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SUMMARY 

 

This work was designed as a proof-of-principle concept or prototype to show the effect of 

protein-assisted targeting of DNA to specific genomic loci. Two strategies were 

employed to deliver the DNA with the aim that once inside the cell the DNA would be 

delivered to the target sequence by the assistance of a protein. In our case, the chosen 

protein was the site-specific meganuclease I-SceI. The first strategy described herein was 

to bind the targeting DNA to I-SceI by the use of a fusion protein between I-SceI and a 

known DNA-binding domain, the GAL4-DBD. The second strategy involved using a 

DNA aptamer to I-SceI to link the targeting DNA and I-SceI. Testing in vivo revealed that 

in our human cells (HEK-293) single-stranded DNA was more efficient at gene targeting 

than double-stranded DNA. In order for the first strategy to work, we needed to have 

some region of double-stranded DNA. We found that in human cells, it was better for 

gene targeting to have that double-stranded DNA on the 5’ side of our targeting DNA. 

We also used gel shift assays to confirm binding by our candidate DNA-binding domain, 

the GAL4-DBD. We were unable to detect expression of the fusion protein of I-SceI and 

the GAL4-DBD. 

 

For the second strategy we were able to construct an aptamer to I-SceI using a variant of 

the systematic evolution of ligands by exponential enrichment (SELEX). The I-SceI 

aptamer was synthesized as part of a longer DNA molecule containing homology to a 

target locus. Using this chimeric oligonucleotide (part aptamer, part DNA repair region) 

testing was done in both yeast and human cells. Aside from instances where the 



 

aptamer’s secondary structure may have been compromised, the aptamer containing 

oligonucleotide stimulated repair at a rate 2 to 15-fold higher than the non-selected 

control sequence. These experimental results show that by delivering targeting DNA 

within close proximity to the site of modification, gene targeting frequencies can be 

increased.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 DOUBLE-STRAND BREAK (DSB) REPAIR AND GENE TARGETING 

A DNA double-strand break (DSB) is generally regarded as the most severe DNA 

damage. DSBs can be caused by a variety of exogenous sources including ionizing 

radiation (IR), radiomimetic chemicals, and ultraviolet light, as well endogenous sources 

like collapsed replication forks or programmed endonucleolytic cleavage by programmed 

cellular endonucleases during meiosis or V(D)J recombination (Chapman, Taylor et al. 

2012). A DSB if left unrepaired can be a lethal cellular event. There are two main repair 

pathways used by the cell to correct DSBs, specifically homologous recombination (HR) 

and non-homologous end-joining (NHEJ). HR involves resection of the two 5’ DNA ends 

generated by the DSB, a search for homologous DNA by the 3’ overhanging DNA tails, 

annealing to homologous DNA, and repair of the DSB (Aylon and Kupiec 2004). Also 

there is a variant of HR known as single-strand annealing (SSA). SSA is a special case of 

DSB repair in which a DSB occurs between two repeated DNA sequences oriented in the 

same direction (Ivanov, Sugawara et al. 1996). The two 5’ DNA ends generated after the 

DSB are resected in a 5’ to 3’ manner and the remaining two single-stranded 3’ tails find 

homology with each other at the repeated sequence. The ssDNA sequences anneal, the 

unannealed tails are removed, and the resulting repair causes a deletion since the two 

repeats become one and the sequence between them is lost. The other pathways of HR 
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include break-induced replication (BIR), synthesis-dependent strand annealing (SDSA), 

or homologous recombination involving the formation of two Holliday junctions known 

as double Holliday junction (dHJ) (Heyer, Ehmsen et al. 2010). Each of these repair 

pathways is different but they are all similar in the fact that after the DSB is generated in 

order for these repair pathways to function, the DNA ends must be resected in a 5’ to 3’ 

manner. Likewise, in each of these pathways the 3’ ssDNA tails then invade a 

homologous template, displacing its DNA and forming a D loop (the name for the 

structure after displacement), and then the homologous template is used to synthesize 

through the gap that was generated by the DSB. 

 

The other main pathway for repairing DSBs involves NHEJ, which repairs the DSB by 

religating the free DNA ends generated from the break. The difference between NHEJ 

and HR is that NHEJ relies on very little (in the case of microhomology-mediated end 

joining) or no homology while HR requires a homologous template. Although simple 

religation can lead to accurate repair by NHEJ, the majority of DSBs in cells arise from 

DNA damage in the form of ionizing radiation, reactive oxygen species (ROS), and 

chemical agents that typically do not leave behind easily ligatable products, but rather 

“dirty ends,” which must undergo processing before NHEJ can occur (Woodbine, 

Brunton et al. 2011). In this capacity, NHEJ often leads to misalignment of the DNA 

ends, deletion of genetic information, or the insertion of DNA fragments at the break site. 

 

Gene targeting is the in situ modification of a specific genomic locus by HR through the 

use of exogenously introduced DNA as a template for repair. By using DNA with 
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homology to the targeted DNA sequence at or near the DSB, the DSB can be repaired. 

Additionally, by modifying the exogenous DNA to have non-native sequence information 

flanked by regions of homology to the DSB, HR repair can actually introduce new DNA 

sequences or conversely remove pre-existing DNA sequences. Thus, gene targeting can 

be used to insert or delete sequences of DNA at a specific genomic locus. 

 

The alternative to gene targeting is known as random integration or illegitimate 

recombination, whereby the exogenously introduced DNA integrates at a random 

genomic locus. Random integration occurs due to NHEJ between the exogenously 

introduced DNA and a DSB somewhere in the endogenous genomic DNA (Iiizumi, 

Kurosawa et al. 2008). The exogenous DNA is ligated in between the ends of the DSB, 

leading to integration of the exogenous DNA while at the same time disrupting the native 

DNA sequence. 

 

1.2 THE ADVANTAGES OF GENE TARGETING OVER RANDOM 

INTEGRATION 

As stated, gene targeting and random integration are two outcomes when exogenous 

DNA is introduced into the cell. Several examples of “gene augmentation” exist which 

employ random integration to introduce an exogenous gene into the human genome for a 

therapeutic outcome. Severe combined immunodeficiency (SCID) was the first disease to 

be treated with gene therapy, specifically gene augmentation, in the early 90s (Blaese, 

Culver et al. 1995, Bordignon, Notarangelo et al. 1995, Kohn, Weinberg et al. 1995). In 

adenosine deaminase deficient SCID (ADA- SCID), patients lacking the ADA gene were 
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given a good copy of the ADA gene. Since then, gene augmentation has been used to 

treat not only ADA- SCID (Aiuti, Slavin et al. 2002), but X-linked SCID (Cavazzana-

Calvo, Hacein-Bey et al. 2000), epidermolysis bullosa (EB) (Mavilio, Pellegrini et al. 

2006), β thalassaemia (Sadelain 2006), and many other genetic disorders (Ginn, 

Alexander et al. 2013). 

 

Although not as widely used as gene augmentation strategies, gene targeting has several 

advantages over random integration. As can be derived from its name, random integration 

can lead to unforeseen consequences including cis or trans-activation of a gene close to 

where the transgene was inserted, disruption of regulatory elements, or the creation of 

aberrant fusion proteins all of which could lead to diseases such as cancer. These kinds of 

insertional mutagenesis, although rare, present a real risk for gene therapy patients. In 

2002 two patients, followed by one patient in 2006 and one patient in 2007, in X-linked 

SCID trials in France and London were shown to have developed a leukemia-like 

disorder after the insertional mutagenesis of the therapeutic vector which activated an 

oncogene (Hacein-Bey-Abina, Von Kalle et al. 2003). Aside from the risk associated 

with gene augmentation, from a therapeutic aspect there are many genetic disorders 

caused by dominant negative mutations (Huntington’s, myotonic dystrophy, and brittle 

bone disease to name a few) where the mutated gene product has an antagonistic effect 

on the wild-type protein. In these disorders, even successful integration of a transgene 

will do nothing to alter the disease. Likewise, random integration of a transgene cannot 

generate a gene deletion or single base substitutions which are important for studying the 
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function of a particular gene. Gene targeting is logically the best choice for gene therapy 

and functional studies because it proceeds in a controlled manner, modifying only the 

DNA of interest, and not causing unnatural expression in surrounding genes. 

 

1.3 STIMULATING GENE TARGETING IN MAMMALIAN CELLS 

As stated, gene targeting has many advantages over random integration and in human 

cells would be a powerful tool for researchers interested in functional analysis of genes as 

well as patients suffering from genetic disorders. The primary limitation of gene targeting 

is the low frequency with which it spontaneously occurs in mammalian cells, happening 

in roughly 1 cell for every 10
5
 to 10

7
 treated cells (Vasquez, Marburger et al. 2001). The 

low frequency of gene targeting, which relies on homologous recombination (HR), is due 

in part to the much higher frequency of non-homologous end joining (NHEJ), which 

occurs in roughly 1 cell for every 10
2
 to 10

4
 treated cells (Vasquez, Marburger et al. 

2001). 

 

Currently, there are several strategies for increasing gene targeting in mammalian cells. 

Stimulation of gene targeting by generating a DSB at the target site increased the 

frequency of gene targeting several orders of magnitude in bacteria (Nussbaum, Shalit et 

al. 1992), yeast (Storici, Durham et al. 2003), plants (Puchta, Dujon et al. 1993), fruit 

flies (Banga and Boyd 1992), mice (Rouet, Smih et al. 1994), human embryonic stem 

cells (Smih, Rouet et al. 1995), and many other cell types. Another strategy to increase 

gene targeting in mammalian cells has been achieved through the over-expression of key 

recombination proteins from HR proficient organisms. Over-expression of bacterial RecA 
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led to a 10-fold increase in gene targeting in mouse cells (Shcherbakova, Lanzov et al. 

2000), likewise over-expression of yeast Rad52 led to a 37-fold increase in gene targeting 

in human cells (Di Primio, Galli et al. 2005). Conversely, another strategy for increasing 

gene targeting in human cells involves decreasing the amount of the DSB repair through 

the pathway of NHEJ. In mouse embryonic stem cells an increase in gene targeting was 

seen in Ku70 (6-fold), XRCC4 (2-fold), and DNAPK-cs (2-fold) deficient cell lines 

(Pierce, Hu et al. 2001) and a 3-fold increase in Chinese hamster ovary cells lacking 

DNAPK-cs (Allen, Kurimasa et al. 2002). Similarly, knockdown of KU70 and XRCC4 in 

human colon cancer cells lead to a 30-fold increase in gene targeting (Bertolini, Bertolini 

et al. 2009). 

 

Another strategy for increasing gene targeting not focused on increasing HR or 

decreasing NHEJ was developed whereby knocking down human SMC1, important for a 

certain type of HR, gene targeting increased (Potts, Porteus et al. 2006). The sister 

chromatid is the normal donor DNA for HR repair, but in the case of gene targeting an 

exogenous DNA acts as the donor for repair. HR with the sister chromatid actually 

hinders gene targeting by exogenously introduced DNA. By knocking down hSMC1 

which is required for sister chromatid HR, gene targeting increased four-fold. The 

proteins hSMC1 and hSMC3 form the cohesin complex which is responsible for keeping 

sister chromatids in close proximity to each other during a DSB. Without close proximity 

to the DSB site the sister chromatid was used less frequently as a homologous donor, 
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shifting repair of the DSB more toward HR with the exogenous sequence (gene 

targeting). 

 

1.4 SITE-SPECIFIC ENDONUCLEASES 

As previously discussed, a targeted DSB stimulates gene targeting several orders of 

magnitude. There are two main methods to generate a targeted DSB. The first 

characterized method for generating a site-specific DSB was to make use of naturally 

occurring “homing” endonucleases or meganucleases. Homing endonucleases are 

restriction enzymes which generate DNA double-strand breaks (DSBs) at defined genetic 

loci, and they have high specificity due to a long recognition sequence (12-40bp) (Belfort 

and Roberts 1997). Although homing endonucleases could stimulate gene targeting 

1,000-fold or more there was an inherent limitation to their use for gene therapy or 

functional analysis. In order to increase gene targeting at a specific locus, that locus 

would need to contain the long recognition sequence of the homing endonuclease close to 

the desired area of modification. Obviously, a more modular approach was needed and 

zinc finger nucleases (ZFNs) fulfilled that role. ZFNs are chimeric proteins composed of 

a DNA-binding domain, a series of zinc finger motifs, fused to the non-specific nuclease 

domain of the FokI endonuclease. When two ZFNs dimerize, the FokI domains are able 

to create a DSB at the targeted site (Kim, Cha et al. 1996). ZFNs seemed to be a modular 

solution to the problem of site-specific DSBs, although binding by ZFNs was 

complicated. ZFN binding was theoretically modular because each “finger” domain 

recognized a specific three nucleotide base pairs. The problem was that this binding was 

context specific meaning that, for example, while a single finger might recognize the 
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sequence AAT alone, when fused with another finger it might recognize AAG. Due to the 

inability to predict ZFN context specific binding properties, empirical studies needed to 

be done for each locus to find the best ZFN pair. ZFNs could be engineered and selected 

for almost any sequence, but not in a straightforward or cost-effective manner. 

 

Fortunately, an alternative to zinc fingers known as transcription activator-like effectors 

(TALEs) have been developed. Working in much the same way as a ZFN, a TALEN is 

composed of a single TALE protein fused to a FokI nuclease domain. The key difference 

between TALEs and ZFs is that instead of combining several ZFs that are context 

specific a single TALE can be constructed with an easily designed sequence specificity. 

The TALE consists of a repeat variable domain (RVD) which contains several (2 to 40) 

repeats of typically 34 amino acids, with the 12
th

 and 13
th

 amino acids being 

hypervariable. It was discovered that these 12
th

 and 13
th

 amino acids are responsible for 

recognizing a single base pair (Moscou and Bogdanove 2009). Following this TALE 

“code” one can efficiently design a site-specific TALE in silico, construct the TALEN, 

and then use it in vivo without the need for laborious empirical testing (Moscou and 

Bogdanove 2009). 

 

Although ZFNs may be replaced by TALENs for the reasons stated, recently there have 

been reports of a new class of modular site-specific endonucleases called clustered 

regularly interspaced short palindromic repeats (CRISPRs) and their CRISPR associated 

(Cas) proteins (Cong, Ran et al. 2013). These CRISPR/Cas systems differ from ZFNs and 

TALENs in that they do not make use of the FokI nuclease and targeted recognition relies 
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on guide RNA (gRNA) (Cong, Ran et al. 2013). Specific RNA generated from the 

CRISPRs acts to guide a nuclease which creates a DNA DSB at the target bound by the 

gRNA (Mali, Yang et al. 2013). 

 

1.5 THE HOMING ENDONUCLEASE I-SCEI 

As stated previously, homing endonucleases are restriction enzymes which generate 

DNA double-strand breaks (DSBs) at defined genetic loci, and they have high specificity 

due to a long recognition sequence (12-40bp) (Belfort and Roberts 1997). The term 

homing comes from self-splicing group I or group II introns or inteins that “home” in on 

a specific sequence on the host gene, and splice themselves into the unoccupied allelic 

site by generating a break at the site which then homologously recombines with the 

intron-containing allele. Homing endonucleases have been studied since the late 1970s, 

and one of the first homing endonucleases studied was called “Omega” which later 

became known as I-SceI, Intron (where it was found) – Saccharomyces cerevisiae (the 

genus and species) I (the first discovered) (Stoddard 2011). The I-SceI endonuclease’s 

natural function is to recognize a nonsymmetrical 18bp sequence of  5’ TAG GGA TAA 

CAG GGT AAT 3’ (Colleaux, D'Auriol et al. 1988) on the intron-less allele and generate 

a DNA double-strand break (DSB) at that location, propagating the intron containing 

allele and overwriting the previously intron-less allele through homologous 

recombination and gene conversion. I-SceI binds to its recognition sequence very 

specifically as a monomer, but without the presence of Mn or Mg it will only bind, and 

not cleave the target (Beylot and Spassky 2001). I-SceI is naturally found in the yeast 

mitochondria, but can generate DSBs in the nucleus if the recognition sequence is 
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present. I-SceI enters the nucleus, but has no known NLS and is thought to enter the 

nucleus by passive diffusion (Plessis, Perrin et al. 1992) (Thermes, Grabher et al. 2002). 

Although it does not have a known NLS, I-SceI is small (27 kDa) and basic in nature (pI 

= 10.08), and therefore should be able to freely diffuse through the nuclear pore (size 

limit of ~50kDa) (Lungwitz, Breunig et al. 2005). For this work I-SceI was chosen as our 

protein of interest due to its ability to stimulate gene targeting and its ability to target a 

specific DNA sequence. 

 

1.6 THE GAL4 DNA-BINDING DOMAIN (DBD)  

The 881 amino acid GAL4 protein from Saccharomyces cerevisiae is one of the most 

well-characterized and studied transcription factors, serving as an activator of the 

galactose metabolizing enzyme genes GAL1, GAL7, and GAL10 (Oshima 1982) 

(Laughon and Gesteland 1982). The GAL4 protein consists of an N-terminal DNA 

binding domain and dimerization domain (amino acids 1-74 or 1-147, with 1-147 

showing better DNA binding) that binds DNA through two cadmium ions in a Cd2Cys6 

helix-turn bimetal thiolate cluster (Baleja, Thanabal et al. 1997) as well as two 

transcription activating domains (amino acids 148-196 and 768-881) (Ma and Ptashne 

1987). Since 1989, the DNA binding domain (DBD) and the activating domain (AD) 

have been used separately to study protein-protein interactions by creation of two fusion 

proteins, one of GAL4’s DBD (1-147) with a protein of interest, and another fusion 

protein made up of GAL4’s AD (768-881) the idea being that if two proteins of interest 

interacted, they could thus activate transcription (Fields and Song 1989). This technique 

came to be known as the 2 hybrid assay/system or the yeast 2 hybrid assay/system and 
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the components are commercially available. 

 

In addition to its use in the yeast 2 hybrid assay, the GAL4-DBD has started to be used in 

non-viral gene delivery strategies. The GAL4-DBD binds to a 17bp consensus sequence 

of 5’ CGGAGGACAGTCCTCCG 3’ (with a general binding pattern of 5’ 

cggrnnrcynyncnccg 3’) (Baleja, Thanabal et al. 1997). The delivery strategies usually 

involve using the GAL4-DBD as a fusion protein (not surprising given the availability of 

fusion protein vectors) where the GAL4-DBD acts as the DNA binding portion and the 

other parts of the chimeric protein are involved in DNA transport into the cell and/or 

other functions such as endosome escape. As examples, the GAL4-DBD has been fused 

to a single chain antibody for delivery (Wels, Groner et al. 1996), invasin (Paul, Weisser 

et al. 1997), anthrax toxin (Gaur, Gupta et al. 2002), and more recently to short cell 

penetrating peptides (CPPs) like the Tat peptide from HIV (Xu, Chi et al. 2010). It was 

shown that by using the GAL4-DBD and a plasmid containing two recognition sequences 

there was an enhancement of even calcium phosphate transfection, however in the same 

paper they showed that the nuclear localization sequence (NLS) of the GAL4-DBD is 

mutually exclusive of its DNA binding (Chan, Hubner et al. 1998). The authors reasoned 

that the GAL4-DBD enhanced the transfection by either DNA compaction or by 

protecting DNA from degradation once inside the cell, but not by its NLS. Additionally, 

in the same year, there was developed a fusion protein between the GAL4-DBD and the 

endonuclease FokI, generating a site-specific endonuclease in the process (Kim, Smith et 

al. 1998). The GAL4-DBD was chosen for our research because it is small (17 kDa), 
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highly specific (low nM Kd), and well-characterized (Taylor, Workman et al. 1991). In 

order to achieve our strategy of protein-assisted targeting we explored using a GAL4-

DBD I-SceI fusion protein. 

 

1.7 APTAMERS AND APTAMER SELECTION BY SYSTEMATIC EVOLUTION 

OF LIGANDS BY EXPONENTIAL ENRICHMENT (SELEX) 

Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that are 

capable of binding a ligand (protein, small molecule, or even living cells) with high 

affinity. They are also known as artificial antibodies because in addition to binding with 

high affinity, they also bind with high specificity. As an example, aptamers were selected 

for the small molecule theophylline and tested to see if they reacted with caffeine 

(another small molecule that differs from theophylline by only a single methyl group) and 

not only did the aptamer have strong binding with a 100nM Kd, but the aptamer bound 

theophylline 10,000 times stronger than it did caffeine
 
(Figure 1.1) (Jenison, Gill et al. 

1994). Aptamers have several advantages over antibodies, including ease and low cost of 

production which does not involve animals. Aptamers are less immunogenic than 

antibodies and are already being used as a therapeutic for human (Singerman, Masonson 

et al. 2008). A recent market report predicts that the aptamer market may be worth $1.8 

billion by 2014 (Jackson 2010). Aptamers are “evolved” from random sequences of 

DNA/RNA by a process known as systematic evolution of ligands by exponential 

enrichment (SELEX). The SELEX procedure involves the use of the random library of 

DNA/RNA sequences being incubated with the target, followed by a partitioning step to 

remove unbound sequences, then followed by an elution step to recover the binding 
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sequences, and then followed by an amplification step to generate a library of sequences 

enriched for binding (Figure 1.2). Using capillary electrophoresis (CE) allows for 

SELEX to be performed in a much shorter amount of time due to much more efficient 

partitioning and the obfuscation of aptamers binding to the ligand support (the ligand 

flows freely in buffer). In as little as one round of selection (Berezovski, Drabovich et al. 

2005), and almost always less than five, strong binding highly specific aptamers may be 

selected, as opposed to traditional SELEX which typically takes 10 or more rounds of 

selection. CE-SELEX generated aptamers have nM and sometimes pM level 

disassociation constants (Mosing, Mendonsa et al. 2005). CE-SELEX is a new 

technology first developed for use in 2004 and has yet to become commonly used 

(Mendonsa and Bowser 2004). In addition to strong binding aptamers in few rounds of 

selection, CE-SELEX typically generates a greater variety of unique aptamers compared 

to traditional SELEX. Aptamers are a versatile and interesting newly developing 

technology that we planned to use for our protein-assisted targeting strategy. 
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Figure 1.1 Comparison of theophylline and caffeine structures. Shown above are the 

chemical structures for caffeine and theophylline, which differ only in a single methyl 

group. An aptamer was selected to bind to theophylline which showed an approximately 

320 nm Kd for theophylline but had a 3.5 mM Kd for caffeine (approximately 10,000 fold 

difference in binding affinity). 

 

 
 

Figure 1.2 The Selective Evolution of Ligands by EXponential enrichment (SELEX) 

procedure. The ligand of interest is incubated with a random library of DNA. Sequences 

that form a suitable secondary structure bind to the ligand. These sequences are 

partitioned from the weaker binders and are eluted. After amplification of these binders, 

the process is repeated. 
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1.8 RESEARCH GOALS 

In order to assess the efficacy of our protein-assisted targeting system, three separate 

aims were devised. 

 

1.8.1 Construction and testing of a fusion protein between the I-SceI endonuclease and 

the GAL4-DNA binding domain (DBD) 

The essential part of protein-assisted targeting is the linking of the targeting DNA used to 

modify the endogenous DNA with our protein of interest, I-SceI. The first strategy for 

linking our targeting DNA to I-SceI involved a fusion protein between I-SceI and the 

GAL4-DBD. The GAL4-DBD is a specific DNA binding domain that recognizes a 17 bp 

sequence. Construction of fusion proteins along with in vivo testing of these constructs 

and different oligonucleotides designed to bind to the GAL4-DBD was done.  

 

1.8.2 Selection of a DNA aptamer using CE-SELEX 

One of the two strategies for protein-assisted targeting involved using a DNA aptamer to 

I-SceI. A modification on SELEX using capillary electrophoresis (CE) was performed. 

The goal was to use a different protein, bovine serum albumin (BSA), and select 

aptamers against it. BSA was used as a proof-of-principle for aptamer selection using 

CE-SELEX. 

 

1.8.3 Selection of an aptamer for I-SceI and in vivo testing 

As stated, an I-SceI induced DSB stimulates gene targeting several orders of magnitude. 

Our goal was to generate an I-SceI aptamer so that we could create a bifunctional DNA 



 

35 

 

targeting molecule, with one part being an aptamer with the ability to bind to I-SceI and 

the other part being homologous to a target locus for gene correction. I-SceI would then 

target this DNA to the genomic locus to be modified. We planned to first select for I-SceI 

aptamers and then to assess their in vivo capacity to stimulate gene targeting.  
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CHAPTER 2 

 

CONSTRUCTION AND TESTING OF A FUSION PROTEIN BETWEEN THE I-

SCEI ENDONUCLEASE AND THE GAL4-DNA BINDING DOMAIN (DBD) 
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2.1 SUMMARY 

The goal of this work was to increase the frequency of gene targeting in human cells by 

attaching the targeting DNA to a protein involved in the DSB or its repair. The concept 

was that by bringing the targeting DNA into close proximity of the DSB that it would be 

preferentially used to repair the break, thus increasing the frequency of gene targeting. In 

order to test our hypothesis, two parallel strategies were attempted. The first strategy 

involved the construction of a fusion protein between I-SceI and the GAL4 DNA-binding 

domain (GAL4-DBD).  From transient transfections in HEK-293 cells, repair was shown 

using oligonucleotides that contained the GAL4-DBD site. These targeting 

oligonucleotides were also shown to bind specifically and strongly to the GAL4-DBD 

protein in EMSA gels. Several vectors and also several yeast strains were engineered to 

contain the GAL4-DBD I-SceI fusion protein with various linkers.  Whole cell extracts 

from both yeast and HEK-293 cells did not show any expression of the fusion protein. 

 

2.2 INTRODUCTION 

2.2.1 Targeting DNA choice 

In order to carry out gene targeting, an exogenous DNA molecule must be transformed or 

transfected into the cell. There are several different targeting DNA types that could be 

used including plasmids, chromosomally integrated truncated genes, PCR products, and 

oligonucleotides. A comparison of several DNA targeting molecules (short DNA 

oligonucleotides, RNA/DNA chimeric oligonucleotides, and PCR products ~500 bp to 



 

38 

 

~2kbp) showed DNA oligonucleotides to have the highest frequency of chromosomal 

gene correction in HEK-293 cells (Nickerson and Colledge 2003). Additionally, our lab 

has sufficient experience with oligonucleotide-based gene correction in yeast and human 

cells (Storici, Durham et al. 2003). Also, oligonucleotides are relatively cheap and do not 

require time-consuming steps such as generating PCR products or isolating plasmids. For 

these reasons, we chose to use DNA oligonucleotides as our repairing DNA molecule of 

choice. 

 

2.2.2 Gene targeting assay in human cells 

We had in our possession a monoclonal cell line known as 658-D which is a derivative of 

human embryonic kidney (HEK-293) cells. The cell line contains an integrated GFP 

under the strong cytomegalovirus/chicken β actin (CMV/CBA) promoter but cannot 

express functional GFP because it is truncated by the presence of a STOP codon and the 

18 basepair I-SceI recognition site. Using this cell line, along with the corresponding 

plasmid-based assay in HEK-293 cells, we were able to detect the frequency of gene 

targeting by flow cytometry. 

 

2.3 RESULTS 

2.3.1 HEK-293 oligonucleotide preference 
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As stated, oligonucleotides were chosen as our targeting DNA molecule. After making 

this decision the question remained whether to use complementary oligonucleotides to 

form double-stranded DNA (dsDNA) or to use single-stranded DNA oligonucleotides 

(ssDNA). In yeast, it was shown that complementary DNA oligonucleotides were more 

efficient at gene targeting than either single oligonucleotide alone (Storici, Durham et al. 

2003). However, in mammalian cells there is not a clear preference for single-stranded 

oligonucleotides or double-stranded oligonucleotides but rather the preference varies 

between different mammalian systems (Lu, Lin et al. 2003, Nickerson and Colledge 

2003, Radecke, Radecke et al. 2004). In order to determine which oligonucleotide 

structure we should have chosen several transfections were done with single-stranded 

oligonucleotides, gapped duplex oligonucleotides, and fully complementary 

oligonucleotides. Gapped duplex oligonucleotides were shown to condense more than 

complementarity oligonucleotides or a 3kbp plasmid in the presence of 

poly(ethylenimine) (PEI), which is the polycationic transfection reagent that used in our 

mammalian cell transfections (Sarkar, Conwell et al. 2005). Figure 2.1 and Figure 2.2 

show the results from our studies in both a plasmid-based and chromosomal assay. It is 

clear that in both our plasmid as well as our chromosomal assay there is a strong 

preference for ssDNA over dsDNA. Interestingly, there was a strand bias in favor of 

repair with the coding strand for the chromosomal locus but no such bias existed for the 

plasmid assay. This strand bias is likely due to the chromosomal architecture at the 

integration site of GFP in 658-D. The strand bias is not likely due to cell line differences 

since the HEK-293 and 658-D cell lines are identical except for the integrated disrupted 

GFP in the 658-D cell line. Even in the gapped duplex-forming oligonucleotide (the F 
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oligonucleotide with the 12H5 linker oligonucleotide), the majority of the molecule being 

single-stranded, the level of repair decreases significantly. This is consistent with 

previous findings in mammalian cell lines that found ssDNA oligonucleotides were a 

more favorable substrate for gene targeting in episomal or chromosomal loci compared to 

double-stranded oligonucleotides (Nickerson and Colledge 2003, Radecke, Radecke et al. 

2004). The reason for this preference is unclear but it was proposed that double-stranded 

oligonucleotides might have to unfold prior to hybridization with a target locus (Radecke, 

Radecke et al. 2004). Also, it is possible that a blunt-ended dsDNA sequence, such as that 

used in our studies, is recognized as DNA damage, triggering a checkpoint response and 

degradation. 
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Figure 2.1 Comparison between complementary DNA and ssDNA in HEK-293 cells. 

Level of GFP repair following transfection with oligonucleotides to repair a 

nonfunctional GFP gene on a plasmid in HEK-293 cells. The plasmid was digested in 

vitro by I-SceI forming a DSB in GFP that could be repaired resulting in a GFP+ 

phenotype. F = oligonucleotide homologous to the coding strand of GFP (40 bases of 

homology to either side of the DSB site), R=oligonucleotide homologous to the template 

strand of GFP, and 12H5 is an oligonucleotide with 12 bases of complementarity to the 3’ 

end of the F oligo and 12 bases of homology to the 5’ end of the F oligo with a 5 base gap 

(non-complementary stretch of bases) in between.  
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Figure 2.2 Comparison between complementary DNA and ssDNA in 658-D cells. 

Level of GFP repair following transfection with oligonucleotides to repair a 

nonfunctional GFP gene integrated somewhere in the genome along with an I-SceI 

expression vector. F = oligonucleotide homologous to the coding strand of GFP (40 bases 

of homology to either side of the DSB site), R=oligonucleotide homologous to the 

template strand of GFP, and 12H5 is an oligonucleotide with 12 bases of 

complementarity to the 3’ end of the F oligonucleotide and 12 bases of homology to the 

5’ end of the F oligonucleotide with a 5 base gap (non-complementary stretch of bases) in 

between.   As can be seen, there is a strand bias favoring the F oligo over the R oligo.  
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2.3.2 Plasmid design and construction 

The GAL4-DBD I-SceI fusion protein was constructed using the Clontech Matchmaker 

Yeast 2-Hybrid Assay System (Clontech, Mountainview, CA). The I-SceI coding 

sequence was PCR amplified with primers that contained BglII and SalI restriction 

enzyme sites, respectively. PCR product was digested along with the vector and the I-

SceI sequence was cloned into the multiple cloning site (MCS), downstream of the 

GAL4-DBD (Figure 2.3). After construction of the yeast vector, the GAL4-DBD and the 

GAL4-DBD I-SceI fusion protein sequences were PCR amplified and cloned into the 

pFLAG CMV 6C vector (Sigma-Aldrich) such that the fusion protein would be under the 

strong cytomegalovirus (CMV) promoter for use in mammalian cells. Additionally, 

several plasmid constructs were generated to express the GAL4-DBD or the GAL4-DBD 

fusion protein with I-SceI in the bacterial vector pMAL c4X. Bacterial plasmids 

contained the GAL4-DBD or the GAL4-DBD I-SceI fusion protein and the maltose 

binding protein (MBP) as a fusion protein. The MBP provided solubility and good 

expression of the GAL4-DBD which was subsequently purified by the Lieberman lab. 

 

The GAL4-DBD LexA-DBD fusion protein was constructed by cloning the GAL4-DBD 

sequence into the pFLAG CMV 6C vector to generate the pFLAG GAL plasmid. After 

sequencing and verification of the pFLAG GAL plasmid, the LexA-DBD sequence was 

cloned downstream of the GAL4-DBD. Two different constructs were made, one where 
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the LexA-DBD sequence alone was cloned downstream of the GAL4-DBD and another 

construct where a flexible glycine-serine linker (GGGGS)2 was cloned in between the 

GAL4-DBD and the LexA-DBD. 
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Figure 2.3 The pGBKT7 plasmid. This plasmid was used as the starting plasmid for the 

GAL4-DBD I-SceI fusion protein. The fusion protein was expressed under the strong 

constitutive yeast promoter for alcohol dehydrogenase 1a (ADH1). Also, the region 

between the GAL4-DBD and the multiple cloning site (MCS) contains the T7 promoter, a 

c-Myc epitope tag, and restriction enzyme sites. Despite this being acceptable for the 2-

hybrid assay, this region was not designed specifically as a linker.  
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2.3.3 Oligonucleotide structure design 

After determining that ssDNA oligonucleotides should be used for repair in our human 

cells instead of dsDNA oligonucleotides, each of the linkers needed oligonucleotide 

designs. For the GAL4-DBD linker strategy at least part of the oligonucleotide needed to 

be dsDNA. The GAL4-DBD binds to a 17 bp dsDNA sequence and so we needed to 

determine where on our oligonucleotide the 17 bp double-stranded DNA region should 

be. Several different DNA oligonucleotides containing the GAL4-DBD recognition 

sequence were tested for their ability to repair GFP in HEK-293 cells (and the modified 

HEK-293 cell line 658-D). The different oligonucleotides are shown in Figure 2.4. As 

stated, in our HEK-293 and 658-D cell systems, ssDNA repairs more efficiently than 

dsDNA. Therefore, the oligonucleotides generated contained only a portion of dsDNA, 

enough to contain the GAL4-DBD recognition sequence and a 5 bp spacer. It was 

discovered that oligonucleotides containing the GAL4-DBD recognition sequence at the 

5’ end of the oligo (Aa and Cc) were more efficient at repairing the DSB (Figure 2.5). 

Also it should be noted that the 658-D cell line showed a strand bias in favor of the 

repairing molecule having homology to the coding strand of GFP (hence, Aa repaired 

more efficiently than Cc), and this is consistent with previous data (see Figure 2.2). 
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Figure 2.4 The different oligonucleotides tested in the HEK-293 and 658-D human 

cell lines. Each oligo pair Aa, Bb, Cc, or Dd contains the 17bp GAL4-DBD recognition 

sequence. The differences in the oligos are the positioning of the GAL4-DBD recognition 

sequence (either at the 5’ or 3’ end of the repairing oligo) and also the repairing 

sequence. For oligos Aa and Bb, the repairing sequence (GFP.F78) has homology to 39 

bases of the coding strand on either side of the DSB, whereas oligos Cc and Dd’s 

repairing sequence (GFP.R78) have homology to the template strand. 
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Figure 2.5 The efficiency of different oligonucleotides to accurately repair GFP by 

the DSB generated by I-SceI. The two different cell lines used are HEK-293 and 658-D 

representing both plasmid and chromosomal gene repair respectively. The F oligo is a 

single-stranded oligo that has 80 bases of homology (40b on either side of the break) to 

the GFP coding strand and the R oligo is a single-stranded oligo that has 80 bases of 

homology (40b on either side of the break) to the template strand of GFP. The other 

oligonucleotides are described in Figure 2.4. 
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After determining that the optimal oligonucleotide structure for the GAL4-DBD in our 

human cells would be to contain the GAL4-DBD recognition site at the 5’ end of the 

molecule and the targeting DNA will be the coding sequence we needed to ascertain 

whether or not this molecule can still be bound by the GAL4-DBD. In order to verify the 

DNA binding capability of the GAL4-DBD to the optimal oligonucleotide structure, we 

used electophoretic mobility shift assay (EMSA) gels. EMSA works by using 

electrophoresis to separate different samples in a polyacrylamide gel. Larger, more 

positively charged samples migrate slower than smaller, more negatively charged 

samples. Initial studies were done with purified GAL4-DBD protein (confirmed by 

Western blot), and several different DNA oligonucleotides, each containing a 5’ GAL4-

DBD site, as shown in Figure 2.6. The GAL4-DBD/I-SceI fusion protein was not purified 

in the same manner so all tests for binding were done with the GAL4-DBD alone. We 

radiolabeled the different oligonucleotide designs containing the double-stranded GAL4-

DBD region and binding to the GAL4-DBD was shown with P32-labeled 

oligonucleotides containing the 17bp consensus recognition sequence. In addition to the 

GAL4-DBD recognition sequence, these oligonucleotides contained homology to GFP 

such that they could be used to restore function of the marker. Of the several initial 

oligonucleotides tested, two specific structures, the stem-loop forming single 

oligonucleotide as well as the Aa oligonucleotide mentioned previously, were chosen for 

further testing. Both these structures contained the GAL4-DBD site at the 5’ end of the 
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oligonucleotide, making them ideal for use in human cells. Each of these constructs 

showed that the binding by the GAL4-DBD was specific, as excess unlabeled competitor 

abolished the shift seen by EMSA (Figure 2.7). 
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Figure 2.6 The different P32-labeled oligonucleotides used in the GAL4-DBD 

EMSAs in the presence of the GAL4-DBD. The red box contains the free probe, the 

blue box contains the protein-DNA complex and the yellow box contains a super 

complex where the DNA is bound by 2 GAL4-DBD dimers. Lane 1 represents a negative 

control, a single stranded oligo that does not contain the GAL4-DBD recognition 

sequence or the spacer (the F oligo), but otherwise is homologous to the other oligos. 

Lane 2 represents another negative control, a double stranded oligonucleotide (F+R) that 

does not contain the GAL4-DBD recognition sequence. Lane 3 represents an oligo with 2 

closely spaced GAL4-DBD recognition sequences (GAL4-DBD(2)). Lane 4 represents the 

17A nucleotide along with its reverse complement (17A+RC). Lane 5 represents the stem 

loop forming oligo that contains the GAL4-DBD recognition sequence (Stem Loop). Lane 

6 represents a long single stranded oligo with a portion that is double stranded which 

contains the GAL4-DBD recognition sequence (the 17Aa oligo). Again, a schematic of 

the oligos used is on the right, the red area representing the GAL4-DBD recognition 

sequence, the orange representing a spacer and the blue region representing the GFP 

repairing sequence. The pink star represents the P32 label. 
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Figure 2.7 The Stem Loop and 17Aa oligos bind GAL4-DBD. (A) the single stranded 

oligonucleotide “Stem Loop” that folds to form a small loop and a long stem which 

contains the GAL4-DBD recognition sequence and (B) the 17Aa oligo which contains a 

long single strand and short double stranded region containing the GAL4-DBD 

recognition sequence. The red boxes contain the free probes and the blue boxes contain 

the protein-DNA complexes. Lane 1 represents the condition with GAL4-DBD, the P32-

labeled oligonucleotide, and the same oligonucleotide unlabeled and in excess (a cold 

competitor to show the binding is specific). Lane 2 represents the GAL4-DBD and the 

P32-labeled oligo. Lane 3 represents the P32-labeled oligo without GAL4-DBD present. 

A schematic of the oligos used is on the right, the red area representing the GAL4-DBD 

recognition sequence, the orange representing a spacer and the blue region representing 

the GFP repairing sequence. The pink star represents the P32 label. 
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2.3.4 in vivo testing 

The GAL4-DBD I-SceI fusion protein was tested in vivo for gene targeting stimulation. 

For the in vivo testing of the fusion protein transfections in mammalian cells as well as in 

yeast cells were performed. In the HEK-293and 658-D cell lines, transfections of the 

expression vector for the GAL4-DBD I-SceI fusion along with either of the two GAL4-

DBD site containing oligonucleotides previously tested (see Figure 2.7) did not yield any 

GFP+ (gene corrected) cells. In yeast, a strain was made in which the GAL4-DBD I-SceI 

fusion protein under the inducible GAL1-10 promoter was integrated into the TRP5 gene. 

This strain was used to compare gene correction using oligonucleotides containing the 

GAL4-DBD site or a scrambled GAL4-DBD sequence that should not be bound by the 

GAL4-DBD. In our yeast strains, double-stranded DNA oligonucleotides are more 

efficient substrates for homologous recombination than single-stranded DNA, so we were 

not limited to have only one GAL4-DBD site as was the case for studies in human cells. 

Oligonucleotides containing five tandemly repeated GAL4-DBD sites or scrambled 

GAL4-DBD sites were used as well as oligonucleotides containing only a single GAL4-

DBD or scrambled GAL4-DBD site. There was no significant difference between the 

scrambled oligonucleotides and GAL4-DBD site containing oligonucleotides for any of 

the yeast strains tested, including the original strain that did not contain the GAL4-DBD.  

 

In addition to the in vivo testing of the GAL4-DBD I-SceI fusion protein, in vitro testing 

for protein expression was performed. A plasmid expressing the GAL4-DBD under the 

yeast constitutive alcohol dehydrogenase 1 (ADH1) promoter was transformed into yeast. 
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The vector, pGBKT7 was previously described (see Figure 2.3). Whole cell extracts 

from the yeast strain transformed with the pGBKT7 vector were obtained using Yeast 

Protein Extraction Reagent (Y-PER) (Pierce, Rockford, IL) and Western blots were done 

using a monoclonal antibody to the GAL4-DBD (Clontech, Mountainview, CA). As can 

be seen in Figure 2.8, both the purified GAL4-DBD as well as the GAL4-DBD from the 

yeast cell extracts were able to be detected by chemiluminescence. Similarly, a plasmid 

containing the fusion protein between the GAL4-DBD and I-SceI was transformed into 

yeast. This fusion protein was generated by inserting the I-SceI coding sequence into the 

pGBKT7 vector downstream of the T7 promoter (see Figure 2.3). The whole cell 

extracts from yeast containing this plasmid do not show a detectable fusion protein of the 

GAL4-DBD and I-SceI by Western blot (see Figure 2.9). Interestingly, Western blots 

with this plasmid do show the individual GAL4-DBD, suggesting cleavage of the fusion 

protein or aberrant expression. Suspecting a problem with the linker region between the 

GAL4-DBD and I-SceI, several different plasmids and yeast strains with different linkers 

were created. As stated, the pGBKT7 plasmid does not contain a true linker sequence, but 

rather it contains a c-Myc epitope tag, followed by several restriction enzymes and the T7 

promoter. Use of a rigid proline linker (Gustavsson, Lehtio et al. 2001), a flexible 

glycine-serine linker (Zhao, Yao et al. 2008), a PRAMA linker suggested by the Doetsch 

lab Emory, as well as an alpha helix-forming linker (Zhao, Yao et al. 2008)were all 

created (the amino acid sequences are shown in Table 2.1). In addition to the GAL4-DBD 

western blots, western blots were done using a polyclonal antibody to I-SceI (Santa Cruz 

Biotechnology, Dallas, Texas) but again there was no expression seen of the fusion 

protein (Figure 2.10). Of all the GAL4-DBD and I-SceI fusion protein constructs none 
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showed expression by Western blot. Additionally, changing the orientation of the fusion 

protein (such that the GAL4-DBD was at the carboxyl terminal instead of the amino 

terminal) did not improve expression. No expression was seen in yeast using a polyclonal 

antibody to I-SceI or a monoclonal antibody to the GAL4-DBD. Western blots were also 

done using extracts from HEK-293 cells transiently transfected with the GAL4-DBD and 

the I-SceI GAL4-DBD fusion protein. While there was expression detected for the GAL4-

DBD alone there was no expression detected of the fusion protein between the GAL4-

DBD and I-SceI (Figure 2.11). 
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Figure 2.8 A Western blot of purified GAL4-DBD and GAL4-DBD from a yeast 

extract. The cell extract is of a strain expressing the GAL4-DBD stably replicated under 

a 2 µm plasmid origin of replication and under the ADH1 promoter. M is the colorimetric 

molecular weight marker which does not appear on this chemiluminescent blot. Lanes 2 

and 4 are both from a yeast strain not expressing the GAL4-DBD under the ADH1 

promoter. Lanes 1 and 3 are from the yeast strain KM85 where the GAL4-DBD is 

expressed under the ADH1 promoter. Lane 5 is the positive control, purified GAL4-DBD 

from the Lieberman lab. This indicates that cell extracts expressing the GAL4-DBD can 

be used to quantify the presence or absence of our fusion protein. 
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Figure 2.9 A Western blot of several whole cell extracts from different strains using 

a monoclonal antibody for the GAL4-DBD. E133 is the background strain for KM-85 

and KM-87 and does not contain the GAL4-DBD. The strains KM-85 and KM-87 are 

different isolates of the same strain, where the GAL4-DBD I-SceI fusion protein was 

expressed on a plasmid under the ADH1 promoter. FRO-470 is the background strain for 

PAT-5, PAT-7, and PAT-10 and should not have the GAL4-DBD. PAT-5 is FRO-470 

except the GAL4 gene has been knocked out. The PAT-7 strain contains the GAL4-DBD 

under the GAL1-10 promoter but interestingly did not show expression. PAT-10 is a 

strain where the GAL4-DBD I-SceI fusion protein (joined by a flexible glycine/serine 

(GGGGS)2 linker) is under the GAL1-10 promoter. As can be seen, none of these strains 

shows expression of the fusion protein. 

 

  



 

58 

 

 

 

Linker  Sequence  Description  

pGBKT7 

“linker”  

PEFVIRLTIGRAAIMEEQKLISEEDLHMAMEAEFPGIR  The “linker” 

provided with 

the pGBKT7 

vector  

Proline  GTPTPTPTPTGEF  Rigid linker  

Alpha-helix 

forming  

AEAAAKEAAAKA  2ndary structure 

forming rigid 

linker  

Glycine-

serine  

GGGGSGGGGS  Flexible linker  

PRAMA  PRAMA  Linker design 

for a fusion 

protein from the 

Doetsch lab at 

Emory  

 

Table 2.1 Sequences of different linkers for the GAL4-DBD and I-SceI fusion 

protein The table contains the sequences of the different linkers used to construct the 

GAL4-DBD and I-SceI fusion protein along with a description. The pGBKT7 vector 

contains a region between the GAL4-DBD and I-SceI but is not a true linker, hence it is 

described as a “linker.” 

  



 

59 

 

 

 

 

Figure 2.10 A Western blot of several whole cell extracts from different strains using 

a polyclonal antibody for I-SceI. E133 is the background strain for KM-85 and KM-87 

and does not contain the GAL4-DBD. FRO-155 is a strain that has the I-SceI gene under 

the GAL1-10 promoter but does not have the fusion protein. The strains KM-85 and KM-

87 are different isolates of the same strain, where the GAL4-DBD I-SceI fusion protein 

was expressed on a plasmid under the ADH1 promoter. FRO-470 is the background 

strain for PAT-5, PAT-7, and PAT-10 and should not have the GAL4-DBD. PAT-5 is 

FRO-470 except the GAL4 gene has been knocked out. The PAT-7 strain contains the 

GAL4-DBD under the GAL1-10 promoter but interestingly did not show expression. 

PAT-10 is a strain where the GAL4-DBD I-SceI fusion protein (joined by a flexible 

glycine/serine GGGGS linker) is under the GAL1-10 promoter. As can be seen, none of 

these strains shows expression of the fusion protein.   
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In addition to the GAL4-DBD I-SceI fusion protein, we also attempted to construct a 

fusion protein between the GAL4-DBD and the LexA-DBD. The LexA-DBD is another 

well characterized, small (16 kDa) DNA binding domain responsible for binding to a 16 

bp palindromic sequence 5’ CTGTNNNNNNNNACAG 3’ (Knegtel, Fogh et al. 1995). 

For this particular set of constructs a new system was designed. Whereas in the GAL4-

DBD I-SceI fusion protein we relied on the GAL4-DBD binding to a double-stranded 

region on a small DNA oligonucleotide, for the GAL4-DBD LexA-DBD experiments we 

constructed a plasmid that contained the gene of interest flanked by LexA-DBD sites. In 

this way, our aim was to conjugate the LexA-DBD site containing plasmid targeted for 

repair with a separate plasmid that contained 200 bases of homology to the targeted gene. 

The repairing vector either had these 200 bases of homology flanked with GAL4-DBD 

recognition sites or scrambled GAL4-DBD sequences. In this way we sought to directly 

compare repair between the targeted DNA plasmid and a separate targeting DNA 

plasmid. Fusion protein constructs were made for use in our human cell lines. In this 

assay we saw no significant difference between a targeting plasmid containing the GAL4-

DBD sites and a targeting plasmid containing scrambled GAL4-DBD sites flanking the 

region of homology with either of the GAL4-DBD LexA-DBD fusion protein constructs. 

Western blots were done on mammalian cell extracts to verify expression and the GAL4-

DBD alone was detected, as was the GAL4-DBD LexA-DBD fusion protein without a 

linker. As stated previously, the GAL4-DBD I-SceI fusion protein was not detected 

(Figure 2.11). 
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Figure 2.11 Western blot of several whole cell extracts from HEK-293. Several whole 

cell extracts were taken after transient transfections of various plasmids. Lane 1 is a 

molecular weight marker, lane 2 and 5 are two different extracts after transient 

transfection of plasmids expressing the GAL4-DBD alone (~19 kDa), lane 3 and 6 are 

extracts after transfection with the GAL4-DBD I-SceI fusion protein, lane 4 is an extract 

after transfection with the LexA-DBD GAL4-DBD fusion protein with a flexible 

(GGGGS)2 linker between the two proteins, and lane 7 is the same plasmid except 

without a linker between the LexA-DBD and the GAL4-DBD (~16 kDa + ~19 kDa = ~35 

kDa).  
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2.4 CONCLUSIONS 

EMSA gels showed specific and strong binding of the GAL4-DBD by several 

oligonucleotides. The oligonucelotides shown to be capable of being bound by the GAL4-

DBD were also shown to be capable of repairing GFP in vivo. Western blots done using a 

monoclonal antibody to the GAL4-DBD, a polyclonal antibody to I-SceI, as well as a 

monoclonal antibody to the FLAG tag peptide sequence (dykddddk) did not show any 

expression of the GAL4-DBD I-SceI fusion protein. There are many potential reasons 

why the fusion protein was not expressed. As can be seen in Figure 2.9, the individual 

GAL4-DBD protein can be seen in both the strain containing the vector with the GAL4-

DBD only (KM-85) as well as strain containing the vector with the GAL4-DBD I-SceI 

fusion protein (KM-87). The presence of the GAL4-DBD alone in this strain could be the 

result of proteolytic cleavage of the linker between the two proteins. Interestingly, this 

cleavage was not seen in the Western blot using the FLAG antibody. Alternatively, the 

fusion protein may have been unstable, unable to fold properly, and/or targeted for 

degradation. 

 

Due to the inability of the GAL4-DBD I-SceI fusion protein and the GAL4-DBD LexA-

DBD to stimulate gene targeting, we opted to further develop the I-SceI DNA aptamer 

strategy. Although these particular fusion proteins, the GAL4-DBD and I-SceI along with 

the fusion protein between the GAL4-DBD and the LexA-DBD, did not stimulate gene 

targeting, without knowing the binding characteristics of the GAL4-DBD I-SceI and 

GAL4-DBD LexA-DBD fusion proteins and without proper expression of the GAL4-DBD 
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I-SceI fusion protein we cannot conclude that the concept itself was a failure. Further 

testing may yet reveal our hypothesis to be true. It also may be possible that only one of 

the two domains was able to bind DNA at any given time. Many proteins upon binding to 

their substrate undergo conformational changes and it could be that a conformational 

change in either of the domains inhibited the binding ability of the other domain. There 

are many possibilities to explain why the fusion protein strategy did not work but the 

work done here provided us with a better understanding of the protein-assisted targeting 

system.  
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CHAPTER 3 

 

Real-Time PCR-Coupled CE-SELEX for DNA Aptamer Selection  

 

The work presented in Chapter 3 was published as a research article under the same name 

in ISRN Molecular Biology: 

Patrick Ruff, Rekha B. Pai, and Francesca Storici, “Real-Time PCR-Coupled CE-

SELEX for DNA Aptamer Selection,” ISRN Molecular Biology, vol. 2012, Article ID 

939083, 9 pages, 2012. doi:10.5402/2012/939083. (2012). School of Biology, Georgia 

Institute of Technology, Atlanta, GA.  
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3.1 ABSTRACT 

 

Aptamers are short nucleic-acid or peptide sequences capable of binding to a target 

molecule with high specificity and affinity. Also known as “artificial antibodies,” 

aptamers provide many advantages over antibodies. One of the major hurdles to 

aptamer isolation is the initial time and effort needed for selection. The systematic 

evolution of ligands by exponential enrichment (SELEX) is the traditional procedure 

for generating aptamers, but this process is lengthy and requires a large quantity of 

target and starting aptamer library. A relatively new procedure for generating 

aptamers using capillary electrophoresis (CE), known as CE-SELEX, is faster and 

more efficient than SELEX, but requires laser-induced fluorescence (LIF) to detect 

the aptamer-target complexes. Here we implemented an alternative system without 

LIF using Real Time (RT)-PCR to indirectly measure aptamer-target complexes. In 

three rounds of selection, as opposed to ten or more rounds common in SELEX 

protocols, a specific aptamer for bovine serum albumin (BSA) was obtained. The 

specificity of the aptamer to BSA was confirmed by electrophoretic mobility shift 

assays (EMSAs), an unlabeled competitor assay, and by a supershift assay. The 

system used here provides a cost effective, highly efficient means of generating 

aptamers. 
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3.2 INTRODUCTION 

Aptamers are short single-stranded oligomers made up of DNA, RNA, or peptides that 

are capable of binding a target ligand (proteins, small molecules, or even living cells) 

with high affinity. They are also known as artificial antibodies because in addition to 

binding with high affinity, they also bind with high specificity. Aptamers have several 

advantages over antibodies, including ease and low cost of production which does not 

involve animals. Aptamers are less immunogenic than antibodies and are already being 

used as therapeutic agents in humans (Singerman, Masonson et al. 2008). Nucleic acid 

aptamers also are able to act in ways that antibodies cannot. Nucleic acid aptamers, 

unlike antibodies, can be selected for and used under non-physiological conditions, such 

as high salt conditions and varying pH (Xu and Lu 2010). Also, nucleic acid aptamers are 

able to undergo specific conformational changes that antibodies cannot. For example, 

nucleic acid aptamer binding can be “turned off” by the addition of the complementary 

strand (Cao, Tong et al. 2009). Additionally, nucleic acid aptamers can undergo a 

conformational change when binding to their target, and can be used as molecular 

beacons, fluorescently “off” when unbound, and “on” when bound (Morse 2007). The 

field of aptamers is rapidly growing as is the number of applications for their use.  

Nucleic acid aptamers are “evolved” from random sequences of DNA/RNA by a process 

known as systematic evolution of ligands by exponential enrichment (SELEX) (Tuerk 

and Gold 1990)[5]. The SELEX procedure involves the use of the random library of 

DNA/RNA sequences being incubated with the target, followed by a partitioning step to 

remove unbound sequences, an elution step to recover the binding sequences, and then an 
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amplification step to generate a library of sequences enriched for binding. The SELEX 

procedure generally takes months to complete, with a typical selection requiring 10 or 

more rounds before completion (Jayasena 1999). Also, traditional SELEX requires a 

support for the target (magnetic beads, membranes, etc.) to bind with. The supports 

themselves can be targets for selection, and often rounds of negative selection must be 

done to avoid aptamers for the support.  

Use of capillary electrophoresis (CE) allows for SELEX to be performed in a much 

shorter amount of time due to much more efficient partitioning and without the aptamers 

binding to the ligand support (the ligand flows freely in buffer, there is no support). In as 

little as one round of selection (Berezovski, Drabovich et al. 2005), and generally less 

than five rounds of selection, strong binding highly specific aptamers may be obtained. 

CE-SELEX is a new technology first developed for use in 2004 and has yet to be 

commonly used (Mendonsa and Bowser 2004). One of the main advantages to CE-

SELEX over traditional SELEX is that the aptamer-target complex can be detected in the 

first round of selection. This early detection contrasts traditional SELEX, where several 

rounds must be done before being able to detect any DNA (Sefah, Shangguan et al. 

2010). Most CE-SELEX is done with laser induced fluorescence (LIF) to increase the 

detection sensitivity to the analysed samples. Using CE with LIF a laser excites 

fluorescently-labeled samples passing through the glass capillary tube which then emit 

light that is captured by an on-board detector attached to the CE machine itself.  

We have developed a technique for selection of DNA aptamers using CE but without the 
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need for an on-board laser/detector system. The system takes advantage of real-time 

polymerase chain reaction (RT-PCR). RT-PCR is able to sensitively detect DNA-target 

complexes early on in the selection procedure with an efficacy greater than that of 

traditional SELEX and equal to that of CE-SELEX with LIF. We believe that this system 

could be beneficial for researchers that have access to CE, but do not have access to CE 

with LIF, and are seeking to perform CE-SELEX. The protein that we chose to use as a 

target for aptamer selection was bovine serum albumin (BSA). 

BSA is one of the most commonly used proteins in biochemical studies. BSA is widely 

used for stabilization of enzymes, preventing enzymes of interest from adhering to tubes 

or pipettes, or as a protein comparison standard. There are several advantages to using 

BSA in that it is relatively stable, abundantly available from cow’s blood, and is of low 

cost. Due to the low cost and high abundance of BSA, we chose it to serve as the protein 

target for our RT-PCR coupled selection system. Here we report the isolation of a DNA 

aptamer with specificity for BSA using the RT-PCR coupled capillary electrophoresis 

selection system. 

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Aptamer Selection 

The target protein of interest, bovine serum albumin (BSA), was purchased as a 
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lyophilized powder through Sigma-Aldrich and was greater than 98% pure. The BSA was 

dissolved in RB1 buffer (50 mM Tris-HCl, pH 8.2) and stored at 4 °C at a stock 

concentration of 1 mM. The RB1 buffer was also used as the run buffer for capillary 

electrophoresis. The DNA library was purchased from Alpha DNA and contained a 

sequence of 5’_CTTCTGCCCGCCTCCTTCC-(N)36-

GACGAGATAGGCGGACACT_3’ (36 random nucleotides flanked by two fixed 19 

base regions used later as primers for PCR amplification). 

The protocol for SELEX using capillary electrophoresis (CE) was essentially as 

described earlier (Berezovski, Musheev et al. 2006) but with a few modifications. The 

initial bulk affinity assay was performed with 50 µM BSA and 25 µM DNA in order to 

view any DNA-protein complexes and determine the collection window. Capillary 

electrophoresis was done using a Beckman Coulter Proteomelab PA 800 with a photon 

diode array (PDA) capable of reading wavelengths in the UV range (10 nm - 400 nm), 

separating with a voltage at 10 kV. After determination of the collection window based 

on the bulk affinity analysis, the first round of selection began. The initial in vitro 

selection procedure involved 500 nM BSA and 3.3 µM DNA. The DNA library (0.3 µl at 

100 µM) was mixed with 0.3 µl of SB3 (100 mM Tris-HCl at pH 8.2, 200 mM NaCl, and 

10 mM MgCl2) for a final concentration of 50 µM DNA library, 50 mM Tris-HCl at pH 

8.2, 100 mM NaCl, and 5 mM MgCl2. This mixture was heated in the BioRad iCycler to 

94 °C for 1 minute, and then cooled to 20 °C at a rate of 0.5 °C/second. After the folding 

of the DNA library, 5 µl of 1 µM BSA dissolved in RB1 buffer was added, and additional 

run buffer was added to make the final volume 10 µl. This brought the final 

concentrations to 3.3 µM DNA library, 500 nM BSA, 6 mM NaCl, 300 µM MgCl2, and 
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50 mM Tris-HCl (pH 8.2). The collection window was partitioned into seven different 

fractions. 

 

3.3.2 RT-PCR 

After each round of selection, fractions were analyzed through real-time PCR (RT-PCR) 

using the ABI StepOne Plus. RT-PCR was done with two primers, the forward aptamer-

amplifying primer P1 (5’_CTTCTGCCCGCCTCCTTCC_3’) and the reverse primer P2 

(5’_AGTGTCCGCCTATCTCGTC_3’) respectively. The primers were designed using 

OligoAnalyzer (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/) to limit 

complementarity to each other, in order to decrease non-specific amplification of self-

dimerizing primers. For amplification, 20 µl of PCR mix was prepared consisting of 10 

µl of 2X Quanta SYBR Green PCR Master Mix (Roche), 0.6 µl of 10 µM P1, 0.6 µl of 

10 µM P2, 1 µl of collected fraction as template, and 7.8 µl H2O. The PCR setup is 

shown in Table 3.1. 
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Table 3.1 Real-Time PCR cycling conditions 

Cycle # Denaturation Annealing Extension 

1 94 °C for 30 seconds   

2-50 94 °C for 10 seconds 55 °C for 10 seconds 72 °C for 10 seconds 

51   72 °C for 1 minute 

Hold at 4 °C    
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3.3.3 Amplification and isolation of aptamer strand 

Following RT-PCR, the fraction containing the complex was amplified using standard 

PCR. PCR was done in a 100 µl volume consisting of 1 µl of 5U/µl X-Taq polymerase 

from Takara, 3 µl of 10 µM forward primer P1, 3 µl of 10 µM reverse primer P2, 10 µl of 

10X Mg
2+

 buffer (Takara Ex Taq), 8 µl of 2.5 mM each dNTP, and 5 µl of the collected 

fraction from capillary electrophoresis. PCR was done using primer P1 and P2 as noted 

previously, except that the number of cycles for PCR amplification was based on 50% of 

the maximum yield as determined by RT-PCR. Additionally, primer P2 was biotinylated 

at its 5’ end. The biotin-labeled primer was used subsequent to PCR in order to separate 

the strand of interest and the non-aptamer strand after PCR. Magnetic beads with 

streptavidin coating from Bangs Laboratories (Biomag Streptavidin Nuclease-Free) were 

used to bind the biotin-labeled DNA. Strands were separated with 10 mM NaOH after 

three washes with wash buffer (10 mM Tris-HCl at pH 8 with 500 mM NaCl and 1 mM 

EDTA). The single-stranded aptamer pool was used in subsequent rounds of selection. 

 

3.3.4 Cloning and sequencing 

Post-selection DNA cloning of the aptamer pool was done with the TOPO Zero Blunt 

Cloning Kit (Invitrogen). Standard PCR with unlabeled primers P1 and P2 was used to 

generate double-stranded DNA containing the aptamer sequence, which was then blunt-

end ligated into the pCR-Blunt II-TOPO vector that contains the kanamycin resistance 
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gene. Colonies were selected for growth on kanamycin-containing media (kanamycin 

final concentration was 40µg/mL) and plasmid DNA was isolated using the GeneJET 

Plasmid Miniprep Kit (Fermentas). Asymmetric PCR with unlabeled primers P1 and P2 

was used on the plasmid DNA to predominately generate the strand of interest which was 

then analyzed using CE and RT-PCR. 12 colonies were pooled into a group and each 

group was assayed for BSA binding using CE. Individual plasmids from each pooled 

group that showed binding were sequenced by Eurofins MWG Operon. Based on 

sequencing results, several candidate aptamers were chosen and ordered as salt-free 

oligonucleotides. Consensus sequence was analyzed using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Additionally, mFold 

(http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) was used on each candidate 

aptamer to identify secondary structure. 

 

3.3.5 Electrophoretic Mobility Shift Assay (EMSA) 

Potential aptamer oligonucleotides and a negative control oligonucleotide were 5’ labeled 

with P32 γ-ATP using T4 Polynucleotide Kinase (New England Biolabs). The negative 

control consisted of an oligonucleotide of the same length as the random DNA library 

oligonucleotides (74 bases), contained the same flanking primer regions, and had a fixed 

sequence for its internal region 5’-

CTTCTGCCCGCCTCCTTCCGGTCGGGCACACCTGTCATACCCAATCTCGAGG 

CCAGACGAGATAGGCGGACACT-3’. The internal region was chosen using a random 
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DNA sequence generator with a specified GC content of 50% 

(http://www.faculty.ucr.edu/~mmaduro/random.htm). EMSAs were performed under 

different binding conditions. The binding conditions for the initial EMSA were done by 

adding equal amounts of SB3 buffer to the labeled oligonucleotides (20,000 cpm 

equivalent) and incubating at 94 
o
C for 1 minute in a PCR machine and a quick chilling 

to 20 
o
C at a rate of 0.5 

o
C per second (total time taken is ~4 minutes). BSA stock of 1 

mM was made in RB1 buffer (the run buffer used in the CE-SELEX protocol). Different 

dilutions of BSA as required for assessing aptamer binding were also made in RB1 

buffer. With fixed concentration of the γP32-labeled candidate aptamer, the concentration 

of the ligand (BSA) was varied from 50 to 800 µM. 

The buffer used for binding was a 6X buffer consisting of 600 mM ammonium chloride, 

300 mM potassium chloride, 30 mM sodium chloride, 120 mM Tris-HCl pH 7.5, 30% 

glycerol, and bromophenol blue (BPB) 0.25%. The entire binding conditions were made 

up to 10 µl with RB1 buffer. The reaction was incubated at room temperature for 30 

minutes, after which 1.5 µl of 10X loading buffer (200 mM Tris-HCl pH8.2, 50% 

glycerol, and BPB 0.25%) was added and the reaction was left on ice for 5-15 minutes 

before loading into the gel. The reaction complex was run on an 8% polyacrylamide gel 

under non-denaturing conditions. Mini-gels were made with stock solutions of 40% 

acrylamide/bis-acrylamide (29:1), 1X Tris-borate EDTA (TBE), 10% ammonium 

persulfate (APS), and tetramethylethylenediamine (TEMED). Gels were run using the 

Mini-PROTEAN Tetra Cell apparatus from BioRad. Pre-run was done in 1X TBE buffer 

for 1 hour prior to loading of the samples. The samples were run at 150 V until the 

bromophenol blue dye reached the bottom of the gel. The radioactivity in the gel was 
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analyzed by Phosphor Imager (Molecular Dynamics – Typhoon Trio Imager). After the 

initial EMSA, binding conditions were slightly changed. Apart from the above mentioned 

6X buffer, an additional 5X binding buffer containing 100 mM Tris-HCl pH 8.5, 250 mM 

NaCl, 10 mM MgCl2, 10 mM ZnCl2, and 10% glycerol was added in the incubation 

mixture. Furthermore, the radio-labeled oligonucleotides were added directly to the 

incubation mixture and not heated to 94
 o
C as done previously. Lastly, the incubation was 

carried out at room temperature for 1 hour and 30 minutes, after which the samples were 

left on ice for 5-15 minutes on the 4% non-denaturing gels which were pre-run for 1 hour 

in 1X TBE as described above. 

 

3.3.6 Competition assays 

Increasing concentrations of the specific unlabeled oligonucleotide was added during 

incubation of the ligand (BSA)-aptamer complex (conditions described above). Three 

different amounts (1.25, 2.5, and 5 pmol) were used. Complex formation was allowed to 

go on for 30 minutes at room temperature before the radioactively-labeled 

oligonucleotide was added and the incubation was continued for another hour and 30 

minutes. In the control sample all the conditions were similar except for the absence of 

the unlabeled competing oligonucleotide.  

 

 3.3.7 Supershift assays to determine specificity of binding of BSA to the potential 

aptamer 
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EMSAs were set up using 4 µg of the anti-BSA polyclonal antibody (obtained from 

Invitrogen). Essentially, the antibody (4 µg) was mixed with BSA (500 µM) along with 

the 5X binding buffer and left on ice for 1 hour. The radioactively-labeled I1-5 aptamer 

and the 6X buffer were added next and the incubation continued for 1 hour and 30 

minutes at room temperature before stopping the incubation by leaving the samples on 

ice for 5-15 minutes. Next, the EMSA proceeded as previously described.
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3.4 RESULTS AND DISCUSSION 

 

3.4.1 CE machine calibration and initial runs 

The general scheme of RT-PCR coupled CE-SELEX is shown in Figure 3.1. To test the 

concept that aptamer selection with CE-SELEX and RT-PCR could be feasible, we first 

began by calibrating the capillary electrophoresis (CE) machine. The CE machine used, 

the Proteomelab PA 800, is incapable of running solutions that contain high 

concentrations of salts. Due to this limitation, our buffers had to be tested to find the 

proper salt balance to ensure that the machine did not fail but at the same time have 

enough salt to stabilize our aptamer structures. Therefore the buffer condition used for the 

initial step of folding the DNA library was done in a high salt buffer (50 mM Tris-HCl at 

pH 8.2, 100 mM NaCl and 5 mM MgCl2), followed by incubation and running the folded 

DNA library in low salt concentrations (50 mM Tris-HCl at pH 8.2, 6 mM NaCl, and 300 

nM MgCl2) to ensure both proper folding and running of the DNA library. Although the 

low salt problem may have excluded many potential binders to BSA, low salt 

concentrations actually mirror the physiological conditions more accurately since the 

cellular level of magnesium is only ~1-2 mM (Carothers, Goler et al. 2010). After 

optimizing for the salt concentrations we used CE and ran a large amount (100 µM) of 

BSA alone in order to visualize the free protein peak run timing. Next we performed the 

same analysis using a large (3 µM) amount of DNA alone.  
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Figure 3.1 Summary of RT-coupled CE-SELEX The overall scheme of the protocol 

for selection is laid out sequentially. The scheme omits the steps after selection of the 

aptamers. Further analysis may be carried out to confirm the specificity and affinity of 

the aptamers, but this is specific to the user and separate from the selection 
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3.4.2 Bulk affinity analysis and selection 

Once the individual free protein and free DNA run times were established, we proceeded 

to combine BSA and DNA for a bulk affinity analysis Figure 3.2. The bulk affinity 

analysis allowed us to visualize peaks for the free BSA and the free DNA in combination, 

and this information was used to determine the collection window. The CE machine used 

was the Proteomelab PA 800 from Beckman Coulter, which did not have laser-induced 

fluorescence (LIF). To sensitively detect protein-DNA complexes between the free DNA 

and free protein, we relied on RT-PCR. The collection window started from the end of 

the free protein peak to the start of the free DNA peak Figure 3.3. This collection 

window was further subdivided into seven separate two-minute fractions. The seven 

fractions, instead of just one fraction, allowed us to analyze with greater precision the 

region of the DNA-protein complex. In the first round of selection the concentration of 

BSA was reduced to 500 nM in order to increase the stringency of selection. In the first 

round of selection the initial collected fraction of DNA detected by RT-PCR needed36 

cycles of amplification to reach 50% of the maximum yield, the midpoint cycle, of PCR 

Figure 3.3. The second fraction analyzed had a higher amount of DNA compared to the 

first fraction collected, taking only 34 cycles of amplification to reach the midpoint cycle. 

The amount of DNA collected for the third and fourth fractions was lower than that of the 

second fraction collected. The fifth fraction collected showed a marked increase in DNA 

indicative of the beginning of the free DNA peak and so this fraction was not used. The 

pattern detected by RT-PCR implied a DNA-protein complex present in the second 
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fraction collected since this fraction was collected by CE after the free protein peak, but 

well before the free DNA peak. 
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Figure 3.2 Bulk affinity assay of BSA and DNA This electropherogram is the bulk 

affinity assay in which a high concentration of BSA (100 μM) and DNA (3 μM) was run 

together. The y-axis represents the absorbance at 280 nm, and the x-axis is the run time to 

the absorbance detector. The tall peak starting around 40 minutes is the free BSA, and the 

smaller peak starting around 77 minutes is the free DNA. The collection window for the 

BSA-DNA complexes is boxed in black. 
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Figure 3.3 CE fractions collected and analyzed (a) The time points at which the seven 

fractions were collected during the first round of CE selection are represented by the bars 

in the graph. The x-axis for the bar graph and the electropherogram is the run time to the 

absorbance detector in minutes. The y-axis of the electropherogram represents the 

absorbance at 280 nm. The y-axes for the bar graphs are the number of RT-PCR cycles it 

took to reach 50% of the maximum or the midpoint cycle. The earlier the fraction reached 

the midpoint, the more DNA the fraction contained. The electropherogram above the bar 

graph is shown as a guide since the actual amount of BSA used for round 1 of selection is 

very low and it cannot be detected by CE. A supposed complex was detected in the 

second fraction collected during round 1 of selection (white bar). The supposed complex 

in the 2nd fraction of round 1 was analyzed in two test rounds using 100 μM BSA (b) or 

no BSA (c). Seven fractions were collected at the same time points as the seven fractions 

shown in (a) and the corresponding RT-PCR bar graphs of the midpoints are shown, with 

the 2nd fraction collected shown in white.  
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The collected DNA containing the supposed DNA-protein complex was RT-PCR 

amplified using primers flanking the internal random sequence. The forward primer, P1, 

amplified the aptamer-containing strand of interest, while the reverse primer, P2, 

amplified the non-aptamer complementary strand. In a previous protocol to select DNA 

aptamers, it was shown that over-amplification of the random library leads to formation 

of non-specific products (Berezovski and Krylov 2005), therefore the random library was 

only amplified to ~50% of the maximum yield as measured by RT-PCR. After RT-PCR 

analysis revealed the optimum number of cycles to amplify the collected DNA, a regular 

PCR using more of the collected DNA was performed. In this regular PCR, the P2 primer 

was labelled at its 5’ end with biotin while P1 had no modifications. After the PCR, the 

DNA products were attached to streptavidin-coated beads due to the strong interaction 

between the streptavidin on the beads and the biotin-labelled primer P2. After 

immobilization on the beads and several washing steps, the forward aptamer-containing 

strand was released from the complementary strand by incubation with 10 mM NaOH. 

After this step, the binding of the new aptamer pool was analyzed using CE and RT-PCR. 

To assess the binding of the newly generated aptamer pool to the target, two separate CE 

runs were done, one with a 200-fold molar excess of BSA used for the first round of 

selection (100 µM) (Figure 3.3) and another without any BSA (Figure 3.3). Based upon 

these CE test runs it was clear that the second fraction collected in round one of CE-

SELEX did show binding to BSA. The aptamer pool (5 µl of the collected fraction) was 

then subjected to another round of selection. Selection continued until the fourth round, at 

which point RT-PCR did not show any change in the amount of DNA at the complex and 

we did not continue with any further rounds of selection. 
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3.4.3 Post-selection characterization of potential aptamers 

Potential aptamers collected during the third round of selection were again amplified and 

then used for cloning. Instead of amplifying with a biotin-labelled P2 primer, the 

potential aptamers were amplified with a non-labelled P2 primer since the biotin label at 

the 5’ end of the DNA might interfere with ligation during cloning. TOPO blunt-end 

cloning was performed with the aptamer pool and colonies were selected by growth on 

LB plus kanamycin plates. Two hundred colonies were selected and analyzed for BSA 

binding using CE and RT-PCR. Groups of 12 colonies were combined in order to 

facilitate faster analysis. In order to amplify the aptamer strand from the vector with the 

aptamer insert, asymmetric PCR was performed using a 10-fold excess of the aptamer 

strand primer. Four groups, I1, R2, G2, and O3 showed stronger binding than the others 

by RT-PCR and then the individual clones from these groups were sequenced.  

After sequencing, in order to confirm that the potential aptamer sequences were binding 

to BSA, salt-free oligonucleotides containing the potential aptamer sequences were used 

in EMSA gels. EMSAs work on the principle that DNA bound in a DNA-target complex 

will run slower than free DNA. The free DNA will appear at the bottom of the gel, while 

the DNA bound in the DNA-target complex will be shifted higher up in the gel. The 

potential aptamers, as well as a negative control (described in Materials and Methods), 

were initially screened with a set of binding conditions similar to that of the CE 

experiments. Only those sequences that were 76 or 75 bases in length, and identical or 

almost identical in length to the original library length of 76 bases, were ordered and 
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subsequently screened by EMSA. The candidate aptamer sequences were analyzed in 

silico by using ClustalW2 and mFold, but no consensus sequence or specific secondary 

structure between the sequences was found. 

Of the initial group of oligonucleotides screened by EMSA, the I1 group, one member of 

this group of potential aptamers, I1-5, did bind to BSA and a distinct bound complex 

could be visualized at 500 and 800 µM BSA in the initial EMSA (Figure 3.4). The bound 

complex showed a modest, but distinct shift. Also in the initial EMSA, at higher 

concentrations of BSA (>500 μM), a faint band could be seen. This band was considered 

a nonspecific complex because both the negative control and the I1-5 aptamer had this 

band. In this EMSA, and in all subsequent EMSAs, the appearance of radio-labeled DNA 

at the top of each lane, in the well, can be seen. The DNA at the top of the lanes is caused 

due to the single-stranded nature of the DNA. The single-stranded DNA is capable of 

forming aggregates with itself and with the loading dye. The size of these aggregates 

prevents the DNA from entering the gel and thus it remains in the well. After the initial 

EMSA modeled after the CE experiments, binding conditions were changed to include 

higher salt conditions that were not possible to run with the Proteomelab PA 800. These 

higher salt conditions were used to stabilize the aptamer secondary structure. In addition 

to buffer conditions, we also did not subject the aptamers to the heating at 94 ºC prior to 

incubation. Again the potential aptamer I1-5 showed a bound complex using these 

modified binding conditions (Figure 3.4). After the initial screen for potential aptamers 

with the I1 group, a subsequent screen using oligos from the G2 group and the modified 

EMSA conditions revealed several additional aptamers for BSA (Figure 3.5). The list of 

the potential aptamers’ sequences ordered is shown in Table 3.2, among these aptamers, 
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I1-5 was chosen for further characterization. 
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Figure 3.4 Confirmation of CE-SELEX aptamer selection by EMSA (a) Shown is the 

initial EMSA done with the BSA aptamer, I1-5, selected through RT-PCR coupled CE-

SELEX, along with a negative control of the same length (“C” in the figure) described in 

Section 2. At 500 μM BSA a specific complex, formed between the BSA and DNA. Also, 

there is a higher band corresponding to nonspecific interaction at high concentrations of 

BSA in both the negative control and the aptamer I1-5 sequences. (b) EMSA of I1-5 and 

negative control with the modified binding conditions. The binding pattern was the same 

with these two different binding conditions and for clarity only the BSA at 500 μM is 

shown.  
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Figure 3.5 EMSA gel confirming binding of group G2 aptamers Shown is a screen 

done with potential aptamers from the second group tested, G2. Several from this group 

were capable of binding to BSA. I1-5 was used as a positive control for binding, and the 

negative control (“C”) was also used. 
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Table 3.2 Sequences of potential aptamers for BSA The table contains the sequences 

of the potential aptamers from each of the pooled groups of clones that showed binding to 

BSA by RT-PCR analysis. These sequences were ordered as salt-free oligonucleotides 

and analyzed using electrophoretic mobility shift assays (EMSAs), and sequences that 

showed binding are bolded. I1-5, boxed in black, was chosen for further analysis. 
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3.4.4 Further characterization of I1-5 aptamer 

Only the I1-5 oligonucleotide was further pursued as it was the first aptamer discovered 

by the screen that consistently showed binding ability to BSA in the CE-SELEX as well 

as under the two different EMSA conditions. To further confirm the specificity of this 

aptamer to BSA, a supershift assay using an antibody to BSA was performed. In the 

presence of 4 µg of the anti-BSA polyclonal antibody, the binding capacity was reduced 

as seen by an appreciable reduction in the intensity of the radioactive oligo banding 

pattern (Figure 3.6). This supports the idea that the anti-BSA polyclonal antibody and the 

BSA aptamer I1-5 recognize the same epitope. A similar pattern of banding was reported 

for the human neurofilament mRNA binding to superoxide dismutase1 (SOD1) in a 

supershift assay (Ge, Wen et al. 2005). Also, competition assays were performed by 

incubating BSA with an excess of unlabeled I1-5 aptamer of three different amounts 

(1.25, 2.5, and 5 pmoles) before the addition of the labeled I1-5, the BSA-aptamer bound 

complex was abolished in the presence of higher amounts of the unlabeled competitor 

(Figure 3.7). Although by EMSA the I1-5 aptamer showed low binding affinity to BSA, 

the cold-competitor assay, as well as the supershift assay indicated a specific interaction 

was occurring between BSA and the I1-5 aptamer, thus supporting the effectiveness of 

RT-PCR coupled CE-SELEX. 
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Figure 3.6 Supershift assay with inclusion of antibody to BSA binding in gel 

retardation assays A polyclonal antibody to BSA was tested for binding to BSA in the 

reaction complex and analyzed by EMSA. The negative control previously shown not to 

bind to BSA was used as well as I1-5, the BSA aptamer. For the negative control, no 

binding to BSA was seen at 100 μM or 500μM BSA (lane 2 and 3). With addition of 4 μg 

of the antibody, there was some nonspecific binding, as seen by the faint band, by the 

control sequence (lane 4). However, with I1-5 there was binding to 500 μM BSA (lane 7), 

but this binding was disrupted when the antibody was incubated with BSA prior to the 

EMSA (lane 8). As stated previously, some of the radiolabeled DNA formed aggregates 

incapable of entering the gel, giving rise to the bands at the top of the lanes. A slight leak 

occurred during gelling such that the top of lane 8 appears disjointed due to the shape of 

the gel.  
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Figure 3.7 Competition assay with unlabeled I1-5 aptamer Unlabeled “cold” I1-5 

aptamer at 0, 1.25, 2.5, and 5 pmol as indicated were incubated with 500 μM BSA 

(indicated by the “+”) before addition of the P32-labeled I1-5 (represented by a star) 

aptamer. Again, the formation of DNA aggregates is present at the top of the lanes. As 

unlabeled DNA competitor increases, the amount of radiolabeled DNA trapped in the 

aggregates decreases as expected. 
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3.5 CONCLUSIONS 

The conclusion drawn from our studies is that we have been able to generate an aptamer 

for BSA with appreciable specificity in a few rounds of selection from a random library 

of DNA oligonucleotides.  

The protocol described here is very efficient compared to the traditional SELEX which 

takes much more time and reagents. As noted previously, traditional SELEX makes use 

of a solid support to which the target must be bound. The coupling of the target to the 

support is not completely efficient and often much of the target remains unbound and 

washed away. Using CE-SELEX there is no need for a solid support and because of the 

small size of the capillary, a much smaller amount of target is required. Even though CE-

SELEX is much more efficient than traditional SELEX, CE-SELEX still requires 

additional equipment (LIF) beyond the standard capillary electrophoresis machine. CE is 

not restricted to the isolation of aptamers, and while many labs may have a CE machine, 

much fewer will have one with LIF. Our system can be used with any CE machine, with 

or without LIF. 

Another advantage of the system is the high level of sensitivity. RT-PCR and LIF both 

work under the principle of fluorescence. While LIF can very sensitively detect DNA-

target complexes directly, RT-PCR has the potential to be more sensitive because unlike 

LIF which directly detects the fluorescent signal, RT-PCR can amplify the signal. By 

amplifying a signal undetectable by LIF, DNA-target complexes that would have been 

missed by LIF could be detected and collected using our system. Taken together, the 

efficiency, time, and sensitivity of the protocol for DNA aptamer selection by coupling 
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CE-SELEX with RT-PCR described here can benefit other researchers that are also 

interested in selecting for aptamers and would like to use CE-SELEX, but are unable to 

do so for lack of LIF. 

BSA was chosen to test our RT-PCR coupled selection system, but the BSA aptamer we 

selected may be beneficial itself. Due to the high amount of BSA used in many 

biochemical assays, sometimes the amount of BSA present in a mixture of proteins 

obscures accurate readings of proteins of interest. It would be useful to have a way to 

deplete this unwanted BSA from a reaction. Also, BSA can be allergenic (Natale, Bisson 

et al. 2004) and in certain situations it might be beneficial to detect small amounts of 

BSA contaminant present in cow’s milk. Currently antibodies to BSA provide an answer 

to these issues, but as previously mentioned there are several advantages to using 

aptamers over antibodies. 

 

3.6 ACKNOWLEDGEMENTS 

We would like to acknowledge David Scarborough and Grant Wise from Beckman 

Coulter for their help in troubleshooting the CE machine. This work was supported in 

part by the Georgia Cancer Coalition grant R9028 and the NIH grant R21EB9228. 

 

  



 

95 

 

CHAPTER 4 

 

PROTEIN-ASSISTED TARGETING OF GENES BY A DNA APTAMER TO I-

SCEI 
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preparation for submission to the journal Nature Biotechnology: 

Ruff
1
, P., Pai

1
, R.B., Pohl

2
, J., and Storici

1
, F. (2013) 

1
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4.1 ABSTRACT 

DNA aptamers are sequences of DNA selected for their ability to bind a specific target. 

We selected a DNA aptamer to the I-SceI endonuclease, which binds an 18-bp DNA 

sequence and generates a DNA double-strand break (DSB). Bifunctional oligonucleotides 

containing the I-SceI aptamer sequence or a non-binding control of equal length were 

generated as part of a longer DNA molecule that contained a sequence tract with 

homology to repair the I-SceI generated DSB in the chosen genomic locus. The aptamer 

portion binds I-SceI which effectively targets the entire DNA molecule to the site of the 

break. In yeast the I-SceI aptamer stimulated gene targeting two to fifteen-fold over the 

non-binding control. In addition to the work in yeast, correcting DNA oligonucleotides 

containing the I-SceI aptamer sequence were used for gene targeting in human cells and 

showed stimulation of gene targeting two to sixteen-fold over the control 

oligonucleotides. Taken together, this work provides a novel strategy to increase gene 

targeting efficiency and lays the groundwork for future studies using aptamers for gene 

targeting. 
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4.2 INTRODUCTION 

Targeted gene modification in human cells would be a powerful tool for researchers 

interested in functional analysis of genes as well as patients suffering from genetic 

disorders. The primary limitation of gene targeting is the low frequency with which it 

spontaneously occurs in mammalian cells, happening in roughly 1 cell for every 10
5
 to 

10
7
 treated cells(Vasquez, Marburger et al. 2001). The low frequency of gene targeting, 

which relies on homologous recombination (HR), is due in part to the much higher 

frequency of non-homologous end joining (NHEJ), which occurs in roughly 1 cell for 

every 10
2
 to 10

4
 treated cells(Vasquez, Marburger et al. 2001). HR and NHEJ are the two 

major pathways known to repair a DNA double-strand break (DSB), which if left 

unrepaired is lethal to the cell. NHEJ joins the two ends of the DSB in a sequence 

independent manner and can even insert foreign DNA at the site of a DSB in a process 

known as random integration. Random integration by its nature results in unpredictable 

outcomes, which can include cis or trans-activation of a gene downstream of where the 

transgene was inserted, disruption of regulatory elements, or creation of aberrant fusion 

proteins all of which could lead to diseases such as cancer(Kohn, Sadelain et al. 2003). 

Gene targeting, in which a sequence homologous to the DNA at the DSB is used to repair 

the DSB, offers a safer and more precise means to integrate a gene of interest or modify 

an existing gene. 

As stated, the level of spontaneous gene targeting is low, but there are several strategies 

used to increase the frequency of gene targeting. It was shown that a DSB at the target 

site increases the frequency of gene targeting several orders of magnitude in 
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bacteria(Nussbaum, Shalit et al. 1992), yeast(Storici, Durham et al. 2003), plants(Puchta, 

Dujon et al. 1993), fruit flies(Banga and Boyd 1992), mice(Rouet, Smih et al. 1994), 

human embryonic stem cells(Smih, Rouet et al. 1995), and many other cell types. 

Another strategy to increase gene targeting in mammalian cells has been achieved 

through the overexpression of key recombination proteins from HR proficient organisms. 

Overexpression of bacterial RecA led to a 10-fold increase in gene targeting in mouse 

cells(Shcherbakova, Lanzov et al. 2000), likewise overexpression of yeast Rad52 led to a 

37-fold increase in gene targeting in human cells(Di Primio, Galli et al. 2005). 

Conversely, another strategy for increasing gene targeting in human cells involves 

decreasing the amount of the DSB repair through the pathway of NHEJ. In mouse 

embryonic stem cells an increase in gene targeting was seen in Ku70 (6-fold), XRCC4 

(2-fold), and DNAPK-cs (2-fold) deficient cell lines(Pierce, Hu et al. 2001) and a 3-fold 

increase in Chinese hamster ovary cells lacking DNAPK-cs(Allen, Kurimasa et al. 2002). 

Similarly, knockdown of KU70 and XRCC4 in human colon cancer cells lead to a 30-

fold increase in gene targeting(Bertolini, Bertolini et al. 2009). 

Different from the strategies mentioned above focused on increasing HR or decreasing 

NHEJ, it was shown that by knocking down human SMC1, important for HR, gene 

targeting increased(Potts, Porteus et al. 2006). The sister chromatid is the normal donor 

DNA for HR repair, but in the case of gene targeting an exogenous DNA acts as the 

donor for repair. HR with the sister chromatid actually hinders gene targeting by 

exogenously introduced DNA. By knocking down hSMC1 which is required for sister 

chromatid HR, gene targeting increased four-fold. hSMC1 and hSMC3 form the cohesin 

complex which is responsible for keeping sister chromatids in close proximity to each 
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other during a DSB. Without close proximity to the DSB site the sister chromatid was 

used less frequently as a donor, shifting repair of the DSB more toward HR with the 

exogenous sequence (gene targeting). 

We have developed a novel delivery system, which we call protein-assisted targeting, to 

increase gene targeting by guiding the exogenous DNA to the site of modification. The 

system is designed to increase gene targeting by increasing the amount of exogenous 

DNA available at the target site, while simultaneously reducing random integration of 

exogenous DNA outside of the target. By tethering the exogenous DNA to the site-

specific homing endonuclease I-SceI, we achieve targeted delivery of exogenous DNA to 

the site of the DSB (Figure 4.1). DNA aptamers were selected for I-SceI using a variant 

of capillary electrophoresis systematic evolution of ligands by exponential enrichment 

(CE-SELEX) called “Non-SELEX” (Berezovski, Musheev et al. 2006). DNA aptamers 

are sequences of DNA that because of their unique secondary structure are able to bind to 

a specific target with high affinity. By synthesizing a DNA oligonucleotide that contained 

the aptamer sequence as well as homology to restore the DSB, we were able to increase 

gene targeting frequencies two to fifteen-fold over a non-binding control in yeast and two 

to sixteen-fold over a non-binding control in human cells. Our strategy offers a novel way 

to increase gene targeting and represents the first study to use aptamers in the context of 

gene repair. 
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Figure 4.1 Protein-assisted targeting model (for yeast TRP5) Above is the model for protein-assisted targeting in yeast. Briefly, 

oligonucleotides containing the ISB7 aptamer along with a region of homology to restore the TRP5 gene are transformed into the cell. 

Simultaneously to the oligonucleotide transformation, the I-SceI gene under the GAL1-10 promoter is expressed. The ISB7 aptamer 

then binds to the I-SceI protein, which shuttles the oligonucleotide into the cytoplasm. I-SceI drives the oligonucleotide to the TRP5 

locus and causes a DSB. Afterwards the oligonucleotide restores the function of the TRP5 gene.
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4.3 MATERIALS AND METHODS 

4.3.1 Aptamer Selection   

The target protein of interest, I-SceI, was kindly provided by Dr. Frederick Gimble in 

storage buffer (10mM KPOi pH 7.4, 100nM EDTA, 1mM DTT, 100mM NaCl, and 50% 

glycerol). Prior to selection, in order to remove storage buffer components, I-SceI was 

dialyzed. I-SceI was dialyzed in Run Buffer 1 (RB1), 50 mM Tris-HCl at pH 8.2, 

yielding a concentration of 3 µM I-SceI in RB1 post dialysis. RB1 was the run buffer 

used for the capillary electrophoresis. The DNA library was purchased from Alpha DNA 

(Montreal, Quebec) and contained a sequence of  

5’_CTTCTGCCCGCCTCCTTCC-(N)36-GACGAGATAGGCGGACACT_3’ (36 

random nucleotides flanked by two fixed 19 base regions used later as primers for PCR 

amplification). 

The protocol for SELEX using capillary electrophoresis (CE) was essentially as 

described earlier [10] but with a few modifications. Initial calibrations were done with a 

serial dilution of the aptamer library in RB1. The initial bulk affinity assay was 

performed with 1.5 µM I-SceI and 100 nM DNA in order to view any DNA-protein 

complexes and determine the collection window. Capillary electrophoresis was done 

using a Beckman Coulter P/ACE MDQ with laser-induced fluorescence (LIF) detection. 

The LIF was composed of a 488 nm air-cooled argon ion laser along with an on-board 

detector. Separation was carried out with a voltage of 10 kV. After determination of the 

collection window based on the bulk affinity analysis, the first round of selection began. 

The initial round of in vitro selection procedure involved 100 nM I-SceI and 50 µM 
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DNA. The DNA library (5 µl at 100 µM) was mixed with 5µl of SB3 (100 mM Tris-HCl 

at pH 8.2, 200 mM NaCl, and 10 mM MgCl2) for a final concentration of 50 µM DNA 

library, 50 mM Tris-HCl at pH 8.2, 100 mM NaCl, and 5 mM MgCl2. This mixture was 

heated in the BioRad iCycler to 94 °C for 1 minute, and then cooled to 20 °C at a rate of 

0.5 °C/second. After the folding of the DNA library, 5 µl of 200 nM I-SceI dissolved in 

SB1 buffer (50 mM Tris-HCl at pH 8.2, 100 mM NaCl, and 5 mM MgCl2) was added to 

make the final volume 10 µl. This brought the final concentrations to 50 µM DNA 

library, 100 nM I-SceI, 100 mM NaCl, 5 mM MgCl2, and 50 mM Tris-HCl (pH 8.2). The 

collection window was from the beginning of the first complex peak to the end of the last 

complex peak, well before the free DNA peak. The fraction collected was typically 0.3 µl 

to 0.5 µl which was collected into a tube containing 10 µl of the above mixture except 

without any additional DNA. After 15 minutes of incubation at room temperature, this 

new mixture was used in subsequent rounds of selection. Two additional rounds of 

selection proceeded in this manner. 

4.3.2 qRT-PCR 

After the aptamer selection, the collected fractions containing the aptamer pools were 

analyzed through quantitative real-time PCR (qRT-PCR) using the ABI StepOne Plus. 

qRT-PCR was done with two primers, the forward aptamer-amplifying primer P1 

(5’_CTTCTGCCCGCCTCCTTCC_3’) and the reverse primer P2 

(5’_AGTGTCCGCCTATCTCGTC_3’) respectively. The primers were designed using 

OligoAnalyzer (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/) to limit 

complementarity to each other, in order to decrease non-specific amplification of self-
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dimerizing primers. For amplification, 20 µl of PCR mix was prepared consisting of 10 

µl of 2X Quanta SYBR Green PCR Master Mix (Roche), 0.6 µl of 10 µM P1, 0.6 µl of 

10 µM P2, 1 µl of collected fraction as template, and 7.8 µl H2O. The PCR setup is 

described in Table 4.1.  
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Table 4.1 Real-Time PCR cycling conditions 

Cycle # Denaturation Annealing Extension 

1 94 °C for 30 seconds   

2-50 94 °C for 10 seconds 55 °C for 10 seconds 72 °C for 10 seconds 

51   72 °C for 1 minute 

Hold at 4 °C    
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4.3.3 Amplification and isolation of aptamer strand 

Following qRT-PCR, the fraction containing the potential aptamers was amplified using 

standard PCR. PCR was done in a 100 µl volume consisting of 1 µl of 5U/µl X-Taq 

polymerase from Takara, 3 µl of 10 µM forward primer P1, 3 µl of 10 µM reverse primer 

P2, 10 µl of 10X Mg
2+

 buffer (Takara Ex Taq), 8 µl of 2.5 mM each dNTP, 70 µl H2O 

and 5 µl of the collected fraction from capillary electrophoresis. PCR was done using 

primer P1 and P2 as noted previously, except that the number of cycles for PCR 

amplification was based on 50% of the maximum yield as determined by qRT-PCR. 

Additionally, primer P2 was biotinylated at its 5’ end. The biotin-labeled primer was used 

subsequent to PCR in order to separate the strand of interest and the non-aptamer strand 

after PCR. Magnetic beads with streptavidin coating from Bangs Laboratories (Biomag 

Streptavidin Nuclease-Free) were used to bind the biotin-labeled DNA. Strands were 

separated with 10 mM NaOH after three washes with wash buffer (10 mM Tris-HCl at 

pH 8 with 500 mM NaCl and 1 mM EDTA). The single-stranded aptamer pool was used 

in subsequent cloning. 

4.3.4 Cloning and sequencing 

Post-selection DNA cloning of the aptamer pool was done with the TOPO Zero Blunt 

Cloning Kit (Invitrogen). Standard PCR with unlabeled primers P1 and P2 was used to 

generate double-stranded DNA containing the aptamer sequence, which was then blunt-

end ligated into the pCR-Blunt II-TOPO vector that contains the kanamycin resistance 
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gene. Colonies were selected for growth on kanamycin-containing media (kanamycin 

final concentration was 40µg/mL) and plasmid DNA was isolated using the GeneJET 

Plasmid Miniprep Kit (Fermentas). Plasmid DNA was crudely extracted by placing 

selected colonies into 50 µL of RNAse/DNAse-free H2O and incubated in a boiling water 

bath for 5 minutes. Debris was pelleted by centrifugation for 10 minutes at 10,000 X g 

and supernatant was used for an asymmetric PCR. Asymmetric PCR with 5 µL unlabeled 

primers P1 and P2 were used on the plasmid DNA to predominately generate the strand 

of interest which was then analyzed using CE with LIF. PCR product was used with 1.5 

µM I-SceI in the same manner described previously. Individual plasmids that showed 

strong binding through asymmetric PCR product were sequenced by Eurofins MWG 

Operon. Based on sequencing results, several candidate aptamers were chosen and 

ordered as salt-free oligonucleotides. Consensus sequence was analyzed using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Additionally, mFold 

(http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) was used on each candidate 

aptamer to identify secondary structure. 

4.3.5 Electrophoretic Mobility Shift Assay (EMSA) 

Potential aptamer oligonucleotides and a negative control oligonucleotide were 5’ labeled 

with P32 γ-ATP using T4 Polynucleotide Kinase (New England Biolabs). The negative 

control consisted of an oligonucleotide of the same length as the random DNA library 

oligonucleotides (74 bases), contained the same flanking primer regions, and had a fixed 

sequence for its internal region 5’-

CTTCTGCCCGCCTCCTTCCGGTCGGGCACACCTGTCATACCCAATCTCGAGG 
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CCAGACGAGATAGGCGGACACT-3’. The internal region was chosen using a random 

DNA sequence generator with a specified GC content of 50% 

(http://www.faculty.ucr.edu/~mmaduro/random.htm). I-SceI was dialyzed before running 

the EMSA gels in Run Buffer 1 (RB1), 50mM Tris-HCl at pH 8.2, as previously 

described. Bovine serum albumin (BSA) was purchased as a lyophilized powder through 

Sigma-Aldrich and was greater than 98% pure. BSA stock of 10 mg/mL was made in 

RB1 buffer. 

Equal amounts of SB3 (100 mM Tris-HCl at pH 8.2, 200 mM NaCl, and 10 mM MgCl2) 

and γP32-labeled DNA were added together for a final concentration of 50 mM Tris-HCl 

at pH 8.2, 100 mM NaCl, and 5 mM MgCl2. Labeled oligonucleotides and SB3 were 

incubated at 94 
o
C for 1 minute in a PCR machine and a quick chilling to 20 

o
C at a rate 

of 0.5 
o
C per second (total time taken is ~4 minutes). 

The buffer conditions used for binding had several components. Each reaction consisted 

of 2 µL 5X EMSA buffer 1 (100 mM Tris-HCl at pH 8.5, 250 mM NaCl, 10 µM ZnCl2, 

10 mM MgCl2, 10% glycerol), 1 µL BSA (10 mg/ml), 1 µL freshly prepared 20 mM 

DTT, and 1 µL 100 mM MgCl2 for a final buffer concentration of 20 mM Tris-HCl, 50 

mM NaCl, 2 µM ZnCl2, 22 mM MgCl2, 1mg/mL BSA, 4 mM DTT, and 2% glycerol. 

After mixing these components together, 2 µL of dialyzed I-SceI (3 µM) for each reaction 

was added, bringing the volume to 7 µL. Reactions were aliquoted and 0.5 µl to 1 µl 

(20,000 cpm equivalent) of γP32-labeled oligonucleotides were added. The reaction 

mixture of DNA and I-SceI was incubated for 30 minutes at room temperature. After 

incubation 2 µl of EMSA buffer 2 (120 mM Tris-HCl at pH 8, 600 mM NH4Cl, 300 mM 
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NaCl, 300 mM KCl, 30% glycerol, 0.25% bromophenol blue) was added bringing the 

final buffer concentration to 44 mM Tris-HCl, 1mg/mL BSA, 4 µM ZnCl2, 160 mM 

NaCl, 120 mM NH4Cl, 60 mM KCl, 14 mM MgCl2, 2 mM DTT, 10% glycerol, 0.05% 

bromophenol blue, and 600 nM dialyzed I-SceI. After addition of EMSA buffer 2 the 

samples were put on ice until being loaded into the gel. The reactions were run on 4% 

polyacrylamide gels under non-denaturing conditions. Mini-gels were made with stock 

solutions of 40% acrylamide/bis-acrylamide (29:1), 1X Tris-borate EDTA (TBE), 10% 

ammonium persulfate (APS), and tetramethylethylenediamine (TEMED). Gels were run 

using the Mini-PROTEAN Tetra Cell apparatus from BioRad. Pre-run was done in 1X 

TBE buffer for 1 hour prior to loading of the samples. The samples were run at 150 V 

until the bromophenol blue dye reached the bottom of the gel. The radioactivity in the gel 

was analyzed by Phosphor Imager (Molecular Dynamics – Typhoon Trio Imager).  

4.3.6 Human cell lines, plasmids, and procedures 

Human embryonic kidney (HEK-293) cells were grown in Dulbecco’s modified Eagle’s 

medium, DMEM (Mediatech, Inc. Manassas, VA), supplemented with 10% heat-

inactivated fetal bovine serum (Gemini, Bio-Products, West Sacramento, CA) and 1X 

Penicillin/Streptomycin (Lonza, Walkersville, MD). Cells were grown at 37˚C in a water-

jacketed 5% CO2 humidified incubator (NuAire, Plymouth, MN). Cell line 658-D (kindly 

provided by Matthew Porteus, Standford University) is a HEK-293 derivative where 

plasmid pA658 was randomly integrated which contains a non-functional GFP gene 

under the CMV/CBA promoter(Porteus and Baltimore 2003). Plasmid pLDSL contains 

the DsRed2 gene disrupted by a 45-bp region containing the 18-bp site for the I-SceI 
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endonuclease preceded by 2 STOP codons. Plasmid p67 contains the I-SceI endonuclease 

gene expressed under the CMV/CBA promoter (Porteus and Baltimore 2003). Cells were 

transfected using polyethylenimine (PEI, Polysciences, Warrington, PA) transfection 

reagent in 24-well plates seeded at a density of ~150,000 cells per well (Grieger, Choi et 

al. 2006, Hirsch, Storici et al. 2009) 24 hours prior to transfection. In all transfection 

experiments in HEK-293 cells, the plasmid DNA was used in the amount of 0.5 µg for 

the expression vector as well as 0.5 µg for the targeted vector and the repairing DNA 

oligonucleotide used was 1 µg, unless otherwise indicated. For experiments in 658-D 

cells, 0.5 µg for the expression vector p67 and 1.5 µg of the repairing DNA 

oligonucleotide were used. In these experiments, the oligos and the plasmid were diluted 

in DMEM without supplements, vortexed in the presence of PEI, and then added to the 

wells 10-15 minutes later. Red fluorescent cells were visualized by fluorescent 

microscopy using a Zeiss Observer A1 microscope and an AxioCam MRm camera 

(Zeiss, Thornwood, NY). Frequencies of RFP and GFP positive cells were obtained by 

flow cytometric analysis using the BD FACS Aria II Cell Sorter (BD Biosciences, 

Sparks, MD) for RFP detection or the BD LSR II Flow Cytometer (BD BioSciences, 

Sparks, MD) for GFP detection only 5-8 days following transfection. Sequences of 

oligonucleotides used to repair the GFP or DsRed2 genes are listed in Table 4.2. 
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Oligonucleotide Size 

(mer) 

Sequence (aptamer in red) 

ISB7_GFP_F54 90 5’_GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATGTTCAAGGACGACGGCAACTACAAGA

CGCGCGCCGAGGTGAAGTTCGAGGGCGAC_3’ 

ISB7_GFP_F40 76 5’_GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATGACGACGGCAACTACAAGACGCGCGC

CGAGGTGAAGTTCGA_3’ 

ISB7_DsRed2_F

54 

90 5’_GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG GCGACCGTGACCCAGGACTCCTCCC

TGCAGGACGGCTGCTTCATCTACAAGGTG_3’ 

ISB7_DsRed2_F

40 

76 5’_GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG TGACCCAGGACTCCTCCCTGCAGGA

CGGCTGCTTCATCTA_3’ 

ISB7_DsRed2_F

30 

66 5’_GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG CAGGACTCCTCCCTGCAGGACGGCT

GCTTC_3’ 

P1P2_GFP_F54 90 5'_TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACACTTCAAGGACGACGGCAACTACAAGAC

GCGCGCCGAGGTGAAGTTCGAGGGCGAC_3' 
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Table 4.2 Oligonucleotides used for mammalian cells The table above shows the oligonucleotides used in HEK-293 and 658-D cell 

lines. The aptamer sequence is shown in red.

P1P2_GFP_F40 76 5'_TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACACACGACGGCAACTACAAGACGCGCGCC

GAGGTGAAGTTCGA_3' 

P1P2_DsRed2_F

54 

90 5'_TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACACGCGACCGTGACCCAGGACTCCTCCCT

GCAGGACGGCTGCTTCATCTACAAGGTG_3' 

P1P2_DsRed2_F

40 

76 5'_TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACACTGACCCAGGACTCCTCCCTGCAGGAC

GGCTGCTTCATCTA_3' 

P1P2_DsRed2_F

30 

66 5'_TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACACCAGGACTCCTCCCTGCAGGACGGCTG

CTTC_3' 



 

113 

 

 

 

 4.3.7 Yeast Strains 

Two different strain backgrounds were used for these studies, BY4742 (MATα  his3Δ1 

leu2Δ0 lys2Δ0 ura3Δ0) and 55R5-3C (MATa ura1). For the BY4742 background, TRP5, 

ADE2, and LEU2 loci were tested. For the 55R5-3C background, TRP1, ADE2, and 

LEU2 loci were tested.  

For the TRP5 locus (BY4742 background), yeast strains FRO-155 and FRO-526 were 

used. Yeast haploid strain FRO-155 (MATα his3Δ1 leu2Δ0 lys2Δ0 trp5::GSHU lys2::Alu 

IR) contains the GSHU CORE cassette (including the I-SceI gene under the 

inducible GAL1 promoter, the hygromycin resistance gene hyg, and the counterselectable 

URA3 gene from Kluyveromyces lactis (KlURA3) marker gene) and the I-SceI site (HOT 

site) in TRP5(Storici, Durham et al. 2003). FRO-526 is identical to FRO-155 except that 

instead of the CORE cassette GSHU, the TRP5 gene is disrupted with the CORE cassette 

UK (the counterselectable URA3 gene from Kluyveromyces lactis (KlURA3) marker 

gene along with the KanMX4 gene conferring G418 resistance). These strains, along with 

separate isolates FRO-156 (identical to FRO-155), and FRO-527 (identical to FRO-526) 

were used to characterize the TRP5 locus. 

All other strains were generated by integrating the CORE cassette GSH (including the I-

SceI gene under the inducible GAL1 promoter and the hygromycin resistance gene hyg) 

into each respective locus and strain background. For the strains to contain the I-SceI 

recognition site, the CORE cassette was PCR-amplified from plasmid pGSHU(Storici, 
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Durham et al. 2003) using primers with homology tails to the respective integration site 

along with the I-SceI site upstream of the GAL1 promoter. The strains lacking the I-SceI 

site were generated in the same way except with primers lacking the I-SceI site. 

 

4.3.8 Yeast Transformations 

Transformations were done as previously described with minor variations(Stuckey, 

Mukherjee et al. 2011). 50 ml of YPLac liquid culture was inoculated approximately 24 

hours prior to transformation and incubated with vigorous shaking at 30ºC. 

Transformations were done with 1 nmol of total oligo DNA. Sequences of 

oligonucleotides used for repair can be found in Table 4.3. Cells from each 

transformation were diluted appropriately and plated to synthetic complete medium 

lacking the respective amino acid and containing 2% galactose for I-SceI induction. 

Viability was assessed by diluting and plating control cells that did not contain 

oligonucleotides for repair on synthetic complete medium. 

4.3.9 Data presentation and statistics 

Graphs were made using GraphPad Prism 5 (Graphpad Software, Inc.). Data are plotted 

as mean values with 95% confidence intervals shown. Statistical significance was 

determined using two-tailed t-tests (Mann-Whitney U). 
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Oligonucleotide Size 

(mer) 

Sequence (aptamer in red) 

ISB7_TRP5_F54 90 5' GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG GGAAAAGGGTTTTGATGAAGCTGTCGCGGATCCCACATTCTG

GGAAGACTTCAA 3' 

ISB7_TRP5_F40 76 5' GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG GGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGGGAAG 3' 

ISB7_TRP1_F54 90 5’ GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG GTGGCAAGAATACCAAGAGTTCCTCGGTTTGCCAGTTATTAA

AAGACTCGTATT 3’ 

ISB7_ADE2_F54 90 5’ GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG GGACATTATACCATTGATGCTTGCGTCACTTCTCAATTTGAAG

CTCATTTGAGA 3’ 

ISB7_ADE2_F40 76 5’ GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG ATACCATTGATGCTTGCGTCACTTCTCAATTTGAAGCTCA 3’ 

ISB7_LEU2_F54 90 5’ GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG CGCTTTCATGGCCCTACAACATGAGCCACCATTGCCTATTTGG

TCCTTGGATAA 3’ 

ISB7_LEU2_F40 76 5’ GCGGGCGCTGTTGACAGCGGTCAGGTGGATGGGATG ATGGCCCTACAACATGAGCCACCATTGCCTATTTGGTCCT 3’ 

P1P2_TRP5_F54 90 5' TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC GGAAAAGGGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGG

GAAGACTTCAA 3'  
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Table 4.3 Oligonucleotides used for yeast The table above shows the oligonucleotides used in yeast. The aptamer sequence is shown 

in red.

P1P2_TRP5_F40 76 5' TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC GGTTTTGATGAAGCTGTCGCGGATCCCACATTCTGGGAAG 3'  

P1P2_TRP1_F54 90 5’ TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC 
GTGGCAAGAATACCAAGAGTTCCTCGGTTTGCCAGTTATTAAAAGACTCGTATT 3’ 

 

P1P2_ADE2_F54 90 5’ TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC 
CGCTTTCATGGCCCTACAACATGAGCCACCATTGCCTATTTGGTCCTTGGATAA 3’ 
 

P1P2_ADE2_F40 76 5’ TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC 
ATGGCCCTACAACATGAGCCACCATTGCCTATTTGGTCCT 3’ 
 

P1P2_LEU2_F54 90 5’ TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC 
CGCTTTCATGGCCCTACAACATGAGCCACCATTGCCTATTTGGTCCTTGGATAA 3’ 

 

P1P2_LEU2_F40 76 5’ TTCTGCCCGCCTCCTTCCGACGAGATAGGCGGACAC ATGGCCCTACAACATGAGCCACCATTGCCTATTTGGTCCT 3’ 
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4.4 RESULTS 

4.4.1 Bulk affinity analysis and selection 

Serial dilutions of the aptamer library were made and the individual free DNA run time 

was determined (Figure 4.1). Next, we proceeded to combine I-SceI and DNA for a bulk 

affinity analysis (Figure 4.2). The bulk affinity analysis allowed us to visualize peaks 

corresponding to I-SceI DNA complexes. Knowing the migration times of these 

complexes along with the free DNA alone, a collection window could be determined 

stretching from the beginning of the first complex peak to the end of the last complex 

peak. In order to increase the stringency of the selection, the concentration of I-SceI was 

greatly reduced compared to the bulk affinity for the first round of selection. The amount 

of DNA used in the first round of selection was increased compared to the bulk affinity 

assay in order to increase the number of binding sequences. Despite the reduction in I-

SceI concentration, complexes were still observed for the first round of selection (Figure 

4.3). The fraction containing the aptamer-I-SceI complexes was collected and without 

amplification was used in a subsequent round of selection. In the second round of 

selection, the ratio of DNA forming a complex compared to free DNA was much higher 

than in the first round. Selection proceeded to a third round, but no complexes were 

observed probably due to the very low amount of total DNA.  
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Figure 4.2 DNA library run without protein. The random ssDNA library (1 µM) was 

run alone, in the absence of I-SceI. As can be seen the free DNA begins to appear at 

approximately 10 minutes. There are no complexes prior to 10 minutes. 
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Figure 4.3 Bulk affinity assay for I-SceI aptamer selection. A bulk affinity assay was 

done with 1.5 µM I-SceI and 100 nM ssDNA aptamer library. The free DNA not bound 

to I-SceI has a run time of approximately 10 minutes. Prior to the free DNA peak there 

are several I-SceI DNA complexes that form. 
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Figure 4.4 Non-SELEX Round 1, 2, and 3. The first round of Non-SELEX ran with a 

low concentration of I-SceI (100 nM) and a large concentration (50 µM) of ssDNA 

library. Even in the first round of selection, I-SceI DNA complex peaks could be detected 

prior to the free DNA. The second round of selection was done using the complexes 

collected in the first round. As can be seen for round 2, the amount of total DNA 

drastically decreased but there was still a complex peak that formed. In the third round of 

selection the amount of total DNA was so low that no complex was detected. 
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4.4.2 Post-selection processing of aptamers 

The collected DNA from the second round of selection containing the DNA I-SceI 

complexes underwent qRT-PCR amplification using primers flanking the internal random 

sequence. The forward primer, P1, amplified the aptamer-containing strand of interest, 

while the reverse primer, P2, amplified the non-aptamer complementary strand. In a 

previous protocol to select DNA aptamers, it was shown that over-amplification of the 

random library leads to formation of non-specific products [12], therefore the random 

library was only amplified to ~50% of the maximum yield as measured by qRT-PCR. 

After qRT-PCR analysis revealed the optimum number of cycles to amplify the collected 

DNA, a regular PCR using more of the collected DNA was performed with unlabeled P1 

and P2 primers. TOPO blunt-end cloning was performed with the aptamer pool and 

colonies were selected by growth on LB-kanamycin plates. Forty-eight colonies were 

chosen and plasmid DNA was crudely extracted. An asymmetric PCR was used on the 

extracted DNA to predominantly amplify the potential aptamer strand. The P1 primer that 

amplified the potential aptamer strand was FAM-labeled so the potential aptamer could 

be analyzed using CE with LIF. Potential aptamers were run with I-SceI and the strongest 

binding aptamers were selected for sequencing.  

 

After sequencing, several candidate aptamers to I-SceI, called “I-SceI strong binders” 

were ordered and P32-labeled for further characterization using electrophoretic mobility 

shift assay (EMSA) gels. The binding conditions were modified from the CE 
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experiments. Of the candidate aptamers, three sequences were chosen for their ability to 

bind to I-SceI, namely I-SceI strong binder 4 (ISB4), I-SceI strong binder 7 (ISB7), I-SceI 

strong binder 10 (ISB10). Of these sequences, ISB7 showed the strongest binding 

through EMSA gels. These three sequences were then ordered as PAGE purified FAM-

labeled oligonucleotides and again underwent testing by CE with LIF. The binding 

affinities by CE were calculated to be ~3.16 µM for ISB7, ~52.49 µM for ISB4, and 

~5.83 µM for ISB10 by a method described previously(Berezovski and Krylov 2002). 

 

 

4.4.3 Characterization of I-SceI aptamers in yeast 

4.4.3.1TRP5 locus 

Oligonucleotides were ordered from Eurofins MWG Operon (Huntsville, AL) that 

contained the aptamer sequences from ISB4, ISB7, and ISB10 attached to the 5’ end of a 

DNA sequence containing 54 bases of homology to restore the disrupted TRP5 gene in 

yeast strains FRO-155 and FRO-526 described previously. The primer regions from the 

aptamer library were removed as they were not seen to influence binding (data not 

shown). In addition to the aptamer-containing oligonucleotides used to correct the TRP5 

gene a negative control not selected to bind to I-SceI was used. Due to the inability of the 

library primers P1 and P2 to bind I-SceI, these were used in place of the aptamer 

sequence in a new oligonucleotide, called P1P2, as the non-binding negative control. 
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Using each of the different oligonucleotides to repair the TRP5 gene it was shown that 

the ISB7 aptamer-containing oligonucleotide significantly increased the level of gene 

correction compared to the negative control P1P2 and the other aptamer-containing 

oligonucleotides ISB4 and ISB10 in the FRO-155 strain where the I-SceI gene was 

expressed and the I-SceI site was present at the target site. FRO-526, the strain that did 

not have the I-SceI site and also did not express the I-SceI gene, showed no significant 

difference between the ISB7 aptamer-containing oligonucleotide and the negative control 

P1P2 or the other aptamer-containing oligonucleotides (ISB4 and ISB10). Also, because 

there was no DNA double-stranded break (DSB) in FRO-526 the level of gene correction 

was reduced several orders of magnitude. As an additional control, the strain containing 

the I-SceI gene and site was grown and plated to glucose media. Without galactose for the 

expression of I-SceI, there was no significant difference between the ISB7 aptamer-

containing oligonucleotide and the other oligonucleotides. 

4.4.3.2 Aptamer testing at various loci in yeast 

After the results from the TRP5 locus, testing was done at several other loci to verify this 

was not a locus specific event. In these new loci the ISB4 and ISB10 aptamers were not 

used since they did not show an increase in gene targeting at the TRP5 locus. At each of 

these loci the GSH cassette containing the I-SceI gene under the inducible GAL1-10 

promoter along with the hygromycin resistance gene hyg were integrated generating 

auxotrophs for the respective amino acid. For the BY4742 strain background, the ADE2 

and LEU2 loci were chosen, and for the 55R5-3C strain background, the TRP1, ADE2, 

and LEU2 loci were chosen. For each locus two strains were made in which one had the 
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integrated GSH cassette with the 18-bp I-SceI recognition site and one strain that had the 

cassette but did not have the I-SceI site. At every loci tested there was a significant 

increase in gene targeting with the ISB7 aptamer-containing oligonucleotide compared to 

the negative control P1P2 oligonucleotide when I-SceI was induced by galactose and the 

I-SceI site was present (Figure 4.4). There was an approximately 3-fold increase for the 

ADE2 locus, approximately 2-fold increase for the LEU2 locus, and approximately 2.5-

fold for the TRP1 locus. However, in the strains lacking the I-SceI site there was no 

significant difference between the oligonucleotides (Figure 4.5). Likewise, when the 

strains containing the I-SceI site were grown and plated to glucose-containing media 

there was no significant difference between the oligonucleotides (Figure 4.5).  

Seeing the increase in gene targeting using the ISB7 aptamer-containing oligonucleotide, 

it was postulated that by shortening the region of homology we might see an even greater 

effect from the aptamer. While shorter homology was expected to reduce the overall 

repair, it was expected that the fold-difference between the aptamer-containing 

oligonucleotide would increase relative to the non-binding oligonucleotide control. Due 

to the lower recombination level in the 55R5-3C strain background, the shorter 

oligonucleotides were only used in the BY4742 derived strains. By shortening the 

homology region of the oligonucleotide from fifty bases to forty bases, the level of repair 

decreased dramatically as expected (Figure 4.6). As we expected, the level of repair at 

the TRP5 locus using the shorter oligonucleotides showed a greater fold difference 

between the ISB7 aptamer-containing oligonucleotide and the P1P2 non-selected 

negative control (from six-fold to fifteen-fold). Unexpectedly, this was not the case for 

the ADE2 or the LEU2 loci where the shorter oligonucleotides were not significantly 
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different (Figure 4.6).  
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Figure 4.5 Yeast transformation results. The strains containing the I-SceI break site as 

well as the I-SceI gene under the GAL1-10 promoter grown on galactose media. As can 

be seen, for every locus tested there was a significant increase in gene targeting using the 

aptamer-containing oligonucleotides compared to using the non-selected control. A) The 

strains from the BY4742 background. B) The strains from the 55R5-3C background. 
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Figure 4.6 Yeast transformation results. The strains with the I-SceI gene under the 

GAL1-10 promoter but lacking the I-SceI site (No Site). In addition, the strains with the I-

SceI break site were grown on glucose media, but since the I-SceI gene is under the 

galactose-inducible promoter it should not be expressed under this condition. As can be 

seen, for every locus tested there was no significant difference in gene targeting using the 

aptamer-containing oligonucleotides compared to using the non-selected control. A) The 

strains from the BY4742 background. B) The strains from the 55R5-3C background (no 

ADE+ colonies were observed for the strain with or without the break site on glucose) 

 

A 
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Figure 4.7 Yeast transformation with shorter oligonucleotides. The strains with the I-

SceI gene under the GAL1-10 promoter and the I-SceI site (all BY4742 strain 

background) were grown on galactose, inducing expression of I-SceI. In addition to using 

aptamer or non-selected control containing oligonucleotides with 54 bases of homology, 

shown before to stimulate gene targeting, shorter oligonucleotides with only 40 bases of 

homology were used. As expected, the level of overall repair decreased with the shorter 

oligonucleotides because they had less homology. The shorter TRP5 oligonucleotides 

showed a greater fold difference between the aptamer containing oligonucleotide and the 

non-selected control oligonucleotide. Unexpectedly, the shorter ADE2 and LEU2 

repairing oligonucleotides both showed no significant difference between the aptamer 

and the non-selected control containing oligonucleotides. 
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Figure 4.8 Yeast transformation with shorter oligonucleotides structural 

explanation. The shorter TRP5 oligonucleotides showed a greater fold difference 

between the aptamer containing oligonucleotide and the non-selected control 

oligonucleotide as expected. Unexpectedly, the shorter ADE2 and LEU2 repairing 

oligonucleotides both showed no significant difference between the aptamer and the non-

selected control containing oligonucleotides. Looking at the predicted secondary 

structures of the shorter aptamer containing oligonucleotides in the 5’ aptamer region the 

shorter TRP5 repairing oligonucleotide maintains the aptamer hairpin structure followed 
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by several bases not predicted to form any secondary structure (similar to the longer 

ISB7_TRP_F54 oligonucleotide). However, for the shorter ADE2 oligonucleotide the 

proximity of the aptamer hairpin to a subsequent hairpin increases compared to the longer 

oligonucleotide which contained several single-stranded bases between the aptamer 

hairpin and the next hairpin. Lastly, while the LEU2 oligonucleotide overall structure 

does not seem to change much, the size of the internal loops of the hairpin following the 

aptamer hairpin decreases significantly compared to the longer oligonucleotide. The 

proximity of the subsequent hairpin following the aptamer hairpin for the LEU2 

oligonucleotide may explain why the aptamer at this locus, while significantly different 

from the non-selected control, did not show a very high fold difference. 
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A possible explanation for the unexpected results at the ADE2 and LEU2 loci with shorter 

oligonucleotides could be that by shortening the oligonucleotides the secondary structure 

of the oligonucleotide was changed and the formation of the aptamer was no longer 

energetically favorable. To investigate this possibility, secondary structure prediction 

software mFold was used on the oligonucleotides 

(http://mfold.rna.albany.edu/?q=mfold/dna-folding-form). The lowest free-energy (most 

stable) structures predicted for the ISB7 aptamer-containing oligonucleotides with 54-

base homology regions all formed the suspected aptamer hairpin near the 5’ end of the 

oligonucleotide (Figure 4.8). It was interesting to note, however, that while the TRP5 and 

ADE2 oligonucleotides had several bases without secondary structure following the 

aptamer hairpin the oligonucleotide to repair LEU2 contained only a single base between 

the aptamer hairpin and another stem-loop structure. This might explain why the LEU2 

oligonucleotide with the 54-base homology region, while still capable of increasing gene 

targeting, showed the least fold-difference in repair and was not as significantly different 

from the nonbinding control as either the ADE2 or TRP5 oligonucleotides. When 

analyzing the secondary structures of the ISB7 aptamer-containing oligonucleotides with 

40-base homology regions, there was a noticeable change in secondary structure for each 

of the oligonucleotides (Figure 4.8). However, for the shorter TRP5 oligonucleotide, the 

aptamer hairpin was still followed by several bases not predicted to form any secondary 

structure and hence not likely to interfere with the aptamer binding. This is consistent 

with the results seen in vivo. The ADE2 oligonucleotide with 54 bases of homology 

compared to the ADE2 oligonucleotide with 40 bases changed secondary structure such 

that the number of bases after the aptamer hairpin not forming a secondary structure went 
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from six to one, bringing another stem-loop structure closer to the aptamer hairpin, 

possibly interfering with binding. The LEU2 oligonucleotide with 40 bases of homology 

had a similar structure to the LEU2 oligonucleotide with 54 bases of homology, except 

that the size of the internal loops for the stem-loop structure close to the aptamer hairpin 

were reduced. The reduction in the size of the loops may have altered the binding 

capabilities of the aptamer. The potentially altered binding of the LEU2 and ADE2 40-

base homology aptamer-containing oligonucleotides would explain the reduction in gene 

targeting with these oligonucleotides and highlight a disadvantage to our system. 

Although the aptamer stimulates gene targeting, the secondary structure of the aptamer 

must be taken into account when designing oligonucleotides for repair. 

 

4.4.4 Characterization of I-SceI aptamers in human cells 

After testing the ISB7 aptamer in yeast, we also tested the aptamer in human embryonic 

kidney (HEK-293) cells. We have a chromosomal assay for detecting repair of GFP in a 

monoclonal cell line derived from HEK-293 known as 658-D, described previously 

(Porteus and Baltimore 2003). The 54 bp of homology aptamer containing 

oligonucleotide generated to repair this locus was not predicted to have secondary 

structure in which the aptamer hairpin would form (Figure 4.9). Without the aptamer 

formation, it was not expected that there would be an increase in gene targeting. In the 

658-D cell line, as expected we did not see an increase in gene correction when 

transfecting an ISB7 aptamer-containing oligonucleotide and a plasmid for I-SceI 

expression (Figure 4.10). Additionally, the assay was performed with a plasmid 
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containing the same disrupted GFP sequence used to generate the 658-D cell line in 

HEK-293 cells along with the expression vector and the ISB7 containing oligonucleotide 

or the non-binding control. Again, there was no increase in gene correction by the ISB7 

containing oligonucleotide over the non-binding control and again there was a significant 

decrease in repair.  Interestingly there was a significant increase in repair with the P1P2 

containing oligonucleotide over the ISB7 containing oligonucleotide.  An explanation for 

this increase could be that the secondary structure predicted for the ISB7 containing 

oligonucelotide is largely dsDNA (Figure 4.9), whereas the P1P2 containing 

oligonucleotide is mostly ssDNA, which was shown to be preferential for DSB repair in 

the HEK-293 and 658-D cell lines. 
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Figure 4.9 mFold structures for the GFP locus  In both the HEK-293 and the 658-D 

cell line there is a significant decrease in repair by the ISB7 containing oligonucleotide 

compared to the nonselected control P1P2 containing oligonucleotide.  Based upon the 

mFold predicted secondary structure it can be seen that the aptamer hairpin does not form 

for the ISB7 containing oligonucleotide.  Also, the P1P2 containing oligonucleotide is 

mostly single-stranded DNA, which was shown previously to be a better substrate for 

repair in these cell lines. 
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Figure 4.9 Testing of the ISB7 aptamer at the GFP locus in HEK-293 and 658-D 

cells. The GFP_F80 oligonucleotide does not contain the aptamer sequence or the non-

selected control but is used as a positive control because it has 80 bases of homology (40 

to either side of the DSB) to GFP. A) In the 658-D cell line there is a significant decrease 

in repair by the ISB7 containing oligonucleotide compared to the nonselected control 

P1P2 containing oligonucleotide which is also true for B) the plasmid based assay. C) 

Represents data from hand counting the number of GFP+ cells in each well and this data 

corroborates the flow cytometry data. The level of repair with the shorter 

oligonucleotides was not significantly different from the background. 

A 

B C 
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In addition to testing at the GFP locus, the ISB7 aptamer was tested using a plasmid 

based assay to repair the red fluorescent protein, DsRed2. The assay consisted of 

transfecting a plasmid containing the DsRed2 gene disrupted with the I-SceI recognition 

site and two STOP codons along with the I-SceI expression vector and the 

oligonucleotides for repair of DsRed2. Unlike for the GFP locus, the secondary structure 

predicted for each of the ISB7 containing oligonucleotides used to repair DsRed2 

contained the aptamer hairpin. Using oligonucleotides containing the ISB7 aptamer and 

54 bases of homology to DsRed2, there was a significant increase in repair over the non-

binding control. As in yeast, oligonucleotides with shorter homology regions were 

designed and tested, this time using oligonucleotides with 40 bases of homology and 30 

bases of homology. Both the ISB7 aptamer containing oligonucleotides with 40 and 30 

bases of homology were predicted to form the aptamer hairpin. Similar to our results at 

the TRP5 locus in yeast, the shorter oligonucleotides increased repair relative to the 

corresponding shorter non-binding control sequence as measured by flow cytometry 

(Figure 4.10) beyond the difference seen with the longer oligonucleotide. In the case of 

the shortest oligonucleotides, those with only 30 bases of homology to DsRed2, the flow 

cytometer was unable to accurately detect the level of repair since it was too close to 

background levels. Hand counts of the RFP+ cells in each well were compared to the 

readings by flow cytometry. For the oligonucleotides with 54 and 40 bases of homology, 

the hand counts and the readings by flow cytometry were in agreement, but for the 

shorter oligonucleotides with only 30 bases of homology, the hand counts did not agree 

with the flow cytometry readings which seemed to underreport the level of repair. Using 
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the hand counts for the ISB7 aptamer-containing oligonucleotide with 30 bases of 

homology to DsRed2, a fifteen-fold increase in repair relative to the nonbinding control 

was observed. 
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Figure 4.11 Testing of the ISB7 aptamer at the DsRed2 locus in HEK-293 cells. A) 

Flow cytometry analysis reveals a significant difference between the ISB7 aptamer 

containing oligonucleotides and the non-selected P1P2 control oligonucleotides. When 

the homology length is shortened from 54 bases to 40 there is a greater fold difference 

between the ISB7 and P1P2 containing oligonucleotides. For the oligonucleotides with 30 

bases of homology, while the fold difference between the ISB7 aptamer containing 

oligonucleotide and the non-selected P1P2 control containing oligonucleotide is greater 

than the oligonucleotides with 54 bases of homology, it is less than the oligonucleotides 

with 40 bases of homology. The flow cytometer seems to have reached its lower 

detection limit and may be over reporting the number of RFP+ cells in the controls, the 

P1P2_DsRed2_F30 oligonucleotide, and the NT_DsRed2_F40 oligonucleotide; hence it 

is underreporting the fold difference. B) Represents data from hand counting the number 

of RFP+ cells in each well and this data corroborates the flow cytometry data except for 

those oligonucleotides previously mentioned as being over reported. Based upon the hand 

counts, the fold difference is actually greatest with the shortest oligonucleotides as 

expected. 

 

 

A B 



 

140 

 

 

4.5 CONCLUSIONS 

The system described here takes advantage of the fact that a single DNA molecule can 

have multiple functions. By constructing a single DNA molecule to contain both an 

aptamer region as well as a region to repair a genomic locus we were able to tether 

homologous DNA to the site-specific endonuclease I-SceI. In every genomic locus tested 

we stimulated gene targeting when the I-SceI site was present along with expression of 

the I-SceI endonuclease.  

Although I-SceI was chosen, protein-assisted targeting in principle could be applied to 

many other proteins. Other site-specific endonucleases, including modular endonucleases 

such as ZFNs, TALENs, or Cas proteins should theoretically also provide stimulation of 

gene targeting similarly to I-SceI. I-SceI generates a DSB in a site-specific manner, but 

alternatively to a site-specific protein, protein-assisted targeting could be used for other 

components of DSB repair that are not site-specific. For example, an aptamer to a general 

HR repair protein, such as Rad51, might provide an increase to gene targeting as well. 

Conversely, the mild but statistically significant stimulation of gene targeting even in the 

absence of Rad52 (data not shown) might mean that protein-assisted targeting could be 

used in an HR-independent fashion. The work described here represents a novel proof-of-

principle study where we show that aptamers can be used as tools for gene targeting. 
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CHAPTER 5 

 

GENERAL CONCLUSIONS 

 

 

5.1 MAJOR FINDINGS 

 Selection of BSA aptamers using CE-SELEX without LIF 

 Selection of I-SceI aptamers using Non-SELEX with LIF 

 in vivo testing of I-SceI aptamer ISB7 reveals stimulation of gene targeting in 

both yeast and human cells 

 Generation of a novel system to increase gene targeting 

 

5.2 CONCLUSIONS 

 

Gene therapy has recently been gaining attention again after safety concerns in the early 

2000s slowed, and in some cases halted, its progress due to the death of a clinical trial 

subject and the development of a leukemia-like disorder in several patients (Thomas, 

Ehrhardt et al. 2003). One of the major problems of gene augmentation therapy, the most 

commonly taken approach to gene therapy, is the possibility of insertional mutagenesis of 

the transgene. Random integration of foreign genetic material is the normal outcome for 

exogenously introduced DNA, but it presents a risk for any gene therapy patient. 

   



 

142 

 

In addition to the safety problem random integration poses, gene augmentation is also 

limited from a researcher’s perspective. In order to study the function of a gene, addition 

of another copy of that gene will provide little or no information. Gene targeting is 

essential for research because it allows for the deletion and/or modification of 

endogenous genes, which cannot be achieved with random integration. 

 

As described in the introduction, there are currently many different strategies for 

increasing gene targeting, but all of these strategies are harmful in some way. Increase of 

gene targeting by a DSB can introduce mutations in cells that do not undergo 

homologous recombination. Additionally, DSBs, generated by homing endonucleases 

(Petek, Russell et al. 2010), ZFNs(Pattanayak, Ramirez et al. 2011) (Gabriel, Lombardo 

et al. 2011), or TALENs (Hockemeyer, Wang et al. 2011) all have off-target cleavage 

which presents a safety concern for mutagenesis beyond the targeted site. Increase of 

gene targeting by over-expression of recombination proteins from HR proficient 

organisms could also lead to unwanted recombination elsewhere in the genome (Di 

Primio, Galli et al. 2005). In the same way, the increase of gene targeting by knocking 

down or knocking out expression of key NHEJ proteins could lead to increased 

recombination at unwanted sequences. Also, knocking down or knocking out key NHEJ 

proteins, while increasing gene targeting, limits the cell’s ability to repair DSBs which in 

most cases leads to a hypersensitivity to DNA damage (Adachi, Suzuki et al. 2003). A 

third reason that knocking down or knocking out classical NHEJ proteins could be 

harmful is that this will then cause an increase in alternative end-joining, also known as 
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mutagenic end-joining or micro-homology mediated end-joining (MMEJ), which would 

increase mutations on a genome-wide scale (Bindra, Goglia et al. 2013). 

 

In order to address the need for a safer, more effective means to increase gene targeting 

we began this project of protein-assisted targeting. There were two parallel strategies 

employed, the use of two proteins capable of binding to DNA, specifically the GAL4-

DBD and the I-SceI endonuclease, as well as the strategy using a DNA aptamer to I-SceI. 

The GAL4-DBD I-SceI fusion protein was unable to be expressed which limits our 

understanding of the efficacy of protein-assisted targeting using this strategy. The DNA 

aptamer to I-SceI strategy relied on the successful selection of a DNA sequence capable 

of binding to I-SceI. After several attempts with traditional SELEX (see APPENDIX A) 

we were successful in generating a high affinity aptamer to I-SceI using a modification of 

capillary electrophoresis (CE)-SELEX. Use of this aptamer as part of a longer DNA 

molecule that contained homology to a target sequence stimulated gene targeting in every 

locus tested when the aptamer secondary structure was able to form. In yeast cells, the 

aptamer stimulated repair up to 15-fold over the non-binding control and in mammalian 

cells, the aptamer stimulated gene targeting up to 16-fold over the control. The system we 

have developed represents an effective way to increase gene targeting. 

 

Protein-assisted targeting provides a strategy that increases gene targeting, in a way that 

is not expected to increase mutations and produce damage for the cell. The binding of our 
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targeting DNA to a protein does not cause any damage to the endogenous DNA targeted 

and should not increase recombination outside of the targeted area. For the purposes of 

gene targeting, it benefits us to reduce NHEJ (Iiizumi, Kurosawa et al. 2008) (Bertolini, 

Bertolini et al. 2009), but it is clear that doing so on a genome-wide scale is harmful to 

the cell. Our strategy deals with the problems associated with NHEJ while at the same 

time not affecting NHEJ outside of the targeted gene. Using our system random 

integration should decrease because the exogenously introduced DNA, when bound to I-

SceI, is now specifically targeted to the I-SceI site while at the same time the DNA 

attached to the protein may be sterically hindered to randomly integrate. Also, by 

bringing the targeting DNA into close proximity of the DSB, NHEJ relative to HR may 

decrease. 

 

In addition to the efficacy of our system at increasing gene targeting while 

simultaneously decreasing random integration, the uniqueness of the concept provides 

benefits of its own. Protein-assisted targeting uses DNA aptamers, which themselves are 

a relatively new discovery with aptamer selection only being done since the early 1990s 

(Tuerk and Gold 1990) (Ellington and Szostak 1990). Aptamers have been used as 

biosensors (Cheng, Ge et al. 2007) (Stojanovic and Kolpashchikov 2004) and as 

therapeutics (Barbas, Mi et al. 2010) but their use can be simplified to binding and 

fluorescing (sensor) or binding and inhibiting (therapy) or binding and being endocytosed 

(therapy). Our aptamer for I-SceI binds and is targeted to a specific DNA site. This 

represents not only a novel gene targeting strategy but also a novel use of an aptamer. 
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The novelty and uniqueness of our system lays the foundation for other systems to come. 

By showing increased gene targeting with our I-SceI aptamer, others could select 

aptamers for other site-specific endonucleases including recently popular modular 

endonucleases such as ZFNs, TALENs, and CRSPR systems. The potential aptamer 

targets are not limited to endonucleases but theoretically any protein involved in 

recombination. Finally, perhaps the most exciting aspect of the novelty of our system is 

that because it is stimulating gene targeting by a different means than the other systems 

described, our protein-assisted targeting strategy can be used in conjunction with these 

systems. We have shown that our system increases gene targeting in human cells with a 

DSB, but it is possible that gene targeting can be stimulated even further with a DSB and 

transient knock-down of NHEJ or overexpression of HR proteins from HR proficient 

organisms.  

 

A PubMed search of “DNA aptamer” or “RNA aptamer” in the title reveals only 374 

papers. Assuming that not all of these aptamers are for unique targets, the number of 

aptamers is very low. There could be several reasons for the lack of aptamers discovered, 

but probably the largest hurdle would be the selection process. The difficulty of selection 

poses a deterrent to many researchers attempting to select for an aptamer. Another likely 

reason why the number of aptamers is low is because there are several well-characterized 

aptamers (to thrombin, PMSA, theophylline, etc.) that are used in a variety of 

applications and it is “safer” to study something well-characterized and use it instead of 

investing much time and energy to risk not even selecting strong-binding aptamers. Our 

selection of a DNA aptamer to I-SceI itself is important because it represents a new class 
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of aptamer targets, namely DNA binding proteins. Not only did we select a new kind of 

aptamer, we also used this aptamer to affect a functional change in vivo using our protein-

assisted targeting system. The protein-assisted targeting system we have developed has 

introduced a new area of aptamer-based research. Our system can be used as a model to 

other researchers interested in using aptamers to stimulate gene targeting. 

 

5.3 FUTURE DIRECTIONS 

 

The system developed here demonstrates a proof-of-principle for the concept of protein-

assisted targeting, and based upon this initial work further studies to elucidate, validate, 

and improve the system will logically follow. For example, there is the limitation we 

found with the aptamer system whereby different single-stranded homology regions may 

disrupt the aptamer region’s secondary structure to inhibit binding. To address the 

question of aptamer modularity in terms of different homology regions, there are several 

potential directions. Perhaps the most straightforward solution would be to anneal the 

homology region to its complementary sequence, such that the aptamer region would 

exist as a 5’ single-stranded tail to a mostly double-stranded oligonucleotide. This would 

eliminate annealing between the aptamer region and the homology region to form a non-

aptameric secondary structure. This strategy would be effective in systems where dsDNA 

is favorable to ssDNA, but unfavorable for systems where ssDNA is favored as a repair 

substrate. A second possibility is that a linker region could be designed between the 

aptamer and the homology regions. Several linker regions could be envisioned, the 

obvious nucleic acid linker, with sequence unlikely to be bound by either the aptamer or 
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the homology region, or other linkers such as a sulfide linker (Chu, Twu et al. 2006) or a 

carbon linker (Zhou, Neff et al. 2013)between the two nucleic acids. 

   

There are several potential ways to increase the efficiency of our system from the 

standpoint of the DNA targeting molecule. Oligonucleotide stability, which could be a 

limitation to gene correction, could be enhanced by changing the chemistry of the 

oligonucleotides. Oligonucleotide modification (such as the use of phosphothioate 

linkages, addition of a 5’ cap, 3’ thiophosphate, etc.) could improve the stability of the 

oligonucleotides which could improve gene targeting frequencies. Another way to bolster 

the gene targeting efficiency of the system would be to use purified oligonucleotides 

instead of the non-purified oligonucleotides used in our studies. Non-purified 100-mer 

oligonucleotides synthesized at a coupling efficiency of 99.5% will contain only 60% 

full-length product, with the other 40% being truncated oligonucleotides (Stafford and 

Brun 2007) (truncated at the 5’ end of the oligonucleotide, which in our system would be 

the aptamer region). Preliminary data suggests that use of PAGE purified 

oligonucelotides does increase the level of repair of the aptamer oligonucleotide as 

compared to the control (data not shown). Additionally, the aptamer itself could be 

improved for enhanced binding to I-SceI. Although the aptamer was selected from a large 

pool of oligonucleotides, only ~10
14

 molecules were used in the selection process, out of 

4
36

 ~ 5*10
20

 potential sequences, meaning that less than 1 sequence for every 5 million 

possible sequences was tested. This raises the possibility that the strongest binder to I-

SceI may not yet be selected. Assuming the aptamer binding affinity could be improved; 
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modifications to the ISB7 aptamer sequence might lead to a further increase in gene 

targeting. 

 

In addition to improvements that could be made to the oligonucleotide sequence of the 

aptamer, verification of the binding could be done by altering the protein at the site of 

aptamer binding. Electrostatic mapping of the I-SceI protein, along with analysis of the I-

SceI structure, could potentially reveal epitopes of the DNA aptamer ISB7. Mutagenesis 

of these epitopes would lead to a change in the binding affinity of the aptamer and thus 

confirm the binding site of our ISB7 aptamer. Although there are several different 

improvements that could be made to the current aptamer for I-SceI, as stated previously a 

more modular system could be achieved using a different aptamer, to a designer 

endonuclease such as a ZFN or TALEN. Aptamer technology is constantly evolving and 

hopefully will continue to be a factor in not only biochemistry but also in the field of 

molecular biology. The system we developed here will act as the foundation for future 

studies to come. 
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APPENDIX A 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 5 

A.1 SELEX procedure using magnetic beads  

 

Preliminary Work 

1. Design the oligo (our oligo has 20 bp primers on either end and a 50 bp variable 

NNNNNN region) and order it PAGE purified 

2. Order the magnetic beads that will bind to the protein (for our purpose we are 

using carboxyl terminated magnetic beads from Bangs Laboratory BM570 that come in a 

kit BP611) 

3. Follow the procedure for protein coupling from Bangs Laboratory 

4. Make the binding buffer by adding NaPO4 0.1M, MgCl2 0.01M, and NaCl 0.01M 

into Tris 0.01M at pH 8 bringing it to a final pH of 7.4 

 

 

Actual Procedure 

5. Starting with 10nmol of purified oligo, place in PCR machine and denature DNA 

at 95C for 5 minutes to eliminate any double stranded DNA 

6. Put the DNA on ice for 10 minutes 

7. Wash the protein and beads (which should have coupled) 3 or more times with the 

tris binding buffer to eliminate any leftover storage buffer. Aspirate (remove with pipette) 

the supernatant (liquid) each time after washing and vortexing. 

8. Continue until there is no suspension after vortexing (clear buffer only) 

9. Mix the denatured DNA from step 6 with the beads at 37C and shake for 1 hour 
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10. Aspirate unbound DNA into a labeled Eppendorf tube after using the magnet to 

hold the beads in place 

11. Wash the bound oligo and beads (coupled with the protein) with 100 microliters 

of binding buffer 

12. Remove unbound oligo and repeat 11 two more times 

13. Add 100 microliters of binding buffer and then heat inside the PCR machine at 

95C for 10 minutes 

14. Transfer this supernatant into a tube labeled “bound oligo” 

15. Precipitate DNA with ethanol (100%) at -80C 

16. Leave at -80C for 30 minutes 

17. Centrifuge at MAX for 10 minutes 

18. Aspirate the ethanol, leaving the pellet 

19. Use 95% ethanol to wash (use pipette to wash) 

20. Vortex the pellet with the 95% ethanol 

21. Mash the pellet 

22. Vortex again 

23. Centrifuge at MAX for 5 minutes 

24. Vortex and mash until you have a good pellet 

25. Aspirate the ethanol 

26. Dry in SpeedVac for 30 minutes 

27. Resuspend the pellet in 50 microliters of sterile water 

28. Vortex H20 and the pellet 

29. Mash the pellet 

30. Vortex 

31. Perform PCR using 10 microliters of the pellet/H2O 
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1
st
 PCR 

32. Add 1 microliter of Roche Taq polymerase 

5 microliters of Mg+2 buffer (10X concentrated) 

0.5 microliters of 50 mM DNTPs 

0.5 microliters of 100 mM P1 (the primer starting at the 5’ end of the oligo) 

0.5 microliters of 100 mM P2 

10 microliters of the pellet/H2O 

32.5 microliters of sterile H2O 

 

Total = 50 microliters 

 

Cycle = 1. 94C for 2 minutes 

2. 94C for 15 minutes 

3. 44C for 15 minutes 

4. 72C for 30 minutes 

Repeat steps 2-4 a total of 29 times 

 

 

2
nd

 PCR 

33. After the 1
st
 PCR, then perform an asymmetric PCR. Instead of using equal 

amounts of each primer, we use 100 times more of the forward primer so that we end up 

with only the sequences we want and not their reverse complement. 

 

 

 Add 1 microliter of Roche Taq polymerase 

5 microliters of Mg+2 buffer (10X concentrated) 

0.5 microliters of 50 mM DNTPs 
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0.5 microliters of 100 mM P1 (1 uM final) 

X microliters of 100 mM P2 (want 0.01 uM final) 

25 microliters of oligos from PCR1 

X microliters of sterile H2O (can’t know till P2 is calculated) 

Total = 50 microliters 

 

Cycle = 1. 94C for 2 minutes 

5. 94C for 15 minutes 

6. 44C for 15 minutes 

7. 72C for 30 minutes 

 

Repeat steps 2-4 a total of 10 times 

 

 

 

34. PCR product 2 is used (10 nmol) in the next round of SELEX 

35. Every five rounds of SELEX (starting with the first), use 250 uCi P32 labeled 

dATPs (1 uL) and then measure 

 

% = oligo bound /  unbound + bound + beads 

And at 80%, stop SELEX
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