A Novel Server Selection Technique for
Improving the Response Time of a Replicated Service *

Zongming Fet
Samrat Bhattacharjee
Ellen W. Zegura
Mostafa H. Ammar

Networking and Telecommunications Group
College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
{fei,bobby,ewz,ammar }@Qcc.gatech.edu

Abstract

Server replication is an approach often used to improve the ability of a service to handle
a large number of clients. One of the important factors in the efficient utilization of repli-
cated servers is the ability to direct client requests to the best server, according to some
optimality criteria. In this paper we target an environment in which servers are distributed
across the Internet, and clients identify servers using our application-layer anycasting ser-
vice. Our goal is to allocate servers to clients in a way that minimizes a client’s response
time. To that end, we develop an approach for estimating the performance that a client
would experience when accessing particular servers. Such information is maintained in a re-
solver that clients can query to obtain the identity of the server with the best response time.
Our performance collection technique combines server push with client probes to estimate
the expected response time. A set of experiments is used to demonstrate the properties of
our performance determination approach and to show its advantages when used within the
application-layer anycasting architecture.

*This work is supported in part by research grants from IBM, Intel and NSF under contract number NCR-
9628379.



1 Introduction

Server replication is an approach that is often used to improve the scalability of a service, i.e., its
ability to handle a large number of clients with a reasonable quality of service. When replication
is used, the primary concern is how a client may discover which of the servers is best to use.
Many techniques have been used to guide clients to the use of a particular server among a set
of replicated servers. These include:

1. Listing the servers and having the client pick one, based on geographical proximity or
some other criteria the client deems appropriate. This technique is not transparent to the
user. Furthermore, the closest server geographically may not be the best server to use
because it may not be the closest in terms of end-to-end delay over the Internet and/or
it may not be the least loaded of the servers.

2. Using Domain Name System (DNS) modifications [1] to return the IP address of one of a
set of servers when the DNS server is queried. This technique is transparent to the client.
However, often the DNS server uses a round robin mechanism to allocate the servers
to clients because it maintains no server performance information on which to base its
selection decision. This technique is best suited when the replicated servers are co-located
on the same subnet and have the same request processing capacity.

3. Using a more elaborate location mechanism that targets network-wide replication of the
servers over potentially heterogeneous platforms. Such a mechanism must allow for the
maintenance of information about the servers and their relative performance. One such
technique that we have proposed uses the anycasting communication paradigm at the
application layer [2]. Our anycasting proposal complements IETF standardization efforts
aimed at developing a set of specific service location protocols [3].

In this paper we examine one important aspect of the third technique described above,
namely how can server performance information be collected at the site where server to client
allocation decisions are made. Apart from an enumeration of possible techniques, this issue was
largely left unanswered by our previous work which was mainly concerned with the application-
layer anycasting architecture. Our goal is to allocate servers to clients in a way that minimizes
a client’s response time. One challenging aspect of this problem is that the performance of a
server is a function of its load (relative to the server capacity) and of the characteristics of the
path between the server and the client. We derive an approach that can be used, within our
anycasting architecture, to determine the performance of such servers with respect to specific
clients. We then use a set of experiments to show the advantages and implications of using this
technique. Our work is done in the context of our proposed anycasting architecture and we
specifically consider replicated web servers. OQur proposals do, however, apply to other server
types and also have relevance within other server location architectures such as the proposed
architecture being designed as part of the IETF’s Service Location Working Group.

The rest of this paper is structured as follows. In Section 2 we present an overview of
the Application-Layer Anycasting architecture. This is followed in Section 3 with a discussion



of previous related work and in particular the relationship of our work to the IETF’s Service
Location Protocol efforts. Section 4 presents our performance monitoring and measurement
technique and discusses the rationale for its adoption. Section 5 shows the results from ex-
periments with clients using our anycasting architecture in conjunction with the performance
determination technique we developed. The paper is concluded in Section 6.

2 Overview of Application-Layer Anycasting

As originally defined [4], anycasting provides:

“a stateless best effort delivery of an anycast datagram to at least one host, and
preferably only one host, which serves the anycast address.”

In this definition, an IP anycast address is used to define a group of servers that provide the
same service. A sender desiring to communicate with only one of the servers sends datagrams
with the IP anycast address in the destination address field. The datagram is then routed using
anycast-aware routers to at least one of the servers identified by the anycast address.

In our work [2] we adopt a more general view of anycasting as a communication paradigm
that is analogous to the broadcast and multicast communication paradigms. In particular,
we differentiate between the anycasting service definition and the protocol layer providing the
anycasting service. The original anycasting proposal [4] can, therefore, be viewed as providing
the anycasting service definition and examining the provision of this service within the IP
layer. Our motivation derives from the fact that network-layer-supported anycasting has several
limitations as discussed in [2], the most important being that application-specific metrics cannot
be maintained at the network layer.

Whereas network-layer support hinges around the use of anycast IP addresses, our application-
layer support makes use of anycast domain names (ADNs). An ADN uniquely identifies a
(potentially dynamic) collection of IP addresses, which constitutes an anycast group '. The
function of an application-layer anycasting service is thus to map an ADN into one or more
IP addresses. An important feature of application-layer anycasting is that it does not require
modifications to network layer operations.

Our design centers around the use of anycast resolvers to perform the ADN to IP address
mapping. Clients interact with the anycast resolvers according to a basic query/response cycle
illustrated in Figure 1: a client generates an anycast query, the resolver processes the query
and replies with an anycast response. A key feature of the system is the presence of metric
databases, associated with each anycast resolver, containing performance data about servers.
The performance data can be used in the selection of a server from a group, based on user-
specified performance criteria.

't is also possible to define an anycast group as a collection of server domain names (or aliases). In this case
the anycasting service provides a mapping from an ADN into a host domain name or alias. Obtaining the 1P
address in this case requires an additional DNS server lookup.



FIGURE 1 Anycast Name Resolution Query/Response Cycle
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The issue of the structure of anycast domain names influences the operation of the anycasting
system in general, and the anycast resolver architecture in particular. Our proposed approach
is derived from the Internet naming and directory service architecture. Such an approach
makes it straightforward to integrate our anycasting architecture into the existing Internet
infrastructure. An anycast domain name (ADN) is of the form <Service>%<Domain Name>.
Such a name will typically be used as an argument to a library call that invokes the anycasting
service and results in the mapping of this ADN to an IP address. The Domain Name part of the
system indicates the location of the authoritative anycast resolver for this ADN. The Service
part of the ADN identifies the service within the authoritative resolver. Each network location
is preconfigured with the address of its local anycast resolver, which resolves queries and/or
consults the authoritative resolver, as in DNS.

An anycast resolver maintains the information necessary to perform the mapping from
ADN to IP address. In particular, it maintains the performance information associated with
each member of the anycast group. This information is maintained independently at each
anycast resolver that has the ADN group membership information cached. Because of the local
significance of the metric information, metrics maintained at the authoritative resolver are, in
general, of little value to other resolvers. The authoritative resolver may provide its locally
maintained metric information whenever it receives a request from another resolver for the
anycast group member list for a given ADN. Local resolvers can use this information as “hints”
initially as they begin to gather their own metric information. It is this gathering of metric
information that is the focus of this paper.

In our proposed approach the anycasting service is accomplished through a set of filters that
are applied to the information maintained about the anycast group to obtain an IP address.
We distinguish between several types of filters in our general architecture. For the purposes
of this paper the relevant filter is the metric-based filter which picks the server with the best



(numerically lowest or highest) metric value. We also propose in [2] some approaches that can
be used to specify the filter.

3 Related Work

The server or resource finding problem has been the subject of much investigation for over a
decade. Initially, with low to moderate server loads, the problem was how to find the desired
resource over the network knowing only its name or property. Many techniques were proposed
and investigated. These include: 1) the use of multicast or broadcast communication to “touch”
all the locations where the resource may reside in an attempt to find it (e.g., [5, 6]) , 2) the use of
various name server architectures in order to lookup the location of the resource (e.g., [7, 8, 9])
and 3) the use of caching of a resource’s location (not content) at sites where the resource
is frequently accessed [10]. This early work dealt with situations where there is typically a
single instance of the resource. The case of a mobile resource was addressed through interesting
techniques such as the use of forwarding addresses [11]. More recently, the Service Location
Working Group of the IETF is considering the design of the Service Location Protocol [3]. We
describe the relationship of our work to the Server Location Protocol efforts in Section 3.1.

Beginning with initial services like ftp, archie, and gopher and culminating more recently
with the World-Wide Web, the Internet has experienced a dramatic growth in the use and provi-
sion of information services. This has resulted in heavy demands being placed on servers result-
ing in the desire to replicate (or mirror) servers. This adds a new dimension to the server finding
problem: it is now important to find the “best” server from among many content-equivalent
servers. Two notable studies in this area are: 1) the original work by Partridge, Mendez and
Milliken [4] proposing the idea of anycasting and discussing its network-layer support and 2) a
recent study by Guyton and Schwartz [12] which addresses the problem of locating the nearest
server. The latter work also presents a classification of “best”-server location schemes. The
work is related to earlier work on the Harvest system [13] which provides a set of tools for
gathering information from various servers and efficiently indexing and searching through this
information. Tools for caching and replication of indices are also used in the Harvest system in
order to improve the scalability of the service. Another related project is the SONAR network
proximity service [14] in which the authors define a service which can return the closest (in
hops) server from among a list presented to it.

By choosing to define anycasting as a communication paradigm, we deviate somewhat from
the Guyton and Schwartz classification which considers the original definition of anycasting as a
network-layer-supported service. Our work investigates the complete design of application-layer
anycasting and not just the metric probing aspect as discussed in [12]. We also consider using
a variety of metrics (not just hop-distance as provided by SONAR) in order to provide a closer
match to the application requirement.

Recent work by Carter and Corvella [15, 16] has also addressed the issue of server selection.
Their selection, however, has been primarily based on the characteristics of the path leading
to the server. While they acknowledge the desirability of using server load information as a
guide to server selection, their work does not address this issue (except for a limited experiment



reported in [16]).

Remote measurement and monitoring of system performance has been explored as part of
the extensive work on distributed system monitoring [17, 18].

3.1 Relationship to the Service Location Protocols

The Service Location Working Group of the IETF has been developing protocols to facilitate
the discovery and selection of network services [3]. Thus, the high level objectives of their work
and ours are quite similar. However, their focus differs considerably from ours, and the solutions
we and they have developed are mostly complementary. We briefly describe their focus, then
contrast our contributions with theirs.

The current focus of the Service Location Working Group is on selecting network services
within an enterprise network, not the global Internet. One of the goals is to ease network
system administration, by supporting dynamic discovery of services in new environments. While
selection of the “best” among replicated servers is possible, it does not appear to be the primary
motivation for this work. The protocols are well-suited to services such as printers or file servers,
with long-lived attributes (e.g., location of a printer). The attribute values are updated via a
push from a Server agent co-located with the Service and deposited at a Directory. While
not explicitly prohibited, it is not at all clear whether path-dependent attributes could be
incorporated within the attribute update protocol.

The Service Location Working Group has specified protocols to handle many details of
operation, including finding unregistered services, operating without a Directory, discovering
the range of available service types and defining new service types. They have also defined
an application programmer interface to enable client software to be modified to use Service
Location.

In contrast, our focus is on the development of metric collection techniques, and the eval-
uation of the system performance in a wide-area network. We have deliberately chosen a very
simple application programmer interface, requiring only a modification to gethostbyname().
We have also focused on a single type of “server,” namely an IP address. Despite the differ-
ences in implementation, our performance evaluation should provide important information as
the Service Location group expands their protocols to include a global internet [19].

4 Metric Collection

4.1 Metrics of Interest

As mentioned in the Introduction, the focus of this paper is on maintaining the metric infor-
mation needed to select amongst replicated web servers. The particular metric we consider is
the response time experienced atl the client, measured from just prior to sending a query to just
after receiving the complete response. With information about the size of the response data,
this time could also be used to compute server-to-client throughput.



The response time metric is important because it is directly correlated with a user’s percep-
tion of the quality of service. In addition it is a very difficult metric to monitor since it depends
on server capabilities (e.g., speed and number of processors at the server), current server load
(e.g., number of queries currently being served), network path characteristics (e.g., propagation
delay on the path) and current path load. Thus, the metric collection technique must measure
both server and path performance.

4.2 Goals and Constraints

The metric collection technique should meet two basic goals. First, it should be scalable to a
large number of servers, anycast groups and clients. The load placed on any component of the
system — servers, network resources, resolvers, clients — in collecting metric data must be kept
“reasonable”. Second, the metric collection should be relatively accurate. The service provided
by anycasting can inherently deal with inaccuracy in the absolute values of the metrics, since
the service makes a relative selection amongst servers. The service is also somewhat robust
against errors in the relative values of the metrics. The performance penalty associated with
out-of-date or slightly inaccurate metric data will not typically be severe; rather than selecting
the “best” server, the service may identify a “nearly-best” server.

The two goals constrain the design of the metric collection technique in the following ways:

e Metric updates should occur primarily in response to significant changes in metric value,
rather than on a periodic basis. This implies monitoring of metric values to determine
when updates are needed.

e Servers should have some control over the load incurred due to metric collection. A server
should be able to decrease metric collection load, if desired.

e A single resolver should act on behalf of as many clients as possible, subject to loading
and accuracy constraints.

e Metric updates should be designed to maintain reasonable relative accuracy, but avoid
the overhead needed to meet absolute accuracy requirements.

e To allow large-scale deployment, the implementation should require minimal modifications
to existing servers and clients.

4.3 A Proposed Technique

Server Push and Client Probe: To build a metric collection technique meeting the goals
and constraints outlined above, we combine two well-known methods for collecting performance
data in a distributed system.

In the server push technique [20, 21], the server monitors its performance and pushes this
information to the resolvers when interesting changes are observed. For additional scalability,
the update information can be network-layer multicast to all resolvers that maintain information



about the server. The server can control the network traffic generated by this mechanism
adjusting the monitoring and push schedules. The primary advantages of this technique are
scalability and accurate server measurements; the disadvantages are that the servers must be
modified and the network path performance is not measured.

In the probing technique, periodic queries are made to the servers to determine the perfor-
mance that a client would experience. These queries must be designed to have performance
that is similar to legitimate client requests. For scalability, these queries should be made from
probing agents (possibly co-located with resolvers) that collect probe data relevant to a large
number of clients. A clear tradeoff exists between the accuracy of the probe data and the
number of probing agents. The advantages of this technique are that it measures network path
performance, and it does not require server modification; on the other hand, the load on the
network and servers may be significant.

Note that probing gives the most accurate estimate of what the probing client should ex-
pect in terms of server response time. Probes, however, can represent a significant overhead if
performed frequently. Server pushes, while more lightweight, are less accurate predictors of re-
sponse time since they only propagate server performance information. Our technique combines
server push with less frequent periodic probing.

Server Push Algorithm: In general, we want the server to push performance information
whenever its measured performance has changed sufliciently to be “interesting” with some
constraint on the maximum frequency of updates so as to bound the overhead of the updating
mechanism. Note that the task of updating link state in a distributed routing environment
has precisely the same criteria. We have adopted the link state update algorithm used in
the ARPANET [22]. The update algorithm is parameterized by a measurement interval I, a
maximum threshold 7T’ and a reduction factor R. The algorithm maintains a current threshold
C, initialized to T. The server measures its performance over each interval I. If the new
measured value changes from the previous measurement by at least C', the new measurement
is pushed and C' is reset to T. If the state does not change by at least C', C' is reduced by
R. (Note that when C' becomes 0, the state will be pushed and C' will be reset to T'.) The
algorithm will send updates at least every T'/R * I time units and at most every I time units.

To define the way the server measures its performance, consider the server response cycle:

assign process to handle query
parse query
locate requested file
repeat until file is written:
read from file
write to socket

To assess its performance, the server measures for each access the time from just after
the server assigns the process until just before the server does the first read. These measured
values are averaged and smoothed (as described in Section 5) before being used in the algorithm
described above.



Client Probe Mechanism: The probe is made to a well-known file that is maintained at
anycast-aware servers specifically to service probe requests. The file contains the most recent
measured time value by the server and is padded with dummy data. Each probe results in a
response time measurement, taken from just before sending the query to just after receiving
the complete response. This time depends on server and path characteristics and on the size of
the file being probed.

The probing of servers is performed by probing clients that would normally be co-located
with the resolver but may also be running at other locations. We choose to logically separate
the two. The probe client is server protocol dependent, and if incorporated within the resolver,
the resolver would have to be aware of all the protocols of all the servers in its database. Also
note that each probing client is acting as a proxy for real clients within a certain region. The
farther away a client is (in Internet “distance”) from a probing client, the less representative
are the probe measurements of the clients experience.

A Hybrid Push/Probe Technique: We combine the time value pushed by the server with
the response time measured by the probes to keep an estimate of server response time. The
idea is to use the probes to get a measurement of the response time that includes the network
path. The measurement is then used to calibrate the more frequently pushed server time value
to get an expected response time at a given resolver.

Specifically, let R denote the most recent measurement of response time when probing for
the well-known file. We further ask the server to include in the well-known file the most recent
time value measured as described above. Let S denote the server time value reported in the
file during the most recent probe.

In between consecutive probes the server typically pushes a sequence of server values. Let
S(¢) denote the i-th value pushed by the server. The resolver adjusts the server-reported value
S(¢) by multiplying by an adjustment factor A = R/S. Thus, the resolver estimates the current
response time as R(i¢) = A% S(¢). Typically, the probes will occur less frequently than the server
pushes its measured time value, thus a given adjustment factor will be used to adjust a sequence
of pushed server values, until the next probe occurs and updates A.

As will be shown by the results of the experiments, this technique works quite well for our
purposes. To understand the intuition behind it, we note that the value of S is the average
time until the server begins to serve a page and includes delays incurred because of the need to
process other requests at the server. In a sense S is the time required for the request to receive
one unit of service and A = R/S is an estimate of the number of units of service required to
service a page. While S is a function of server load, the value of R and, consequently A, is
strongly dependent on the characteristics of the path from server to client.

Experimental Evaluation: To determine the accuracy of the metric collection technique
described, we experimented with various locations and capabilities of servers and resolvers,
variations in server load, and alternative file sizes. Figure 2 shows a typical result, plotting the
estimated and actual values of response time over 270 queries. In this particular experiment,
the client was at the University of Maryland, and the server was located 12 Internet hops away



FIGURE 2 Response Time Estimation using Proposed Metric Collection technique
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at Georgia Tech. The client made requests to the server according to an access log file from a
real server. The z-axis indicates the index of each query. The server pushed its load using the
push algorithm with threshold value (7') 0.01, reduction factor (R) 0.002 and measure interval
(I) 4 seconds. The client probed for the well-known file every fifty accesses.

This plot demonstrates that our method yields estimated response times that are relatively
similar to the actual response times. That is, the estimate tends to increase when the actual
time increases, and vice versa. However, the estimate is not always accurate in the absolute
sense, with the estimated time generally higher than the actual time. As we will see later, this
relative accuracy is sufficient for our purposes.

Avoiding Oscillations: A potential problem with an approach that identifies the best server
to clients is that of oscillation among servers. As clients discover a newly designated best server,
they all divert their workload to that server thus off-loading one or more servers which now
become the designated best servers, and so on.

To address this issue we introduce the concept of the set of equivalent servers (ES) which is
defined as the subset of the replicated servers whose measured performance is within a threshold
of best performance. This set of equivalent servers is recomputed every time a new pushed value
is received at the resolver. The resolver in answering an anycast query picks at random from
this set of equivalent servers. The set ESis computed according to the following algorithm:



When new push or probe measurement received for server
compute the new estimated response time for server
sort servers according to estimated response time
ES = ES U {Server with lowest response time estimate}
Riop = minimum response time estimate
for each server j € ES
it (| By — Riop |> )
then ES:= ES- {j};
for each server j ¢ ES (except those just removed in above step)
if (| R — Ruoy |< 75)
then ES:= ESU {j};

The leave and join thresholds 7, and 7; are such that 7, > 7;. Together they allow a form
of hysteresis used to achieve stability in the constitution of the set ES.

As will be illustrated by the results of the experiments in Section 5, this algorithm success-
fully deals with the oscillation problem. When a server reports good performance, the resolver
will direct more (but not all) clients to this server. The selection of the thresholds and their
effects are given in Section 5.

5 Experimental Evaluation

In this section we describe a set of experiments that we conducted over the Internet, using our
proposed anycasting architecture and metric collection techniques. We first describe the exper-
imental setup, then discuss results from experiments to assess the metric collection technique
and the overall system performance.

5.1 Experimental Setup

The experimental setup is designed to mimic as much as possible the true operation of a set of
Web clients and servers using the anycasting architecture, depicted in Figure 3.

Anycast-aware Servers: We modified the Apache HTTP 2 daemon to act as a performance
monitoring server as described in Section 4. We wanted to distribute anycast-aware web servers,
that serve realistic content, without distributing a large amount of data. The modified web
server emulates the real server in the number of bytes sent for each request without actually
maintaining the files of the real server. We achieve this by having our modified server maintain
a small set of dummy files, and a table containing tuples of the type (filename, size). The
table is constructed using file sizes taken from an actual server. Whenever an access is made
to our modified server, a table lookup is performed to determine the file size. Then the name
of the requested web page is mapped into the name of one of the files maintained on disk. This

http:/ /www.apache.org/dist/
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FIGURE 3 Software components of the application-layer anycasting architecture
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mapping is such that the same web page name will always map to the same file. An amount
of data equal to the size of the original file is then read and transmitted in response to the
request. This method of server emulation comes close to the operation of a real server, and
allows any optimizations that the server may perform (e.g., by caching data read from disk) to
be reflected in our experimental results, albeit approximately.

The modified server was also instrumented to monitor its performance by recording time
values as described previously. These values are recorded in a performance measure file that
the server shares with the performance push daemon. The performance push daemon executes
the update algorithm given in the Section 4 and passes the average server performance data
through a low pass filter ® to achieve some smoothing. If the variation in server performance or
the expiration of an epoch warrants a performance push, the performance measure is “pushed”
to the resolvers.

Finally, the modified web server maintains a special file that is requested by probing clients.
The probing file is the same size at all servers. We use the average size of files recorded in
the log file as the size of this special file. Note that the validity of the probing technique does
not depend on the probe file size being “representative” of the server files. The response time
measured at probing can be used to compare the relative performance of servers as long as
the sizes of probing files are the same at all servers. This is important, since web item size
distributions have been observed to have infinite variance [23].

Clients: We modified the NCSA Mosaic # client to have the desired behavior. The behavior
at our clients consists of two parts. First, a client must determine a set of requests to make to

®The precise algorithm at the push daemon is as follows. The push daemon monitors server performance at
intervals of length [ time units, starting with interval 1. At the end of interval ¢, the push daemon averages the
data recorded by the server (say avg;) during the i-th interval. Performance P; at this time is determined to be
Py, =0,P; = alavg;) + (1 — a)P;—1. We set a to be 0.9.

*ftp:/ /ftp.ncsa.uiuc.edu/Mosaic/Unix /source/Mosaic-src-2.6.tar.Z
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the replicated service over time. Second, for each request, a client must determine which server
to access.

For the first part, we use the access logs from a moderately busy web server to generate
client requests. As described above, the file sizes are distributed to the servers. By reading the
access log file, the client calculates the relative time for each access (with respect to a specified
initial access time). The clients schedule each subsequent access at this calculated relative
access time. In this way, the clients replay the logged accesses.

We want to compare the performance experienced by clients that are anycasting, as com-
pared to clients that use other methods to select a server. We support three methods for
determining which server to access for a request: (1) querying the anycast resolver to deter-
mine a best server, (2) choosing a server at random, and (3) choosing the server that is closest
to the client based on hop count. We control which method is used on a per-client basis.

Anycast Resolver and Probing Client: For the probing client we used a modified NCSA
Mosaic client that periodically queries each server in the anycast group for the probing file
(with the performance data), and communicates the end-to-end response time to the resolver.

The anycast resolver can process two different types of performance updates — correspond-
ing to server pushes and client probes. It maintains a database of anycast group members, and
their current push and probe data. In response to query messages, the resolver returns one of
the best servers as computed using the algorithm given in Section 4.

Client and Server Internet Locations: In each of the experiments there are four perfor-
mance monitoring servers, one running at the University of California, Los Angeles, one running
at Washington University, St. Louis and two running at Georgia Tech, Atlanta. The anycast
resolvers were run at the University of Maryland, College Park and Georgia Tech, Atlanta. The
anycast-aware clients were located at the University of Maryland, College Park and Georgia
Tech, Atlanta. (See Figure 4.)

5.2 Evaluation of Server Selection Technique

In this section, we describe several experiments to evaluate the performance of the server
selection technique described in Section 4.3.

We have 20 clients running, 16 at Georgia Tech, Atlanta and 4 at the University of Maryland,
College Park. The clients are grouped in group of 5. Each group generates requests equal to
one log file with each client within the group allocated one-fifth of the requests in the log file.
In order to put enough load on the servers, we also scale the log by a scaling factor k. For each
access read, the client requests the same document k successive times. By changing the value
k, we can generate different levels of traflic on the servers and use the log of our moderately
busy server to get the effect of a busy server. In our experiments, we set k to 3. Except in
the last experiment which tests the effects of join and leave threshold on the performance, the
resolvers set the join threshold to 0.1 and leave threshold to 0.3.
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In Figure 5, we compare the performance experienced by a client in two settings. In one
of them, the clients all use random server selection; in the other, the clients all use anycasting
for server selection. In the anycasting case, the probe client accessed the servers once every
4 minutes, and the server performance monitor was run once every 10 seconds. (Note that
this is the interval at which the server logs its own performance; depending upon the state of
the system, a push update may or may not be issued at every 10 second interval. However,
regardless of activity at the servers, a push update was issued at least once every 50 seconds.)
This plot shows the response time experienced at a single client, over a sequence of 100 requests.
The response time in the anycasting case is always less than 4 seconds, and generally less than
2 seconds, while the response time in random case can exceed 12 seconds.

| Server Location Algorithm | Average Response Time (sec.) | Standard Deviation (sec.) |

Anycasting 0.49 0.69
Nearest Server 1.12 2.47
Random 2.13 6.96

Table 1: Performance of Server Location Schemes

Table 1 summarizes the comparison between the different methods for identifying servers.
Mean and standard deviation of response time are reported, based on the values experienced by
all clients participating in the experiment. In addition to the random and anycasting selection
methods, the table also includes the nearest hop count method. We note that while always
choosing nearest server improves upon random selection, another factor of two improvement
is possible with the anycasting selection. The nearest server and random selection methods
also exhibit much higher standard deviation than the anycasting selection, leading to a more
unpredictable service.

In the previous experiments, all of the clients used the same server selection method. In
Figure 6, we vary the percentage of the clients using the anycasting method as opposed to
random selection. The z-axis indicates the percentage of clients that are anycasting, ranging
from 0% (i.e., all clients use random selection) to 100% (i.e., all clients use anycasting). Three
response time curves are shown: average response time for clients who anycast, average response
time for clients who select randomly, and overall average response time. We note that average
response time over all clients decreases from 2.1 to 0.5 when the percentage of anycasting clients
increases from 0% to 100%. The average response time for the clients selecting at random also
improves as more clients use anycasting, due to the better load balancing achieved on the servers.
The average response time for anycasting clients increases from 0.3 to 0.5 when the percentage
of anycasting clients changes from 20% to 100%. The anycasting mechanism performs relatively
better when server load is unbalanced, since more lightly loaded servers can be identified and
used. However, even when all clients are anycasting, the performance is quite good.

Also included in Figure 6 is the confidence interval for each point with 90% confidence
level. The confidence intervals of response time of anycasting clients are rather small while the
confidence intervals of response time of random clients are much larger. This is not surprising
if we consider the variation observed earlier for random accesses. We can conclude from the
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FIGURE 6 Response Time Varying with Percentage of Clients Using Anycasting

Average response time varying with percentage of clients doing anycasting
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data that the anycasting clients perform better, on average, than the random clients across the
full range of the experiment.

In Figure 7, we analyze the performance of the anycasting system for varying values of probe
and push frequencies. All clients are using the anycasting mechanism. The average response
time is recorded over a period of 30 minutes for a range of push and probe frequency values. In
this experiment, we notice rather sharp regions in the probe frequency-push frequency space,
beyond which increases in frequency do not result in appreciable improvements in performance.
Further, a tradeoff between push and probe frequencies is evident. For high push frequencies,
e.g. 12 pushes per minute, the average response time when probing every 10 minutes (probe
frequency = 0.10 probes/min) is comparable to response times achieved by one probe every 2
minutes (probe frequency = 0.50 probes/min) with 1 push per minute. This ability to tradeoff
probes for server pushes leads in general to a more scalable system: server pushes can be
connectionless and multicast, with push frequency controlled by some server-specific process
(e.g., taking current server load and policies into account), while probes will be connection-
oriented, unicast transactions.

In our last experiment, we explore the effects of the join and leave thresholds in the resolver
algorithm. Recall that these determine when a server is added or removed from the set of
equivalent servers. When the thresholds are low, the algorithm is conservative in adding servers
to the set, and aggressive in removing servers from the set. When the thresholds are high, the
addition process is aggressive, while the removal process is conservative. Figure 8 shows the
results of our evaluation. For a join threshold less than 0.3, we observe an initial performance
improvement as the leave threshold is increased, followed by performance degradation as the
leave threshold continues to increase. For join thresholds at least 0.3, the performance degrades
with an increase in the leave threshold. When the leave threshold increases to 1.60, the response
time is almost the same as in all random case. This is because the server will never leave the
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FIGURE 7 Response Time Varying with Push and Probe Frequency
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FIGURE 8 Response Time Varying with Join and Leave Thresholds
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FIGURE 9 Server Load with Join Threshold = 0.05 and Leave Threshold = 0.05

Load Pattern (Join Threshold = 0.05, Leave Threshold = 0.05)
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equivalent group after joining it. The resolvers actually perform a random selection among the
servers.

The relatively poor performance for low values of both join and leave threshold is caused by
oscillation in server load. Since the thresholds are low, the equivalent server set at a resolver
will usually contain only one server. Since all the clients are using anycasting, all requests to
the same resolver will be directed to this single server. After a while, the performance of the
server degrades and another server will be favored by the resolver. All the clients will then be
shifted to that server. The oscillation phenomenon can be clearly seen in Figure 9. It shows
the number of requests for each second on one particular server in the experiment with join
threshold and leave threshold both equal to 0.05. We note that this oscillation effect may be
exaggerated by our experimental setup; a larger number of resolvers and less frequent client
accesses will also tend to reduce oscillations.

When join and leave thresholds become a little bit larger, the equivalent server set is likely
to contain more than one server. This helps avoid the oscillation observed earlier. In our ex-
periment, the best performance was achieved when the join threshold is 0.1 or 0.2 and leave
threshold is 0.3 or 0.4. This is the area where oscillation is reduced and the anycasting mecha-
nism does play a role. Figure 10 shows the number of requests on a server using join threshold
0.1 and leave threshold 0.4. We note that the load on the server in this case does not exhibit
the rapid changes observed earlier. We are re-assured by this experiment that the oscillation
problem can be solved by introducing join and leave threshold to the resolvers and selecting
appropriate values for them.
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FIGURE 10 Server Load with Join Threshold = 0.10 and Leave Threshold = 0.40

Load Pattern (Join Threshold = 0.10, Leave Threshold = 0.40)
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5.3 The Costs of Anycasting

Four new costs are incurred by the servers and the network due to our anycasting architecture.
They are the costs due to the push daemon, the probe client, the resolver, and client anycast
query. The client anycast query has cost equivalent to the usual domain name resolution. The
anycast resolver architecture is such that anycast resolution can be combined with DNS lookup,
making this cost negligible.

The server push daemon periodically computes the average of the measured server per-
formance data. The cost of this computation is linear in the number of server performance
measurements. Push messages will typically be small, making bandwidth consumption negligi-
ble compared to the actual server accesses. Also, the push updates can be multicast to multiple
resolvers to save on bandwidth.

The cost of each probe to the network and to the server being probed is exactly the cost of
an additional access to that server. With probes being done infrequently (Figure 10 suggests
perhaps once every 6-10 minutes), this will not represent a significant burden on servers.

6 Concluding Remarks

The efficient utilization of a set of replicated servers hinges upon the ability to appropriately
allocate servers to clients. In this paper we derive a technique for such allocation. Our goal is
to allocate a server that would minimize a client’s response time. Although designed to work
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within our Application-Layer Anycasting architecture, the technique has wider applicability and
complements on-going server location efforts within the IETF. We focus in our development on
HTTP servers but many of the ideas are applicable to other kinds of services. Our architecture
targets an environment in which replicated servers can be widely distributed over the Internet.

Our proposed approach is centered around estimation of a client’s expected response time
at each server. Such estimation is performed by a resolver that acts as a proxy for a number
of closely-located clients. The most interesting aspect of our design is its ability to combine
a relatively light-weight server push approach with a client-probe approach to produce useful
estimates of response time. Measured path-independent server performance (the pushed data) is
calibrated using path-dependent response time measurements obtained via relatively infrequent
probes.

We developed an experimental setup that allows us to distribute servers around the Inter-
net without actually requiring them to maintain real data. Experiments that we conducted
using our setup show the significant response time improvement that can be achieved with this
technique over the use of random, or other performance-independent allocation mechanisms.
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