetitive actions
like reading news or mail.

All we lack currently is the infrastructure to generate
events, and a mechanism find out the location and status of
objects in the interface and get acknowledgments from the
application for actions that have been completed. In this
paper we describe how these may be implemented.

1.2 Prior Work
In an earlier paper [2], we motivated the need for such a
facility and described the application programmer’s inter-
face to an agent called theanimation server. The anima-
tion server was an independent process that would accept
“animation” scripts from client applications and translate
them into actions to be performed asynchronously. This
involved synthesizing input events as if from the mouse
and keyboard. It was capable of synchronizing with other
media streams, and could query the client for the location

events, moving icons and sound effects
Figure 2. Animation using keyboard and mouse

of widgets during execution. A variety of applications
were discussed.

An animated glyph (shown in Fig. 2) was used to represent
the mouse (showing depressed buttons), with sound
effects for button presses and key clicks.

We have subsequently dropped the heavily overloaded
term “animation” in favor of “synthesized interaction,” in
appreciation of its non-demonstrative uses.

The focus on this paper is on event synthesis, security and
interface related knowledge representation - issues which
are orthogonal to and complement those addressed in [2],
which dealt with the API to such a facility and its potential
applications. In our earlier work we assumed the existence
of an event generation mechanism, and did not explain
how it would be implemented.

The organization of this paper is as follows. In Section 2
we evaluate a number of event generation techniques, and
explain why we chose the technique that we have adopted.
In Section 3 we describe a portable implementation in suf-
ficient detail that it may be reproduced. Section 3.2 deals
with implementing security at an event level. In Section 4
we present two schemes for making interface related
knowledge available to other programs, and in Section 5
show how a typical toolkit may be extended to support
these schemes.

2. Design
Implementing synthesized interaction on any window sys-
tem is a fair challenge, and more so in the X window sys-
tem. The lack of consistency among toolkits and the
potentially unpredictable results of the asynchronous pro-
tocol contribute to the complexity. While our design is
geared towards handling the hard problem, namely inter-
action in the X setting, it is equally applicable in a syn-
chronous window system with a single toolkit. We address
issues such as event dispatch, consistency between event
streams, security and interface layout information which
are relevant on any event driven window system.

2.1 The X Environment
In the X window system[16], the X server provides a vir-
tual “display” abstraction and regulates access to a set of
screens and input devices. Client applications communi-
cate with the server using an asynchronous, networked
protocol called the X Protocol, which is a standard for all
releases of the X11 software.

The server displays windows on behalf of client applica-
tions, and dispatches X events to appropriate clients in
response to input device events. X events are necessarily

directed at specific windows. An application may have
multiple “top-level” windows, which may in turn nest
other windows corresponding to parts of the interface. A
single input event can result in multiple X events, possibly
to different windows - e.g. a single mouse move could
cause anexit X event to be delivered to one window and
anenter X event to be delivered to another.

The Xlib[11] library, which is an essential part of all win-
dowing applications in the X environment, is responsible
for all communication with the server. It queues the X
events from the server as they come in, until they are ready
to be processed by the client. In addition to beingnotified
about changes in the status of input devices, the client can
alsopoll the server using Xlib routines. Applications often
deviate from their event driven execution to implement
dragging, pulldown menus and rubber-banding by polling
the state of the pointer.

2.2 Design Criteria
Events need to be generated at some level by an agent
which we shall call theinteraction synthesizer. Typi-
cally, this agent operates asynchronously with respect to
the recipient and is best implemented as a separate process
(or thread). In general, the synthesizer could operate on
multiple applications on behalf of multiple clients.

In designing a synthesized interaction system we would
like to keep the following criteria in mind:

(a) Portability: It should be possible to port the implemen-
tation to other platforms running X with relative ease.

(b) Application End Support: We would like open-ended
support at the application end to find out the location of
objects in the interface, get confirmation about executed
actions, abort actions if necessary etc.

(c) Robustness: The transmitted event sequence should
have the desired effect with a high probability. Getting
feedback from the application about the processing of
events will automatically contribute to robustness.

(d) Expressiveness: Any interaction sequence should be
easily expressible in terms of the event primitives pro-
vided.

(e) Programming Overhead: The scheme should not
impose a significant overhead on either the application
programmer or the toolkit writer.

(f) Intrusiveness: The inclusion of synthesized interac-
tion should not interfere with the normal operation of the
application or window system in any way.

(g) Security: It should be possible to protect applications
against events from unauthorized sources. Authorized
users should be allowed to send events to select applica-
tions.

2.3 Level of Operation
There are many levels at which events may be generated:

(a) Device Event Level: Events could be introduced at
the level of the device driver so that even the window
server cannot tell they are fake. This could also be sup-
ported by an extension to the server. The IN3 speech rec-
ognition software (Release 2) [4] does event synthesis at
the device driver level. Our first implementation relied on
the fact that the OpenWindows X server,xnews could
accept program generated device events using the NeWS
protocol. We rejected this approach for the following rea-
sons:

1) It is either platform or server dependent and hence not
portable.

2) It has been our experience that such event generation is
too low-level to be robust. The synthesizer would transmit
certain device level events to the window server expecting
then to be mapped to the correct window system events,
and sent to the appropriate windows. Unless the synthe-
sizer replicates the server’s state there is no guarantee that
this will actually happen. It is more robust to avoid this
level of indirection and send higher level events directly to
applications. Also, if we talk directly to the application we
can get confirmation when events are processed.

3) It is hard to regulate access at a fine level of granularity,
i.e. at the level of a individual windows. We would like to
be able to allow authorized users to send events to select
“interaction-friendly” windows and not to others.

(b) Application Event Level: Operation at the level of the
application is a viable alternative. We could “magically”
invoke callbacks within applications with the assistance of
the toolkit. However this burdens the implementer of the
toolkit considerably, and is subject to the following short-
comings:

1) This does not adequately simulate interaction since
there is no visual feedback.

2) The implementation cannot be easily ported to other
toolkits.

3) This requires a separate IPC mechanism for transmit-
ting events to applications.

4) This could result in abnormal behavior since it circum-
vents the interface. For example, if we invoked the call-
back of a disabled widget there could be unpredictable
consequences.

(c) Window System Event Level: Instead, we chose to
operate at the level of window system events, or X events.
There are three sets of events that directly result from user
actions and need to be synthesized:

1) Events triggered by Pointer Motion
2) Events triggered by a Pointer Button
3) Events triggered by a Keyboard action

In the X window system these correspond to:

1) {MotionNotify, EnterNotify,
 LeaveNotify, FocusIn, FocusOut}

2) {ButtonPress, ButtonRelease}
3) {KeyPress, KeyRelease}

All other events in the system are the indirect consequence
of input actions and get generated automatically as the
interaction proceeds. The first set of events is easy to pro-
duce in X, since the pointer may be moved using the
XWarpPointer routine in Xlib. The remaining need to
be generated synthetically.

A simple way to send X events to the client is to use the
XSendEvent facility in Xlib, which uses the SendE-
vent protocol request to get the server to forward an X
event to an appropriate window. Unfortunately, this is not
enough to synthesize interaction because:

i) The server sets a boolean field in such events to mark
them as synthetic, causing most toolkits to ignore them.
Some X servers allow the tagging to be turned off, but that
would represent a serious breach of security.

ii) Even if the events were processed by the toolkit, there
is no way to prevent genuine communication from the
server from conveying information about the state of the
input devices that contradicts the impression created by
the synthetic events.

iii) Applications often go into a polling mode. They query
the server about the state of the pointer and the keyboard
using theQueryPointer and QueryKeymap proto-
col requests. These need to be handled as well.

It seems inevitable that we must interpose at some point in
the server-client communication. There are three ways that
this interposition can be performed. First, the server could
be modified to introduce new synthetic events at the

source. Second, as illustrated in Fig. 3, a new “pseudo-
server” process can be placed between the server and the
client to introduce events at that point. Finally, as illus-
trated in Fig. 4, the client itself (in particular parts of the
Xlib library used by all X client programs) can be modi-
fied to introduce events at the destination.

The first approach has been taken with theXtest experi-
mental extension included in X11R5. Server modification
may pose a problem since it clearly requires the use of a
specialized server. This can preclude running a vendor
supplied server. Such a server may be highly tuned for par-
ticular graphics hardware, or in the case of some display
hardware, may even be the only server available. For
example, users (like many at our site) employing X termi-
nals, rather than conventional workstations, cannot modify
the server they use in any way. Secondly, this provides no
support to monitor and control the processing of events at
the application end.

Interposing with a pseudo-server between the client and
server offers what, at first, looks like a cleaner solution,
requiring no modification to existing components. Client
programs simply connect to the pseudo-server (e.g. by
changing their DISPLAY environment variable) rather
than the normal server. Systems like XTV[1] use the
pseudo-server technique to implement shared windows.
The main problem with this approach is performance.
Since all communication is being intercepted, output
requests which are critical to performance get needlessly
delayed. While the scheme is non-intrusive, as in the pre-
vious case, it provides no support at the application end.

The final alternative, and the one we eventually settled on,
is to interpose on the client side (see Fig. 4). To avoid rep-
licating the functionality of the server, this approach
directly involves the server using theWarpPointer and
SendEvent mechanisms, that are part of the standard
protocol suite. All movement events are generated by

Client A

Synthetic

Interaction

Figure 3. Adding Synthetic X Event Packets
to the Protocol Stream

P
S
E
U
D
O

S
E
R
V
E
R

X

S
E
R
V
E
R

Synthesizer

WarpPointer (which forces the server to generate all
needed windowenter, exit andfocus events) and handled
like other movement events. All other events are sent via
the standardSendEvent mechanism. As described in the
next section, the client, after validation of synthetic events
(see Section 3.2), resets thesend_event flag, updates a
small amount of state-tracking bookkeeping (so events
report the apparent rather than actual state of devices), and
allows the events to be processed as usual.

While this approach is more intrusive than we would like -
- it requires a (very small) modification to the Xlib code
used by the client -- we have found that many of the more
interesting uses of synthetic interaction are better per-
formed with cooperation of the client’s toolkit anyway.
When this is the case, intrusion is limited to the client por-
tion of the overall system rather than being spread between
the client and server. In addition, on systems that support
dynamic linking, it is possible to interpose very simply
without recompiling, relinking, or modifying the client in
any way. For example, on Sun systems we merely need to
retarget LD_LIBRARY_PATH environment variable to
point to the extended Xlib.

The scheme is robust. We can target events at specific win-
dows and get confirmation when they are processed. If
necessary we can abort unprocessed events or filter out
events from the human user, which could interfere with the
interaction. It is highly portable. We ride on the X Protocol
and require no additional locale dependent communication
channels. Also, we are in a position to implement security
at the level of individual windows.The best reason for
choosing this approach is that it provides virtually unlim-
ited support at the application end for enhancements.

Client A

X

S
e
r
v
e
r

Synthetic

Interaction

Figure 4. Using theSendEvent Protocol and an

Synthesizer

SendEvent

Extended Xlib

Genuine

(Validates Synthetic Events,
Customizes Genuine Events
Traps Polling Requests
Handles Control Messages)

Extended Xlib to Introduce Synthetic Events.

WarpPointer

3. Implementation

3.1 Extending Xlib
Events may be intercepted either when they are enqueued
for the first time, or when they are taken off the queue. The
former approach is more practical because Xlib provides
an extension mechanism for preprocessing events as they
are enqueued. A more subtle reason for taking this
approach is that events get enqueued in the sequence they
are delivered (consequently with increasing timestamps),
while the client may dequeue events out of order. Since
synthetic events may cause the modification of events that
follow, we need to ensure that they are processed in
sequence. The synthesizer may also send control messages
to the Xlib support code. These are encoded within a spe-
cial X event calledClientMessage . Note that we could
use a control message to operate on an event in the “past”
if it has yet to be dequeued. This could be used for
instance to abort actions by removing all pending events.

The figure below gives a detailed picture of the extension:

The Xlib source is publicly available from FTP sites such
as public.x.org (in /pub/R5untarred/mit/lib/X).
Fig. 6 shows the event preprocessing code in the exten-
sion. Synthetic events are first subject to an authorization
check (line 2). This is discussed in Section 3.2.

Authorized synthetic events of typeClientMessage
(lines 5-7) carry control information. They have a 32 bit
type field and a payload of 20 bytes for data.Client-
Messages can be used to set up a general-purpose RPC

Xt

Extended

XQueryPointer

QueryPointer
QueryKeymap

Generate Motion
Related Events

Interaction
Synthesizer

SendEvent

WarpPointer

X Server

Xlib

Preprocessing

XQueryKeymap
(Interpose)

Figure 5. Extending Xlib

Extension

Event Queue

facility, and implement a variety of functions, some of
which may require support from other parts of the
library. This may be used for instance, to set a mode
wherein certain types of events are filtered out or modi-
fied, e.g. button and keyboard events from the user
which could interfere with the interaction. In the same
manner we could request notification when a certain
batch of events has been processed, for synchronization.
We use this mechanism to enable the interaction synthe-
sizer to discover the location of objects in the interface,
as described in Section 5, using “upcalls” to the toolkit
and application layers.

If the synthetic event is not aClientMessage (lines
9-16), it must be a button or key event, destined for the
toolkit. Thesend_event tag is turned off. Most event
fields such as the destination window, location within
the window and the button or key involved are set by the
interaction synthesizer. Two fields still need to be set.

1) event.state (line 12), which holds the state of
the buttons and modifiers before the event occurred. For

this purpose a state vector called
Apparent_Input_Status is maintained (line 13). It
represents the state of the buttons and modifiers, as shown
by the synthetic event stream and gets updated by each
synthetic event.

2) event.time (line 15), which holds a timestamp for
the event measured in milliseconds. This is assigned by
the X server, except in synthetic events where it needs to
be computed by the interaction runtime. In most cases this
value does not matter. Consequently, the synthesizer ini-
tializes the field to a special value,DONT_CARE, and the
preprocessor reassigns it to a value that is marginally
greater than the last genuine timestamp seen. For this pur-
pose a variable calledLocal_Clock is maintained. In
special cases the relative time between events is critical.
For instance, toolkits look at the timestamps of button
events to distinguish between a click and a drag, and two
clicks and a double-click. In these cases the synthesizer
assigns values to thetime fields to represent constraints
between successive timestamps. This causes the prepro-
cessor to assign timestamps that respect the constraints,

if (event.send_event) /* event.send_event is set in synthetic events */
is_authorized := authorization_check(event);
/* Check if the event is from an authorized source */
if (is_authorized)

if (event.type == ClientMessage)
... /* Treat as a control message. Take appropriate action */
return DONT_ENQUEUE; /* Do not enqueue this event */

else
event.send_event := false; /* Turn off the tag */
/* The only events that get here will be {ButtonPress, ButtonRelease,

KeyPress, KeyRelease} */
event.state := Apparent_Input_Status;
Update_Input_Status(Apparent_Input_Status, event);
/* Maintain the apparent state of buttons and modifiers internally */
event.time := Logical_Time_Value(event, Local_Clock);
/* Compute a logical time value for the event and advance the local clock */

endif
endif

else /* Not a synthetic event.. */
if (event.type in {MotionNotify, EnterNotify, LeaveNotify})

/* Motion related events that carry state information */
event.state := event.state | Apparent_Input_Status;

endif;
Local_Clock := Advance_Local_Clock(Local_Clock, event);
/* If the event has a time field it advances the local clock */

endif;
return ENQUEUE; /* Enqueue event as before */

Figure 6. Extension for Preprocessing Events as they are Enqueued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

ignoring the Local_Clock value. For example the
events:

ButtonPress 0
ButtonRelease 100
ButtonPress 300
ButtonRelease 400

will be converted to

ButtonPress t 0
ButtonRelease t 0+100
ButtonPress t 0+300
ButtonRelease t 0+400

where t 0 is the value ofLocal_Clock when the first
event is received. The above sequence could represent a
double-click. The bounds are toolkit dependent and cannot
be hardcoded in the preprocessing code.

In the case of non-synthetic events (lines 20-25), book-
keeping is done to maintainLocal_Clock . If the event
is MotionNotify , EnterNotify or LeaveNotify
it has astate field representing the state of buttons and
modifiers. A bitwise OR operation (line 22) is used to
ensure that the field reflects buttons and modifiers
depressed during the synthesized interaction, as shown by
the state vectorApparent_Input_Status . Note that
when a synthesized interaction sequence is not in progress
the Apparent_Input_Status vector will be empty
and this operation will have no effect.

The routinesXQueryPointer and XQueryKeymap
return vectors representing the status of buttons and keys,
and need to modified so that they return a value consistent
with theApparent_Input_Status vector.

3.2 Security
The introduction of a synthetic event generation capabil-
ity, while offering important new functionality, also has
serious security implications. The unencrypted X protocol
is only as secure as the underlying transport mechanism
and operating system, and there are a number of attacks
possible against a typical X window system set-up. Our
aim is to ensure that the validation of synthetic events by
the extended Xlib does not open any new security loop-
holes. Further, we would like this guarantee to hold true
even in the future, as the rest of the system becomes more
secure.

Attacks may be mounted at various levels:

Level 1: The infiltrator is able to introduce seemingly
genuine events.

Level 2: The infiltrator can eavesdrop and delay, stop, or
reorder the delivery of events.
Level 3: The infiltrator is only able to eavesdrop.

Note that infiltrators who are able only to modify events in
the event stream, can themselves send synthetic events
using XSendEvent , then intercept them and clear the
send_event bit to create a seemingly genuine event of
any sort they choose. As a result, the ability to modify
events alone is equivalent to a Level 1 attack. Without
additional support from the underlying transport system,
there is no way for a client to distinguish a Level 1 attack
from legitimate messages.

A Level 2 infiltrator can cause harm by capturing mes-
sages and later replaying select portions, or simply by
removing select input events, (for example changing the
key-press sequence for “cd obj; rm *.o ” into “cd ;
rm * ”). It might seem at first that we need to guard only
against Level 3 infiltrators since the other variety could
operate just as easily on the genuine event stream. How-
ever, the threat from a Level 2 attack is considerably
higher in the case of synthetic events because genuine
events are under considerable human supervision.

We will outline a scheme that guards against Level 2
attacks -- an infiltrator who may be able to eavesdrop,
stop, reorder, replicate, modify (by stopping and retrans-
mitting), or introduce events in the synthetic event stream.

Proper security requires that the party sending a synthetic
input event can always be identified by a signature so that
events generated by unauthorized parties can be rejected.
It should not be possible to forge the signature, nor should
it be possible to affix the signature on any other event or
transmit events out of order. The information content of
the signature should therefore be derived from the text of
the event and a message sequence number in a non-revers-
ible fashion. To prevent forgery this information can be
encrypted using an encryption key known only to the
receiver and authorized sender. This key could be known a
priori to both parties (for example, in the most common
case when the sender is an agent process executing under
the same user id on behalf of the receiver), or may be
exchanged at run-time. A secure key exchange between
parties not sharing a prearranged key or other secret can be
performed by well known public-key cryptography meth-
ods [13, 5].

In the case of button and key events there is a 32 bit sub-
window field which is always set to zero in synthetic
events. Consequently, this field can be made to hold the
signature in transit.ClientMessage s carry 20 bytes of
data, 4 of which can be used for the signature.

The encrypted data is hashed to a 32 bit signature to fit in
the available payload as follows,

signature := hash32(crypt(key, event + seq))

where crypt() is an encryption function, seq is the
sequence number of the event, and hash32() hashes a
longer string into a 32 bit value.

A slightly more efficient alternate approach which
encrypts only 32 bits of plaintext for each message would
be to use:

signature := crypt(key, hash32(event + seq))

Note that this scheme requires relatively strong crypto-
graphic properties for the encryption function, since the
plaintext and (at least a function of) the cyphertext are
both always available. Similarly, the hash function used
must be relatively well distributed and, in the second
scheme, have the property that all bits of its input affect its
output (for a discussion of more sophisticated hash func-
tions for digital signatures see for example [14, 15]). On
the other hand, most synthetic interaction sequences
would be relatively short with respect to the length of the
key that could be exchanged, and would be expected to
last only a few minutes. In addition, the system could be
set up to “time-out” after a few minutes of inactivity. As a
result the time available for an adversary to apply the com-
putations needed for a cryptanalytic attack is in practice
quite small. This will result in relatively strong security (at
least significantly better than other aspects of a typical X
window and Unix system) even when relatively simple
cryptography is employed.

4. Specifying Interaction
The synthesizer is structured as two layers. An object ori-
ented toolkit layer, which is responsible for event genera-
tion, and an interpreter for a scripting language, which
drives the toolkit. The toolkit can be used to create objects
that manage the pointer and the keyboard on a certain dis-
play. The objects may be subclassed to change their
appearance or behavior. This is how we integrate anima-
tion techniques such as slow-in and slow-out and motion
along a curve. The interaction synthesizer is implemented
as both a library and a stand-alone program.

When asynchronous execution is desired clients can start
up the synthesizer as a separate process and drive it with
interaction scripts. Scripts are communicated using a gen-
eral purpose RPC facility called Intercom, also imple-
mented using theSendEvent protocol.

4.1 The Scripting Language
The scripting language resembles the one described in [2].
An interaction technique that operates on a scroller would
look as follows:

Goto CENTER @scrolr1.thumb in 800 msecs
Press Left
Goto NORTH @scrolr1 + 0,50 in 2 secs
Release Left

The notion of time has been incorporated. Movement can
be expressed in terms of a duration. The synthesizer uses
an adaptive technique to compute the intermediate steps
along the path. It computes the time elapsed at intermedi-
ate points and dynamically adjusts its velocity to ensure
that the deadline is met [7]. The motion is smooth on a fast
machine and gracefully degrades on slower machines.
This makes it easy to synchronize the interaction with
audio playback.

Actions are expressed using destination names. Button and
keyboard actions, and pointer moves are specified in terms
of application specific destinations, rather than absolute
coordinates or X window ids which are likely to change
over time or over invocations. In the above example,
“NORTH @scrolr1 + 0,50 ” refers to a point that is
offset by 0,50 from the center of the northern edge of an
object calledscrolr1 .

The interpreter uses such expressions to compute the
screen locations where the events should have occurred. In
the case of a button or keyboard event it also provides the
destination X window, known as the event focus. In some
cases the destination is implicit as in the Press and Release
statements above, and the interpreter uses the previous
destination. Providing useful defaults and such implicit
behavior hides the details of the event delivery from the
script-writer. Unfortunately this does not work in all cases.

In the above example they would need to set the focus for
the Release event explicitly using

Focus @scrolr1.thumb; Release Left
or
Release Left to @scrolr1.thumb

since the Release event should logically be delivered to the
thumb of the scroller. In many UI toolkits this would not
matter, either becausescrolr1 andscrolr1.thumb
would share the same X window, or because the thumb
would have “grabbed” the pointer upon the Press event
and would get the Release event in any case.

4.2 Naming Locations
To intelligently operate on the client’s interface, the syn-
thesizer needs information about the location of objects.
Note that these objects may or may not correspond to an
entire X window. In general they could represent a subdo-
main (we assume rectangular) within a window. In Motif
[12] and other Xt based toolkits there is a close correspon-
dence between X windows and widgets. For retargettabilty
and control over event delivery toolkits like InterViews
[9], Artkit [6] and Trestle [10] implement their own nest-
ing scheme, and all widgets reside within a single top-
level X window. Consequently locations are expressible as
subdomains of the same window. In either case there is a
nesting of rectangular regions, and the synthesizer needs
to discover the smallest enclosing X window correspond-
ing to a given destination and compute the latter’s location
in the window’s coordinate system. There are two ways in
which the client can make such information available:

1. Querying, where the synthesizer asks the client by inter-
process communication. Since the synthesizer already
communicates with the client using theSendEvent pro-
tocol, the query can be placed in aClientMessage and
will be handled by the extension. The reply is sent in a
similar manner.

2. Posting, where it is posted in a public place. A good
place to place labeled, shared information is in a known X
window. X allows arbitrary “properties” to be attached to
windows. The synthesizer could lookup the location of
objects by name on a special “posting” window of the cli-
ent it is interacting with.

We support both schemes and let the implementer of the
client or the toolkit choose a scheme that suits them. If
querying is adopted it is most convenient for the client to
do all the computation and return values in screen coordi-
nates. In the case of posting, rather than post everything in

SCRWIN

CANVAS

IKE

IKE := (CANVAS, NW + (Delta_x, Delta_y, Wid, Ht))

SCRWIN := (0x1239a7 , NW + (dXs, dYs, Ws, Hs))

CANVAS := (SCRWIN, NW + (dXc, Scroll_y, Wc, Hc))

Figure 7. Posting

SCROLR

SCROLR.THUMB

screen coordinates and suffer the overhead of re-posting
when a top-level object is repositioned, we are able to post
relative locations. The location of an object is expressed as
a function of another object, typically its parent in the tool-
kit’s nesting scheme.

To illustrate this consider an application with multiple
icons in a scrolling window, shown in Fig. 7. The location
of an iconIKE is expressed as an offset from the top left
corner of the canvas pane calledCANVAS. This offset is
constant as the window scrolls and does not need to be re-
posted.CANVAS is posted at a displacement fromSCR-
WIN, a scrollable window interactor, which is posted rela-
tive to the enclosing X window, 0x1239a7. As the
interactor scrolls the client need only re-post the location
of SCRWIN. While this requires more lookups on the part
of the synthesizer, the overhead is negligible when com-
pared with human cognition time. In practice it is neces-
sary to insert pauses between steps in the interaction script
to slow down the action and make it seem natural!

With posting, we can make use of various encoding
schemes to specify the location of an object in terms of
others. Some toolkits provide constraint or gravity based
relationships.

Note that there may be multiple, possibly overlapping
regions of interest within the same interactor. The regions
SCROLR andSCROLR.THUMBare parts of the scrollable
window interactor and also need to be posted. The synthe-
sizer treats every name as a string and the naming conven-
tion is left to the discretion of the author of the application.
The script-writer need of course be aware of the conven-
tion and the names used.

Posting is inherently more complex to implement than
querying, since we need to trap changes to region-
attributes. However the posting mechanism makes it pos-
sible for one application to make a large body of dynami-
cally changing information (which need not necessarily be
geometric or even interface related), available to poten-
tially, multiple applications that would like to use the
knowledge for reasoning. This is a fascinating prospect.

5. Toolkit Support
We describe how to extend a toolkit to support posting and
querying, using the specific example of the Artkit tool-
kit[6]. Artkit is an object oriented UI toolkit on the lines of
InterViews[9] and other modern toolkits. Each window in
the application is implemented by a tree of interactive
objects, calledinteractors. Every interactor draws itself
relative to its parent in the tree. A single top-level X win-
dow contains all the interactors in a given tree. All classes
of interactors are implemented as derived classes of a sin-

gle base class calledmin_interactor . This is a bless-
ing, since most of the extensions we need to make may be
done at this level and will be inherited by derived classes
automatically.

Posting and querying is done in terms ofregions. A region
is either a full interactor (such as a scroller) or a part of it
(such as the thumb of the scroller). Fig. 8 shows the struc-
ture of the Artkit extension. The interaction subsystem
maintains a lookup table containing references to all
known regions. The application programmer makes a
region known by associating a name with the interactor
that contains it. This causes the interactor to create names
for all its parts using a naming convention (currently we
append a suffix to the name such as ‘.thumb’ or ‘.top’),
and register them in the lookup table. Since posting is
done relative to the parent, an interactor will ensure that its
parent is registered before it register its own regions. This
may require the creation of a unique name if one has not
already been provided.

To support querying, the interaction subsystem registers a
callback with the extended Xlib, and gets notified when a
query is received (within aClientMessage). In
response to the query the subsystem looks up the appropri-
ate interactor and asks it to compute the dimensions of the
region relative to its smallest enclosing X window. In the
case of Artkit there is just one. The computed coordinates
are returned in aClientMessage .

To support posting, the interaction subsystem maintains a
pending queue, containing regions that have changed and
need to be posted. When a region discovers that it has
changed, it marks itself as dirty and adds itself to the pend-
ing queue. The dirty bit is cleared when the queue is
flushed next. Since no region will actually appear to have
changed until it redraws itself, we flush the pending queue
only when redraws happen. This will allow multiple
changes to a region to be compacted into a single posting.
Detecting when a region has changed is vital to the success

Figure 8. The Artkit Extension

Query
(ClientMessage)

Extended Xlib

Pending Queue

Lookup

ARTKIT

Interaction Subsystem

Root Window

Unmapped Window

Posting

of the posting scheme. Fortunately, in Artkit, themin_-
interactor class regulates access to the position, loca-
tion and parent fields, by corresponding methods. This
makes it easy to trap changes. In the case of a region that
corresponds to a part of an interactor, we need to modify
the derived class. A simple strategy to handle parts is to
create a single check_and_post() method for the
interactor to check if any of the parts have changed, and
place triggers in various other methods that cause it to be
invoked.

Since there may be multiple instances of the same applica-
tion running, the posting is done on a special unmapped
window created by interaction subsystem for that purpose.
The application programmer is expected to supply each
instance of the application with a unique name. This is
posted on the root window along with the window id of
the unmapped window. The interaction synthesizer first
does a lookup on the root window to find out where data
from a certain instance gets posted, and then performs fur-
ther lookups on that window.

6. Conclusions
In the induction of any new technology, there are two
forces at work. On the one hand, we have potential appli-
cations of the technology which motivate its development.
On the other, we need to consider the overhead it brings
with it and the structural changes that are called for. The
questions - Will it jeopardize the robustness/security of
existing systems? Is it a portable solution? Does it have
scope for future enhancements? - need to be answered.

In [2] (and to a smaller extent here) we have motivated the
need for a synthesized interaction facility with a set of
potential applications. We still needed to address the issues
of portability, security, robustness and extensibility, which
we have done in this paper. We do not believe that this is
the last word on event synthesis. It is likely that a standard
server extension in the future will provide all the event
generation support that we need. However there is no
doubt that we need intelligence at the client end to provide
feedback and close the agent-application communication
loop. Hence we believe that much of this work will have
relevance in the future, and in other windowing systems.

7. References

[1] Abdel-Wahab, H.M. and Feit, M.A. XTV: A frame-
work for sharing X Window clients in remote syn-
chronous collaboration, inProc. IEEE Conf. on
Communications Software: Communications for Dis-
tributed Applications & Systems, 1991, pp. 159-167.

[2] Bharat, K. and Sukaviriya, P. Animating User Inter-

faces Using Animation Servers, inProc. UIST ‘93,
pp. 69-79.

[3] Chang, B. and Ungar, D. Animation: From Cartoons
to the User Interface, inProc. UIST ‘93, pp. 45-55.

[4] Command Corp. Inc.,Private Communication.

[5] Diffie, W. The First Ten Years of Public-Key Cryp-
tography, inProc. of IEEE v76, 1988, pp. 560-577.

[6] Henry, T.R. and Hudson, S.H. Integrating Gesturing
and Snapping into a User Interface Toolkit, inProc.
UIST ‘90, pp. 112-121.

[7] Hudson, S.E. and Stasko, J.T. Animation Support in a
User Interface Toolkit: Flexible, Robust, and Reus-
able Abstractions, inProc. UIST ‘93, pp. 57-67.

[8] Hutchins, E.L., Hollan, J.D. and Norman, D.A. Direct
Manipulation Interfaces, inUser Centered System
Design, Ed. Norman, D.A. and Draper S.W. Lawrence
Erlbaum Associates, Ch. 5, pp. 87-124.

[9] Linton, M., Vlissades, J.M. and Calder, P.R. Compos-
ing User Interfaces with InterViews, inIEEE Com-
puter, Feb 1990 22(2) pp. 57-67.

[10] Manasse, M.S. and Nelson, G. Trestle Window Sys-
tem Tutorial, in Nelson, G. (Ed.)Systems Program-
ming with Modula-3, Prentice Hall.

[11] Nye, A. (Ed.).Xlib Programming Manual, O’Reilly
& Associates Inc., 1992, Vol. 1, 3rd Edition.

[12] Open Software Foundation,OSF/Motif Program-
mer’s Reference, Release 1.2, Prentice Hall, 1993.

[13] Rivest, R.L., Shamir A., and Adleman, L. A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems,CACM, Feb 1978 21(2), pp. 120-126.

[14] Rivest, R.L. The MD4 Message-Digest Algorithm, in
Crypto ‘90, Springer-Verlag, 1991, pp. 303-311.

[15] Rivest, R.L. RFC 1321: The MD5 Message-Digest
Algorithm, Internet Activities Board, April 1992.

[16] Scheifler, R. and Gettys, J. The X Window System, in
ACM Trans. on Graphics, April 1986, 5(2) pp. 79-
109.

