Alphabet Dependence in Parameterized Matching

Amihood Amir* Martin Faracht S. Muthukrishnan?
Georgia Tech DIMACS Courant Institute
& Rutgers U.

GIT-CC-93/44

July 1993

Abstract

The classical pattern matching paradigm is that of seeking occurrences of one string
in another, where both strings are drawn from an alphabet set 3. A recently in-
troduced model is that of parameterized pattern matching; the main motivation
for this scheme lies in software maintenance where programs are considered “iden-
tical” even if variables are different. Strings, under this model, additionally have
symbols from a variable set II and occurrences of one string in the other up to a
renaming of the variables are sought.

In this paper we show that finding the occurrences of a m-length string in a n-
length string under the parameterized pattern matching paradigm can be done in
time O(nlog), where 7 = min(m, |II|); that is, independent of |X|. Additionally,
we show that in general this dependence on [II] is inherent to any algorithm for
this problem in the comparison model — that is, our algorithm is optimal.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

*College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280; (404) 853-0083;
amir@cc.gatech.edu; Partially supported by NSF grant CCR-92-23699 and IRI-90-13055.

TDIMACS, Box 1179, Rutgers University, Piscataway, NJ 08855; (908) 932-5928; farach@dimacs.rutgers.edu;
Supported by DIMACS under NSF contract STC-88-09648.

{Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012; (212) 998-3061;
muthu@cs.nyu.edu Partially supported by NSF/DARPA grant CCR-89-06949 and by NSF grant CCR-91-03953.

1 Introduction

In the classical pattern matching model, we seek occurrences of a string, or more generally a
set of strings, in a distinguished string, where all strings are comprised of symbols from an
alphabet set Y. The basic problem in this paradigm is that of standard string matching, that
is, finding all occurrences of a pattern string of length m in a text string of length n. This
problem is known to be solvable in O(n + m) time independent of the alphabet size |X| [4, 7].

A related model of parameterized pattern matching was recently introduced by Baker [2].
The main motivation for this scheme lies in software maintenance, where programs are to be
considered “identical” even if variable names are different. Therefore, strings under this model
are comprised of symbols from two disjoint sets 3 and II containing fixed symbols and vari-
able/parameter symbols respectively. In this paradigm, we seek parameterized occurrencesi.e.,
occurrences up to renaming of the variable symbols, of a string in another. Corresponding to
standard string matching, the standard p-string matching problem is to find all parameterized
occurrences of a pattern string of length m in a text string of length n.

Baker [2] investigated the problem of finding repeated maximal parameterized occurrences of
substrings in a string. This is naturally done by an appropriate suffix tree and for this purpose,
Baker developed algorithms to build parameterized suffiz trees. Using the parameterized suffix
trees, Baker derived an algorithm for the standard p-string matching problem. Her algorithm
essentially takes O(n(|II| + log(|X| + |II])) + mlog(|X| + |II|)) time. Note that while standard
string matching can be solved in linear, that is, O(n + m) time, the Baker algorithm for
standard p-string matching has an overhead dependent on the sizes of both the alphabet sets.
This overhead appears as a result of the complexity of constructing the parameterized suffix
tree. Idury and Schiffer [6] considered a generalization of the standard p-string matching,
namely, dictionary matching under the parameterized pattern matching model. They used a
modified Aho-Corasick automaton [1] that, again, has a log(|X| 4+ |1I|) multiplicative factor.

In this paper, we investigate the alphabet-dependence in the complexity of the standard p-
string matching problem. We provide an algorithm for p-string matching that takes time
O(nlogm), where 7 = min(m, |Il]). Therefore, its complexity is independent of |X|. We
further show that log 7 factor is inherent to any algorithm for standard p-string matching in
the comparison model. Therefore, our algorithm is optimal.

2 Definitions

Formally, parameterized pattern matching is as follows. Let 3 and II be two disjoint sets of
symbols; ¥ is the set of fized symbols and II is the set of parameter symbols. A p-string is a
string over X UIl. Two p-strings s; and s of same length are said to p-match if there exists a
bijection f : Il < Ily, where Il and II; are the symbols from Il in s; and s, respectively, such
that the following holds: s; (sg, respectively) equals s3 (s1, respectively) when any occurrence
z € 11y (Ily, respectively) is replaced by f(z) (f~!(z), respectively). Given two strings s; and
s2, there is a p-occurrence of s; in sy at ¢, if s; p-matches sy beginning at the ith position from

the left in s3. The problem of standard p-string matching is the following: given the pattern
p-string P of length m and the text p-string T of length n, determine all p-occurrences of P
in T.

3 Upper Bound
We start by simplifying Baker’s definition of parameterized pattern matching.

Definition 3.1 (Mapped-Matching) Let 1 be an alphabet set, 7" = t; - - - ¢,, the lext and
P = pi---py the pattern, t;,p; € II, ¢+ =1,...,n;5 = 1,...,m. We say that there is P
mapped-matches or simply m-matches T in location j if p; = ¢;1,_1, ¢ =1,...,m, where
p; = t; if and only if one of the following two conditions hold:

L pi # Pi,...,Pi—1 and t; 7£ [FFN P 7

2. forevery k=1,...,1—1, p;=pi—pif and only if ¢; =¢;_;.

The m-matching problem is to determine all m-matches of P in T'. Two p-strings 57 and 53
of same length are said to mapped-match or simply m-match if 51[i] = 93[¢] for all <.

That m-matching is a special case of p-string matching is seen as follows. Define II in m-
matching to be the parameter set in p-string matching. The two conditions in the definition
of m-matching essentially ensure that there exists a bijection between the symbols from II
in the pattern and overlapping text, when they p-match. (Our definition of this mapping is
in a computationally suitable form, as will be evident shortly.) Intuitively, our definition of
m-matching is a projection of p-string matching on to p-strings consisting of the parameter
symbols alone. Correspondingly, the matching captures only the notion of one-to-one mapping
between the parameter symbols. The notion of matching fixed symbols is absent.

Since m-matching is a special case of p-string matching, it can be solved by any algorithm for
p-string matching. The following lemma shows that the opposite is also true.

Lemma 3.2 There is a linear-time reduction from the standard p-string matching problem
to the m-matching problem.

Proof: Let, T, P be a text and pattern over alphabets ¥ and II, as defined in the standard
p-string matching problem. Let @« € X, b ¢ II. Define strings 7", 7" as follows:

T[] = {ti, if t; € &;

a, ift; ¢ X.
T[’]—{b, i ¢ 0.

Define P’ and P” similarly to 7’ and 7", respectively.

The strings T’ and P’ are over alphabet set X = {a} U X. Solve the standard string matching
problem for T’ and P’ by any O(n) time algorithm (e.g. [7]). Let 57 be all locations of 7"
where P’ matches. The strings 7" and P" are p-strings over ¥” = ¢ and parameter alphabet
set 11" = {b} UIIL. Solve the m-matching problem for T" and P" and let Sy be all locations
of T" where there is a p-appearance of P”. We claim: S3 = S N S is the set of all locations
of T" where P p-matches in the standard p-string matching problem. To prove this claim, we
must show that there exists a matching bijection iff the two conditions for m-matching hold.
One direction is trivial: if there is a p-matching bijection on the characters at each matching
location then there is an m-matching over the parameter characters.

We now show, by induction, that if both m-matching conditions are satisfied, then there is a
parameter character bijection. Suppose we have an m-match at position ¢ of the text. Clearly,
then we have an m-match of any prefix of the the pattern at position . How suppose that for
the kth prefix of the pattern, we have defined a bijection fr, between the parameter characters
inT;,...,Tiyx—1 and Pp,..., P,. Now we have two cases. If Priq has not occured before,
then we extend f; to fr41 be mapping Pyry1 to Ti1x. By condition (1) of m-matching, fr41 is
also a bijection. The other case is that Pry; occured most recently at position &' of P. Then
fe(Prr) = Tiyr—1, by induction, and by condtion (2), we know that 75y = Tiyr—1, thus we
can set fri1 = fe. |

We modify the KMP algorithm to solve the m-matching problem simply by replacing every
equality comparison “x = y” by “z = y”.

Implementation of “z = y”

Construct table A[1],..., A[m] where A[i] = the largest k, 1 < k < i, such that py = p;. If
no such k exists then A[i] = ¢.

The following subroutines compute “p; = ¢;” for j > ¢, and “p; = p;” for j <.

Compare(p;,¢;)
if Ali] =14 and ¢; #¢;_1,...,1;_;41 then return equal
if Afi] # ¢ and t; = ;_;1 4p;) then return equal
return not equal

end

Compare(p;,p;)
if t — At] < j— 1 and p; # p1,...,p;—1 then return equal
if i — A[i] > j — 1 and p; = p;_;; a;] then return equal
return not equal

end

Theorem 3.3 The m-matching problem, and therefore, the standard p-string matching prob-
lem, can be solved in O(nlog) time, where 7 = min(m, |11]).

Proof: The table A can be constructed in O(mlogm) time as follows: scan the pattern
left to right keeping track of the distinct symbols from Il in the pattern in a balanced tree,
alongwith the last occurrence of each such symbol in the portion of the pattern scanned

thus far. When the symbol at location ¢ is scanned, look up this symbol in the tree for the
immediately preceding occurrence; that gives A[i]. Again, Compare can clearly be implemented
in time O(log) — for this, the immediately preceding occurrence of each text symbol from
Il is maintained as above while scanning the text left to right. Therefore, the automaton
construction in KMP algorithm with replacing every equality comparison “z = y” by “z = y”
takes time O(mlogm) and the text scanning takes time O(nlog), giving a total of O(nlog)
time.

As for the correctness of our algorithm, we only need to show that the failure link in automaton
node ¢ produces the largest prefix of p;---p; that m-matches the suffix of py---p;. Our
implementation of Compare(p;,p;) assures this by preserving the following invariant: The
largest prefix of py - - - p;y1 that m-matches the suflix of py - - - p;41 is the largest prefix py - - - pg
of py - -+ p; that m-matches p;_g41 - - -p; and also satisfies pry1 = piy1- |

4 Lower Bound

In the preceding section, we derived a simple algorithm for the standard p-string matching
problem that was independent of the X, but dependent on II. In this section, we show that the
log 7 factor in the complexity of our algorithm is inherent to the complexity of any comparison
based algorithm for the standard p-string matching algorithm. We do this by showing a
reduction to the standard p-string matching problem from the Element Distinctness Problem
defined as follows: Given set S of n real numbers, decide if every number in 5 is distinct.

Lemma 4.1 The element distinctness problem is reducible to the standard p-string matching
problem in linear time.

Proof: Let S contain n elements ay,as,...,a,. First check if a; is a unique element; this
can be done in O(n) time. Assume that it is unique. Then set 7" = ajay---a, and set
P = asasz - - -ayaq, that is, T is obtained by concatenating the symbols in 5 and P is obtained
by a cyclic shift of T by one position anticlockwise. Let ¥ = ¢ and Il = §, that is, T and P
are p-strings over parameter alphabet set 5. We claim that P p-matches T if and only if all
elements of S are unique.

Assume P p-matches T. We prove our claim by induction on position ¢ in T. We know, by
checking, that a; is unique. Now suppose all a; are unique, for ¢ < k. Then in particular a;_q
is unique. But in the p-matching of P with T, ax_1 p-matched ag. So ar must be unique
since otherwise the next occurrence of a5 in P would mismatch.

Now assume that all elements of A are unique. Then we trivially get a p-match of P in T.

Essentially as a corollary of this reduction, the theorems below follow.

Theorem 4.2 Any algorithm that solves the standard p-string matching problem over an
unbounded set II, takes time (nlog [II|) on the comparison model.

Proof: In the comparison model, it is a folklore result that element distinctness problem
over n elements requires 2(nlogn) time, or more generally, any algorithm for the element
distinctness problem over n elements takes time (nlog k) over inputs that contain k distinct
elements. The theorem follows from the reduction in Lemma 4.1. |

Note that the lower bound in the preceding theorem holds only for II of unbounded size. If
II were, say, polynomial in n and m, this lower bound does not hold; in fact, our algorithm
takes O(n) time in this case since by utilizing an array of linear size can be used in place of
the binary tree, Compare can be performed in O(1) time. For II of unbounded size, Theorem
4.2 can be extended to any algebraic model or to even randomized algorithm, by utilizing
appropriate results for the element distinctness problem.

Theorem 4.3 Let n = 2m. For any algorithm that solves the standard p-string matching
problem on a comparison-based branching program in time 7" and space S, TS = Q(mQ_E(m))

where ¢(m) = O(1/(logm)'/?).

Proof: This follows from the reduction in Lemma 4.1 and the fact that for any algorithm that
solves the element distinctness problem on a comparison-based branching program in time 7T’
and space S, TS = Q(m?~<(™)) where ¢(m) = O(1/(logm)'/?). The reduction in Lemma 4.1
is performed on the comparison-based branching program model (See [3] for the details about
the model). To obtain a comparsion branching program for the element distinctness program,
consider that for the standard p-string matching problem. Add a path of length m — 1 at the
top, corresponding to the comparison of a; with each of the other elements in the text string.
In the process, the capacity S of the branching program and the length 7T of the longest
path in it, increase by log(m — 1) and m — 1 respectively. But for any comparison branching
program for the standard p-string matching problem, S > logm and T > m; therefore, S and
T remain asymptotically unchanged. That completes the reduction. |

In contrast to this theorem, standard string matching is known to be performable using time
T and space 5, such that 'S = O(m) [5].

5 Conclusions

For the standard p-string matching problem, we have derived an algorithm whose complexity
is independent of |X|, the size of the set of fixed symbols in the p-strings. We have also
demonstrated that the factor of log|Il| in the complexity of our algorithm corresponding to
the set of parameter symbols in II, is inherent in general in any algorithm. This we do by a
reduction from the Element Distinctness Problem to the standard p-string matching problem.
As a corollary of this reduction, a near-quadratic time-space tradeoff follows for the standard
p-string matching problem.

References

[1] A.V. Aho and M.J. Corasick. Efficient string matching. C. ACM, 18(6):333-340, 1975.

[2] B. S. Baker. A theory of parameterized pattern matching: algorithms and applications.
In Proc. 25th STOC, pages 71-80. ACM, May 1993.

[3] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson. A time-space
tradeoff for element distinctness. SIAM J. Computing, 16(1):97-99, 1987.

[4] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM, 20:762-772,
1977.

[5] Z. Galil and J.I. Seiferas. Time-space-optimal string matching. J. Computer and System
Science, 26:280-294, 1983.

[6] R.M. Idury and A.A Schéffer. multiple matching of parameterized patterns. submitted
for publication, June 1993.

[7] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J.
Comp., 6:323-350, 1977.

