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SUMMARY

First we study the space of complete Riemannian metrics of nonnegative curva-

ture on the sphere equipped with Ck+α topology. In this thesis, unless stated otherwise we

assume α ∈ [0, 1). When α = 0, it means the compact open Ck topology. We show the

space is homogenous for k ≥ 2 and α ∈ (0, 1). If k is infinite, we show that the space is

homeomorphic to the separable Hilbert space. We also prove for finite k and α ∈ (0, 1),

the space minus any compact subset is weakly contractible. We also study Diff+
0,1,∞(S 2),

the group of self-diffeomorphism of the sphere fixing the complex numbers 0, 1, ∞ and

isotopic to the identity. For any k + α, we show Diff+
0,1,∞(S 2) equipped with Ck+α topology

is not completely metrizable.

Then we study the space of complete Riemannian metrics of nonnegative curvature on

the plane equipped with the Ck+α topology. If k is infinite, we show that the space is home-

omorphic to the separable Hilbert space. For any finite k and α ∈ (0, 1), we prove that the

space minus a compact subset is weakly contractible. For any finite k + α, we show the

space cannot be made disconnected by removing a finite dimensional subset. A similar re-

sult holds for the associated moduli space. The proof combines properties of subharmonic

functions with results of infinite dimensional topology and dimension theory. A key step is

a characterization of the conformal factors that make the standard Euclidean metric on the

plane into a complete metric of nonnegative sectional curvature.
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CHAPTER I

INTRODUCTION

1.1 Introduction

The spaces of Riemannian metrics have been studied under various geometric assumptions

such as positive scalar [34, 35, 37], negative sectional [18, 19, 20, 21], positive Ricci [42],

and nonnegative sectional [10] curvatures.

In this thesis we study the spaces of Riemannian metrics under the assumption that the

metric is both complete and nonnegativey curved.

Let M be any m-dimensional manifold. LetRk+α
≥0 (M) denote the set of C∞ complete Rie-

mannian metrics on M of nonnegative sectional curvature equipped with the Ck+α topology,

where k is a finite integer or∞ and α ∈ [0, 1). When α = 0, it is the compact open Ck topol-

ogy. When α ∈ (0, 1), it is the Hölder Ck+α topology.

For the sphere, Earle-Schwartz [17] implies that φ depends in Ck+α (α ∈ (0, 1)) on the

Beltrami dilatation, i.e. φ depends in Ck+α (α ∈ (0, 1)) on w in the Beltrami equation

φw
z̄ = wφw

z . This easily implies that φ depends in Ck+α (α ∈ (0, 1)) on the metric g .

For the sphere, we consider a bijection

Π : L1 × Diff+
0,1,∞(S 2)→ R≥0(S 2),

where L1 = {u|u ∈ C∞(S 2),∆ug1 ≤ 1} and Diff+
0,1,∞(S 2) is the group of self-diffeomorphism

of the sphere fixing the complex numbers 0, 1,∞ and isotopic to the identity.

For the plane, we consider a bijection

Π : S1 × Diff+
0,1(R2)→ R≥0(R2).

1



In this thesis, we mainly study topology of Rk+α
≥0 (S 2), Rk+α

≥0 (R2) and how their topologi-

cal properties vary with k.

The cases of spheres and planes are considered in chapter 2 and chapter 3, respectively.

In chapter 2 we study topology of Rk+α
≥0 (S 2). Any metric on S 2 is conformal to the round

metric g1. So up to normalization a metric g ∈ R≥0(S 2) can be written uniquely as φ∗e2ug1

where φ is a C∞ self-diffeomorphism of S 2 that fixes 0, 1,∞, and u is a C∞ function on S 2.

The sectional curvature of g equals e−2u(1−4g1u), so nonnegatively curved means 4g1u 6 1.

Consider the bijection

Π : L1 × Diff+
0,1,∞(S 2)→ R≥0(S 2),

where L1 = {u|u ∈ C∞(S 2),∆ug1 ≤ 1} and Diff+
0,1,∞(S 2) is the group of self-diffeomorphism

of the sphere fixing the complex numbers 0, 1,∞ and isotopic to the identity.

To better understand the topology of Rk+α
≥0 (S 2) we prove the following

(1) The map Π is a homeomorphism if L1 is given the Ck+α topology and Diff+
0,1,∞(S 2)

is given the Ck+1+α topology, where k is nonnegative integer or ∞ and α ∈ (0, 1) [Theo-

rem 2.4.1].

We prove the following

(2) For k = ∞ the spaces Diff+
0,1,∞(S 2) and L1 are both homeomorphic to l2, so R∞

≥0(S 2) is

homeomorphic to l2 [Theorem 2.2.1].

We also study the metrizability of L1 with Ck+α topology and Rk+α
≥0 (S 2). We prove the fol-

lowing theorems.

(3) If k , ∞ and k ≥ 2, then L1 equipped with Ck+α topology is not completely metriz-

able [Theorem 2.3.8]. The space Rk+α
≥0 (S 2) is not completely metrizable since Diff+

0,1,∞(S 2)

equipped with Ck+1+α topology is not completely metrizable [Theorem 2.3.9, Theorem 2.3.10].

2



For finite k we discuss the homeomorphism type of L1 equipped with Ck+α topology.

One natural guess is that L1 equipped with Ck+α topology are of the same homeomorphism

type for different k’s.

A natural question is whether Rk+α
≥0 (S 2) is homogenous. In general, convex subset of

Banach spaces need not be homogenous and their homeomorphism classification is wide

open. We prove Rk+α
≥0 (S 2) is homogenous for k ≥ 2 as follows

(4) L1 equipped with Ck+α topology and Rk+α
≥0 (S 2) (α ∈ (0, 1), k ≥ 2) are homogenous

[Theorem 2.5.5].

The above theorem hinges on results of T. Banach [12] and the following lemmas:

(5) Let Kl denote the set {u ∈ C∞(S 2)| ∆g1u ≤ 1, ‖u‖k+1 ≤ l}, l is positive integer. Let K̄l

denote the closure of Kl in Ck+α topology. Then L1 ⊂ ∪l(K̄l ∩ L1) and K̄l ∩ L1 is closed in

Aff(L1).

(6) The set K̄l ∩ L1 is a Z-set in L1, i.e. every map f : Q → L1 of the Hilbert cube can be

uniformly approximated by maps whose range miss the set K̄l ∩ L1 [Theorem 2.5.4].

(7) Zero function is an internal point of L1, i.e. the set A = {a ∈ L1 : ∃ ε > 0 with −εa ∈ L1}

is equal to L1[Theorem 2.5.3].

In chapter 3, we study connectedness properties of Rk+α
≥0 (R2). The main theme is deciding

when two metrics can be deformed to each other through complete nonnegatively curved

metrics outside a given subset, and how large the space of such deformation is. The start-

ing point is a result of Blanc-Fiala [8] that any complete nonnegatively curved metric on

R2 is conformally equivalent to the standard Euclidean metric g0, i.e. isometric to e−2ug0

for some smooth function u, see [23] for generalizations.

The sectional curvature of e−2ug0 equals e2u∆u, where ∆ is the Euclidean Laplacian.

3



Thus e−2ug0 has nonnegative curvature if and only if u is subharmonic. Characterizing sub-

harmonic functions that correspond to complete metrics is not straightforward, and doing

so is the main objective of this chapter. A basic property [25] of a subharmonic function u

on R2 is that the limit

α(u) := lim
r→∞

M(r, u)
log r

,

exists in [0, ∞], where M(r, u) := sup{u(z) : |z| = r}. By Liouville’s theorem α(u) = 0 if

and only if u is constant, while any non constant harmonic function u satisfies α(u) = ∞

[Theorem 3.1.1].

Appealing to more delicate properties of subharmonic functions [28, 24] we prove the the-

orem:

(8) The metric e−2ug0 is complete if and only if α(u) ≤ 1 [Theorem 3.2.3].

(9) Rk+α
≥0 (R2) is metrizable and separable [Theorem 3.3.6].

(10) R∞
≥0(R2) is homeomorphic to l2, the separable Hilbert space.

Any metric conformally equivalent to the standard metric on R2 can be written uniquely

as φ∗e−2ug0 where g0 is the standard Euclidean metric, u is a smooth function, and φ ∈

Diff+
0,1(R2), the group of self-diffeomorphisms of the plane fixing the complex numbers 0,

1 and isotopic to the identity [Theorem 3.3.4].

Let Sα be the subset of C∞(R2) consisting of subharmonic functions with α(u) ≤ α.

The map (u, φ)→ φ∗e−2ug0 defines a bijection

Π : S1 × Diff+
0,1(R2)→ Rk+α

≥0 (R2).

We prove

(11) Π is a homeomorphism if S1 is given the Ck+α topology and Diff+
0,1(R2) is given the

Ck+1+α topology, where k is a positive integer or∞ and α ∈ (0, 1) [Theorem 3.3.5].

Unless stated otherwise we equip Sα , C∞(R2) and Diff+
0,1(R2) with the compact-open

C∞ topology. Theorem (11) stated above implies that Π is a homeomorphism for k = ∞.

4



By contrast, if k is finite, then Π is not a homeomorphism, because it factors as the com-

posite of Π : S1 × Diff+
0,1(R2)→ R∞

≥0(R2) and id: R∞
≥0(R2)→ Rk+α

≥0 (R2) and the latter map is

a continuous bijection that is clearly not a homeomorphism.

The C∞ topology makes C∞(R2) into a separable Fréchet space, see [Theorem 3.3.6]. More-

over, we show in [Theorem 3.3.2, Theorem 3.3.3] that the subset Sα of C∞(R2) is closed,

convex, and not locally compact when α , 0. Since S 0 consists of constants, it is homeo-

morphic to R.

What makes the continuous bijection Π useful is the fact that the parameter space S1 ×

Diff+
0,1(R2) is homeomorphic to l2.

Our first application demonstrates that any two metrics can be deformed to each other

in a variety of ways, while by passing a given countable set:

(12) If K is a countable subset of Rk+α
≥0 (R2) and X is a separable metrizable space, then for

any distinct points x1, x2 ∈ X and any distinct metrics g1, g2 in Rk+α
≥0 (R2) \ K there is an

embedding of X into Rk+α
≥0 (R2) \ K that takes x1, x2 to g1, g2, respectively [Theorem 3.4.1].

Some deformations in Rk+α
≥0 (R2) can be constructed explicitly (e.g. one could slightly

change the metric near a point where K > 0, or one could join two embedded convex

surfaces in R3 by the path of their convex combination). Yet it it unclear how such methods

could yield (12). Instead we use infinite dimensional topology. Then theorem (12) is an

easy consequence of the following facts:

• Like any continuous one-to-one map to a Hausdorff space, the map Π restricts to a

homeomorphism on every compact subset, e.g. the Hilbert cube.

• Every separable metrizable space embeds into the Hilbert cube [Theorem 3.4.2].

• The complement in l2 of the countable union of compact sets is homeomorphic to l2

[3], and hence contains an embedded Hilbert cube.

5



A topological space is continuum-connected if every two points lie in a continuum (a

compact connected space); thus a continuum-connected space is connected but not neces-

sarily path-connected.

By dimension we mean the covering dimension, see [16]. Note that for separable

metrizable spaces the covering dimension equals the small and the large inductive dimen-

sion, see [16, Theorem 1.1.7]. A topological space is finite dimensional if and only if it

embeds into a Euclidean space [16].

By the above theorem (12) any two metrics in Rk+α
≥0 lie in an embedded copy of Rn for

any n. By the fact that Rn cannot be separated by a subset of codimension ≥ 2, we prove

(13) The complement of every finite dimensional subset ofRk+α
≥0 (R2) is continuum-connected.

The complement of every closed finite dimensional subset of Rk+α
≥0 (R2) is path-connected

[Theorem 3.4.5].

LetMk+α
≥0 (R2) denote the moduli space of complete nonnegatively curved metrics, i.e.

the quotient space of Rk+α
≥0 (R2) by the Diff(R2)-action via pullback. The moduli space

Mk+α
≥0 (R2) is rather pathological, e.g. it is not a T1 space (in the proof of Π−1 is not contin-

uous we exhibit a non-flat metric g ∈ Rk+α
≥0 (R2) whose isometry lies in every neighborhood

of the isometry class of g0). Consider the map S1 → M
k+α
≥0 (R2) sending u to the isometry

class of e−2ug0. Its fibers lie in the orbits of a Conf(g0)-action of C∞(R2), so each fiber is

the union of countably many finite dimensional compact sets. By this fact, we prove

(14) The complement of a subset S ofMk+α
≥0 (R2) is path-connected if S is countable, or if

S is closed and finite dimensional [Theorem 3.5.2].

Besides these, we also discuss the contractibility of Rk+α
≥0 (S 2) minus a compact set K, and

Rk+α
≥0 (R2) minus a compact set K. We prove

(15) Rk+α
≥0 (S 2) \ K is weakly contractible for α ∈ (0, 1)[Theorem 2.7.2].

6



(16) Rk+α
≥0 (R2) \ K is weakly contractible for α ∈ (0, 1).

Theorems (11)-(14) may hold for spaces of nonnegatively curved spheres with similar

proof. We will investigate them in the future.
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CHAPTER II

NON NEGATIVELY CURVED SPHERES

2.1 Interpretation of Rk+α
≥0 (S 2)

Definition 2.1.1 A bilinear form on a vector space V is a bilinear map V × V → K, where

K is the field of scalars. Let Bil(V) denote the vector space of bilinear forms on V.

Let M be any manifold with dimension m. There is a bundle, associate with T M, over M

whose fiber over p ∈ M is Bil(TpM). Let Q denote the total space of the bundle. The base

space of the bundle is M. The fiber over p ∈ M is Bil(TpM).

We denote this fiber bundle as Bil(Rm)→ Q
π
−→ M, where π is the projection of the bundle.

Metric on S 2 is a smooth section of π : Q → M, a map f in C∞(M,Q) with f (p) ∈

Bil(TpM).

Let us think of R≥0(M) as a subset of C∞(M,Q). When α = 0, the space C∞(M,Q) sits

in Ck(M,Q), on which we can define the compact open Ck topology with finite k as follows.

The set Ck(M,Q) embeds as a closed subset into C0(M, Jk(M,Q)), where Jk(M,Q) is the

space of k-jets which is a C0 manifold. Then by defining compact open topology on

C0(M, Jk(M,Q)), we have the compact open Ck topology on C∞(M,Q). Based on the com-

pact open Ck topology on C∞(M,Q), we can define the C∞ topology on C∞(M,Q).

As a subset of C∞(M,Q), the set R≥0(M) can be equipped with Ck topology for any k. Let

Rk
≥0(M) denote R≥0(M) equipped with Ck topology, where k is nonnegative integer or∞.

In this chapter, we study the topology of Rk+α
≥0 (S 2), and how they vary with k.

8



2.2 R∞
≥0(S 2)

Theorem 2.2.1 R∞
≥0(S 2) is homeomorphic to l2.

Proof Denote l2 := {(xn) ∈ R∞ : Σnx2
n < ∞}, the separable Hilbert space.

Since l2 is homeomorphic to the countable infinite product of the open interval (0, 1), we

know l2× l2 is homeomorphic to l2. So it is sufficient to show Diff+
0,1,∞(S 2) and L1 equipped

with C∞ topology are both homeomorphic to l2.

According to [44], the space Diff+
0,1,∞(S 2) equipped with C∞ topology is homeomorphic to

l2. Note that L1 equipped with C∞ topology is closed convex subset of a separable Fréchet

space C∞(S 2), and hence it is also homeomorphic to l2 [14]. �
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2.3 L1 with Ck+α(k ≥ 2) topology andRk+α
≥0 (S 2) are not completely metriz-

able

In this section, assume k is finite. Let E denote the square [0, 1] × [0, 1]. Let S denote

the set C∞(E) equipped with Ck topology and Y denote the set C∞(S 2) equipped with Ck

topology.

We shall show later that there is a map H from S to Y , such that H is a homeomorphism

from S to H(S ) and H(S ) is a closed subset of Y . To prove Y is not completely metrizable,

it is sufficient to show H(S ) is not completely metrizable. Since complete metrizability is

preserved under homeomorphism, it is equivalent to show S is not completely metrizable.

Before explaining main ideas used in the proof, we introduce some definitions and no-

tations.

Definition 2.3.1 Given a topological space X, a subset A of X is meagre if it can be ex-

pressed as the union of countably many nowhere dense subsets of X. Dually, a comeagre

set is one whose complement is meagre, or equivalently, the intersection of countably many

sets with dense interiors.

A subset B of X is nowhere dense if there is no neighborhood on which B is dense.

The useful facts are any subset of a meagre set is meagre and the union of countably many

meagre sets is also meagre [36].

Our goal is to show S is not completely metrizable.

Let Dk = { f ∈ Ck(E) : for any i + j = k, ∂k f
∂xi∂y j is differentiable at (x, y)for some(x, y) ∈ E}.

For k = 0, let A0
n,m={ f ∈ C0(E): there is (x, y) ∈ E such that

|
f (t, y) − f (x, y)

t − x
| < n and |

f (x, s) − f (x, y)
s − y

| < n

if 0 < |x − t| < 1
m and 0 < |s − y| < 1

m }

For k > 0, let Ak
n,m={ f ∈ Ck(E): there is (x, y) ∈ E such that

10



|

∂

∂x
(
∂k−1 f
∂xi∂y j )(t, y) −

∂

∂x
(
∂k−1 f
∂xi∂y j )(x, y)

t − x
| 6 n and |

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, s) −

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, y)

s − y
| 6 n

for any i + j = k − 1 if 0 < |x − t| < 1
m and 0 < |s − y| < 1

m }.

Let X denote the space (Ck(E), Ck topology). Then our goal is an easy consequence of the

following claims proved later:

• From the fact Ak
n,m is closed and nowhere dense in X, we know Ak

n,m is meagre.

• The key point is S is meagre in X. And this is implied by the fact S ⊂ Dk ⊂ Ak =

∪ ∪ Ak
n,m

• Under the assumption S is completely metrizable, we show S c is meagre. Then the

space X = S ∪ S c is meagre, which is a contradiction with the fact X is a complete

metric space.

Now we show the fact Dk ⊂ Ak
n,m.

Lemma 2.3.2 If f (x, y) ∈ Dk, then f ∈ Ak
n,m for some n and m.

Proof Step1: for k = 0, suppose f (x, y) ∈ D0, i.e. f (x, y) is differentiable at (x, y), then

there exists n such that | fx(x, y)| < n and | fy(x, y)| < n. So there exists δ > 0 such that

|
f (t, y) − f (x, y)

t − x
| < n and |

f (x, s) − f (x, y)
s − y

| < n

if 0 < |t − x| < δ and 0 < |s − y| < δ.

Choose m such that 1
m < δ, then f ∈ A0

n,m according to the definition of A0
n,m.

Step2: then we can prove the lemma by induction.

Suppose it is true for k, we want to show it is true for k + 1. The proof is the same as step

1. �

Then we show Ak
n,m is meagre in X by the following two lemmas.

11



Lemma 2.3.3 Ak
n,m is closed for each k.

Proof Suppose fi is a Cauchy sequence in Ak
n,m and fi → f . We shall prove f ∈ Ak

n,m.

For each i there is (xi, yi) ∈ K such that

|

∂

∂x
(
∂k−1 f
∂xi∂y j )(t, y) −

∂

∂x
(
∂k−1 f
∂xi∂y j )(x, y)

t − x
| 6 n and |

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, s) −

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, y)

s − y
| 6 n

for any i + j = k − 1 if 0 < |x − t| < 1
m and 0 < |s − y| < 1

m .

Without loss of generality, we assume that (xi, yi) converges.

Suppose (xi, yi) converges to (x, y) and suppose 0 < |x− t| < 1
m and 0 < |s− y| < 1

m , then we

have

|

∂

∂x
(
∂k−1 f
∂xi∂y j )(t, y) −

∂

∂x
(
∂k−1 f
∂xi∂y j )(x, y)

t − x
| = limi→∞ |

∂

∂x
(
∂k−1 fi

∂xi∂y j )(t, yi) −
∂

∂x
(
∂k−1 f
∂xi∂y j )(xi, yi)

t − xi
| 6 n

Similarly, we can prove |

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, s) −

∂

∂y
(
∂k−1 f
∂xi∂y j )(x, y)

s − y
| 6 n. �

We know polynomials are dense in C∞(E) equipped with Ck topology. Then we use

polynomial to approximate functions in Ck(E) .

Lemma 2.3.4 For any f (x, y) ∈ Ck(E) and any ε > 0, there is an approximation P(x, y) ∈

Ck(E) s.t. ‖ f (x, y) − P(x, y)‖k < ε

The smoothness of P(x, y) implies that P(x, y) ∈ Ak
n,m. And this will be used to prove

Lemma 2.3.5 Ak
n,m is nowhere dense.

Proof Since Ak
n,m is closed, it is sufficient to show that Ak

n,m does not contain an open ball.

Consider the open ball Bε( f ). We must find g ∈ Bε( f ) with g < Ak
n,m. From the above

lemma, we can find P(x, y) ∈ Ck(E) such that || f − P||k < ε/2. Since P(x, y) is smooth and

E is compact, there is M ∈ N such that |∂
k+1P
∂k+1y | 6 M.
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There is a function φ(x, y) such that ∂kφ

∂ky 6 1, ||φ||k 6 q and ∂k+1φ

∂k+1y = ±t. Now we con-

struct the function φ(x, y). Choose t > 2q(M+n)
ε

and consider the partition of y: bi = i
t for

i = 0, 1, ..., t. Let φk be the piecewise linear function satisfying ∂kφ

∂ky = 0 if i is even and 1 if i

is odd. E is compact, so there is q such that ‖φ‖k ≤ q.

Then we construct the goal function g(x, y) as g(x, y) = P(x, y) + ε
2qφ(x, y).

Since || f − P||k < ε
2 and ||g − P||k < ε

2 , we know || f − g||k < ε.

We claim that g < Ak
n,m. Let (x, y) ∈ K. If P and φ are both kth-differentiable at (x, y),

then |∂
k+1g
∂k+1y (x, y)| = |∂

k+1P
∂k+1y (x, y) ± ε

2q t|.

Since |∂
k+1P
∂k+1y (x, y)| 6 M, we know |∂

k+1g
∂k+1y (x, y)| > n. So g < Ak

n,m and Bε( f ) ( Ak
n,m. �

From the above two lemmas, Ak
n,m is meagre in (Ck(E), Ck-topology). Let Ak = ∪∪Ak

n,m,

then Ak is meagre as well. Since D ⊆ A, D is meagre.

Then our goal is proved as follows.

Lemma 2.3.6 S is not completely metrizable.

Proof We consider S as a subspace of X. Suppose S is completely metrizable. We know

the fact that S is completely metrizable if and only if S is the intersection of countably

many open subsets. Then we consider it as the intersection of countable open sets, i.e.

S = ∩∞i=1Ui, where Ui is open set ∪ f∈S B 1
i
( f ). Here B 1

i
( f ) = {u| ‖u − f ‖k < 1

i }. Because S is

dense in X [26], the set Ui containing S is dense in X .

And we know the fact that a set is comeagre if it can be expressed as the intersection

of countably many sets with dense interior. We know Ui has dense interior. So S is comea-

gre. Thus the complement, i.e. S c, is meagre.
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S is a subset of meagre set Dk, So S is meagre. Then X = S ∪ S c as union set of two

meagre sets is meagre. This is a contradiction because a complete metric space is not

meagre. �

Theorem 2.3.7 Y is not completely metrizable.

Proof We already know S is not completely metrizable. We shall show there is a homeo-

morphism

H : S → Y

such that H(S ) is a closed subset of Y .

From [7], for any function f ∈ C∞(E), there is an extension g ∈ C∞(S 2) such that g|E = f .

Let H( f ) = g.

From the fact that any closed subset of a completely metrizable space is completely metriz-

able, it is sufficient to show H(S ) is not completely metrizable, which is a consequence of

H(S ) is homeomorphic to S and S is not completely metrizable.

Then Y is not completely metrizable as desired. �

Theorem 2.3.8 L1 equipped with finite Ck+α topology is not completely metrizable.

Proof For k ≥ 2, suppose L1 is completely metrizable. Then as a Gδ set in L1, the set

L̊1 = {u ∈ C∞ : ∆g1u ≤ 1} is not completely metrizable.

The set C∞ equipped with Ck+α topology has a cover by translates of L̊1. It is a fact that

a metrizable space covered by a family of completely metrizable open sets is completely

metrizable. So Y , i.e. C∞(S 2) equipped with Ck+α topology, is completely metrizable,

contradicting with the fact and above theorem [Theorem 2.3.7].

So L̊1 is not completely metrizable. �

Besides these, we show Rk+α
≥0 (S 2) is not completely metrizable by the following lemma.
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Theorem 2.3.9 Let l > 0 and s = ∞. If M is a manifold of positive dimension, then

Diff s,l+α(M) is not completely metrizable.

Proof Recall that complete metrizability is inherited by any Gδ (e.g. open or closed)

subset. Fix two closed n-disks D, ∆ in a coordinate chart of M with n > 0 and D ⊂

Int ∆. Identifying ∆ with a hemisphere in S n, and extending by the identity allows identify

Diffl+α,l+α(M, rel M \D) with a closed subset of Diffl+α,l+α(S n). This diffeomorphism group

is an open subset of Cl+α,l+α(S n, S n). The inclusion S n → Rn+1 identifies Cl+α,l+α(S n, S n)

with a closed subset of the Banach space Cl+α,l+α(S n,Rn+1). It follows that Diffl+α,l+α(M, rel M\

D) is completely metrizable.

An application of a Baire category theorem [39, Theorem 2.5.10] is that a subgroup of a

completely metrizable group is completely metrizable if and only if it it closed. Since s > l,

the subgroup Diff s,l+α(M, rel M \D) is not closed in Diffl+α,l+α(M, rel M \D), and therefore

is not completely metrizable.

Finally, since Diff s,l+α(M, rel M \D) is closed in Diff s,l+α(M), we conclude that Diff s,l+α(M)

is not completely metrizable. �

In our setting M = S 2, since we can choose D such that Diff s,l+α(S 2, S 2 \ D) is closed

in Diff s,l+α
0,1,∞(S 2), we conclude Diff s,l+α

0,1,∞(S 2) is not completely metrizable. So Diff∞,k+α
0,1,∞ (S 2) is

not completely metrizable. Since Diff∞,k+α
0,1,∞ (S 2) is a direct factor and hence a closed subset

of Rk+α
≥0 (S 2) we conclude:

Theorem 2.3.10 Rk+α
≥0 (S 2) is not completely metrizable for α ∈ (0, 1).

From the same proof and Theorem 3.3.5 , we have

Theorem 2.3.11 Rk+α
≥0 (R2) is not completely metrizable for α ∈ (0, 1).
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2.4 Beltrami equation on S 2

The Laplace-Beltrami operator is the divergence of the gradient: ∆ f = div grad f .

Suppose M is an oriented Riemannian manifold. In local coordinates,

divX = 1√
|g|
∂i(
√
|g|Xi)

where the Einstein notation is implied, so that the repeated index i is summed over. The

gradient of a scalar function f is the vector field grad f that may be defined through the

inner product < ·, · > on the manifold, as < grad f (x), vx >= d f (x)(vx) for all vectors vx an-

chored at point x in the tangent space TxM of the manifold at point x. In local coordinates,

one has (grad f )i = ∂i f = gi j∂ j f where gi j are the components of the inverse of the metric

tensor, so that gi jg jk = δi
k.

Combining the definitions of the gradient and divergence, the formula for the Laplace-

Beltrami operator ∆ applied to a scalar function f is , in local coordinates

∆ f = div grad f = 1√
|g|
∂i(
√
|g|gi j∂ j f )

We know any metric on S 2 is conformal to the round metric g1. So up to normalization a

metric g ∈ R∞>0(S 2) can be written uniquely as φ∗e2ug1 where φ is a C∞ self-diffeomorphism

of S 2 that fixes 0, 1, ∞, and u is a C∞ function on S 2. The sectional curvature of g equals

e−2u(1 − 4g1u), so nonnegatively curved means 4g1u 6 1.

By the result of Earle-Schatz, we get a homeomorphic parametrization of Rk+α
>0 (S 2) by

the product of the diffeomorphism group Diff+
0,1,∞(S 2) fixing 0, 1,∞ and the space L1 =

{u ∈ C∞(S 2)|4g1u 6 1}. The Ck+α topology on the space of metrics gives rise to the Ck+α

topology on Diff+
0,1,∞(S 2) and L1.

To state the useful theorem by Earle-Schatz, we first introduce some notations.

Let U = {z ∈ C; Imz > 0} and Mm+α(U) be the set of functions u ∈ Cm+α(U) such that

16



|µ(z)| < 1 for all z ∈ U. And Cm+α(U) consists of those functions onU having continuous

derivatives up to order k and such that the kth partial derivatives are Hölder continuous with

exponent α.

The theorem is stated as follows.

”For each k < 1, the map µ → f µ is a homeomorphism of the set of µ ∈ Mm+α(U) with

sup{|µ(z)| : z ∈ U} ≤ k < 1 onto its image in Cm+1+α(U,C). Here the integer m > 0 and the

number 0 < α < 1 are fixed but arbitrary.”

Theorem 2.4.1 Let k be a nonnegative integer or k = ∞ and α ∈ (0, 1). If L1 is given the

Ck+α topology and Diff+
0,1,∞(S 2) is given the Ck+1+α topology, then the map Π is a homeo-

morphism.

Proof The map Π(u, φ) = φ∗e2u1g1 is a bijection. We consider the two cover of S 2. One is

S 2 without the north pole. The other one is S 2 without the south pole. In each chart, if φ ∈

Diff+
0,1,∞(S 2) varies in the Ck+1+α topology, then its differential varies in the Ck+α topology,

which implies continuity of Π. It remains to show that Π−1 is continuous.

The stereographic projection E1 = S 2 \ north pole → C is conformal. The pulled back

metric ḡ on C is conformally equivalent to the original metric g on the chart. Consider a

compact subset K of E1.

Write ḡ = ψ∗e f g0 = e f◦ψψ∗g0 with ψ is an orientation-preserving diffeomorphism of C that

fixes 0 and 1. The Jacobian of ψ equals |ψz|
2 − |ψz̄|

2, and since ψ is orientation-preserving,

we get |ψz̄
ψz
| < 1. Computing

ψ∗g0

|ψz|
2 =

|dψ|2

|ψz|
2 = |dz +

ψz̄
ψz

dz̄|2

gives ḡ = e f◦ψ|ψz|
2|dz +

ψz̄
ψz

dz̄|2. Also we can write ḡ = Edx2 + 2Fdxdy + Gdy2 as

λ|dz + µdz̄|2, where
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λ = 1
4 (E + G + 2

√
EG − F2) and µ = E−G+2iF

4λ .

Positive definiteness of ḡ easily implies |µ| < 1 and λ > 0. We know E, F, G are of class

Ck+α, then the products EG and F2 are also of class Ck+α. So µ and λ depend in Ck+α on ḡ.

Comparing the two descriptions of ḡ we see that ψz̄ = µψz, that is, ψ solves the Beltrami

equation with dilatation µ. Futhermore, λ = e f◦ψ|ψz|
2 so that f = log(λ|ψz|

−2) ◦ ψ−1.

We are going to show that if a sequence of metrics ḡl = ψ∗l e flg0 = λl|dz + µldz̄|2, with

ψl ∈ Diff+
0,1(C), converges to g uniformly on compact subsets in the Ck+α topology, then

ψl, fl converge to ψ, f , respectively, in the same topology. A key ingredient is the smooth

dependence of ψ on µ established by Earle-Schatz.

To state their result let U, U′ be domains in S 2 whose boundaries are embedded circles,

and let a1, a2, a3 and a′1, a
′
2, a

′
3 be two triples of distinct points on ∂U and ∂U′ respectively.

Recall that given a C∞ function β : U → C with |β| ≤ k < 1 for some constant k, there is

a unique homeomorphism wβ : Ū → Ū′ that restricts to a diffeomorphism U → U′, maps

each ak to a′k, and solves the Beltrami equation with dilatation β, see e.g.[33, p.183, 194]

for existence and uniqueness and [41, Theorem 2.2 in Section 4 of Chapter 2] for regularity.

The continuity Theorem of Earle-Schatz states that varying β in the Ck+α topology re-

sults in varying wβ in Ck+1+α topology. Strictly speaking, Earle-Schatz assume that U, U′

equal the upper half plane, and the two triples of points equal 0, 1,∞, but the conformal

invariance of the Beltrami dilatation, together with the Riemann mapping theorem give the

same conclusion for any U, U′ as above.

The Continuity Theorem does not immediately apply in our setting, where U = C = U′

and |β| is not bounded way from 1. Instead we use the theorem locally, on an arbitrary

disk Bt = {z ∈ C : |z| < t}, but then the difficulty is that the domain ψ(Bt) may change as
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the diffeomorphism ψ varies with µ. Below we resolve the issue by adjusting ψ(Bt) via an

ambient diffeomorphism that is the identity on a given compact set. Exhausting C by such

compact sets yields the smooth dependence of ψ on µ.

Let K be a compact subset of C . Let g̃ = ψ̃∗e f̃ g0 = λ̃|dz + µ̃dz̄|2 be a metric that is

Ck+α close to g = ψ∗e f g0 = λ|dz + µdz̄|2 over K, where ψ̃, ψ ∈ Diff+
0,1(C). Choose s with

ψ̃(K) ⊂ Bs. The domains ψ(Br), r > 0 exhaust C, and so do the domains ψ̃(Br), which

allows us to find r with B̄s ⊂ ψ(Br) ∩ ψ̃(Br).

It is easy to construct an orientation-preserving self-diffeomorphism h of C that maps

ψ̃B̄r onto ψ(B̄r), equals the identity on Bs, and has the property that h ◦ ψ̃ and ψ agree at the

points −r, ir, r of ∂Br. (Indeed, ψ̃(∂Br), ψ(∂Br) are homotopic smooth simple closed curves

in the open annulus C − B̄s, and hence they can be moved to each other by a compactly

supported ambient isotopy of the annulus. The identity component of Diff(S 1) acts transi-

tively on the set of triples of distinct points of S 1, e.g. if S 1 is identified to the boundary

of the upper half plane, then the map x→ (x−a)(c−b)
(x−b)(c−a) takes a, b, c to 0,∞, 1, respectively, and

preserves an orientation, and hence is isotopic to the identity of S 1. So given two triples

of points in S 1 × 0 there is a compactly supported isotopy of S 1 × R that takes one triple

to the other one. Here we identity S 1 × R, S 1 × 0 with C − B̃s, ψ(∂Br), respectively. Com-

bining the two isotopies, and extending the result by the identity on B̃s yields the desired h).

Since g|K , g̃|K are Ck+α close, so are the dilations of ψK , ψ̃|k = h◦ ψ̃|K . Thus ψ|Br , h◦ ψ̃|Br

are diffeomorphisms of Br onto ψ(Br) whose dilatations are Ck+α close on K. The absolute

values of the dilatations are less than 1 (as the diffeomorphisms are orientation-preserving),

and hence are bounded away from 1 by compactness of B̄r. Now the Continuity Theorem

implies that ψ|Br , h ◦ ψ̃|Br are Ck+1+α close over K. It follows that λ|ψz|
−2, λ̃|ψ̃z|

−2 are Ck+α

close over K.
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Thus if a sequence of metrics ḡl converges to ḡ uniformly on compact subsets in the Ck

topology, then the corresponding diffeomorphisms ψl converge to ψ uniformly on compact

subsets in the Ck+1+α topology. Since Diff+
0,1(C) with the Ck+1+α topology is a topological

group we also have the Ck+1+α convergence of ψ−1
l to ψ−1. In lemma 2.2 of [6], it states that

” If G is of class Ck−1,α and H ∈ Ck, k ≥ 1, then G ◦ H is of class Ck−1,α. This implies that

log(λl|(ψl)z|
−2) ◦ ψ−1

l converges to log(λ|ψz|
−2) ◦ ψ−1 in the Ck+α topology.

The sphere can be covered by two compact subsets. Then λ|ψz|
−2, λ̃|ψ̃z|

−2 are Ck+α close

over S 2. Also log(λl|(ψl)z|
−2) ◦ ψ−1

l converges to log(λ|ψz|
−2) ◦ ψ−1 in the Ck+α topology on

S 2, which completes the proof. �
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2.5 L1 equipped with Ck+α topology is homogenous

Definition 2.5.1 A point x0 of a convex set C in a linear topological space is called almost

internal if the set A = {a ∈ C : ∃ ε > 0 with x0 − ε(a − x0) ∈ C} is dense in C. If the set A

coincides with C, then x0 is called an internal point of C.

A subset A of a space X is called a Z − set in X if A is closed in X and every map

f : Q→ X of the Hilbert cube can be uniformly approximated by maps whose ranges miss

the set A.

For a set C in a Fréchet space Aff(C) denotes the affine hull of C and C̄ is the closure

of C.

A metric space(X, d) is totally bounded if and only if for every real number ε > 0, there

exists a finite collection of open balls in X of radius ε whose union contains X. For a con-

vex set C in a Fréchet space F, let Fctb(C) be the class of spaces homeomorphic to totally

bounded ( in the natural uniform structure of F) subsets of C that are closed in Aff(C).

Let C be a class of spaces. Denote by σC the class of spaces C that can be expressed as a

countable union C = ∪∞n=1Cn, where each Cn is closed in C and Cn ∈ C.

A subset A of a space X is called a σZ − set in X if A is a countable union of Z-sets in

X. A space X is defined to be a σZ − space if X is a σZ−set in X.

Based on the above definitions and properties, we recall the theorem [30]:

Theorem 2.5.2 A convex set C with an almost internal point is topologically homogeneous,

provided C ∈ σFctb(C) and C is a σZ-space.
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A space X is topologically homogeneous if for every two points x, y ∈ X there exists an

autohomeomorphism h of X with h(x) = y.

The round metric on S 2 is ds2 = dθ2 + sin2 θdφ2. Consider a small neighborhood U of

(θ, φ). Suppose sin θ > 0 in U. Then

∆ f = 1√
detg

∂
∂x j (
√

detggi j ∂ f
∂xi ) = cot θ fθ + fθθ + csc2 θ fφφ,

where g11 = 1, g12 = g21 = 0 and g22 = csc2 θ.

In our setting, L1 = {u ∈ C∞(S 2) : ∆u ≤ 1} with Ck+α topology, here k is any non negative

integer.

C = {u ∈ C∞(S 2)| ∆u ≤ 1}

AffC = {u|u ∈ C∞(S 2)} equipped with Ck+α topology.

Kl = {u ∈ C∞(S 2)| ∆u ≤ 1, ||u||k+1 ≤ l}.

Since S 2 is compact, every smooth function on the sphere has bounded Ck norm. So

we have C ⊂ ∪l(K̄l ∩C). Here the closure is taken in Ck+α norm.

From above we know C ∈ σFctb(C). We shall show C has an almost internal point and

C is a σZ−space.

Theorem 2.5.3 Zero function is an internal point of C.

Proof Let A = {a ∈ C : ∃ ε > 0 with − εa ∈ C}. ∆u = g jl∂ j∂lu + first-order terms. For any

c ∈ C, since the sphere is compact, let M = max{g jl∂ j∂lu, first-order terms }.

There exists ε > 0 such that εM ≤ 1. So c ∈ A. c is arbitrary function in C, so A = C.

By the definition, zero function is an internal point of the convex set C. �

Theorem 2.5.4 K̄l is a Z-set.

Proof First, we shall show K̄l is totally bounded by showing K̄l is sequentially compact.

Recall the Arzela-Ascoli theorem, it can be stated as follows:
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Consider a sequence of real-valued continuous functions fn, n ∈ N defined on any com-

pact manifold. If this sequence is uniformly bounded and equicontinuous, then there exists

a subsequence fnk that converges uniformly.

This proves the following corollary:

Let fn be a uniformly bounded sequence of real-valued differentiable functions such that

the derivatives f ′n are uniformly bounded. Then there exists a subsequence fnk that con-

verges uniformly on the manifold.

In our case, Arzela-Ascoli theorem is applied to S 2.

For any sequence fn ∈ K̄l, it is uniformly bounded sequence of real-valued k+1-differentiable

functions on the sphere such that the k + 1th derivatives are uniformly bounded. Then there

exists a subsequence fnk that all the kth derivatives converges uniformly on the sphere.

By adapting the above step k times, there exists a subsequence f̂k that converges uniformly

in Ck+1 topology. And this implies there is a subsequence f̂nk converges uniformly in Ck+α

topology. By the above proof, we know (K̄l, Ck+α-topology) is sequentially compact, so it

is totally bounded.

Then we shall show that any continuous map f : Q→ C can be pushed off from K̄l.

Using scaling by constant t, we get function t f (q) satisfying ∆(t f (q)) < 1 for any q ∈ Q.

From now on, let f denote t f .

Next we try to approximate f by g : Q→ C − K̄l. Let g(q) = f (q) + v, here v is a function

satisfying the following conditions:

(1) max{0,∆v} is very small such that ∆g(q) ≤ 1.

(2) Ck+α norm of v is very small, i.e. f can be uniformly approximated by g.

(3) Ck+1 norm of v is larger than l + || f (q)||k+1 for any q ∈ Q.

By the third condition, we can show g(q) ∈ C− K̄l by contradiction. Suppose there is q ∈ Q

such that g(q) ∈ K̄l ∩C, i.e. || f (q) + v||k+1 ≤ l. Then ||v||k+1 ≤ || f (q) + v||k+1 + || − f (q)||k+1 ≤
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l + || f (q)||k+1, which is a contradiction of the third condition.

Finally, we shall show there exists function v satisfying the above three conditions.

Direct computations show that, in local coordinates x1, x2,

∇u = gki∂ku∂i

Hess(u)(∂i, ∂ j) = 1
√

G
g jk∂i(

√
Ggkl∂lu)

∆u = 1
√

G
∂ j(
√

Gg jl∂lu),

where

gi j = 〈∂i, ∂ j〉

G = det(gi j)

(gi j) = (gi j)−1.

In particular

∆u = g jl∂ j∂lu + first-order terms

is a second order, elliptic operator.

Case k ≥ 2. For any 0 < ε < 1, consider any function h in the set H = {h ∈ C, ||h||k+α < ε}.

Then for any N, there is h ∈ H such that ||h||k+1 > N. Since ||h||k+α < ε, then ∆h = g jl∂ j∂lh

+ first-order terms ≤ M, where M is a constant.

Choose h̄ =
(1−t)h

M , then ∆h̄ ≤ 1. And for any N, there is h ∈ H such that ||ĥ||k+1 > N. So

there is function v as desired.

Case k = 0, 1. Consider k = 0. There is a nonconstant function u with ∆u < 1 on S 2.

We can find a neighborhood U such that max{| ∂u
∂x1
|, | ∂u

∂x2
|} ≥ P, where P is positive. Then

we can find a diffeomorphism of S 2 that is supported in U, is Cα close to the identity but
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not C1 close to the identity. Such a diffeomorphism can be constructed by hand in a chart

on U and then extended by the identity to S 2. Denote the diffeomorphism as h. Since u

precomposed h, we have ∆u ◦ h(x, y) < 1.

The Cα norm of u ◦ h is the same as for u. But its first order partial derivative could be very

large by the chain rule. The function u ◦ h is as desired.

Similar to case k = 0, there is function satisfying the above three conditions when k = 1. �

Theorem 2.5.5 L1 equipped with Ck+α topology is homogenous for k ≥ 2.

Proof By the above theorem, a convex set C with an almost internal point is topologically

homogeneous, provided C ∈ σFctb(C) and C is a σZ-space.

With the notation C = {u ∈ C∞(S 2),∆u ≤ 1}, Kl = {u ∈ C∞(S 2)|∆u ≤ 1, ||u||k+1 ≤ l}, we

know C = ∪l(K̄l ∩C), where l is positive integer.

Since K̄l is compact it is closed in the ambient Fréchet space. So K̄l ∩ C is closed in C.

Now Aff(C) = C∞(S 2) and C is closed in C∞(S 2) for k ≥ 2 . Thus any closed subset of

C is closed in Aff(C), i.e. K̄l ∩ C is closed in Aff(C). According to theorem 2.5.2, L1 is

homogenous. �

Corollary 2.5.6 Rk+α
≥0 is homogenous for k ≥ 2 and α ∈ (0, 1).

Proof Since L1 is homogenous and Diff+
0,1,∞(S 2) equipped with Ck+1+α topology is ho-

mogenous as a group, the space Rk+α
≥0 , which is homeomorphic to the product of L1 with

Ck+1 topology and Diff+
0,1,∞(S 2) with Ck+1+α topology, is homogenous for α ∈ (0, 1). �
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2.6 Diff+
0,1,∞(S 2) equipped with the Ck+1+α topology is contractible

Theorem 2.6.1 Diff+
0,1,∞(S 2) equipped with the Ck+1+α topology is contractible.

Proof By the same proof of Theorem 2.4.1 , we know that Rk+α(S 2) is homeomorphic to

the product of C∞(S 2) and Diff+
0,1,∞(S 2), with Ck+α and k + 1 + α topology, respectively.

Since Rk+α(S 2) is convex, it is contractible.

Thus Diff+
0,1,∞(S 2) is a retract of a contractible space, and hence it is contractible. �
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2.7 Rk+α
>0 (S 2) \ K is weakly contractible for k ≥ 2

Actually, the main theorem in this section is already proved later Theorem 3.6.4. The fol-

lowing proof is a different method.

Recall that Rk+α
>0 (S 2) is contractible, we are trying to show that Rk+α

>0 (S 2) minus any

compact set K is weakly contractible, i.e. any sphere in the space is null-homotopic to

the constant map into the base point. Include Rk+α
>0 (S 2) in the space Rk+α,k+α

>0 (S 2) of Ck+α

metrics with Ck+α.

From appendix C, we know C∞(S 2) is not dense in Ck+α(S 2). In fact the latter is

not separable. The convolution with C∞ kernel is not continuous in Ck+α topology when

α ∈ (0, 1). But the closure of C∞(S 2) in Ck+α,k+α(S 2) is separable, and incidentally is

called the little Hölder space denoted by ck+α(S 2). Note that ck+α,k+α(S 2) is Banach as a

closed linear subspace in the Banach space Ck+α,k+α(S 2). And the useful space is the space

H = {u ∈ ck+α,k+α(S 2)| ∆u ≤ 1}. The space H is a closed convex subset of a Banach space.

So H is weakly contractible.

Now we discuss convolution of functions in H. Through the smooth procedure by con-

volution, sectional curvature stays positive when k ≥ 2. So we only consider the case when

k ≥ 2.

First, recall the convolution of functions in Ck(R2,R2).

Let θ : Rm → R be a map having compact support. There is a smallest σ ≥ 0 such that

Suppθ is contained in the closed ball Bσ(0) ⊂ Rm of radius σ and center 0. We call σ the

support radius of θ.

Let U ⊂ Rm be open and f : U → Rn a map. If θ : Rm → R has compact support we
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define the convolution of f by θ to be the map

θ ∗ f : Uσ → R
n

given by

θ ∗ f (x) =

∫
Bσ(0)

θ(y) f (x − y)dy (x ∈ Uσ)

where

Uσ = x ∈ U : Bσ(x) ⊂ U.

The integrand is 0 on the boundary of Bσ(0); we extend it to a continuous map Rm → R by

defining it to be 0 outside Bσ(0). Therefore we have

θ ∗ f (x) =

∫
Rm
θ(y) f (x − y)dy (x ∈ Uσ)

A map θ : Rm → R is called a convolution kernel if it is nonnegative, has compact sup-

port, and
∫
Rm θm = 1. It is clear that there exist C∞ convolution kernels of any given support

radius.

By theorem 2.3 in Hirsch’s book [26]: Let θ : Rm → R have support radius σ > 0.

Let U ⊂ Rm be an open set, and f : U → Rn a continuous map. Define Uσ = {x ∈ U :

Bσ(x) ⊂ U}. The convolution θ ∗ f : Uσ → R
n, θ ∗ f (x) =

∫
Bσ(0)

θ(y) f (x − y)dy (x ∈ Uσ) has

the following properties:

(a) If θ|Int Suppθ is Ck, 1 ≤ k ≤ ∞, then so is θ ∗ f ; and for each finite k, Dk(θ ∗ f )x(Y1, ...Yk) =∫
Rm Dkθ(x − z)(Y1, ...,Yk) f (z)dz.

(b) If f is Ck then

Dk(θ ∗ f ) = θ ∗ (Dk f ).

(c) Suppose f is Cr, 0 ≤ r ≤ ∞. Let K ⊂ U be compact. Given ε > 0 there exists σ > 0

such that K ⊂ Uσ, and if θ is a Cr convolution kernel of support radius σ, then θ ∗ f is Cr

and

‖θ ∗ f − f ‖r,K < ε.
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Our goal is to prove the following theorem.

Theorem 2.7.1 Suppose f is in ck+α, 0 ≤ k ≤ ∞. Let K ⊂ U be compact. Given ε > 0

there exists σ > 0 such that K ⊂ Uσ, and if θ is a C∞ convolution kernel of support radius

σ, then θ ∗ f is C∞ and

‖θ ∗ f − f ‖k+α,K < ε.

Proof Let θ denote the standard convolution C∞ kernel. Let us try to show that for any

f in Ck,α the convolution θ ∗ f is close to f in Ck+α norm. Let g be a C∞ function that

approximates f in Ck+α norm. Then

‖ f − θ ∗ f ‖k+α ≤ ‖ f − g‖k+α + ‖g − θ ∗ g‖k+α + ‖θ ∗ g − θ ∗ f ‖k+α.

The first term is small.

The second term is also small because we can choose θ such that g and θ ∗ g are close in

Ck+1 norm, which ensures closeness of g and θ ∗ g on Ck+α norm.

Write the last term as ‖θ ∗ (g− f )‖k+α. Set h = g− f . We need to estimate ‖θ ∗h‖k+α in terms

of ‖h‖k+α, which is small by assumption.

|θ ∗ h(x) − θ ∗ h(y)|
|x − y|α

=
|
∫
θ(t)(h(x − t) − h(y − t))dt|

|x − y|α
≤

∫
θ(t)|h(x − t) − h(y − t)|dt

|x − y|α

Since |h(x−t)−h(y−t)|
|x−y|α ≤ ‖h‖α, we have∫

θ(t)|h(x − t) − h(y − t)|dt

|x − y|α
≤ ‖h‖α

∫
c(t)dt = ‖h‖α.

So

‖θ ∗ g − θ ∗ f ‖k+α ≤ ‖θ ∗ g − θ ∗ f ‖k + ‖h‖α.

So the third term is very small. �

Now we discuss the contractibility of Rk+α
≥0 (S 2).
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Theorem 2.7.2 Rk+α
≥0 (S 2) \ K is weakly contractible for k ≥ 2.

Proof Consider the following diagram:

S n (L1 × Diff+,∞,k+1+α
0,1,∞ (S 2)) \ K

Dn+1 (H × Diff+,∞,k+1+α
0,1,∞ (S 2)) \ K

∩

f

∩

Let K1 and K2 denote the projection of K onto H and Diff+,∞,k+1+α
0,1,∞ (S 2) respectively. Denote

f as ( f1, f2), where fi is the restriction of f onto each factor space. Note that H \ K1 is

weaky contractible. Then f1 can be extended to continuous map F1 : Dn+1 → H \ K1. We

scale F1 by t. The map tF1 can be considered as the continuous map F̂ : Dn+1 × S 2 → R.

Then for every x we have ∆F̂(x, ·) ≤ t < 1. Let us now push F̂(Dn+1) back to L1 \ K1 by

convolution. By Theorem 2.7.1, for any ε > 0, there is function Ĝ such that ‖F̂−Ĝ‖k+α < ε.

Since k ≥ 2, for small enough ε we will have ∆Ĝ(x, ·) < 1. Note that the boundary of the

disk moves a little by the above procedure. We have to to show that two nearby maps from

S n to an open convex set, i.e. F1(S n) and Ĝ(S n), are homotopic. This can be accomplished

by the straight line homotopy in L1 \ K1.

Therefore, the space L1×Diff+,∞,k+1+α
0,1,∞ (S 2) minus a compact set K is weakly contractible.

Since Rk+α
≥0 (S 2)\K is homeomorphic to the product of L1×Diff+,∞,k+1+α

0,1 (S 2) equipped with

Ck+α topology minus K, we know Rk+α
≥0 (R2) \ K is weakly contractible. �
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CHAPTER III

NON NEGATIVELY CURVED PLANES

3.1 Non negatively curved planes

This section studies connectedness properties of the set of complete nonnegatively curved

metrics on R2 equipped with the compact-open topology. The main theme is deciding when

two metrics can be deformed to each other through complete nonnegatively curved metrics

outside a given subset, and how large the space of such deformation is.

We consider an open, two-dimensional Riemannian manifold M whose metric is defined

by a positive definite quadratic form

ds2 = E(ξ, η)dξ2 + 2F(ξ, η)dξdη + G(ξ, η)dη2,

ξ and η denoting local parameters. If E, F and G are sufficiently regular, then it is possible

to introduce (local) isothermic parametrics, i.e. there exists a coordinate transformation

x = x(ξ, η), y = y(ξ, η) such that E = G > 0, F = 0 in the (x, y)-parameter system. Then

we can write

ds2 = e−2u(x,y)(dx2 + dy2) = e−2u(z)|dz|2

putting z = x + iy. Such a transformation always exists.

Any complete nonnegatively curved metric on R2 is conformally equivalent to the standard

Euclidean metric g0, i.e. isometric to e−2ug0 for some smooth function u.

We consider a two dimensional plane π in the tangent space TpM, and we consider all

geodesics emanating from p that are tangent to the plane π. The union of these geodesics

rays forms a two-dimensional surface Σ ⊂ M. The surface Σ is defined as Σ = expp(U ∩ π),
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where expp : TpM → M denotes the exponential map and U ⊂ TpM denotes a small ball

centered at the origin. Then the sectional curvature K(π) is defined to be the Gaussian cur-

vature of the two-dimensional surface Σ at the point p.

K(π) =
R(X,Y,X,Y)
|X|2 |Y |2−〈X,Y〉2

where X,Y is a basis of π. This definition is independent of the choice of the basis X,Y ,

and if X,Y are chosen to be an orthonormal basis then the denominator is equal to 1.

The sectional curvature of e−2ug0 can be calculated from the E,F,G and their partial deriva-

tives up to the second order. From the above isothermic parameter system we know the

sectional curvature has the particular simple expression e2u4u, where 4 is the Euclidean

Laplacian, i.e. 4 ≡ ∂2/∂x2 + ∂2/∂y2.

The sectional curvature of e−2ug0 equals e2u4u. Thus e−2ug0 has nonnegative curvature

if and only if u is subharmonic. Characterizing subharmonic functions that correspond to

complete metrics is not straightforward, and doing so is the main objective of this section.

A basic property of a subharmonic function u on R2 is that [25, Theorem 2.14]

Theorem 3.1.1 The limit

α(u) := limr→∞
M(r,u)
log r

exists in [0,∞], where M(r, u) := sup{u(z) : |z| = r}.

For example, by Liouville’s theorem α(u) = 0 if and only if u is constant, while any

nonconstant harmonic function u satisfies α(u) = ∞ [27, Theorem 2.15].
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3.2 Complete non negatively curved planes

Definition 3.2.1 According to the definition of H.Hopf and W.Rinow the manifold M is

called complete if every divergent path on M has infinite length. A path s is said to be

divergent (or to tend to the ideal boundary of M) if

(1) s is the topological image p = p(t) of the half-open interval 0 ≤ t < 1,

(2) given any arbitrary subcompact K of M there always exists a number t′ < 1 such that

p(t) lies outside K for t > t′.

A Riemannian manifold is incomplete if and only if it contains a locally rectifiable (or

equivalently, a smooth) path that eventually leaves every compact set and has finite length.

In the manifold (R2, e−2ug0) the length of a path γ equals
∫
γ

e−uds.

In the separable Fréchet space C∞(R2) equipped with the compact-open C∞ topology con-

sider the subset Sα consisting of smooth subharmonic functions with α(u) ≤ α. Since S 0

consists of constants, it is homeomorphic to R. Later we will prove that the subset Sα is

closed convex, and not locally compact when α , 0.
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Let M be a smooth manifold. Let R(M) be the set of all Riemannian metrics and C(M)

⊂ R(M) be the subspace of all complete Riemannian metric on M.

Remark If g0, g1 ∈ R(M), g0 ∈ C(M) and f : M → R is a positive C∞ function which is

bounded away from zero then g = f g0 + g1 ∈ C(M).

Proof Let d0, d be the metric on M induced by g0, g respectively. It suffices to show any

Cauchy sequence in the d metric is Cauchy in the d0 metric.

Let L > 0 be such that f (x) ≥ L for all x ∈ M and pn a Cauchy sequence in the d metric.

Since d0 is complete, there is a point p ∈ M such that pn → p in the d0 metric, hence in the

manifold topology.

√
Lε > infα

∫ √
f g0(α̇, α̇) + g1(α̇, α̇) ≥

√
L infα

∫ √
g0(α̇, α̇) =

√
Ld0(pm, pn)

Then d0(pm, pn) < ε if m, n ≥ N, i.e. pn is Cauchy in the d0 metric, which completes the

proof. �

This is false if we omit the hypothesis that f is bounded away from zero. Here is a

counterexample.

Take M = R1, g0 the usual Euclidean metric, f (x) = e−x and g1 any incomplete metric. It

suffices to show f (x)g0 is incomplete. f (x)g0(ξ, η) = f (x)ξη. The induced metric is then

d(x, y) =
∫ y

x

√
f (t)dt.

In this example,
∫ ∞

0

√
f (t)dt =

∫ ∞
0

e−1/2tdt < ∞, then an = n is a Cauchy sequence and so

f (x)g0 is not complete.

Let gs := (s + e−2u)g0, i.e. gs = sg0 + e−2ug0, then gs is complete for every s > 0 by the

above statement. Notice e−2ug0 is the endpoint of the curve gs = sg0 + e−2ug0. Hence, com-

plete Riemannian metrics on M form a dense subset in the space of all Riemannian metrics.

Lemma 3.2.2 The metric g = e−2ug0 is complete if 0 < α(u) < 1.
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Proof Suppose α(u) ∈ (0, 1). Fix α1 ∈ (α(u), 1), and any smooth path σ going to infinity.

Find r1 with M(r) < α1 log r for all r > r1. Then u(reiθ) ≤ M(r) implies

∫
σ

e−uds ≥
∫ ∞

r1
r−α1dr = ∞

So g is complete. �

Appealing to more delicate properties of subharmonic functions due to Hub and Hay-

man we will prove:

Theorem 3.2.3 The metric e−2ug0 is complete if and only if α(u) ≤ 1.

The following two lemmas imply the above theorem.

Lemma 3.2.4 The metric g = e−2ug0 is complete if α(u) < 1 and incomplete if α(u) > 1 or

α(u) = ∞.

Proof It is sufficient to show g is incomplete if α(u) > 1 or α(u) = ∞.

If α(u) = ∞, then incompleteness of g can be shown from the following theorem in [32].

Let u be subharmonic in C and suppose that limr→∞
M(r)
log r = +∞. Then there exists a path Γ

tending to∞ with

∫
Γ

e−λµ|dz| < +∞ for each λ > 0

u(z)
log |z| → +∞ as z→ ∞ on Γ.

If α(u) = 0, then u is a constant function. Therefore g = e−2ug0 is complete since g0 is

complete.

So we can assume that α(u) is positive and finite. Recall the definition of ε-set from [28] :

We call an ε-set any countable set of circles not containing the origin, and subtending angles

at the origin whose sum s is finite. The number s will be called the (angular) extent of the

ε-set.

Suppose that u(z) is subharmonic and not constant in the plane and that
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B(r, u) = O(log r), as r → ∞

Then u(reiθ) = B(r, u) + o(1), uniformly as reiθ → ∞ outside an ε-set.

Remark: For almost all fixed θ and r > r0(θ), z = reiθ lies outside the ε-set.

In fact this is the case unless the ray z = reiθ, 0 < r < ∞ meets infinitely many circles

of the ε-set. We can write ε = ε′ ∪ ε”, where ε′ contains only a finite number of circles and

ε” has extent less that s. If the ray z = reiθ meets infinitely many circles of ε, then this ray

meets ε” and the set of such θ has measure at most s, i.e. measure zero.

From the above theorem, there is a constant c and a measure zero subset Z of the unit

circle such that 0 ≤ M(r) − u(reiθ) ≤ c for every θ < Z and all r > r(θ).

Suppose α(u) > 1, and fix θ < Z, and the corresponding ray γ(r) = reiθ, r > r(θ) on

which 0 ≤ M(r) − u(reiθ) ≤ c. Then
∫
γ

e−u is bounded above and below by positive multi-

ples of
∫
γ

e−M. As M(r)
log r → α, for any α0 ∈ (1, α(u)) there is r0 with M(r) > α0 log r for all

r > r0. Shortening γ to γ > γ0, we get
∫
γ

e−B ≤
∫ ∞

r0
r−α0 < ∞ proving incompleteness of g.

�

We now introduce a new notation based on u and M(r, u) := max{u(z) : |z| = r}. Set

µ(t, u) := M(et, u); when u is understood we simply write M, µ. Subharmonicity of u im-

plies that µ is a convex function [25].

Hence µ has left and right derivatives everywhere, and they are equal outside a countable

subset, and so the same holds for M. By the maximum principle [25], M is strictly increas-

ing (except when u is constant), and hence the same is true for µ.
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3.3 Properties of S1 = {u ∈ C∞(R2)| ∆u ≥ 0, α(u) ≤ 1}

Lemma 3.3.1 S1 equals the set of smooth subharmonic functions u such that the metric

e−2ug0 is complete.

Proof If u < S1, then e−2ug0 is incomplete by the previous lemma. Suppose u ∈ S1 while

e−2ug0 is incomplete, and we will show the contradiction. By incompleteness of g there

is a smooth path γ in R2 going to infinity such that
∫
γ

e−uds < ∞. Now u ≤ M implies∫
γ

e−Mds < ∞. It is convenient to replace M, µ with nearby smooth functions with similar

properties which is possible by a result of Azagra [1] as follows:

Let U ⊂ Rd be open and convex. For every convex function f : U → R and every ε > 0

there exists a real-analytic convex function g : U → R such that f − ε ≤ g ≤ f .

So there is a smooth convex function ν defined on R such that µ − 1 ≤ ν ≤ µ. Note that

ν(t)
t → 1 as t → ∞.

For r > 0 set N(r) := ν(log r); the function (x, y)→ N(r) is subharmonic:

4N = ν′′(t2
x + t2

y) + ν′4t = ν′′r−2

Here tx, ty are partial derivatives of t = log r; note that 4t = 0 while tx = x
r2 and ty =

y
r2 .

Set d(r) := N(r)
log r − 1 so that e−N(r) = r−1−d(r). Since u ∈ S1, we get u < Sα for α < 1 so that

d(r)→ 0 as r → ∞. Also M − 1 ≤ N ≤ M so that
∫
γ

r−1−dds =
∫
γ

e−Nds < ∞.

In deriving a contradiction it helps consider the following cases.

If d′ ≥ 0 for all large r, then since d converges to zero as r → ∞, we must have d ≤ 0 for

large r, so after shortening γ we get

∫
γ

r−1−dds ≥
∫
γ

r−1ds = ∞
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which is a contradiction.

If the sign of d′ takes values ±1 as r → ∞, then there is a point where d′ and d′′ are both

negative, which contradicts subharmonicity of N for r > 1 as

0 ≤ 4N = N′′ + N′
r = d′′ log r + d′( log r

r + 2
r ).

It remains to deal with the case when d′ ≤ 0 for large r. Multiply the above expression by

r log r to get

0 ≤ r log2 r(d′′ + d′( 1
r + 2

r log r )) = (r(log r)2d′)′

which integrates over [ρ, r] to d′(ρ)ρ log2
ρ ≤ d′(r)r log2 r. Since d′ ≤ 0 for all large r,

we conclude that c := d′(ρ)ρ log2
ρ is a nonnegative constant. Set f (r) := − c

log c so that

f ′ = c
r log2 r

≤ d′. Integrating d′ − f ′ ≥ 0 over [r,R] gives d(R) − f (R) ≥ d(r) − f (r)

and since d(R), f (R) tend to zero as R → ∞, we get d(r) ≤ f (r) for all large r. Hence∫
γ

r−1−dds ≥
∫
γ

r−1− f ds = ec
∫
γ

r−1ds = ∞ which again is a contradiction. �

Remark If u is harmonic and nonconstant, then e−2ug0 is not complete and α(u) = ∞.

Proof If α(u) is finite, then by rescaling we may assume that α(u) < 1 so that e−2ug0

is complete by the previous lemma. Since u is harmonic, e−2ug0 has zero curvature, and

hence e−2ug0 = φ∗g0 for some φ ∈ Diff(R2). It follows that φ is conformal,and hence φ

or its composition with the complex conjugation is affine. Therefore φ∗g0 is a constant

multiple of g0, hence u is constant. �

There is another way to prove the incompleteness of e−2ug0 for u harmonic and noncon-

stant.

Proof Since u is harmonic, it is the real part of an entire function f . Thus eu is |e f | where

e f is an entire function with no zeros, and hence so is e− f . Huber [24] proves that

An entire analytic function w = f (z) is a polynomial if and only if there exists a positive

number λ such that

38



∫
σ
| f (z)|−λ|dz| = +∞

for every locally rectifiable path σ tending to infinity.

It implies there is a path going to infinity such that the integral of |e− f |−1 = eu over the

path is finite. (Actually, Huber’s result applies to any non-polynomial entire function in

place of e− f , and his proof is much simplified when the entire function has finitely many

zeros, as happens for e− f ; the case of finitely many zeros is explained on [31]. as following

Let f (z) be an entire function, not a polynomial. Let λ > 0. Then there exists a locally

rectifiable path Cλ tending to infinity, such that

∫
Cλ
| f (z)|−λ|dz| < ∞.

As remarked by Huber, there is no difficulty if f (z) has only a finite number of zeros,

so that f (z) = P(z)exp[g(z)], where P is a polynomial and g is entire. The function

w = Φ(z) =
∫ z

0
e−λg(z)dz

is then entire and without critical points. If the inverse function Φ−1(w) has no singular

points, then it is also entire, so that Φ(z) has form az + b and f (z) is a polynomial; hence

Φ−1(w) must have singularities. In particular there must be a functional element of Φ−1(w)

which can be continued from w = 0 along a finite segment ending at a singularity w0. The

segment is mapped by Φ−1(w) on a path Cλ in the z−plane, on which z → ∞ as w → w0.

Then

|w0| =
∫

Cλ
| dw

dz ||dz| =
∫

Cλ
|eg(z)|−λ|dz|.

Thus Cλ is the desired path if P(z) ≡ 1; by removing a finite portion of Cλ, one can

ensure that |P(z)| ≥ 1 on the remaining portion C′λ, so that C′λ is the desired path. �

Theorem 3.3.2 Sα is a closed convex subset in the Fréchet space C∞(R2).
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Proof Fist, we shall show Sα is convex.

If u = su1 + (1 − s)u0 with s ∈ [0, 1] and u j ∈ Sα, then u is subharmonic,and M(r, u) ≤

sM(r, u1) + (1 − s)M(r, u0), so dividing by log r and taking r → ∞ yields α(u) ≤ sα(u1) +

(1 − s)α(u0) ≤ α. Therefore, u ∈ Sα, i.e. Sα is convex.

Then we shall show Sα is closed. We consider the sequence.

Fix u j ∈ Sα and a smooth function u such that u j → u in C∞(R2). Clearly u is subharmonic,

and also M(r, u j) → M(r, u) for each r, so µ(·, u j) → µ(·, u) pointwise. Set µ j := µ(·, u j),

µ := µ(·, u). Since µ j, µ are convex, µ′j, µ
′ exist outside a countable subset Σ[38], and the

convergence µ j → µ is uniform on compact sets, which easily implies that µ′j → µ′ outside

Σ.

By convexity µ′j, µ
′ are non-decreasing outside Σ. It follows that µ′j ≤ α outside Σ for if

µ′j(t1) = α1 > α, then µ′j ≥ α1 for t ≥ t1, so integrating we get µ j(t) − µ j(t1) ≥ α1(t − t1)

which contradicts

limt→∞
µ j(t)

t ≤ α.

Since µ′j → µ′ we get µ′ ≤ α outside Σ. Integrating gives µ(t) ≤ α(t− t0)+µ(t0) everywhere,

so u ∈ Sα. �

Theorem 3.3.3 If α > 0, then Sα is not locally compact.

Proof Let us fix and u ∈ Sα with 0 < α(u) < ∞, and suppose arguing by contradiction

that u has a compact neighborhood V in Sα. Since u is not harmonic, there is a closed

disk D ⊂ R2 such that ∆u > 0. The Fréchet space is not locally compact because it is

an infinite dimensional topological vector space [40]. Homogeneity of C∞(D) implies that

it contains no compact neighborhood. To get a contradiction we show that the restriction

map δ : C∞(R2) → C∞(D) takes V to a compact neighborhood of u|D. Compactness of

δ(V) follows from the continuity of δ. If δ(V) were not a neighborhood of u|D, there would

exist a sequence ui → u in C∞(R2) with ui|D ∈ C∞(D) − δ(V).
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Let φ be a bump function with φ|D ≡ 1 and such that the support of φ lies in a com-

pact neighborhood of D on which ∆u > 0. Then u + φ(ui − u) ∈ V for large i, and

u + φ(ui − u)|D = ui|D, which contradicts the assumption ui|D < δ(V).

A closed subset of a locally compact space is locally compact, so since Sα is closed in

S∞, we may assume α is finite. Fix any nonconstant u ∈ Sα and show that it has no compact

neighborhood. Since a < α < ∞ we know that u is not harmonic, so there is a disk closed

D where 4u > 0. Now any sufficiently small C∞ variation ũ of u is in Sα provided ũ − u is

supported in D, and by a standard argument ũ’s cannot all lie in a compact neighborhood

of u. �

Recall that complete Riemannian metrics on any manifold form a dense subset in the

space of all Riemannian metrics, e.g. e−2ug0 is the endpoint of the curve gs := (s + e−2u)g0

where the metric gs is complete for s > 0. This led to speculation in [9] that the set of

u’s for which e−2ug0 is complete and nonnegatively curved is ” probably neither closed nor

convex”.

A Riemannian metric on R2 can be written as the form

ds2 = E(ξ, η)dξ2 + 2F(ξ, η)dξdη + G(ξ, η)dη2,

so it is can be thought of as a smooth map from R2 to the space of symmetric, positive

definite bilinear forms.

Theorem 3.3.4 If g is conformal to g0, then there are unique φ ∈ Diff+
0,1(R2) and v ∈

C∞(R2) such that g equals φ∗evg0.

Proof Any metric g conformal to g0 can be written as φ∗e f g0 where φ ∈ Diff(R2) and
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f ∈ C∞(R2). Note that φ∗e f g0 = e f◦φφ∗g0. To see uniqueness suppose φ∗1ev1g0 = φ∗2ev2g0

and rewrite it as

(φ1 ◦ φ
−1
2 )∗g0 = e(v2−v1)◦φ1◦φ

−1
2 g0

so that φ1 ◦ φ
−1
2 is a conformal automorphism of R2 that preserves orientation and fixes 0,

1. It follows that φ1 ◦ φ
−1
2 is the identity, then the above equality implies v1 = v2.

To prove existence recall that any diffeomorphism of R2 is isotopic either to the identity

or to the reflection z → z̄. The metric e f◦φφ∗g0 does not change when we compose φ with

an isometry of g0, and composing φ with an affine map results in rescaling which can be

subsumed into f ◦ φ changing it by an additive constant. Thus composing with z → z̄ if

needed, and with an affine map we can arrange φ to lie in Diff+
0,1(R2). �

According to the above lemma, any metric conformally equivalent to R2 can be written

uniquely as φ∗e−2ug0 where g0 is the standard Euclidean metric, u is a smooth function, and

φ ∈ Diff+
0,1(R2), the group of self-diffeomorphisms of the plane fixing the complex numbers

0, 1 and isotopic to the identitty. From above theorem, the metric e−2ug0 is complete if and

only if α(u) ≤ 1. So the map (u, φ)→ φ∗e−2ug0 defines a bijection

Π : S1× Diff+
0,1 → R

k+α
≥0 (R2).

We equip Sα, Diff+
0,1(R2) with the C∞ topology. Then Π is a homeomorphism for k = ∞

from Theorem 3.3.5. By contrast, if k is finite, the Π is not a homeomorphism, because it

factors as the composite of Π : S1 × Diff+
0,1(R2) → R∞

≥0(R2) and id: R∞
≥0 → R

k+α
≥0 (R2) and

the latter map is a continuous bijection that is clearly not a homeomorphism.

Now we prove the following theorem:

Theorem 3.3.5 Let k be a positive integer or k = ∞ and α ∈ (0, 1). If S1 is given the Ck+α

topology and Diff+
0,1,(R

2) is given the Ck+1+α topology, then the map Π is a homeomorphism.
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Proof The map Π(u, φ) = φ∗e−2ug0 is a bijection.If φ ∈ Diff+
0,1(C) is given the Ck+1+α topol-

ogy, then its differential varies in the Ck+α topology, which implies continuity of Π. It

remains to show that Π−1 is continuous.

Write g = φ∗e f g0 = e f◦φφ∗g0 with φ is an orientation-preserving diffeomorphism of C

that fixes 0, 1. The Jacobian of φ equals |φz|
2 − |φz̄|

2, and since φ is orientation-preserving,

we get |φz̄
φz
| < 1. Computing

φ∗g0

|φz|
2 =

|dφ|2

|φz|
2 = |dz +

φz̄
φz

dz̄|2

gives g = e f◦φ|φz|
2|dz +

φz̄
φz

dz̄|2. Also we can write g = Edx2 + 2Fdxdy + Gdy2 as

λ|dz + µdz̄|2, where

λ = 1
4 (E + G + 2

√
EG − F2) and µ = E−G+2iF

4λ .

Positive definiteness of g easily implies |µ| < 1 and λ > 0. We know E, F, G are of class

Ck+α, then the products EG and F2 are also of class Ck+α. So µ and λ depend in Ck+α on ḡ.

Comparing the two descriptions of g we see that φz̄ = µφz, that is, φ solves the Beltrami

equation with dilatation µ. Futhermore, λ = e f◦φ|φz|
2 so that f = log(λ|φz|

−2) ◦ φ−1.

We are going to show that if a sequencee of metrics gl = φ∗l e flg0 = λl|dz + µldz̄|2, with

φl ∈ Diff+
0,1,∞(C), converges to g uniformly on compact subsets in the Ck+α topology, then

φl, fl converge to φ, f , respectively, in the same topology. A key ingredient is the smooth

dependence of φ on µ established by Earle-Schatz [17] .

To state their result let U, U′ be domains in S 2 whose boundaries are embedded circles,

and let a1, a2, a3 and a′1, a
′
2, a

′
3 be two triples of distinct points on ∂U and ∂U′ respectively.

Recall that given a C∞ function β : U → C with |β| ≤ k < 1 for some constant k, there is

a unique homeomorphism wβ : Ū → Ū′ that restricts to a diffeomorphism U → U′, maps
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each ak to a′k, and solves the Beltrami equation with dilatation β, see e.g.[33, p.183, 194]

for existence and uniqueness and [41, Theorem 2.2 in Section 4 of Chapter 2] for regularity.

The continuity Theorem of Earle-Schatz states that varying β in the Ck+α topology re-

sults in varying wβ in Ck+1+α topology. Strictly speaking, Earle-Schatz assume that U, U′

equal the upper half plane, and the two triples of points equal 0, 1,∞, but the conformal

invariance of the Beltrami dilatation, together with the Riemann mapping theorem give the

same conclusion for any U, U′ as above.

The Continuity Theorem does not immediately apply in our setting, where U = C = U′

and |β| is not bounded way from 1. Instead we use the theorem locally, on an arbitrary

disk Bt = {z ∈ C : |z| < t}, but then the difficulty is that the domain φ(Bt) may change as

the diffeomorphism φ varies with µ. Below we resolve the issue by adjusting φ(Bt) via an

ambient diffeomorphism that is the identity on a given compact set. Exhausting C by such

compact sets yields the smooth dependence of φ on µ.

Let K be a compact subset of C . Let g̃ = φ̃∗e f̃ g0 = λ̃|dz + µ̃dz̄|2 be a metric that is

Ck+α close to g = φ∗e f g0 = λ|dz + µdz̄|2 over K, where φ̃, φ ∈ Diff+
0,1(C). Choose s with

φ̃(K) ⊂ Bs. The domains φ(Br), r > 0 exhaust C, and so do the domains φ̃(Br), which

allows us to find r with B̄s ⊂ φ(Br) ∩ φ̃(Br).

It is easy to construct an orientation-preserving self-diffeomorphism h of C that maps

φ̃B̄r onto φ(B̄r), equals the identity on Bs, and has the property that h ◦ φ̃ and φ agree at the

points −r, ir, r of ∂Br. (Indeed, φ̃(∂Br), φ(∂Br) are homotopic smooth simple closed curves

in the open annulus C − B̄s, and hence they can be moved to each other by a compactly

supported ambient isotopy of the annulus. The identity component of Diff(S 1) acts transi-

tively on the set of triples of distinct points of S 1, e.g. if S 1 is identified to the boundary
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of the upper half plane, then the map x→ (x−a)(c−b)
(x−b)(c−a) takes a, b, c to 0,∞, 1, respectively, and

preserves an orientation, and hence is isotopic to the identity of S 1. So given two triples

of points in S 1 × 0 there is a compactly supported isotopy of S 1 × R that takes one triple

to the other one. Here we identity S 1 × R, S 1 × 0 with C − B̃s, φ(∂Br), respectively. Com-

bining the two isotopies, and extending the result by the identity on B̃s yields the desired h).

Since g|K , g̃|K are Ck+α close, so are the dilations of φK , φ̃|k = h ◦ φ̃|K . Thus φ|Br , h ◦ φ̃|Br

are diffeomorphisms of Br onto φ(Br) whose dilatations are Ck+α close on K. The absolute

values of the dilatations are less than 1 (as the diffeomorphisms are orientation-preserving),

and hence are bounded away from 1 by compactness of B̄r. Now the Continuity Theorem

implies that φ|Br , h ◦ φ̃|Br are Ck+1+α close over K. It follows that λ|φz|
−2, λ̃|φ̃z|

−2 are Ck+α

close over K.

Thus if a sequence of metrics gl converges to g uniformly on compact subsets in the Ck+α

topology, then the corresponding diffeomorphisms φl converge to φ uniformly on compact

subsets in the Ck+1+α topology. Since Diff+
0,1(C) with the Ck+1+α topology is a topological

group we also have the Ck+1+α convergence of φ−1
l to φ−1. In lemma 2.2 of [6], it states that

” If G is of class Ck−1,α and H ∈ Ck, k ≥ 1, then G ◦ H is of class Ck−1,α. This implies that

log(λl|(φl)z|
−2) ◦ φ−1

l converges to log(λ|φz|
−2) ◦ φ−1 in the Ck+α topology, which completes

the proof. �

The existence of the parametrization

Π : S1× Diff+
0,1 → R

k
≥0(R2),

has nontrivial consequences because the parameter space S1×Diff+
0,1(R2) is homeomorphic

to l2 by the following results of infinite dimensional topology:

1. Any closed convex non-locally-compact subset of a separable Fréchet space is home-

omorphic to l2, the separable Hilbert space. This implies Sα ⊂ C∞(R2) with α , 0 is
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homeomorphic to l2.

2. Diff+
0,1(R2) is homeomorphic to l2 [44].

3. l2 is homeomorphic to (−1, 1)N, the countably infinite product of open intervals [2].

Here are basic topological properties of Rk
≥0(R2) (with k finite or infinite).

Theorem 3.3.6 Let N,M be smooth manifolds and 0 ≤ k ≤ ∞. With the Ck+α topology the

space C∞(M,N) is

(1) separable and metrizable,

(2) completely metrizable if k = ∞,

(3) a Fréchet space if N is a Euclidean space and k = ∞.

Proof Case α = 0. In fact, the space C∞(M,N) sits in Ck(M,N) which embeds as a closed

subset into C0(M, Jk(M,N)) where Jk(M,N) is the space of k-jets which is a C0 manifold.

Separability is implied by having a countable basis, and since the latter property is inherited

by subspaces it suffices to show that C0(M, Jk(M,R)) has a countable basis, but in general

if the spaces X, Y have a countable basis and if X is locally compact, then C0(X,Y) with

the compact-open topology has a countable basis [15]. Similarly, metrizability is inherited

by subspaces, and complete metrizability is inherited by closed subspaces, while C0(X,Y)

with the compact-open topology is completely metrizable whenever X is locally compact

and Y is completely metrizable [26]. A proof of (3) can be found in [40].

Case α ∈ (0, 1). We only need to show property (1). Consider the identity map:

id : C∞,k+1(M,N)→ C∞,k+α(M,N).

The map id is continuous. The space C∞,k+1(M,N) is separable, i.e. it has a countable dense

subset. Since id is continuous, this subset is also dense in C∞,k+α(M,N). So C∞,k+α(M,N)

is separable.

Now we want to show the space is metrizable.

One can embed N into some Euclidean space Rl as a closed submanifold. Then Ck+α(M,N)
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can be identified with a subset of Ck+α(M,Rl) consisting of maps with image in N. The set

Ck+α(M,Rl) is metrized as in [29, p. 62] via a countable exhaustion of M by compact do-

mains. Then Ck+α(M,N) becomes a subset of a metrizable space and hence it is metrizable.

�
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3.4 Connectedness properties of Rk+α
≥0 (R2)

Our first application demonstrates that any two metrics can be deformed to each other in a

variety of ways, while bypassing a given countable set:

Theorem 3.4.1 If K is a countable subset of Rk+α
≥0 (R2) and X is a separable metrizable

space, then for any distinct points x1, x2 ∈ X and any distinct metrics g1, g2 in Rk+α
≥0 (R2) \ K

there is an embedding of X into Rk+α
≥0 (R2) \ K that takes x1, x2 to g1, g2, respectively.

The above theorem hinges on the following facts:

1. Like any continuous one-to-one map to a Hausdorff space, the map Π restricts to a

homeomorphism on every compact subset, e.g. the Hilbert cube.

2. Every separable metrizable space embeds into the Hilbert cube.

Theorem 3.4.2 Every separable metrizable space X is homeomorphic to a subset of the

Hilbert cubeH .

Proof Let d be a metric on X consistent with its topology and let xkk≥1 be a countable dense

subset. For each k ≥ 1 define the function

fk(x) = min{1, d(x, xk)}

and let f : X → H be defined by f (x) = ( fk(x))k≥1. Each fk is continuous and so f

is continuous. If f (x) = f (y), then we can find a subsequence xkn n≥1 of xkk≥1 such that

xkn → x and so d(xkn , y)→ 0, from which it follows that x = y, i.e. f is one-to-one.

It remains to show that f −1 is continuous, i.e. f (yn) → f (y) in H , implies that yn → y in

X. If f (yn)→ f (y), given ε > 0, choose xk such that d(y, xk) < ε. Since d(yn, xk)→ d(y, xk)

as n → ∞, for n ≥ 1 sufficiently large, we have that d(yn, xk) < ε. Hence d(yn, y) < 2ε for

n ≥ 1 large, i.e. yn → y in X. �
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3. The complement in l2 of the countable union of compact sets is homeomorphic to l2,

and hence contains an embedded Hilbert cube.

The proof of the theorem is as following:

Proof As was explained, S1× Diff+
0,1(R2) is homeomorphic to l2, and since Π−1(K) is a

countable union of compact sets, its complement is homeomorphic to l2, which contains the

Hilbert cube and hence an embedded copy of X. Applying an affine self-homeomorphism

of l2 one can ensure that the embedding maps x1, x2 to Π−1(g1),Π−1(g2), repectively. Since

X sits in an embedded copy of the Hilbert cube (a compact set), and since Rk+α
≥0 (R2) is

Hausdorff, the restriction of Π to the embedded copy of X is a homeomorphism onto its

image, which has desired properties. �
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By dimension we mean the covering dimension.

A space is finite dimensional if and only if it embeds into a Euclidean space from the

embedding theorem [16] stated as follows.

Theorem 3.4.3 Every separable metric space X such that 0 ≤ dimX ≤ n is embeddable in

Euclidean (2n+1)-space R2n+1; if, moreover, the space X is compact, then all homeomor-

phic embeddings of X in R2n+1 form a Gδ−set dense in the function space (R2n+1)X.

Definition 3.4.4 A space is continuum-connected if every two points lie in a continuum (a

compact connected space); thus a continuum-connected space is connected but not neces-

sarily path-connected.

By theorem 3.1.15, Let X be the separable metrizable space Rn, then any two metrics

lie in an embedded copy of R2 for any n. Since R2 cannot be separated by subspace of

codimension ≥ 2 we conclude:

Theorem 3.4.5 The complement of every finite dimensional subspace ofRk+α
≥0 (R2) is continuum-

connected. The complement of every closed finite dimensional subspace of Rk+α
≥0 (R2) is

path-connected.

Proof Let S be a finite dimensional subspace of Rk+α
≥0 (R2). Fix two points g1, g2 in the

complement of S . The above theorem 3.1.15 implies g1, g2 lie in a subspace X of Rk+α
≥0 (R2)

that is homeomorphic to Rn for any n, especially with n ≥ dim (S ) + 2.

From theorem 1.1.2 of [16], for every subspace M of a regular space S we have ind M ≤

ind X. So we have ind (S ∩ X) ≤ ind S . Since Rk+α
≥0 (R2) is separable and metrizable, its

subspace is also separable and metrizable, which means ind (S ∩ X) = dim (S ∩ X) and

ind S = dim S . So S ∩ X has dim (S ∩ X) ≤ dim S , then its codimension in X � Rn is ≥ 2.

Then the points g1, g2 lie in a continuum in X that is disjoint from S by theorem 1.8.19 in
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[16] stated as follows.

”Mazurkiewicz’s theorem. If a subset M of a region G ⊂ Rn satisfies the inequality

ind M ≤ n − 2, then M does not cut G, i.e., for every pair of points x, y ∈ G \ M there

exists a continuum C ⊂ G \ M which contains x and y.”

If S is closed one can say more: Suppose that X is homeomorphic to S n with n ≥ dim(S )+2,

so S ∩X is a closed subset of X of codimension ≥ 2. By the cohomological characterization

of dimension [16], the space S ∩ X has trivial C̆ech cohomology in dimensions > n − 2,

hence by the Alexander duality X\S is path-connected, giving a path in X\S joining g1, g2.

�
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3.5 Moduli space of complete non negatively curved metrics

LetMk+α
≥0 (R2) denote the moduli space of complete nonnegatively curved metrics, i.e. the

quotient space ofRk+α
≥0 (R2) by the Diff(R2)-action via pullback. The moduli spaceMk+α

≥0 (R2)

is rather pathological, e.g. it is not a T1 space (in the proof of Π−1 is not continuous we

exhibit a non-flat metric g ∈ Rk+α
≥0 (R2) whose isometry lies in every neighborhood of the

isometry class of g0).

Proposition 3.5.1 There is an isometry class inMk+α
≥0 (R2) that lies in every neighborhood

of the isometry class of g0.

Proof Let f : [0,∞) → [0,∞) be a convex smooth function with f (x) = 2 for x ∈ [0, 1]

and f (x) = x if x ≥ 3. The surface of revolution in R3 obtained by rotating the curve x →

(x, 0, f (x)) about the z-axis defines a complete metric g on R2 of nonnegative curvature.

For each r there is a metric r-ball in (R2, g) that is isometric to the Euclidean r-ball Br

about the origin in (R2, g0). Extending the isometry to a self-diffeomorphism φr of R2 gives

φ∗rg|Br = g0|Br so φ∗rg converge to g0 uniformly on compact subsets as r → ∞. �

Consider the map S1 →M
k+α
≥0 (R2) sending u to the isometry class of e−2ug0. Its fibers lie

in the orbits of a Conf(R2)-action of C∞(R2), so each fiber is the union of countably many

finite dimensional compact sets, which by dimension theory arguments easily implies:

Theorem 3.5.2 The complement of a subset S ofMk+α
≥0 (R2) is path-connected if S is count-

able, or if S is closed and finite dimensional.

Proof Let q : S1 → M
k+α
≥0 (R2) denote the continuous surjection sending u to the isometry

class of e−2ug0.

If S is countable, it suffices to show that every fiber of q is the union of countably many

compact sets because then the complement of a countable subset inMk+α
≥0 (R2) is the image
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of S1 with a countable collection of compact subsets removed, which is homeomorphic to

l2 [13], and of course the continuous image of l2 is path-connected.

A function v ∈ S1 lies in the fiber over the isometry class of e−2ug0 if and only if e−2vg0 =

ψ∗e−2ug0 = e−2u◦ψψ∗g0 for some ψ ∈ Diff(R2). Note that ψ necessarily lies in Conf(R2), the

group of conformal automorphism of R2, i.e. either ψ or rψ equals z → az + b for some

a, b ∈ C, where a , 0 and r(z) = z̄. Since ψ∗g0 = |a|2g0, we conclude that v = u◦ψ− log |a|.

In summary, v, u ∈ S1 lie in the same fiber if and only if v = u ◦ ψ − log |a| where either ψ

or rψ equals z → az + b with a , 0. Thus the fiber through u is the intersection of S1 and

the image of the continuous map o : Conf(R2)→ C∞(R2) sending ψ to u ◦ψ− log |a|. Since

Conf(R2) is a Lie group, it is the union of countably many compact sets, and hence so is its

image under any continuous map. Since S1 is closed, every fiber is the union of countably

many compact sets.

Now suppose that S is closed and finite dimensional. Let Ŝ be the q-preimage of S . Fix

two points g1, g2 in the complement of S , which are q-images of u1, u2 ∈ S1, respectively.

By the previous theorem we may assume that u1, u2 lie in an embedded copy Q̂ of the

Hilbert cube. It is enough to show that Q̂ ∩ Ŝ is finite dimensional in which case Q̂ \ Ŝ

is path-connected by the proof of the previous theorem; in fact, much more is true: the

complement to any finite dimensional closed subset of the Hilbert cube is acyclic from the

following lemma proved in [30].

” For X � Q or X � s, where Q is the Hilbert cube and s = (−1, 1)∞, if A ⊂ X is an

open cube and K is a finite-dimensional closed subset of X, then A − K has the homology

of a point.”

Since S is closed, Q̂ ∩ Ŝ is compact, so the restriction of q to Q̂ ∩ Ŝ is a continuous
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surjection q̂ : Q̂∩ Ŝ → q(Q̂)∩ S of compact separable metrizable spaces, and in particular

a closed map, which is essential for what follows.

Since the target of q̂ lies in S , it is finite dimensional. Finite-dimensionality of the do-

main of q̂ would from a uniform upper bound on the dimension of the fiber of q̂ [16]. In

[16], it says ”If f : X → Y is a closed mapping of a separable metric space X to a separable

metric space Y and there exists an integer k ≥ 0 such that ind f −1(y) ≤ k for every y ∈ Y ,

then ind X ≤ ind Y + k.

Each fiber lies in the image of the orbit map o : Conf(R2) → C∞(R2) desired above.

Since Conf(R2) is a Lie group, it is the union of countably many l-dimensional compact

domains (here l = 4).

Restricting o to each such domain is a continuous map from a compact space to the Haus-

dorff space, which is therefore a closed map, and hence the dimension of the target is < 2l,

which is the sum of the dimension of the domain and the largest dimension of the fiber

[16]. By the sum theorem for the dimension of a countable union of closed subsets [16]

cited as follows, the image of o has dimension < 2l.

” If a separable metric space X can be represented as the union of a sequence F1, F2, ... of

subspaces such that ind Fi ≤ n and Fi is an Fσ − set for i = 1, 2, ..., then ind X ≤ n, where

Fσ − sets are defined as countable unions of closed sets.” �

Remark. The previous three theorems yield a deformation between any two given met-

ric g1, g2 that runs in a separable metrizable space, a continuum, or a path, and we now show

that this deformation can be arranged to bypass any given set of complete flat metrics F .

We do so in the setting of the first theorem; the other two proofs are similar. Set Pα := Sα×

Diff+
0,1(R2), which we identify with l2. Flat metrics are parametrized by P0 which is a closed

linear subset of infinite infinite codimension in P1. If P′α := Pα Π−1(g1),Π−1(g2), the P′0 has
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property Z in P′1, see [4], so that theorem 3 in [4] implies that P1 \ P′0 is homeomorphic to

P1, after which the proof is finished as in the first theorem.
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3.6 Rk+α
≥0 (R2) \ K is weakly contractible for α ∈ (0, 1)

Definition 3.6.1 A topological space X is said to be locally contractible if it satisfies the

following equivalent conditions:

1. It has a basis of open subsets each of which is a contractible space under the subspace

topology,

2. For every x ∈ X and every open subset V 3 x of X, there exists an open subset U 3 x

such that U ⊂ V and U is a contractible space in the subspace topology from V.

Definition 3.6.2 A topological space is said to be weakly contractible if all of its homotopy

groups are trivial.

Theorem 3.6.3 Diff+
0,1(R2) equipped with Ck+α topology is contractible.

Proof Consider R2 as C, so diffeomorpisms in Diff+
0,1(R2) are self-maps of C.

Define a family of self-maps Ht( f )(z) of C as f (tz)
f (t) if t ∈ (0, 1] and as H0( f )(z) = I for t = 0.

Indeed, H1(z) =
f (z)
f (1) = f (z). Also as t → 0, we have

lim
t→0

f (tz)
f (t)

= lim
t→0

f (tz)
t
×

t
f (t)

=
z f ′(0)
f ′(0)

= z.

From this, one easily sees that H is continuous simultaneously at t and z.

The map H is continuous even when Diff+
0,1(C) is given the Ck+1+α topology. �

Another equivalent definition of weakly contractibility of space X is that any continu-

ous map f : S n → X can be extended to a continuous map f̂ : Dn+1 → X such that f̂ |S n = f .

Let Diff+,∞,k+α
0,1 (R2) denote the set Diff+

0,1(R2) equipped with Ck+α topology.

Let Diff+,k+α
0,1 be the group of Ck+α self-diffeomorphisms of the plane fixing the complex

numbers 0, 1 and isotopic to the identity. And let Diff+,k+α,k+α
0,1 be Diff+,k+α

0,1 equipped with

Ck+α topology.

Theorem 3.6.4 Rk+α
≥0 (R2) \ K is weakly contractible for α ∈ (0, 1).
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Proof It suffices to show any continuous map

f : S n → (S 1 × Diff +,∞,k+1+α
0,1 (R2)) \ K

can be extended to a continuous map

f̂ : Dn+1 → (S 1 × Diff+,∞,k+1+α
0,1 (R2)) \ K such that f̂ |S n = f .

Here S 1 is equipped with Ck+α topology.

Denote f as ( f1, f2), where f1 is the restriction of f onto S 1 and f2 is the restriction of

f onto Diff+,∞,k+1+α
0,1 (R2).

Since S 1 is convex, it is weakly contractible. Let K1 and K2 denote the projection of K

onto S 1 and Diff+,∞,k+1+α
0,1 (R2) respectively. Since S 1 is weakly contractible, the map f1 can

be extended to continuous maps F1 : Dn+1 → S 1.

The following two lemmas use different methods to prove the theorem. The first lemma

shows S 1 \ K1 is weakly contractible and the second one shows Diff+,∞,k+1+α
0,1 (R2) \ K2 is

weakly contractible. �

Lemma 3.6.5 Let C be an infinite-dimensional convex subset in a Fréchet space and let K

be a compact subset of C. Then C \ K is weakly contractible. In particular, this applies to

L1 and S 1.

Proof Let f : S n → C \K be a continuous map. The closure C̄ of C is homeomorphic to l2,

so l2 \ K is homeomorphic to l2, and hence contractible. Hence f extends to a continuous

map F : Dn+1 → C̄ \ K. The complement of any compact set is homotopy dense in l2,

so we can assume that F(Dn+1) and K are disjoint. Finally, C is homotopy dense in C̄ [5,

exercises 12c and 13 in section 1.2], so we can push F(Dn+1) into C. Both operations move

F(S n) only slightly, so since f (S n) and K are disjoint compact, they remain disjoint.
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Lemma 3.6.6 Let G be a non-locally compact contractible metrizable group. Then any

compact set K in G has a weakly contractible complement, and any map F : Dm → G can

be uniformly approximated by maps whose range misses K. In particular, this applies to

Diff+,∞,k+1+α
0,1,∞ (S 2) and Diff+,∞,k+1+α

0,1 (R2).

Proof Any continuous map f : S m−1 → G\K extends to a continuous map F : Dm → G, so

it remains to push the map into G\K. Let K0 = F(Dm)∪K. Let R = {g ∈ G : g(K0)∩K0 , ø}

where g(K0) refers to the left G-action on itself. Note that R is compact for if gi ∈ R and

gi(xi) = yi with xi, yi ∈ K, then gi = yix−1
i which subconverges. Since G is not locally

compact and homogeneous, no point of G has a compact neighborhood, and in particular

R is not a neighborhood of the identity. So there is a sequence φi ∈ G \ R that converges to

the identity. Then φi ◦ F approximates F and misses K.

We are going to apply the above result to the diffeomorphism group (or rather its sub-

group of diffeomorphisms that are isotopic to the identity and fix some finite set). The

group is metrizable but not completely metrizable. Hence it is not a Lie group. On the

other hand by the solution of the Hilbert-Smith conjecture any locally compact group of C2

diffeomorphisms acting continuously and effectively on a manifold must be a Lie group.

Thus G cannot be locally compact, see [22] and references therein. �
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APPENDIX A

DIMENSION

Definition A.0.7 Let X be a set andA a family of subsets of X. By the order of the family

A we mean the largest integer n such that the familyA contains n+1 sets with a non-empty

intersection; if no such integer exists, we say that the familyA has order∞.

Thus, if the order of a family A = {As}s∈S equals n, then for each n + 2 distinct indexed

s1, s2, ..., sn+2 ∈ S we have As1 ∩ As2 ∩ ... ∩ Asn+2 = ø.

Let us recall that a cover B is a re f inement of another coverA of the same space, in other

words B refines A, if for every B ∈ B there exists an A ∈ A such that B ⊂ A. Clearly,

every subcoverA0 ofA is a refinement ofA.

Definition A.0.8 To every normal space X one assigns the covering dimension of X, de-

noted by dimX, which is an integer larger than or equal to -1 or the ”infinite number ∞”;

the definition of the dimension function dim consists in the following conditions:

(1) dim X ≤ n, where n = -1, 0, 1, ..., if every finite open cover of the space X has a finite

open refinement of order ≤ n;

(2) dim X = n if dim X ≤ n and dim X > n − 1;

(3) dim X =∞ if dim X > n for n = −1, 0, 1, ...

Definition A.0.9 To every regular space X one assigns the small inductive dimension of

X, denoted by indX, which is an integer larger than or equal to -1 or the ”infinite number”

∞; the definition of the dimension function ind consists in the following conditions:

(1) ind X = -1 if and only if X = ø;

(2) ind X ≤ n, where n = 0, 1, ..., if for every point x ∈ X and each neighborhood V ⊂ X of

the point x there exists an open set U ⊂ X such that
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x ∈ U ⊂ V and ind Fr U ≤ n − 1;

(3) ind X = n if ind X ≤ n and ind X > n− 1, i.e. the inequality ind X ≤ n− 1 does not hold:

(4) ind X = ∞ if ind X > n for n = −1, 0, 1, ...

Note that for separable metrizable spaces the covering dimension equals the small induc-

tive dimension.
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APPENDIX B

CK- TOPOLOGY AND HÖLDER SPACE

B.1 Ck-topology

Definition B.1.1 If M and N are Cr manifolds, Cr(M,N) denotes the sets of Cr maps from

M to N. At first we assume r is finite.

The weak or ” compact-open Cr” topology on Cr(M,N) is generated by the sets defined as

follows. Let f ∈ Cr(M,N). Let (φU), (ψ,V) be charts on M, N; let K ⊂ U be a compact

set such that f (K) ⊂ V; let 0 < ε ≤ ∞. Define a weak subbasic neighborhood [26]

N r( f ; (φ,U), (ψ,V),K, ε)

to be the set of Cr maps g : M → N such that g(K) ⊂ V and

||Dk(ψ fφ−1)(x) − Dk(ψgφ−1)(x)|| < ε

for all x ∈ φ(K), k = 0, ..., r. This means that the local representations of f and g, together

with their first k derivatives, are within ε at each point of K. The compact-open Cr topology

on Cr(M,N) is generated by these sets.

We now define the spaces C∞W(M,N). The weak topology on C∞(M,N) is simply the

union of the topologies induced by the inclusion maps C∞(M,N)→ Cr
W(M,N) for r finite.

It is convenient to redefine the topologies on Cr(M,N) in a way which avoids coordinate

charts. Cr(M,N) will be identified with a subset of C0(M, Jr(M,N)) where Jr(M,N)[26] is

the manifold of r-jets of maps from M and N.
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In this way Cr(M,N) becomes a set of continuous maps. We denote by C(X,Y) the set

of continuous maps from a space X to a space Y . The compact open topology on C(X,Y)

is generated by the sub base comprising all sets of the form

{ f ∈ C(X,Y) : f (K) ⊂ V}

where K ⊂ X is compact and V ⊂ Y is open.

We briefly use r-jets to explain the notion of Ck-convergence for Ck-maps between

manifolds.

First let us fix some notation. By M, N we denote (C∞−) manifolds of dimension m, n

respectively. Charts are denoted by (φ,U), where φ is the map and U is the domain. By

Lr(Rm,Rn) we mean the space of r-linear maps

Rm × · · · × Rm︸           ︷︷           ︸
r times

→ Rn,

and ‖ ‖ denotes the standard norm on the corresponding vector space.

Let V ⊂ Rm and W ⊂ Rn be open subsets. For a Ck-map f : V → W, k a non-negative

integer, we denote by f (k) its k-jet, that is

f k : V → W × L1(Rm,Rn) × · · · × Lk(Rm,Rn),

f (k)(x) = ( f (x),D f (x), ...,Dk f (x)).

Definition B.1.2 Let k be a non-negative integer. A sequence fv : V → W, v ≥ 1, of Ck-

maps converges in the Ck-topology to a Ck-map f : V → W if the sequence ( f (k)
v ) of k-jets

converges locally uniformly to f (k). Then ( fv) is also said to converge in Ck. In other word,

( fv) converges in Ck if all derivatives from order 0 up to order k converge locally uniformly.

A sequence fv : V → W, v ≥ 1, of C∞-maps converges in C∞ if it converges in each Ck-

topology, 0 ≤ k < ∞.
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Lemma B.1.3 let U ⊂ Rl, V ⊂ Rm and W ⊂ Rn be open subsets. Assume gv : U → V and

fv : V → W, v ≥ 1, are two sequences of Ck-maps converging in Ck to g and f , respectively.

Then ( fv ◦ gv) converges in Ck to f ◦ g.

Now we consider the inverse functions of the sequence ( fv).

Lemma B.1.4 Let k ≥ 1 be some positive integer and fv : U → V be a sequence of

diffeomorphisms between open subsets of Rm. If ( fv) converges in Ck to a diffeomorphism

f , then the inverse maps ( f −1
v ) converge in Ck to f −1.
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B.2 Hölder space Ck,α(Q)

The Hölder space of order k, α is the space of function from the space of k− differentiable

continuous functions that are ”almost” k + 1 differentiable and continuous. With the word

almost, we mean that every k + 1-differentiable continuous function belongs to the Hölder

space, but not all k-differentiable continuous functions do.

Definition B.2.1 Höoder space Ck,α(Q). Let Q ⊂ Rn be a region, let f ∈ Ck(Q̄), we say

that f ∈ Ck,α(Q̄) iff

max
n≤k

sup
x,y∈Q̄,x,y

|Dn f (y) − Dn f (x)|
|y − x|α

= [ f ]Ck,α(Q̄ < ∞.

Therefore the Hölder space is a subset of Ck(Q̄), such that the functions are Hölder contin-

uous, i.e. exists a constant 0 ≤ C ∈ R such that

|Dn f (y) − Dn f (x)| ≤ C|y − x|α, ∀x, y ∈ Q̄ : x , y

The Hölder norm is defined as

‖ f ‖Ck,α(Q̄) := ‖ f ‖Ck(Q̄) + [ f ]Ck,α(Q̄)

There are some useful properties of the Hölder space.

1) Ck,α(Q̄) is Banach with the norm ‖ f ‖Ck,α(Q̄).

2) The set Ck+1[0, 1] is not dense on Ck,α[0, 1].

3) The set C∞(Q̄) is not dense on Ck,α(Q̄).

4) Let Ck,α(Q̄) be the Hölder space over Q̄, then Ck+1 ⊂ Ck,α(Q̄)∀k ∈ N,∀α ∈ (0, 1).
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APPENDIX C

BELTRAMI EQUATION

In this appendix, we review basic properties of the Beltrami equation

wz̄ = µwz. (C.0.1)

Here w and µ are complex valued maps on a domain in C. Now we suppose that µ is a

function defined in U with sup |µ(z)| < 1. A function w is called a generalized solution of

(C.0.1) in U if w is absolutely continuous on lines in G and the derivatives wz, wz̄ satisfy

(C.0.1) almost everywhere in U.

Now we state the existence theorem

Theorem C.0.2 If U is an arbitrary domain and µ an arbitrary function in U with

supz∈U |µ(z)| < 1,

then there exists a quasiconformal mapping w of U whose complex dilatation coincides

with µ almost everywhere in U.

In our case, the uniqueness of the solution can be derived from the following theorem.

Theorem C.0.3 Let U and U′ be conformally equivalent simply connected domains and µ

a measurable function in U with sup |µ(z)| < 1. The there exists a quasiconformal mapping

w : U → U′ whose complex dilatation coincides with µ almost everywhere. This mapping

is uniquely determined up to a conformal mapping of U′ onto itself.

The application of the above two theorems in our proof is as follows.

Let U, U′ be domains in S 2 whose boundaries are embedded circles, and let a1, a2, a3 and

a′1, a′2, a′3 be two triples of distinct points on ∂U and ∂U′ respectively. Given a C∞ func-

tion β : U → C with |β| ≤ k < 1 for some constant k, there is a unique homeomorphism
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wβ : Ū → Ū′ that restricts to a diffeomorphism U → U′, maps each ak to a′k, and solves

the Beltrami equation with dilatation β.

To state the useful theorem by Earle-Schatz, we first introduce some notations.

Let U = {z ∈ C; Imz > 0} and Mm+α(U) be the set of functions u ∈ Cm+α(U) such that

|µ(z)| < 1 for all z ∈ U. And Cm+α(U) consists of those functions onU having continuous

derivatives up to order k and such that the kth partial derivatives are Hölder continuous with

exponent α.

A general theorem is stated as follows.

Theorem C.0.4 For each k < 1, the map µ → f µ is a homeomorphism of the set of

µ ∈ Mm+α(U) with sup{|µ(z)| : z ∈ U} ≤ k < 1 onto its image in Cm+1+α(U,C). Here the

integer m > 0 and the number 0 < α < 1 are fixed but arbitrary.

From the above theorem, we can easily know

Corollary C.0.5 For each k < 1, the map µ → wµ is a homeomorphism of the set of

µ ∈ M(U) with sup{|µ(z)| : z ∈ U} ≤ k < 1 onto its image in C∞(U,C).
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APPENDIX D

METRIZABILITY

Let I = [0, 1] and let Ck(I) be the set of all functions with continuous k-th derivative,

f : I → R. We consider the metric space (Ck(I),Ck) with Ck norm.

We begin by generalizing some concepts from R to C(I).

We say that E ⊆ C(I) is nowhere dense if for all open balls Bε( f ), centered at f ∈ C(I) with

radius ε, there is an open ball Bδ(g) ⊆ Bε( f ) with E ∩ Bδ(g) = ∅.

We say that E ⊆ C(I) is meager if

E = ∪∞n=1En

where each En is nowhere dense.

Theorem D.0.6 C(I) is not meager.

Proof Suppose E = ∪En where each En ⊆ C(I) is nowhere dense. We will find f ∈ C(I)

with f < E by constructing a sequence ( fn) converging uniformly to f as follows:

Let f0 ∈ C(I). Let ε0 = 1. Given fn and εn > 0, since En is nowhere dense we can find

fn+1 ∈ Bεn( fn) and εn+1 > 1 such that:

1) B̄εn+1( fn+1) ⊆ Bεn( fn);

2) Bεn+1( fn+1) ∩ En = ∅.

We claim that the sequence ( fn) is Cauchy. Let ε > 0. Choose N such that εN < ε. If

n > m ≥ N, then fn ∈ B̄εm( fm). Hence ‖ fn − fm‖ ≤ εm < ε. Thus there is f ∈ C(I) such that

fn → f . Since fn ∈ B̄εm( fm) for all n > m, and B̄εm( fm) is closed, we know that f ∈ B̄εm( fm)

for all m.

Since B̄εm( fm) ∩ Em = ∅, f < Em for any m. Thus f ∈ C(I) \ E.
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The following lemma is used in our proof.

Lemma D.0.7 Suppose F ⊆ C(I) is closed. The following are equivalent:

1) F is nowhere dense;

2) there is no open ball Bε( f ) ⊆ F.

Proof 1)⇒ 2) Clear.

2)⇒ 1) Suppose F is not nowhere dense. Then there is an open ball Bε( f ) such that every

open ball F ∩ Bδ(g) , ø whenever Bδ(g) ⊆ Bε( f ). We claim that Bε( f ) ⊆ F. Let g ∈ Bε( f ).

For each n we can find fn ∈ B1/n(g) ∩ E. Then fn converges uniformly to g. Hence g ∈ E.

Thus Bε( f ) ⊆ E.

Now we discuss Ck(I) for any k ≥ 0.

Lemma D.0.8 For any f (x) in Ck(I) (k ∈ N), there is a function P(x) in Ck(I) s.t. || f (x) −

P(x)||k < ε and the k − th derivative of P(x), denoted as Pk(x), is a continuous piecewise

linear function.

Proof Use induction on k. For k=0. It is already provenit is.

Suppose for k = n, it is true. Consider the case k = n + 1.

For a fixed f (x) in Cn+1(I), f ′(x) is in Cn(I). There is a function P̄(x) in Cn(I) s.t. || f ′(x) −

P̄(x)||n < ε
2 . Choose P(x) s.t. P′(x) = P̄(x) and P(0) = f (0). Then || f (x) − P(x)||n+1 =

supx∈I | f (x)−P(x)|+ || f ′(x)− P̄(x)||n = supx∈I |
∫ x

0
f ′(t)− P̄(t)dt|+ || f ′(x)− P̄(x)||n < ε

2 + ε
2 . �

Let D = { f ∈ Ck(I) : f k is differentiable at x for some x ∈ I}. We will prove that D is

meagre.

Let An,m ={ f ∈ Ck(I): there is x ∈ I such that | f
k(t)− f k(x)

t−x | 6 n if 0 < |x − t| < 1
m }.

Lemma D.0.9 If f (x) ∈ D, then f ∈ An,m for some n and m.
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Proof Suppose f is differentiable at x, then there exists n such that | f ′(x)| < n. And there

exists δ > 0 such that | f (t)− f (x)
t−x | < n if 0 < |t − x| < δ.

Choose m such that 1
m < δ, then f ∈ An,m according to the definition of An,m.

Lemma D.0.10 Each An,m is closed.

Proof Suppose fi is a Cauchy sequence in An,m and fi → f . We shall prove f ∈ An,m.

For each i there is xi ∈ K such that

|
fi(t)− fi(xi)

t−xi
| 6 n for all 0 < |xi − t| < 1

m .

By the Bolzono-Weierstrass Theorem xi has a convergent subsequence. Without loss of

generality, we may assume that xi converges.

Suppose xi converges to x and suppose 0 < |x − t| < 1
m , then

|
f (t)− f (x)

t−x | = limi→∞ |
fi(t)− fi(xi)

t−xi
| 6 n.

Lemma D.0.11 For k = 0, An,m is nowhere dense.

Proof Since An,m is closed, it suffices to show that An,m does not contain an open ball.

Consider the open ball Bε( f ). We will show there exists g ∈ Bε( f ) with g < An,m. We can

find a piecewise linear p(x) such that || f − p|| < ε/2.

Since the graph of p is a finite union of line segments, p is differentiable at all but finitely

many points and we can find M ∈ N such that |p′(x)| 6 M for all x where p is differentiable.

Choose k > 2(M+n)
ε

.

There is a continuous piecewise linear function φ(x) where |φ(x)| 6 1 for all x ∈ K and

φ′(x) = ±k for all x where φ(x) is differentiable. Consider the partition ai = i/k for i =

0, ..., k and let φ(ai) = 0 if i is even and 1 if i is odd. Let

g(x) = p(x) + ε
2φ(x)
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Since || f − p|| < ε/2 and ||g − p|| < ε/2, || f − g|| 6 || f − p|| + ||g − p|| < ε.

We now show g < An,m.

Let x ∈ [0, 1]. If p and φ are differentiable at x, then |g′(x)| = |p′(x) ± ε
2k|. Then |g′(x)| > n

since |p′(x)| 6 M.

Hence, we can find l > m such that g|[x, x + 1
l ] and g|[x − 1

l , x] are linear and the absolute

value of the slope is greater than n. In particular, if 0 < |x − t| < 1
l <

1
m , then |g(t)−g(x)

t−x | > n

and g < An,m. Thus Bε( f ) ( An,m. �

Lemma D.0.12 For each k, An,m is nowhere dense.

Proof Since An,m is closed, it suffices to show that An,m does not contain an open ball. Con-

sider the open ball Bε( f ). We must find g ∈ Bε( f ) with g < An,m. By Previous lemma, we

can find a function P with continuous piecewise linear k-th derivative such that || f−p||k < ε
2 .

Since the graph of pk is finite union of line segments, pk is differentiable at all but finitely

many points and we can find M ∈ N such that |pk+1(x)| 6 M for all x where pk is differ-

entiable. There is a function φ(x), with a continuous piecewise linear k-derivative φk(x)

where φk(x) 6 1 , ||φ||k 6 k and φk+1(x) = ±t,[t > 2k(M+n)
ε

, consider the partition ai = i
t

for i = 0, 1, ..., t and let φk(ai) = 0 if i is even and 1 if i is odd.And from this function we

constructed, we know there is an original function φ satisfying ||φ||k 6 k ],for all x where

φk(x) is differentiable.Let

g(x) = p(x) + ε
2||φ(x)||k

φ(x)

Since || f − p||k < ε
2 and ||g − p||k < ε

2 , || f − g||k < ε.

We claim that g < An,m. Let x ∈ [0, 1]. If p and φ are both differentiable at x, then

|gk+1(x)| = |pk+1(x)± ε
2||φ||k

t|. Since |pk+1(x)| 6 M, |gk+1(x)| > n. So g < An,m and Bε( f ) ( An,m.

�
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From above three lemmas, An,m is meagre. Let A = ∪ ∪ An,m, then A is meagre. Since

D ⊆ A, D is meagre.

Theorem D.0.13 C∞(I) is not completely metrizable in Ck-topology.

Proof Let S be C∞ in (Ck(I), Ck-topology),which is denoted as X. Suppose S is completely

metrizable. S is completely metrizable if and only if S is the intersection of countably many

open subsets. Let S = ∩Ui, where each Ui is open set containing all the polynomials.

A set is comeagre if it can be expressed as the intersection of countably many sets with

dense interiors. So S is comeagre. Thus the complement, i.e. S c, is meagre.

S is a subset of D. Since D is meagre, S is meagre. The union of countably many meagre

sets is meagre, so X = S ∪ S c is meagre. This is a contradiction because a complete metric

space is not meagre. �
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