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SUMMARY

Despite recent advances in statistics, artificial neural network theory, and
machine learning, nonlinear function estimation in high-dimensional space remains
a nontrivial problem. As the response surface becomes more complicated and the
dimensions of the input data increase, the dreaded "curse of dimensionality" takes
hold, rendering the best of function approximation methods ineffective. This thesis
takes a novel approach to solving the high-dimensional function estimation problem.
In this work, we propose and fully develop two distinct parametric projection pur-
suit learning networks with wide-ranging applicability. Included in this work is a
discussion of the choice of basis functions to be used in these networks as well as a
description of the optimization schemes utilized to find the parameters that enable
each network to best approximate a response surface. The essence of these new mod-
eling methodologies is to approximate functions via the superposition of a series of
piecewise one-dimensional models that are fit to specific directions, called projection
directions. The first of these algorithms is designed to be implemented on functions
with a potential unbounded domain for the projection directions. The second is de-
signed to be used on functions consisting of projections with limited coupling, which
is often the case in most real-world applications. The key to the effectiveness of each
model lies in its ability to find efficient projections for reducing the dimensionality of
the input space to best fit an underlying response surface. Moreover, each method
is capable of effectively selecting appropriate projections from the input data in the
presence of relatively high levels of noise. This is accomplished by rigorously exam-

ining the theoretical conditions for approximating each solution space and taking full

X1V



advantage of the principles of optimization to construct a pair of algorithms, each ca-
pable of effectively modeling high-dimensional nonlinear response surfaces to a higher

degree of accuracy than previously possible.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Problem Statement

Despite much research over the years, high-dimensional nonlinear function approxima-
tion remains a difficult problem. To be effective, an algorithm must be able to discern
the relevant inputs, maintain a feasible computational complexity in the face of a large
volume of data, and yet still approximate the response function accurately. A major
problem facing the researcher in making predictions on high-dimensional data spaces

" which describes the effects on function

is the aptly named "curse of dimensionality,'
approximation of the sparsity of sample data points in a high-dimensional function
domain. As a result, a finite set of observations might not be enough to adequately
describe the original response mapping. Projection methods attempt to circumvent
this problem by first transforming the input space into a series of low-dimensional
projections onto which the predictive model is painted. The major difficulty with
such methods is how to choose the most appropriate projections: the ones that best
describe the unknown response surface.

The major focus of this work is on how to best choose the optimal projection
directions. In this thesis, we will extend the initial formulations of the fundamental
projection pursuit regression algorithm [33] (which sequentially identifies projection
directions, approximating the functions along these directions with flexible smooth-
ing techniques), by applying to it a different iterative method for finding the optimal
projections. In our approach, we define the problem parametrically to optimize pro-

jection directions simultaneously and numerically solve the function approximation

problem. We will provide the foundational theory behind just such a methodology,



including a proof of its universal approximation capabilities. We also propose a sec-
ond method for solving for the projections. This method first discretizes the potential
projection space and then utilizes a random search technique governed by a criterion
for minimal error to select the final directions to use in the model. The theory behind
this approach is also presented. In the literature, similar methods are termed projec-
tion pursuit learning networks (PPT.N). There are a number of papers that suggest
such strategies, although their approaches differ in a few fundamental ways, including
utilizing a nonparametric modeling scheme for fitting one-dimensional models along
projection directions and using gradient-search techniques for solving for the opti-
mal directions. Further, such approaches borrow from the heavily-researched neural
network theory. Some of this theory, such as the proof of universal approximation,
are more restrictive than is necessary for projection pursuit networks. We extend
this theory and show how it can be applied parametrically with any basis functions

satisfying a rather general set of criteria.

1.2 Modeling Methodologies

The goal of regression analysis is to estimate the conditional expectation of a response
on the basis of the values of relevant inputs. To this end, two different general classes
of modeling techniques have been employed for this estimation problem: parametric
and nonparametric techniques. Multivariate adaptive regression splines and artifi-
cial neural networks are two such examples of high-dimensional parametric modeling
techniques, both of which will be discussed in more depth later in the thesis. In a
parametric modeling approach, the functional form of the regression surface is often
assumed. The model can be quite accurate provided that the initial assumptions
are correct. However, in practice, one often does not have sufficient information to
assume the form of the response surface. As a consequence, nonparametric techniques

are often used. These methods, which make only a few general assumptions about



the regression surface, are applicable to systems in which only information regarding
the inputs and outputs are known. However, nonparametric approaches have their
drawbacks as well.

Typical nonparametric methods, including splines, kernel approaches, and nearest
neighbor techniques, rely on full-dimensional local averaging around the prediction
point. These approaches utilize a weighted average of responses for observations with
predictors in the same neighborhood as the point of interest. Prior work [76] has
shown that these techniques have some favorable asymptotic properties. However,
they do not perform well in high-dimensional settings, even in the presence of rea-
sonable sample sizes. The reason is that such techniques suffer from what Bellman
termed the curse of dimensionality [7]. This refers to the phenomenon in which the
sample size necessary for estimating a function within a certain degree of tolerance
grows exponentially with the total number of input variables.

Tocalized regression techniques are one of the most common form of nonparamet-
ric modeling methods. These methods each involve the use smoothing around the
local region of interest. In fact, this concept is not new, as Schiaparelli, and Ttalian
meteorologist, began investigating this method in 1866 [72], followed by De Forest
(1873) [23]. Because of the effectiveness and intuitive nature of this method, it has
found wide-ranging applicability and acceptance: [18], [74], and [53] in the field of
economics, [55] in numerical analysis, [91] in sociology, [71] and [88] in chemometrics,
[62] in computer graphics, and [2] in machine learning.

The local regression method has largely been developed on theoretical results of
parametric regression methods and is based on finite sample theory of linear estima-
tion. This theory, developed in sources such as [49], [14], and [86], trivialized problems
that have proven to be major stumbling blocks for the more widely studied kernel
methods.

Another theoretical treatment of the local regression approach is to view the



method as an extension of kernel methods by attempting to extend kernel theory to
local regression. This treatment has become popular recently, for example in works by
[87] and [27]. But, for practical purposes, some [57] have claimed that kernel theory
is of limited use, basing their evidence on its often poor approximations and highly
restrictive required conditions.

Despite the effectiveness of the local regression technique for a wide range of low-
dimensional problems, it has yet to be practically extended to effectively model high-
dimensional systems. The approach tends to fail with more than 2 or 3 dimensions,
even with moderate sample sizes. This ineffectiveness directly results from the curse

of dimensionality.

1.8 Data Sparsity

While we have derived several lemmas to prove the existence of the curse of dimen-
sionality and certain specific attributes of high-dimensional space, in the interest of
not getting bogged down in details, they will resurface in Chapter 2. Instead, an
illustration of the effects of this phenomenon can be presented in the form of an ex-
ample. If, for instance, one sets the dimensions of the local neighborhoods to cover
10% of the nearest points for each coordinate axes, we find that in 10-dimensional
space only 0.1'° or 0.00000001% of the total sample will be included on average.
Thus, each local region will likely be empty. To counteract this, one could assign the
total number of points for the local neighborhood. For instance, if the number of
nearest points to be included is chosen to be 1% of the total sample, then 63% of the
nearest points along each coordinate axes will have to be included. This destroys the
accuracy of the model. Thus, the issue of high dimensional sparsity limits the effec-
tiveness of traditional nonparametric modeling techniques. Hence, a new approach is
needed which will be able to better handle such sparsity in high dimensions and still

provide sufficient accuracy in estimating the underlying regression surface.



1.3.1 Intrinsic Dimensionality

Given a system with 1) independent variables, it will in practice, appear to have 1y
(where Dy > D) degrees of freedom due to the presence of noise, measurement error,
etc. Yet, provided the influence of these factors is not so overwhelming as to com-
pletely mask the original structure of the system, one should be able to filter such
noise out and recover the original variables. We now define the intrinsic dimension
of the system as the number of inputs that satisfactorily explain the system. The
intrinsic dimension would be the dimension M of the projected variables that govern
the operation of the system. Across varied domains like vision, speech, motor control,
climatology, genetic distributions, human motor control, and a range of other phys-
ical and biological sciences, various researchers corroborated that the true intrinsic
dimensionality of high dimensional data is often very low [80], [67], [85], [26]. We
interpret these findings as evidence that the physical world has a significant amount
of coherent structure that presents itself as being well-suited to dimension reduction
techniques. For instance, in the realm of computer vision, it is quite obvious that
the neighboring pixels of an image of a natural scene possess redundant information.
Moreover, the probability distribution of natural scenes, in general, has been found to
be highly structured. Thus, this illustrates an example application that lends itself
to a sparse encoding in terms of set of basis functions [65].

So, dimension reduction techniques can be quite useful in a wide range of applica-
tions. Thus, the determination of the intrinsic dimension of a sample distribution is
important in many prediction applications, as it is central to the problem of dimen-
sion reduction. Knowing the intrinsic dimension would eliminate the possibility of
overfitting or underfitting the data. Of course, the problem is itself ill-posed, because
given a data sample it is possible to make a manifold of any dimension pass through it
(assuming no observations have duplicate inputs) with negligible error given enough

parameters. Thus, it is important to take these things into account when formulating
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a dimension reduction algorithm.
1.3.2 Unsupervised Dimension Reduction

One way to avoid the curse of dimensionality is to reduce the number of input di-
mensions. A common unsupervised learning technique used to accomplish this ob-
jective is principal component analysis (PCA). Principal component analysis (or the
Karhunen-T.oeve transform, as its known in signal processing) is the most commonly
used dimension-reduction technique used in practice, primarily because of its simplic-

ity and computational efficiency.

Dimension Nonlinear
[E— [— | e—
InpUtS Reduction Model OUtpUt

Figure 1: Model With Unsupervised Dimension Reduction

Thus, one method employed by some has been to first reduce the dimensionality
of the problem with a technique like principal component, analysis and then apply a
nonlinear modeling technique on the reduced subspace of inputs [77], [78], and [22].
Techniques such as partial least squares (PT.S) [89], [29] and principal component re-
gression (PCR) [60], [82] use the superposition of univariate regressions onto principal

component projections of the input space to make response predictions.
1.3.3 Principal Component Analysis

The basic concept behind principal component analysis is to transform the inputs into
a new set of input vectors that are uncorrelated in an attempt to create the maximum
separability in the input space. The dimensionality of this space may also be reduced
by retaining only those components which contribute a specified proportion of the
total variation in the data.

This method makes the assumption that the distribution of the data takes the

form of a hyperellipsoid, such that the vector of means and the covariance matrix



define the shape and dimensionality of the distribution [73]. T.et us consider a sample

in ®” with mean 7 = %211 x4, covariance matrix % = F |(z — %) (v — E)T , and
spectral decomposition ¥ = UAUT, with U = [uy ug ... up] orthogonal and A
diagonal. The principal component transformation: y = U” (z — ¥) produces a

new reference with respect to the sample has zero mean and a diagonalized covariance

matrix A containing the eigenvalues of 3.

A 0 0 0

0 X 0 O
A pum—

0 0 0

0 0 0 Xp

Thus, the u;’s are the eigenvectors corresponding to the eigenvalues, A; with the
eigenvalues ordered as such: Ay > Ay > ... > Ap > 0. The question then becomes:
how many principal components should be to reduce the dimensionality while still
capturing information of the original system? To this end, a typical rule employed

1s to choose M < ) such that:
M
Zfﬂ Ai -
[3)
Zfﬂ Ai

where p is some arbitrarily selected percentage of the sum of the system’s total eigen-

values.

Using this methodology of projecting the initial raw variables onto the subspace
spanned by the first M principal components, the transformed variables are uncorre-
lated, and those variables with a small variance are discarded. An example of such
a projection is illustrated [12].

The problem with this type of approach, as diagrammed in figure (2), is that the
dimension reduction is performed with an unsupervised technique. Indeed, it is quite
evident that the selection of the optimal dimensional subspaces will be dependent on

the response surface.



Figure 2: Two-Dimensional Normal Point Cloud with its Principal Components



1.4 Potential Solutions - supervised learning ap-
proaches

Over the recent years, some novel ways of trying to address the problem of choosing
the best projections have been devised. Although they utilize an unsupervised local
dimensionality reduction algorithm, Teh and Roweis [79] constrain their projections to
describe a single, coherent low-dimensional coordinate system by enforcing agreement
amongst principal components to fit a specific coordinate transformation. Some recent
work, such as that of Vijayakumar [82] focus on finding efficient local projections to
approximate functions in the neighborhood of a given query point. In one of his
papers [83], Vijayakumar introduces a locally weighted projection regression (LWPR)
algorithm, which uses locally linear models spanned by a series of one-dimensional

regressions along selected input space directions.

+. | Dimension Nonlinear
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Figure 3: Model With Supervised Dimension Reduction

One method that has been proposed is covariant projection regression (CPR) [84].
This 1s a method that sequentially chooses its projection directions by taking into ac-
count not only the input distribution, as in the case of principal component regression,
but also the covariance of the input and output data. Thus, CPR extends the tech-
nique by supervising the learning of optimal projection directions, as illustrated in
figure (3). However, because this and the other algorithms mentioned above fit linear
functions along individual projection directions, they are not particularly adept at
capturing nonlinearities in a high-dimensional function space.

A number of methods have been developed in an attempt to address this problem.

Payman Sadegh and Henrik Ojelund [70] introduce the concept of hierarchical local



regression to incorporate both local approximations in the neighborhood of a given
query point and global information in the form of a set, of weights from a global regres-
sion function. The concept of the multilayer nodal link perceptron network, or NT.PN,
is introduced in [69] and [28]. This type of model employs multi-dimensional local
bases to capture nonlinearities in the response function. Among the best known of
these algorithms that are designed to target nonlinearities in high-dimensional space
are multivariate adaptive regression splines [37], neural network models, and projec-
tion pursuit regression [33]. The first two of these will be discussed in this chapter,
while projection pursuit, central to the research of this thesis, will be discussed in

much greater depth in the chapter that follows.
1.4.1 MARS

To fit a response surface, multivariate adaptive regression splines [31], or MARS
models, adaptively build a set of basis functions in the original coordinate system.
MARS adds basis functions by a forward selection procedure. For each input, x;, and
every possible value, t of x;, MARS splits the data into two parts at the "knot", ¢.
MARS then keeps the knot and the associated variable pair that provides the best
fit. On these two parts, each comprising the data on one side of the knot, a pair of
linear functions is fit. Fach of these functions is non-zero on one side of the knot
only. After one variable has been selected, further splits can be assigned via forward
selection based on the previous split (splitting the input space on one side of the
previous knot only), or it ignoring the previous split and splitting the entire input
space on the new knot. MARS adds to the set of basis functions using a penalized
residual sum of squares.

Generally, the forward selection procedure will overfit on this initial pass. Thus,
MARS prunes these results, via generalized cross validation criterion, using backward

elimination on the selected set of basis functions. Finally, the MARS procedure
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replaces the linear basis functions with cubic splines to smooth out the approximation.

MARS is able to handle nonlinearities quite well. However, unlike projection
methods, MARS operates in the original coordinate system only. De Veaux and Unger
[22], provide an extension of this approach by combining the MARS procedure with
the linear projection principal component method to achieve more accurate results in

the face of input space multicollinearity.
1.4.2 Artificial Neural Networks

Neural networks are universal approximators.  (3iven enough nodes, an artificial
neural network can represent any well-behaved function. In general, neural nets are
relatively robust to outliers and are capable of fitting highly nonlinear data quite well.
When constructing models of nonlinear high-dimensional systems, neural networks
are often chosen because of their of their wide-ranging applicability to such input
spacings. Besides being relatively robust to outliers and noisy data, such models are
suitable for efficient implementation on massively parallel computers as their hidden
units only pass information to and from those units sharing a direct connection.
However, interpretability of neural network model results is difficult due to the high
degree of interaction and multicollinearity between the variables and basis functions.
Thus, neural networks are best used as "black box" models, where interpretability
of the governing model is not as important as identifying an accurate input-output
relationship. Perhaps the most common form of neural networks is the single hidden-
layer feedforward network with sigmoidal activation functions. This type of network
uses one-dimensional activation functions to project high-dimensional spaces onto
several single-dimensional spaces that are nonlinearly activated and then summed

together. Such a network can be written in the form

N

Y = Z w0 (x)

=1
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where

oj(r) =

" 1
14 exp ( Z 71)]-,{.77,;) ]

kE—1

and the weights w;; and w;, are selected by a nonlinear optimization method to
minimize the loss function over the training set. Typically, T.evenberg-Marquardt
optimization is used. The Levenberg-Marquardt algorithm is a cross between gradient

descent and Newton’s method:

Wy = Wy — (JTJ — uf) ! Je

where .J is the Jacobian of the error criterion, u is the gradient descent weighting,
and e is the error between the target and the prediction. When the scalar u is zero,
is essentially Newton’s method using the approximate Hessian matrix. When p is

large, the method converges to gradient descent with a small step size.

—
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Figure 4: Schematic of the Architecture of a Single Hidden T.ayer Neural Network

Since neural networks are so widely used when attempting to model high- di-
mensional multivariate functions and have such incredible modeling flexibility, why
is there a need for any other type of model? 1In fact, it is the large flexibility pro-
vided by neural network models that leads to some problems. First, for any given
training set and any given model architecture, i.e. the number of hidden units, the

weight, matrix is not uniquely determined. This means that ANN models are not
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identifiable. Second, the optimization problem is nonconvex and quite often unstable.
While feedforward neural networks have the ability to approximate high-dimensional
functions with relatively few activation functions, they use global basis functions and
are difficult to train. In fact, the training of neural networks has become quite an
art, of sorts. The gradient descent optimization rule, which is often used for finding
the estimates, may get stuck at local minima. Thus, based on the random sequence
in which the inputs are presented to the network and based on the initial values of the
input parameters different solutions may be found. 1In fact, the non-identifiability of
neural network solutions which are caused by the possible non-uniqueness of a global
minima and the existence of possibly many local minima leads to a large prediction
variance. 'Thus, the large flexibility provided by neural network models leads to pre-
dictions with a relatively small bias, but also leads to a large variance [44]. Careful
methods for variance control [3], [9], [10], [66], [43] are thus required to robustify the
prediction.  Third, there is the problem of optimal network architecture selection
(number of hidden layers, number of hidden units, weight constraints, etc.). This
problem can be addressed to some degree by cross validatory choice of architecture
[9], [10], or by averaging the predictors of several network with different architecture
[90].

With so many problems with traditional neural networks, there is thus a need for
a method that will handle some of these problems. The novel methods introduced
in this work intend to address some of these problems with the use of a simpler
architecture that involves fewer average parameters and a more efficient optimization
scheme that will hopefully help alleviate some of the problems of optimal network
architecture selection, reduce the possibility of getting caught in local minima, and

achieve better overall estimation results.
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Figure 5: Flowchart of

In the next chapter, we focus on projection pursuit approaches. We will start
by examining the "curse of dimensionality"” mathematically to gain a better under-
standing of why a dimension reduction approach like projection pursuit might be

important. Then, we will explore the state of the art in projection pursuit learning

up to this point.

Chapter 3 introduces the newly-proposed parametric projection pursuit learn-
ing model of this thesis. This method solves the function approximation problem by
optimizing the projection directions simultaneously using a T.evenberg-Marquardt op-
timization technique. In this chapter, we explore the mathematical framework of the

method. The major theoretical contributions of this chapter include: 1.) a theorem to
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show that high-dimensional functions satisfying a rather broad set of criteria can be
decomposed into an infinite number of single dimensional, mutually orthogonal func-
tions, 2.) the derivation of the projection pursuit data dimension reduction technique
from the context of Fourier Analysis, and 3.) a universal approximation theorem
for the newly-proposed method. We then explore the effectiveness of the introduced
technique by looking at its predictive performance on experimental results.

In Chapter 4, we introduce yet another projection-pursuit-inspired model, the dis-
cretized parametric projection pursuit learning model. This prediction methodology
uses a different technique for finding optimal projections: the use of a random search
on a discretized set of projection couplings. Again, we introduce the theoretical un-
derpinnings of the approach using a similar mathematical framework. However, we
will find that the theory differs a bit, as our underlying assumptions in this case are
different. Next, we propose two different techniques for selecting these discretized
projections, and then we proceed to provide experimental results for the method,
using one of the proposed techniques.

In Chapter 5, we provide a thorough comparison of the newly proposed methods
with commonly-used high-dimensional prediction techniques. An extensive set of
simulations is run to examine the varying effectiveness of each of the given methods
under different conditions.

Chapter 6 consists of an experimental case study on financial data. In this
case study, a comparison of DPPT.M simulation results with those of feedforward
neural networks are provided. Also presented is an extensive statistical investigation
analyzing the effectiveness of the DPPT.M approach on the simulation data.

In Chapter 7, we present our conclusions, a summary of the major contributions

of this work, and suggestions for the future direction of the research.



CHAPTER 11

IN PURSUIT OF OPTIMAL PROJECTIONS

One major problem facing the researcher in making predictions on high-dimensional
data spaces is the effect of the sparsity of sample data points in a high-dimensional
function domain. As a result, a finite set of observations might not be enough to
adequately describe the original response mapping. By first transforming the input
space into a series of single-dimensional projections, projection methods are able to
get around this problem to some extent. The major difficulty with this, however,
is: how does one choose the optimal projections? This is where the true challenge
of high-dimensional function approximation lies. If one can solve this problem, then
prediction methodologies can be constructed that are both accurate and robust even
in the presence of high levels of noise and high degrees of data sparsity. In this chapter,
we will first explore the problems of high-dimensional modeling in more depth, and

then we will follow this with a detailed exploration of projection pursuit methods.

2.1 The Curse of Dimensionality

In Chapter 1, we used a simple example to illustrate the aptly-named curse of dimen-
sionality. To step beyond this simplified illustration, let us now work through some
proofs to glean a better understanding of this strange phenomenon. T.et us begin

with a lemma:

Lemma 1 For a hyperellipsoid in d dimensions, its equation can be writien as:

SHES PR
A2 N2 A2
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and its volume can be written as [51]:

2 [ 72
V,:_ )‘i
" (H >r<%>

where T'(x) is the gamma function given by T'(x) = fnm 17 e tdt

Using this lemma, we can proceed to make some interesting conclusions about

data sparsity and the "curse of dimensionality.”

Lemma 2 The volume of a hypersphere decreases toward zero with increasing dimen-
stonality:

Proof. For a hypersphere, we note that \; = r fori=1,2,....d. Thus, the volume
of the hypersphere reduces to [5]:

]2

Provided that v is bounded by an arbitrarily large, but finite value M; i.e., r € (0, M].
Then,
lim V; = lim Ld/? =0

Thus, Vy will vanish as d becomes large, since d can always be chosen such that

d>>aM’. ®

These results are illustrated for a unit hypersphere in figure (6). The results of

this lemma can be further extended to a hyperellipsoid of a general form.

Lemma 3 The generalized volume of a hyperellipsoid decreases toward zero with in-

creasing dimensionalily:
Proof. For a hyperellipsoid of general form:

e wEpa |
NN ¥
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Figure 6: d-Dimensional Volume of a unit ecm Hypersphere by Dimension

and provided that A, 1s bounded by an arbitrarily large, but finite value M; i.e.,
Amax € (0, M]. Then,
d/2 a d/2
0< limVy = lim ——— [ M < limAL ——— =0
d—oc d—oc [ <§ + 1) e d—oc T <§ + 1)
where i = 1,2,...,d. Thus, V; will vanish as d becomes large, since d can always be

3

chosen such that (§i >>7M?%2 N

In fact, we can extend this analysis to gain further insight into the issue of data

sparsity.

Lemma 4 The volume of a general hyperellipsoid tends to concentrate in an outer

shell with increasing dimensionality: [45]

Proof. First, we note that for a hyperellipsoid of the form:

X? X2 X?

+ +ot 5 =1
Ai—e1) " (o — )’ (A~ €a)”
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where 0 < g; < \; and 7 = 1,2, ..., d, then its volume can be written as

/2 ﬁ
V, = < ()\7 - €7j) .
BN CERIES

Now, to illustrate the lemma, we note that the volume ratio of two hyperellipsoids,

one slightly smaller than the other is:

ﬁ (N — &)

Va(hi —&) i _ d .
Vi) ﬁ)\i 711(1 &)

i—1

where £, = = for ¢ = 1,2,...,d and 0 < £, < 1. Tetting £ . = min <E_7> for

A min A;
1=1,2,...,d , we can see that
V(A — &) d
lim —2 2 < im [ (1~ &) = lim (1 — €)= 0.

Remark 5 Using the results of this lemma, il is evident that data in high-dimensional

space is expressible in less than full dimensionality.

To show how quickly data tends to concentrate in an outer shell for increasing

dimensionality, we take the example of two hyperspheres with

Vi(r—e) ,
~ =g
Va(r)
where { = £ = 0.1. Here, we find that the ratio of the two volumes tends to zero

rather quickly as the number of dimensions increases.
Thus, the volume of a hypersphere in d-dimensions tends to concentrate in an outer
shell as the number of dimensions grows. A general d-dimensional hyperellipsoid has

similar properties.
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Figure 7: Percentage of d-Dimensional Hyperspherical Volume Not Concentrated in
Outer Shell

Remark 6 Nole that as an extension of the prior lemma, one could show thal the
volume of a hypercube, or (more generally) the volume of any regular hyperparal-
lelepiped, also tends to concentrate in an outer shell with increasing dimensionality:

The proof follows similarly from the proof of the preceding lemma.

Thus, it seems that if the volume of the n-dimensional space tends toward zero
clustering in lower dimensional surfaces, then if we can find the structure of these
lower dimensional clusters, we might be able to project the data onto such surface.

This would help alleviate the curse of dimensionality.

2.2 Previous Work In Projection Pursuit

Many of the potential solutions to this data sparsity problem in high-dimensional
space often fall under the category of projection pursuit. Projection pursuit [40)]

is a dimension reduction technique that identifies interesting low-dimensional linear
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projections of a high-dimensional space by optimizing an objective function, called a
projection index. Thus, any structure seen in a projection is but a shadow of the actual
structure in original space. It is of interest to the researcher to pursue the sharpest
projections: those that reveal the most information contained in the high-dimensional
data distribution. With this method, the scaled components of the projection vectors
that define the corresponding solution indicate the relative strength that each variable
contributes to the observed effect. Tt is of interest to note that several methods of
classical multivariate analysis are special cases of projection pursuit (for example,
principal component analysis). Two disadvantages [12] of projection pursuit are:
1.) because it works with linear projections, projection pursuit has been poorly suited
to deal with highly nonlinear structure, and 2.) projection pursuit methods tend to

be computationally intensive.
2.2.1 What is an interesting projection?

An example of data projections is provided in figure (8) [12]. Tn this example, we
project the original data onto a pair of arbitrary two-dimensional hyperplanes. Yet,
we should hope to make such data projections only when those projections are "in-
teresting." We consider that a projection is interesting if it contains structure [40)].
Correlation between variables as detected by a linear regression is an example of easily
recognizable structure in the data. Because of this, and noting the following results,
an assessment of such structure can be made. For fixed variance, the normal distrib-
ution has the least information, in both the senses of Fisher information and negative
entropy [17].  For most high-dimensional clouds, most low-dimensional projections

are approximately normal [24]. Thus, it is considered that the normal distribution

is the least structured (or least interesting) density.
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Figure 8: Tllustration of Data Projections

2.2.2 The projection index

A projection index @ is a real functional on the space of distributions on Ry: [12],

[40]

Q2'f€£2<%k>—>q:Q'f—>§R

Normally, f = F4 will be the distribution of the projection (of matrix A) of a D-
dimensional random variable X with distribution F, and will correspond to a k-
dimensional random variable Y = AT X, if Ais D) x k. Projection pursnit attempts
to find projection directions a; for a given distribution F' which produce local optima
of ). To make the optimization problem independent of the length of the projection
vectors and to obtain uncorrelated directions, the a; are constrained to be unit length

and mutually orthogonal (i.e., the column vectors of A must be orthonormal).
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2.2.3 Projection pursuit regression (PPR)
2.2.3.1 Background

Projection pursuit regression (PPR) [33] is a nonparametric regression approach for
the multivariate regression problem based on projection pursuit. A remarkable feature
of projection pursuit regression is that it is one of the few multivariate methods
capable of bypassing the curse of the dimensionality to some extent. However, the
power of any projection pursuit algorithm to find important structure will still suffer if
the sample size is small and the dimension large. PPR works by additive composition,
constructing an approximation to the desired response function by means of a sum
of low-dimensional smooth functions, called ridge functions, each of which depend on

low-dimensional projections through the data:

F@) =Y g (ala)

where each g; is constant on hyperplanes.
2.2.8.2 Algorithm

The PPR algorithm determines a;, and g, for k =1,..., j as follows: [12]

Initialization of algorithm: Set the projection directions a; to some random
vectors (or the first principal components in a PCA routine). The residuals are

initially set to r;0 = 1y;. Set j =1

Repeat
1. Assuming a; and g; for k =1,..., 1 — 1 determined, compute the residuals
j 1
T T .
Tijg 1= Yi — Z.Qk (% T7> =Tij 2 G951 (0;7- 1377‘,) i=1,..,n
E—1

2. Fit a nonparametric smooth curve g; to the residuals {r; ; 1}, as a function

of a'z; for any a € R with ||a| = 1.
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3. Projection pursuit step: minimize the sum of squared residuals (the y-norm)
relative to g over a:
n n
. . T 2 . 2
a; = arg min ri; 1—gla x; — arg min r;

lal —1<
i—1

4. Insert a;, g; as the next term in the equation for }?(T)

Until the improvement in step 3 is small.

2.2.4 A Brief History of Projection Pursuit

Projection pursuit regression was first developed by Friedman and Stuetzle [33] and
expanded upon by [36]. As with other nonparametric methods, projection pursuit
techniques possess certain useful properties. Nonparametric regression techniques
were first devised for greater robustness and modeling capabilities when confronting
estimation tasks where the functional form of the response surface is not known.
Nonparametric techniques are especially useful in these situations as they make fewer
assumptions about said response surface.

Projection pursuit regression (PPR) is especially useful when modeling higher
dimensional data as it is capable of overcoming the curse of dimensionality as expe-
rienced in kernel and nearest-neighbor methods to some extent as all of the modeling
performed is univariate. Interactions amongst predictor variables are directly mod-
eled as PPR fits smooth curves to each univariate projection. However, because
a PPR model is the superposition of low-dimensional functions, it will have trouble
modeling surfaces that vary in strength equally across all possible linear combinations
52].

A comparison of PPR’s prediction capabilities with that of kernel methods has

been made by Donohoe and Johnstone [25]. They found that PPR works well when
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the underlying function is angularly smooth, or oscillates slowly with angle, but per-
formed poorly for harmonic analysis. Kernel models behaved well in these cases,
where functions had sufficient Taplacian smoothness. They also showed that if the
function to be estimated has nice tail behavior, PPR lowers the dimensionality. Chen
[13] devised a PPR scheme such that the convergence rate of the estimator is inde-
pendent, of dimensionality.

Projection pursuit was first extended into the domain of learning networks by
Barron and Barron [4]. A projection pursuit learning network (PPT.N), is very similar
in structure to a one hidden-layer neural network, except in place of the sigmoidal
activation functions are unknown functions to be learned from the data. Thus, PPT.N
can be viewed as a generalization of sigmoidal feedforward neural networks.

In the original PPT.N, a variable span smoother, dubbed the "supersmoother"
[33], is used to generated the smooth estimated activation functions. The motiva-
tion behind the original design of the supersmoother was two-fold: a.) to have a
good variable bandwidth adaptable to varying function curvature and noise levels,
and b.) to be very fast, computationally. Hwang et al. [41], [42] revealed that the
supersmoother, and actually such nonparametric smoothers in general, have inherent
problems  such as the use of large regression tables, unstable derivative approxi-
mations, and piecewise interpolation in calculating activation values that leads to
performance degradation in training and testing. They proposed using a parametric
smoother that would be the constructed from a superposition of Hermite functions,

where the Hermite functions are defined as



he (z) = (1)) 172 71749 (r N2y, (2) @ (2),

where —co < z < oo and H, (z) are Hermite polynomials, expressed as

Ho(z) = 1
Hi(z) = 2z

H.(2) = 2(rH, 1(2) —(r—1)H, 5(2)).

The Hermite-based PPT.N uses the minimum L9 criterion, produces smoother re-
gression surfaces, and is inherently easy to arrive at the derivative calculations. In
this thesis, we will extend upon this with another set of parametric networks that are
capable of utilizing a broader, more general class of basis functions.

Zhao et al. [95] investigated the use of a parametric PPR to learn the inverse
dynamics of robot arms in high-dimensional space (six dimensions). They showed
that PPT.Ns can learn this task quite well and that a parametric PPR with a direct
training method can achieve better accuracy and training speed than a nonparametric
PPR. Also, the parametric projection pursuit network has the advantage of achieving
a higher degree of accuracy with fewer estimation parameters used than does a one
hidden layer sigmoidal neural network.

Kwok and Yeung [54] improved upon the PPN suggested by Hwang et al. [41],
[42]. Recall that in those papers the parametric smoother is based on a predefined
order, R, of the Hermite function. Kwok and Yeung found that a PPT.N with a fixed
R does not possess the universal approximation capability for any finite value of R.
Thus, they suggest that is it possible to keep R fixed while still retaining the property
of universal approximation by introducing a bias term to each linear combination of
predictors. They also demonstrate experimentally that this change increases the
rate of convergence with respect to the number of hidden units and improves the

model’s generalization capabilities. We will be extending upon this with the choice
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of a different set of bases for the local fits along projection directions and with a
new universal approximation theorem showing that our approach to approximating
the response surface maintains its universal approximation capabilities for a broader

class of functions than was previously demonstrated.

2.2.5 Projection Pursuit Learning Networks (PPLN)

A projection pursuit learning network (PPT.N) is similar in structure to a one hidden

layer sigmoidal feedforward neural network. The PPT.N [42], [95] can be written as

m p
Yi =Y+ Zﬁik.fk (Z akj”]’)
k1 j—1

where (3, are the projection strengths, f; are the unknown smooth activation
functions, and ay; are the projection directions. These parameters are trained by

minimizing the mean squared error loss function:
q
— ~\2
L= E Will (yi — i)
i—1

where the weights W, describe the relative contribution of each mean squared

output error to the total loss function, ., and F is the expected value function,
defined as
I _
F(y:) = n ]21:?/17‘, =Y
The PPLN learning algorithm trains each hidden units sequentially instead of
simultaneously, as is the case with backpropagation networks. The algorithm for the
k-th hidden layer neuron can be represented as follows: [52]
1. Make initial guess for oy, 3,, and f;
2. HEstimate aj = a; + A using an iterative optimization method
3. Given ay,, estimate f;, as the smooth 1-dimensional curve that best fits the
scatterplot [z, f¥ (211)] , where z;; = aZm].

4. Repeat 2-3 for several iterations.
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5. Use the most recent updates of f; and «; to calculate 3, by setting to
zero the derivatives of the loss function, I, with respect to 3,;.
6. Repeat steps 2-5 until the loss function is minimized with respect to all
fr, ag, and 3, associated with the k-th neuron.
This procedure is then repeated for the (k4 1)-th hidden layer neuron. A

schematic is provided in figure (9) [52].

4 Y

. ._Pl?n. <
3.4 . Rt T -ﬁhi I$q1‘-l

Figure 9: Schematic of PPT.N architecture

Maeschler et al. [58] and Hwang et al.[41], [42] compared the performance of
projection pursuit learning networks with backpropagation neural networks using
two-dimensional regression problems. In each case, they used nonparametric data
smoothers to optimize the activation functions in the PPLN, and found that both
methods achieved similar performance on independent, cross-validation samples. The
work by Hwang et al. [41], [42] illuminates some problems with the nonparametric
PPT.N approach, namely the use of large regression tables and the inherent insta-
bility in estimating the derivatives. Thus, they propose using the superposition of

parametric Hermite functions in place of the nonparametric smoother.
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Hwang et al. [42] compared PPT.N with cascade-correlation learning networks
(CCLN), and found CCLN models unsuitable for most regression applications as
their structures are prone to saturated hidden units leading to unsmooth, jumpy esti-
mates.. Tike a PPTL.N, CCLN grows ts hidden layer(s) during training by sequentially
adding hidden units. With the CCILN, the weights on each candidate hidden unit
are trained by holding constant all existing weights. Unlike as is the case with a
PPT.N, in which the input data form the entirety of the connections feeding into each
hidden unit, each candidate unit in a CCT.N will receive connections from both input
units and from all other hidden units. While this attribute aids the CCT.N in finding
higher order features, it also makes the training more difficulty. Hwang et al. found
that the maximum correlation criterion used in the network to avoid cyclic updat-
ing between layers usually produces saturated hidden units, resulting in unsmooth

regression surfaces, which make CCTN unsuitable for most regression applications.
2.2.6 Remarks

In the next chapter, a new type of projection pursuit learning model is introduced.
In our approach, we optimize projection directions simultaneously to solve the func-
tion approximation problem using analytical methods. On the block diagram in
figure (10), we will be exploring the theory, optimization procedure, and experimen-
tal implementation results for the case of unbounded functions (note that in chapter
4, we will review the case of bounded functions). Specifically, we will provide the
foundational theory behind just such a methodology, including a proof of its univer-
sal approximation capabilities. We then discuss the optimization approach employed
along with providing a detailed algorithm. We conclude with a comparison of the
simulation results of our projection pursuit learning model with three commonly-used

high-dimensional modeling methods.
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CHAPTER III

THE CONTINUOUS PROJECTION PURSUIT

LEARNING MODEL (PPLM)

3.1 Owverview

The chapter is structured in the following manner. In the next section, we present the
theory to show that a response surface can be modeled by the superposition of one-
dimensional functions. Next, the issue of basis functions is addressed along with the
associated grid spacing. In an effort to match the input distribution, a data-driven as-
signment of the grid spacing is suggested, which typically results in unequally-spaced
nodes. The section following this proves the universal approximation capabilities of
the projection pursuit learning model. The two-stage optimization problem is then
presented. The algorithm, which utilizes a T.evenberg-Marquardt optimization of the
projection directions, is then provided. Finally, before the concluding remarks, an
experimental case study is offered comparing prediction performance with other tra-
ditional high-dimensional learning techniques. Please note that in the interest of
readability, some of the theoretical derivations of this chapter have been moved to

the final section of the chapter, section...

3.2 Mathematical Framework

Before beginning the analysis, it is useful to first define the mathematical framework
within which we will be working. Our goal is to approximate functions belonging to

a subset of Tebesgue measurable multi-dimensional functions f : " — R. The L,



norm of f: %" — RN is denoted by

(ﬁnn |f|pdm>1/p ,1<p<oo

11l =
ess sup |f()] . p=oo

TERT
where ess denotes the essential supremum (i.e., supremum of f except for a set of
measure zero). The set L, refers to the class of T.ebesgue measurable functions with
a finite £, and norm: || f||, < co. Unless otherwise specified, we shall consider the

class of functions f belonging to L.
3.2.1 Problem Statement

(Given an unknown multivariate function of dimension n > 1, f € L,, our objective
is to approximate f to within a prescribed degree of accuracy based on a finite set, of
input output data (3, v;), k = 1,..., N by projecting f along a finite set of directions
and constructing a nonlinear model composed of the superposition of 1 dimensional

functions along the projection directions that best fit the input output data.
3.2.2 One dimensional Decomposition

In this section, we show that a function belonging to a subset of £ can be expressed
as a superposition of 1 dimensional functions, which will form the basis for our pro-
jection pursuit approximation. As can be seen this decomposition is of f is closely

related to its Fourier transform pair defined below:

flw) = F(x)e " dy

y 1 X .
f(x) = n [nn fw)e’ dw

In general f(T) # f(r) (pointwise). But it is true for rapidly decreasing functions
[68] defined by

0° f(x)
Oz - Dom

n

Fp = {f € Ly: sup sup (1 + ||T||2>N

o <N zeR”

< o0, N—0,1,2,...} (1)



where & = (@vq,... ), @ = 0,1,2,..., is a multi index and |o| < > | ;. Where
the function space F,, above is a Frechet space [68], that is if [ € F,, then [ = f
Next we define the set of all possible projection directions. Tt turns out that this

set can be identified by the surface of the one half unit hypersphere in " given by

1<i<

L{—{weﬂ%ﬂ'|w|| Zw 1w>07—mmw7é0}

then it can be easily seen that R" = U,.xrid. For a function f € F,, we have

1

Gy Jy [

f(z) =

The following lemma can be used to determine the volume and surface area of U.

Lemma 7 The generalized volume and surface area of a hypersphere in n dimensions

defined by Y7zl = R? is given by

,ﬂ.n/?Rn
Vo(R) = 77—
U E
d% y n/?Rn 1
‘qW(B) = - = " n,
dR F(; +1)
where T(x) is the gamma function given by T(x) = [t e dt [6].

Using " = U,cxrd combined with the preceding lemma, the Fourier integral over

R" may be expressed as

f(w)ej“’%dw = / ,)‘:(7"71,)6-7'7“"%(1&(17"

J R rld

where d5, is the differential of the surface area of the hyper-hemisphere of radius r,

7,]71.77/27“77, 1
[ s =gt
Jrld QF( + 1)

In particular, denoting the surface area of the unit hyper-hemisphere by d.S, then

Le.,

f ds = Wwﬁ) implying that dS, = r" 'dS. Thus

flo)e o~ |

U

l/r” 1')‘2(7"71,)6-7'7""%(17" as
Jn

J R
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Defining the one dimensional function

1

fulz) = W [n r" 1’}3(7“71,)6'7'7“2(17“, z=u'x

then

f@%:uﬁ@ms

The next theorem shows that the one-dimensional projection functions f,(z) are

mutually orthogonal with respect to the function space scalar product defined below:
Definition 8 The scalar product of two functions f,q € Lo is defined as

< fig>= [ [f(x)g(x)dx
J R

Remark 9 Nole that this expression is well-defined for any two functions f,q € L.

By the Schwartz inequalily,

[<f.g>|= < [Iflls glly < o0

JRn

Theorem 10 A function f € F,, can be decomposed into an infinite number of single
variable, mutually orthogonal functions f., with f, € Fy andu € U, i.e., < fu, fu >=
0, u#u':

f@%:uﬁﬁﬂs (2)

Proof.  First, the assertion that f,, € Fy follows from Theorem 7.7 in Rudin’s
book, "Functional Analysis" [68], as the Fourier transform maps F,, functions onto

Fn- Thus, the only thing remaining to prove is the orthogonality of these functions.

{(Jus fo) = (273)2” / </ " 1,)E(T7L)€'7T7'de7“> </p s" 1,}‘:(87))€'j'meds> dr

R R
1 r N .
()™ / / L U () f(sv) / it s
(2m)™" Jn Jw

. mn
The 2nd integral on the right hand side of the preceding equation is

, T , ,
/ 6’7(M sv) _ / 6’7(M1 sv1)21 d.’)ﬁ . / ejr(rﬂn sq)n)mndmn 7& 0
J R JR JR
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if and only if

1 e s )
§(ru; — sv;) = — eI svi g #0,i=1,...,n
27T 3 3 3
JR
or equivalently ru = sv. Since ||u]| = ||v||, we must necessarily have that r = +s or
u = +v. But based on the definition of I it is impossible that © = —v for nonzero u

and v. Thus v = v, and

Ll =

0, utv

<fmfﬂ> =

[ |
Given that these functions are mutually orthogonal, deriving the prediction as
a superposition of low-dimensional functions should work as these functions will be

theoretically decoupled.

3.3 Bases of one-dimensional functions

Thus far, we have shown that we can deconstruct any well-behaved continuous func-
tions into a series of mutually orthogonal one-dimensional continuous functions. Our
ultimate goal is to approximate multi-dimensional functions. In this section, we shall
prove that for each projection direction, we can approximate our fit with enough one-
dimensional bases to reach an arbitrary degree of closeness. Then, in the section that
follows we can move on to the universal approximation theorem for multi-dimensional
functions. There, we shall show that the results in this section can be extended to in-
clude a reasonably large class of high-dimensional functions that can be approximated

within an arbitrary degree of closeness by the sum of one-dimensional functions.

We should begin with a definition of a basis function [35].

Definition 11 et C denote a subspace of the space of real continuous functions,

f:R—=%R. Consider a countable set of linearly independent {¢p, € C} such that
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1. unity can be expressed as a linear combination of finitely many ¢, ’s.

2. the span of {&,} is dense in C, that is, for any f € C and e > 0, there exists an

N and w; € R such that:

sup | f () — T ()] < ¢

zeR

where f(2) = 27]\10 w; (2) .

There are two broad classes of basis functions: global and local.
3.3.1 Global

Fxamples of global bases would be:

. . T .
Fourier basis: ¢, = e’“»*, where w;, = 27k and where C is the class of

periodic functions.

Polynomial basis: ¢, = x*, where k = 0, +1, +2, ... and where C is the class

of functions defined on a compact set.

A famous theorem of Weierstrass [59] states that any continuous function with

very general properties may be approximated to arbitrary degree of precision.

Theorem 12 Stone- Weierstrass Theorem:

Let X CN" be compact and let B be a subset of continuous functions, f: X — R

with the following properties:

1. B is an algebra; i.e., f,ge B, aeNR=—= f+geB, f-g€ B, andaf € B;
2. B contains a non-zero constant function;
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3. B separates points; i.e., for v,y € X, x # y there is an f € B such that

f(x) 7 f ()

Then B is dense in C; that is for each f € C and ¢ > 0, there exists a function

g € B such that sup |f () — g (z)| < e.
zeX

And so we see that both polynomial and exponential functions can approximate
continuous functions to an arbitrary degree of precision. What remains to be proven
is the universal approximation capability of the second broad class of basis functions:

the local bases.

3.3.2 Local Basis Functions

Tocal bases are often good choices for basis functions because they are quite adaptive
to varying function surfaces [81]. TIn selecting a basis function, basically, we are
looking for a function with good approximation capabilities within a local region, as
will be described in more detail. T.ocal basis functions have the capability to effectively
model highly nonlinear data, as the function approximation in one region of the input
space S1NSy = (0, 1 € Sy, will not alter the approximation of the function in another
region of the sample space 79 € Sy, where S; NSy = (), that may be governed by a
completely different set of rules.

Ome possible choice of basis functions is the piecewise linear (PWT.) basis. In
this case, x = x is a scalar and the PWI. basis functions reduce to simple "tent”
functions. For our purposes, we shall utilize cubic bases, as the order of the error of
their approximation is vastly improved.

T.et us now consider the weighted basis functions on the domain,

Se{r:0<z<h}



Wy () = W <1 4z - h’> — W, (%) (4)
The above equation pair represents the intersection of two tent functions on the
domain. Here the top of the first "tent” is affixed at x = 0. The top of the second
tent is located at the edge 2z = h.
Utilizing the capabilities of the Taylor series, we can represent a function f ()

about zero on this domain as f () = f(0) + f'(0) - x + O (h?). Plugging in for the

derivative f'(0) =+ [f (h) — f'(0)] + O (h?), the function can be written as:

fx)=F)+—[f ()= f(0)]+0(n?) (5)

for data points on 2z between 0 and h.

One convenient property of the PWT. basis functions is that weight, or amplitude,
of each "tent” at its center (the top of the "tent”) is exactly equal to the approximation
of the function at that point. The reason is that even though the PWT. basis functions
overlap, all other basis functions equal zero at any given basis function’s center. In
other words, at the center of the tent of any given basis function, only one basis
function is turned on. We can see this to be the case from the above example, as
@, (h) = 0 and ¢, (0) = 0 in the equations (3) and (4) above. Resulting from this,
we can see that f(0) = W, (1 — %) =W, and f(h) =W, (%) = W, . Substituting
into equation 5 gives f (x) = W (1 — %) + Wy (%) +O0(x?),or f(z) =Wid, (z)+
Wady () + O (z?) , where 0 < z < h.

The above proof yields the O (z?) order of approximation. Thus, the greater the
number of basis functions that we use, packed ever more closely together on the
domain S, the better will our approximation be.

Note that the set of one-dimensional basis functions can easily be generalized for

any one-dimensional domain with the following framework. Assume that x € A with



Figure 11: T.ocal Piecewise Tinear Basis Functions

the input space shaped such that A = [o, 5]. Allowing this interval to be equally
divided into NV subintervals, we find that the center of each triangular basis function

described by these subintervals can be denoted as n, = o+ (’ST”> , while the base of

each equal-sized interval can be written as: b = ’B—NO

Provided in figure (11) is an illustration of the local piecewise linear bases. Note
that, for this example where h =1, @ = 0, and 3 = 1, only the bases, ¢, and ¢,, are

active in the region where 0 < x < 1.

T
b

Thus, if we define 7; = = where each 7; is a real number between -1 and 1,

1— & if |3 <1
then ¢, =

0 otherwise

Another example of local basis functions would be local piecewise cubic bases.



3.3.2.1 Local Piecewise Cubic Basis Functions

From the Taylor Series approximation, we can see that the order of approximation

improves considerably:

I () = und) + wad] + 116 + v99] + O (mA) (6)

for data points on 2z between 0 and h.

Working out the computation of these local bases yields:
¢, = 372 — 277

¢p=1-3

¢ =z (T, — Tr)

& = hw, (1 2|7, | + [5])

z” + 2 |7,

Where 7 = £ | with ¢ as the position of the node in question and b is the base.

We see that:

=70, ,for z>c¢ =z, ,for z>c¢

T = and |7| =

2 b7 for r<c 1—-2=|x| ,for x<c

So, T, =%, —1 , and |7|=1—1|7,|=1—-7,, and |T.| =7,
A proof of this is provided in the next section.

An example illustration of these bases is provided in figures (12) and (13).

Note that figure (13) actually represents the derivative portion of the local cubic
bases.
3.3.3 Derivation of Local Cubic Basis Functions

To derive the local cubic bases, we turn to the Taylor Series approximation:

J (@) = £ 0) + 1 (0) + 7 (0) 5 + 7 (0) 5 + O (a")
Assigning wy and 75 to be:
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i, ()

Figure 12: T.ocal Piecewise Cubic Basis Functions

Figure 13: T.ocal Piecewise Cubic Basis Functions (Derivative Portion)
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wy = f (h) = wy +v01h +ah?®+bh* + O (h?)
o = f'(h) = wy + vy + 2ah + 3bh* + O (h?)

We can then solve for ¢ and b :

h? n? a —‘ [ wy — wy — vyh + O (h?) —‘

2% 3h?JUJ { Ty — 7y + O (W)

a ! 3n? —n? —‘ { wy — wy — v1h + O (h?) —‘
3 [ |

R4
b —oh  h? J{ Ty — 71 + O (h?)

I

an

a 3h? (wy — wy) — 201k — Veh® + O (1Y) —‘

=t
b —2h (wy — wy) + h? (Dy +07) + O (BP) J

Plugging these into the Taylor Series formulation:

3 1
f(x) = wi+vir+ lﬁ (w9 — wn) — 7 (201 +19) + O (h?)} x?

-2 1
+ lF (w9 — wn) — 73 (U1 +79) + O (h)} 2+ 0 (mA)

Collecting terms yields the following expression:

2 3 2 3
f(r) = w(1-3 <z> +2 <z> +wy (3 <z> -2 <z>
h h h h
T T\ 2 T T\ 2
ik <1 —2(3)+(3) > 7 < )+ () > +0(#)
This can be concisely written as
[ (%) = und) + wag, +13¢) + Vox] + O (mA)

Substituting vy = vy and vy = vy yields the local cubic approximation, which is seen

to be a fourth-order approximation:

f(2) = w1, + wyp, + 110 + 190 + O (mA)
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Assigning 7 = ¢, where ¢ is the position of the node in guestion and b is the

base. We see that:

=z, , for z>c
= _ ,
b —7 , for x<c
\
4
=1z, , for z>¢
7=
1—-3=1x , for x<c¢
So, 7, =%,—1 , and |7)| =1—|%,| =1—7%,, and [%,| = %,. From the equations

|3 Plugging in for

z|” + 2|7,

that preceded, we note that: ¢, = 372 — 27% = 1 — 3

|7, and rewriting yields:

o) = 1-30-%)+201 %)
= 1-3(1-2%,4+7)+2(1—%) (1 — 2z, + 7.
= 1-3-67, —37.+2(1 37, + 37, —T,)
= 37 27 = ¢
Thus, we really have just one ¢' basis function for the left and right sides. The
only difference is that we can just plug in 7, and 7; to distinguish between its values

on the two sides of the center of the node. With a little more algebra, we can see

that the same thing is true for the ¢? basis function. Again, we note that:

¢, = x(7.—7)

¢r = hm, (1- 2|7+ 7]
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Plugging in for |7;| and rewriting:

G m) = h@-1)(1-201-7)+01-75))
= h@-1)(1-22.+1-2%,+7,) =h(7 —1)7

-2 — 2
= m(mg—mr):gb]

Please note that there also are other choices for localized bases, such as wavelets,
which are particularly effectively at modeling time-scale problems and behave like the
Fourier bases but also include frequency location information [81]. The researcher is
certainly welcome to and is, indeed, encouraged to utilize the local basis function of
his or her choice when applying the projection pursuit learning methods developed

in this thesis.
3.3.4 Grid Spacing

Thus far, we have yet to address how one determines the spacing of the nodes. Indeed,
one potential problem with a local piecewise fit rests with the data distribution. TIf
the data is not uniformly distributed, the grid spacing may be adjusted to match this
input distribution such that a certain fraction of data points fall between each node.
This enables the local models to generate very accurate fits in dense regions of the
input space without overfitting the sparse regions. Thus, we suggest creating the
order statistics [30] from the data for each observation. The nodes can be shifted
to enforce an equal number of observations per segment. Note that we are utilizing
an unsupervised approach to the grid-spacing adjustment; it is based solely on the
data distribution. A supervised approach could potentially be used for optimal
effect. However, in the simulations that follow later in the paper, we have found
that the improvement is marginal in most cases, but the computational cost is quite

substantive.
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3.4 Unaversal Approximation Capability

In the prior section, we discussed approximating one-dimensional functions. Now, we
shall move onto multi-dimensional functions. In this section, we shall attempt to show
that a fairly large class of high-dimensional functions can be approximated by the sum
of one-dimensional functions as discussed in the previous section. Within the context
of our algorithmic implementation, we would like to numerically approximate the
integral of the projection directions over the surface of an m-dimensional hypersphere.
Thus, we must show that this approach of numerical integration over a finite set can
indeed approximate the continuous integral of a compact set within an arbitrary
degree of closeness. Or, in other words, we must prove the universal approximation

capabilities of our discretized approach.

Theorem 13 et [ be an arbitrary function, with [ € F,, where F, is a class of
Frechet functions as defined in equation (1). Let X be a compact subset of R". For
any € > 0, we can find a finite number of directions wuy, ..., uy and basis funclions

per direction ¢, 1+ = 1,... M, 7 = 1,...n;, such that the resulling approrimation

i3

M N,
will estimate [ to within e, that is sup | f (x) — E ‘ E Wiy, (z)| < e, where
reX i—1 3—1 -
z = ' u, ¢ is the matriz of basis functions, and w is the corresponding weights as

defined in section (3.3) .

The proof of the universal approximation theorem is based on lemma (19), which
is important in its own right. The lemma whose proof is given in at the end of this

chapter, in section (3.8.1), shows that

fo)= [ ns 7

in theorem (10) can be approximated by a finite sum of one-dimensional functions.

But, now we continue on to the proof of theorem (13).
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Proof. From lemma (19) it follows that

/f“(zh..., m) dS = Zﬁ, )+ fu (2)

gm 1

fu(2)

n,, such that

where < For each direction, u,, we shall choose enough basis functions,

£
5 -

n;

Fui(2) =" Tui (2) + i (2)

F—1

where ﬁ,ij (z) = 71)77.7-@]- (2) with w;; as the weights and ¢,; (2) as the basis functions,
fquj (Z)

and . So, our approximation can be written as

f = Z 2,)};7‘3 + Z f717 + fﬂ )

i—1 §—1

Thus, the error associated with the approximation is

F_me +f71 )

and its error is bounded by

M
el <)
i—1

Hence, we have shown the universal approximation capability for a fixed . B

Fui ()] + | fu (2)

As an extension of theorem (13), we can make this theorem more powerful. The

theorem, along with its accompanying proof is now provided.

A More Powerful Theorem As was mentioned, there is an extension of theorem
(13) by which we can make this theorem more powerful. Below, we show that we
can approximate any arbitrary £, function such that its mean error falls within an

arbitrary e.
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Theorem 14 letting [ be an arbitrary function in L, where 1 < p < oco. For any
e > 0, we can find a finite number of directions wuy, ... ,uy and basis functions per
direction ¢y, 1 = 1,... M, 5 = 1,...n;, such that the resulting approzrimation will

TCED DD SRR NC

individual terms are as defined in theorem (13).

estimate [ to within e, that is < e , where the

Proof. Tetting f be an arbitrary function in £, because D (R"), or the space of
Frechet functions with compact domains, is dense in £, [68], then we can find an fin
D (R") such that Hf x)— f (X)Hp < &' From theorem (13), our approximation f ~
27 1 Z w”gb” was uniform with respect to the supnorm. Thus, integrating

over the entire domain yields

|70 -7

<V(k)€

P

where V (k) is the volume and & is the domain of f which has compact support,
f € D(R"). Tetting R, be the radius of the hypersphere enclosed by the domain &,

then the volume of this n-dimensional hypersphere can be calculated by the expression

Wﬂ'/QRZ

V(k) = m

Thus, utilizing the Schwartz Inequaility, it can be seen that

|7 60— Fe

<[F e =T, + | 760 - Fix)
Wﬂ'/QRZ
R CES)

heree = (14 228 ) o m
where £ = r(%+1) E.

Remark 15 The above theorem approximated the function with respect to the L,
norm, which expands upon the class of functions for which such a universal approx-

imation holds in the literature [54], [47], [46]. But, as was noted in theorem (13),
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the approximation held pointwise for rapidly decreasing functions, f € F,. Thus, we
see that functions, [ € F,, can also be approrimated pointwise as well as in the L,

sense.

3.5 Optimization

To motivate the optimization problem, we recall lemma(19), which claimed that we
can approximate the response surface to within an arbitrary degree of precision, ¢,
with an appropriately chosen set of M directions. So how does one go about finding
these optimal directions? We propose selecting the directions that minimize the
nonlinear least-squares cost function (provided below) given a specified set of input-
output data:

Optimization Objective: GGiven a high-dimensional, nonlinear dataset, we are
seeking to accurately approximate the underlying response function, f (x) governing

the sample space, 5.

Specifically, we are seeking the directions, 1, ..., %37, and the 1-dimensional func-
tions, f,., along those directions that minimize

N M 2

[ = Z:H Yr — ZH A«: (i)

where f,. (zi) = E - Wiy (Zik)s Zik = u] xy, and w is a vector of weights on the
i -

basis functions. Fach function, ﬁ,ﬂ is an approximation of the underlying response
surface along that direction and is formulated by using a suitable set of bases, as
described in section (3.3). The grid spacing methodology upon which these bases
operate is as outlined in section (3.3.4).

Because we are dealing with nonlinear, high-dimensional datasets, the task of

finding the optimal directions, u;, is difficult. Our approach will be to solve for them
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individually, fitting the best single dimensional function along each, and then at the
end, put all of these directions together to find the optimal model.

Thus, we solve our estimation problem with a two-stage optimization. The first
stage involves searching for the best fit given fixed directions, wuq,...,u3. This is a

standard linear least squares problem to minimize the cost function ||®W — V||27 with

the solution given by Wrg = &'V, where Y is the response, ®* = (@Tq)) "®7 and
d is an N X <Zﬁ1 77,7¢> matrix defined as [®;; (Zik)]srr. Note that each ®;; (z;) is a
suitable basis function as described in section (3.3), and the matrix W contains the
individual weights for each of those bases. Details for the matrix stacking operation

are provided in the appendix. The second level of the optimization is a nonlinear

problem that involves finding the optimal projection directions.

ers — min (dWrs — V) (@Wrs V) (8)

U ey Un ER | 225 | —1

The next theorem shows that the two-stage optimization problem can be reduced

to the following nonlinear optimization.

Theorem 16 Assuming there exists a function belonging to the class of universal
approzimators as stated in theorem (13), the optimization problem for finding the best
function estimator associated with seeking the optimal projection pursuil directions
can be formulated as maximizing the explanatory power of the estimale, succinctly
stated as

Cep = max YTty 9)

U oo U €, | 25| —1

Proof. The argnment of equation (8) can be written as
(@Wrs — V) (@Wrs — V) = (00" — V)" (831Y — V)
which leads to
(@Y — V)" (@'Y — V) =Y (T - da") (1 - dd") YV
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by plugging in for the least-squares solution. Noting that ((I)(I)+)T = (PPT) , we have
Y- adt) (133" Yy =YY" (] 03" — 30+ + 0D+ 0D*) Y
Given that ®T® = T, this leaves us with
YT~ 20" — 20"+ 30700") Y =YV (] - 30"V
Thus, the optimization problem of eq. (8) reduces to

Cop = max Yooty

U e €, | 25| —1

given that Y7V is constant. W

Corollary 17 If the bases, ¢, thal form the basis function matriz ® are orthogonal,
1 o S
then @+ = (CI)T@) T = ®7, and the optimization problem reduces to maximizing

the 2-norm of the coefficients:

Cp=  max Y707V = ||o7Y|’

U ey Un ER | 225 | —1

where again, ® is our matriz of basis functions along the given M directions and 'Y

18 the response vector.

Corollary 18 If the basis function matriz ® is one-dimensional then

Cep = Max H(ID Y (10)
H = &
where & = ol
Proof. Noting that &+ = (T;%TT in the 1-dimensional case, then it follows from
equation (9) that
|o7Y||"
Cep = MAX e
v [T

which can be rewritten as equation (10). H
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The algorithm used to implement this modeling technique transforms the raw
input data into a matrix of projection directions and assigns the grid spacing along
these directions. One-dimensional local basis function fits along these projections
are then modeled simultaneously. The performance of this model is evaluated along
with its Jacobian and Hessian. The algorithm is solved iteratively to find the optimal
projection direction matrix, i, by adjusting it via the following T.evenberg-Marquardt
optimization: Ry = R, — (H + ul) ' JTe. Tt is not particularly straight-forward
to arrive at the specific expressions used in this optimization, but rather requires
extensive calculations. Thus, the derivations of the Jacobian and Hessian formulations
are provided at the end of this chapter, in section (3.8.2). The interested reader
is encouraged to explore these derivations, however, the section could be skipped

without loss of the general flow of the material.

3.6 PPLM Design

3.6.1 Network Structure

A schematic of the PPT.M architecture is provided in figure (14).

As illustrated, the inputs, x5, are to be reconstructed into a series of projection
directions, g;, that are nonlinearly activated and then combined to form the projected
output(s), y,, of the model. A detailed sketch of the algorithm used is provided in

the section that follows:

51



M1

Figure 14: Schematic of PPT.M network structure

3.6.2 Algorithm

Note: m = total number of projection directions
R = projection matrix
d = grid point subintervals per direction
The performance criterion is set to the M SF of the validation sample.
1. Initialization
a. Set the number of projection directions, m, and loop through
while performance criterion improves, m = m + 1
b. Initialize R randomly
c. For d = dpin 10 dmax (good values of d might range from 3 to 10)
d. Set the stopping criteria for the outer loop
e. Set parameters for adaptive u optimization algorithm, loop through while
criteria are valid
i. Set fn. and . (increments and decrements of 10 are good values)

1. Set 10

52



1. Set itermax
iv. Set €goa
2. While (p < o) & (iter < itermay) & (6> €goal)
3. Determine grid space values
a. Z=X xR (setting transformed inputs)
b. For each transformed input vector, Z;, create a vector of Order statistics
for the observations, QO , V Z; and set the nodes for that input
4. Next, the basis functions can be set
a. For each projection direction, k, compute the distance of each data point

to each node (dropping subscript, k, for clarity):

. — _ 27','7‘ ?7'7-
1. Z7"j.’] = —b7-,
. — _ Zij ?7'7-
11. Zij-,r = by

b. Create local piecewise cubic basis functions for each projection (Note:
dropping observation number subscript, i, to avoid confusion):

i. For each projection direction, compute the first portion of the basis

function (to be designated as {¢}1), accounting for potential unequal base widths

along dimensions:

(|§j,]| — 1)2 (2 . |§j,]| + 1) if —1< Ej.’] S 0
]
{6} =1 (Bl -1’ @ Fal+1) i 0<%, <1
0 otherwise

il. For each projection direction, compute the derivative portion of the

basis function (to be designated as {¢}”):

9
{6} =9 (Z.l -1z, - if 0<%z, <1
0 otherwise

ii. Assign basis function for each projection direction:
—_ 1 2
o= [ ot 1oy
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iv. Append to full basis function matrix: ® = l d @ }
v. Fit using least squares to find the weighting matrix, W: ®W =Y |
where Y is the response vector
(a). &t = (CI)T(I) + ’yf) 1 &7 where ~y is some small, positive con-
stant near zero
(b). W =1y

(c). Compute the error: F = dW —Y

5. Optimization: Compute Jacobian and Hessian as per the Optimization section,
equation (17) for the Jacobian and equations (19) and (20) for the Hessian.
a. Ry =R (H+ul) "JTe
b. 7, =X Ry
c. Repeat steps 3 & 4 with this new Ry and Z; matrix to set the grid space,
assign the basis functions, and fit the appropriate weights
6. Fvaluation
a. Compare F} with Fg
b. If B? <I? , then Ro= Ry, Zo= 71, Fg = F4
c. Update u if necessary
7. Return to step 2, repeating steps 3 through 6 provided the criteria in the while

loop of step 2 still holds
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3.7 FExperimental Results

As a further test of the method’s effectiveness, the model’s predictive prowess was
tested on data from a bearing defect experiment [94]. Details for this test, including
the experimental setup and an explanation of the sensor data are provided below,
followed by a comparison of the predictive results. Note that for this test, a com-
parison of prediction accuracy of the PPT.M model along with that of a feedforward

neural network approach is provided.
3.7.1 Background

The failure of rolling element bearings is one of the primary causes of breakdown in
rotating machinery. 1In certain applications, this failure can produce catastrophic
consequences.  Unexpected machine breakdown can often lead to high maintenance
costs and lengthy downtime. Tt is important to monitor and diagnose bearing condi-
tion online, because detecting bearing defects early can lead to optimal maintenance
scheduling. Details for the experiment, as run by Georgia Tech research fellow, Scott

Billington, are now provided.
3.7.1.1  Fxperimental Setup

A Timken T.M50130 cup (outer race) and T.M501349 cone (inner race) bearing is used
for this experiment. All bearing defects are artificially inscribed axially in the center
of the outer race with a diamond scribe.  The size of the damage is controlled by
the pressure and number of passes of the scribe. A Form Talysurf Profilometer was
used to measure both the width and the height of the defects on the outer race. A
table of the widths and heights of the bearing defects is provided in Appendix (A.2).
It should be noted that the majority of these defect areas are well below bearing
failure industry standards. Such industry standard has defined a bearing defect to

2

be one that has a total area of at least 6.25mm?*. So, a predictive model capable of

identifying defects at such an early stage as the defects presented in this experiment
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would provide an early warning system that would be useful in online monitoring and
diagnosis.

A Triaxial Kistler 8792A50 high frequency accelerometer and a Physical Acoustics
Corporation acoustic emission sensor R15 were mounted on the housing directly above
the defective bearing. Al signals were sampled at 50kXHz with (2" + 10) scans
per file. The data acquisition system utilizes a National Instruments DAQ-1200
PCMCTA data acquisition card and a Pentium computer. Fxperiments are performed
at different cyclic speeds and radial loads for each defect. These different input

conditions are provided in Appendix (A.2).
3.7.1.2  Signal Processing

Bearing defect signals must be extracted and isolated from a variety of noise that
is present in a real-world operating environment. From these extracted signals, the
signal features can be processed. The predictive models used for this analysis are
trained to predict the different levels of bearing defect using such signal features as
inputs.

The output signals from the accelerometer and acoustic emission were digitized
from analog voltage signals. Noise cancellation was employed by HERT, or high fre-
quency resonance technique. This amplitude demodulation makes use of modulated
high frequency vibration signatures of the defect frequency in a series of three steps:
bandpass filtering, signal rectification, and low-pass filtering. Spectrum analysis can
then be conducted on the resulting signal.

The signal features used in this work are RMS, Kurtosis, Crest factor, Max FF'T,
Peak Value of the amplitude spectrum of the HFRT signal, Peak Value of the Cep-
strum analysis of the accelerometer and RMS, and the 1 FI'T Peak Value of Acoustic

Fmission. RMS is the root-mean-square of the signal,
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BMLq:

where N is the total number of sampling points and X, is the signal at each
sampling point, 7. The kurtosis of a signal is a measure of the degree to which the
data are peaked or flat relative to a normal distribution.

N 4
21 X
N

RMS?

Kurtosis =

The Crest Factor is equal to the peak amplitude of a waveform divided by its

RMS value.
max(abs(X))
RMS

Crest Factor =

The purpose of the Crest Factor is to provide an indication for how much impacting
is occurring in a waveform. Peak value is the maximum value of the amplitude
spectrum at a particular defect frequency. Max FFT is the maximum amplitude of

the FFT (Fast Fourier Transform) of a time-domain signal.

z (1) = rawdata
x (1) = bandpass (x (1))
X (f) = FFT (2 (1)
Max._ FFT = max (abs (X (f)))
1% FFT peak value is the first peak value reading from the FET signal. Peak

Value of the amplitude spectrum of the HFRT signal is constructed as follows:

z (1) = rawdata
x (1) = bandpass (x (1))
x (1) = abs (z (1))
(1) = lowpass (x (1)
X(f) = FFT (2(1)

Peak envelope = max (X (f))
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Cepstrum analysis treats the spectrum as if it were a waveform:

FFET <logm [(W) <conju_qa,te <%ﬂn(m>ﬂ>
N

Cepstrum =

The usefulness of cepstrum is as a pattern recognition scheme that is sensitive

to patterns of sidebands and harmonics. The full listing of signal feature inputs is

provided in Appendix (A.3).
3.7.2 Modeling Procedures

For the series of bearing defect experiments, signal features are provided for different
levels of defect attribute versus varying load levels and speeds. A total of 143
observations were investigated. The input data were a set of 29 different signal
features based on accelerometer and acoustic emissions data, as described previously.
For all of the experiments run on this data, 75% of the data was used for training,
while 25% was randomly chosen as the cross-validation sample. As each of the models
have a number of varying parameters to be set, the use of this validation sample was
devised as a data-driven selection method for choosing the appropriate parameters.
Fach time the experiment was run, the training and cross-validation samples are
held constant for all of the methods tested in order to give a fair comparison of the
results. In order to maximize the use of testing data, an n — 1 set produced for each
observation. Thus, for each one of the 143 observations, that one data point was
removed from the sample space. The remaining 142 observations were then split into
a 75% and a 25% randomly-chosen training and validation sample. The best neural
network and the best PPT.M models were thus chosen and then applied to the holdout
(test) observation to develop a predicted defect size. This process was repeated for
each of the 143 observations. The results displayed are cumulative (average across
all observations) or, in some cases, have been split up into cumulative within groups

(average across all defects of a certain width). In this manner, we can glean an
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accurate reflection of the prediction capabilities of the compared modeling methods.
3.7.3 Experiment Set #1

For this experiment, the defect width was chosen as the response variable. The
levenberg-Marquardt implementation of the projection pursuit network was com-
pared on the cross-validation sample with the best feedforward artificial neural net-
work (ANN) model. The neural net which performed the best on the cross-validation
sample is presented in the graph, figure (16). As a comparison of the results, we will
illustrate the differences in performances by simply comparing results across defect
grouping. The defect groupings were defined based on the experimental data pro-
vided. The data consisted of 8 distinct levels of defect, or in this case defect width.
Thus, performance across each of those groupings is what is illustrated in the graph.
The true value of the defect width for each group is labeled actual in the chart, whilst
the other two bars per grouping are average prediction results along each set of test

conditions run for that particular defect group.

Bearing Defect Width Comparison

i
I
S

,_.

IN]

S
I

,_.

1)

S]
I

80 = |EANN
mPPLM
60 [ |OActual

40 [l

Defect Width (micrometers)

20 1 i

Defect Groupings

Figure 16: Bearing Defect Width: Predictions vs. Actuals

An error comparison is provided below. For this comparison, errors were grouped

by defect grouping and calculated for the ith group as follows:

abs (F [g:] — F [yi])
1yl

error; =
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where F [i;] is the mean value of the prediction within defect group i, F [y;] is the
expected value of the actual defect size within the group, and F [y] is the overall
average defect size across the entire sample population. Note that we are computing
error per grouping in this manner so as not to weigh more heavily the lower groupings
(those with small defects) and similarly, so as not to produce a division-by-zero error

for group 1.

Bearing Defect Width Error Comparison

abs(pred-

actual)/(overall_mean_actual)

I ANN
0%
mPPLM

20% -

Error:

1 2 3 4 5 6 7 8

Defect Groupings

Figure 17: % Frrors of Bearing Defect Width Predictions

Computing overall percent error in a more standard manner yields the following:

Table 1: Overall defect width percentage error for Fxperiment 1
Model | % Error

ANN 32.1%
PPTM | 16.5%

In this table, the percentage error is calculated as

abs (E [y] — Fyl)

% ETTOTr —
F y]

3.7.4 FExperiment Set #2

Using the same data, another potential response variable is available: defect height.

Thus, the same set of analysis was run on the data, but this time making a prediction
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of the defect height. Results are shown in figure (18) grouped by the & discrete levels
of this new response. An error comparison is provided in figure (19). Again, for this
comparison, errors were grouped by defect grouping and calculated for the ith group

as follows:
abs (F [g:] — F [yi])
F ly]

where the terms are as defined previously. Similarly, taking the overall percentage

error; =

error, we see that the PPT.M approach performs quite well.

Table 2: Overall defect height percentage error for Fxperiment 1
Model | % Error

ANN 3.1%
PPTM | 1.7%

Bearing Defect Height Comparison

12

" mn 1

EANN
6 — |mPPLM
OActual

Defect Height (micrometers)

1 2 3 4 5 6 7 8
Defect Groupings

Figure 18: Bearing Defect Height: Predictions vs. Actuals
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Bearing Defect Height Error Comparison
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Figure 19: % Frrors of Bearing Defect Height Predictions
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3.8 Additional Theory and Derivations for Chap-
ter 3

Because of the extensive mathematical derivations, the casual reader is invited to
skip the next subsection without loss of the general flow of the material. The next
section contains the bulk of the proofs for the universal approximation capabilities
of the method. 1In the interest of readability, the derivations of the Frror Jacobian
and the Hessian for use in the T.evenberg-Marquardt optimization technique have also
been moved to this final section of Chapter 3. They are included after the universal
approximation theory details. Again, while the reader is encouraged to explore this

section, the casual reader may skip directly to Chapter 4 without loss of continuity.
3.8.1 Universal Approximation Theory and Derivation Details

T.et us begin with the derivation of a key lemma.

Lemma 19 For any arbitrary function [ € F,, with ¢ > 0, there exists an integer

M set of directions 1y, ..., uy, where M > 0, and a set of conlinuous functions f,, :

N — N, such that
M
/f“ (mTw,) ds — Zﬁ‘k (mTw,k) < €
u k1

uniformly in X C R for all x € X.

Proof of Lemma 19 The function f, (z), f,(z) : ™ ' x X — R, is continuous
on the compact space in 8™ ' x X, and thus can be considered to be uniformly
continuous on ™ ' x X. TFor any & > 0, there exists a § > 0 such that if y € Bs (z)

then

fu (mTw,) — fu (g/Tu)‘ <& forany x € X and u € 8™ ', and where B; () is a
ball of radius ¢ centered at .
Since UX Bs (1) is an open cover for X’ and due to the compactness of X, there ex-
TE

ists a finite subcover. T.et 21, 79, ..., xx be the centers of the corresponding open balls,
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Bs (), that cover space S™ '. For each z;, we wish to approximate [ Ju (ﬁf?l) ds
sm

numerically. Fortunately, the integral over the surface of an m-dimensional hyper-

sphere on a compact set may be approximated within an arbitrary degree of precision

by a finite sum [19] and [75]. For each x;, k = 1,2,..., N, there exists an m;, > 0, a

set of weights ¢ ....¢,, , and a set of directions wuy,....u,, such that

my,
/f“ (TZ?I) ds — Z (0 ’f“jk (TZ717k> <& (11)
U i1

for k =1,2,...,N [19],[75].

Now define

N my,
Z (ak Z v, .f“jk (TZ“m))
k—1 4—1
N
> m
k—1

where oy = 1 — min < i (;k ,1), thus 0 < o, <1 for each k.

ﬁ(T):

ﬁ(T) = ;N;i {Owi : : ’“w } Z Ju; (21)

N O’k'l[* f’u ( )
T Tr Ui,
where z; =z, u; , fo, = ,
E o (7x)
k—1

Jra o+ F gy <0< o+

N
O<k<N,M=> j, 1<i<M

kE—1
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N1

(Tkw dq wa 2)

i—1

N N myp
S () _szﬂ (#7u) dS — ZH o ()Y Wyt ()
N

Zk—1 o (7)

Using equation (11) and letting F, = we find that

{M—‘ { / fu (zfu) dS — ilﬁjk,f g, (ﬂ?Zugkﬁ

Zkﬂ Ok u
= /f“ (TZ?I) ds — E wjk'f“jk (TZ717k> < e
U g1

and thus we have that

(12)

Nt
/fﬂ (TZ“> as — Z Eh (27) < gl
U il

N
Tet x € X be arbitrary. Since U Bj(x;) covers X, there exists k such that = €
E—1

Bs (x5). Then, {Z fu, (Tk U ) — Z fu, (T U ) <g

g S ’V ’ —‘
op. 7’ Uj Fu. (2"
where ¢ = E E { r ”f k k) Al )J _

k=1 j—1 E o
7 k—1

Tt follows then that

ii]«: {akwjk fq,w (Tk717k> f“7 (T 71) —‘ Za/k; ‘w7k‘ ,
< < ce
kE—1 5—1 L 217:11 (873 J 217:11 (072

where ¢, = E ‘w7k‘ and ¢ = max ¢.
Tk k

Jr—1
Then, recalling equation (12) and since

/f“ (TZ71> ds — /f“ (mTu) ds /
u U '

U
we can write:

M
/f“ (mTw,) ds — Z E, (mT71,7¢> < /f“ (mTw,) ds — /f“ (TZ?I) ds
u il u u
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where

M M M
S = /,fﬂ (TZ“> ds — Z Eh (97;5“77) + Z Eh (97;5“77) - Z Eh <mT“7‘,> .
'M i—1 i—1 i—1
It can then be noted that £ < (14 5+ ¢)e’ Now, by letting & = 157 the theorem

is proven:

M
[ 1y as — 30 R 6w <
u 7"71

and thus the universal approximation capability holds across z.
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3.8.2 Additional Optimization Theoretical Derivations

To implement a T.evenberg-Marquardt optimization of the PPT.M approach, we must
first derive the Frror Jacobian and Hessian specific to our optimization problem.

These derivations are painstakingly detailed in the pages that follow.

3.8.2.1  Derivation of the Error Jacobian: Case where u = 0:

Defining Y to be the response variable and letting ¢ be the weighting matrix, g = W.

Let
F=Y"g(9"g) g7V

Then the Frror Jacobian can be written as d (ET E) = —df since FTFE =YY, —
f. Tetting z = ¢"Y,, we are left with f = 27 (_qT_q> "2 And letting Af and
A (_qT_q> each denote a small perturbation in f and (_qT_q>, respectively, we arrive at

the following expression, neglecting for higher-order terms:

Af=2"TA(g"g) 2+ AT (gTg) 242" (4T9) A=
And since each of these collections of terms is a scalar, it follows that:

Af=2TA(g"g) 2427 (¢Tg) Az (13)
But, we can now note that
AlgTg) "= Td"g+A (") ' (dT9)
Using this, we can write
[Ta+A (")) "= ("9) "+ (T9) "AgT9) (4"9) +0 ( 1A (g7 g) H2> :
Thus, it follows that
AlgTg) "= (4"9) "Ag"9) (4"g) + O ( 1A (g7 g) H2> :
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And then equation (13) can be written (dropping higher-order terms) as:

Af=—="(g"g) 'Alg79) (79) 'z42:" (47g) A=

Now, letting Ag denote a perturbation in ¢, so that,

Ag7g)=(g"+A¢9") (g+Ag)—4¢"g

=g g+9 " Ag+Ag"g+Ag"Ag—g"yg.
We arrive at,
Ag"g) =g"Ag+Ag"g+ 0 (]|Ag|?)

Plugging this into equation (14) and dropping higher-order terms yields

Therefore, it follows due to the symmetry of the matrix (_qT_q>, as

(9"9) "= (4"g)

that we arrive at the following reduction of equation (15):

1

Af =Yg "AgYy — VIAG gVa+2:" (479) Az

Again, using the property that the collections of these terms are scalars

Af =2V AgYy+ 22" (g7g) =

= 2V, gTAgY, + 2V AgYy

= 2(V, — g¥a)" AgVy

Thus,
{AfY =2(vi @ 1) {Ag}".
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where the specified matrices have been stacked. Note that the Kronecker product is

defined in the Appendix (A.1). And so as Ag — 0, we have

Df=2(Y] @ k") (Dg).

However, in our case, we add the constant y to reduce the chance of singularity.

The derivation of the Jacobian for this is now provided in the subsection that follows.
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3.8.2.2  Derivation of the Frror Jacobian: Case where yu # 0:

Defining Y to be the response variable, assigning Y; = ¢g'Y, to be the basis functions,
and letting g be the weighting matrix, ¢ = W, our error vector may be written as:

F=Y—gYs=Y,—gg"Y, = [7 —g (_qT_q + ,uf) 1 _(]T} Ys. Note that we have added

the constant p to the least-squares computation to reduce the chance of singularity.

So,

T

FTE=Y] [7 —g(g"g+ul) 1.0T} [7 —g(g"g+pl) 19T} V.

Rearranging terms, we find that
TR =TI —g(s"g+ 1) " [T g (eTa b ur) |V
Fxpanding yields the following expression:

vy [7 —glgTg+ul) " glgTg+ul) _qT} Yy

T — : 1
+v,) [.q (9"g+ul) " gTg(g"g+ul) .qﬂ Vi

Now add

b =Yg (gTg+ul) "l (gTg+ul) gV

to both sides of the equation, and since (_qT_q + uf) (_qT_q + uf) - , then we are

left with:

B E+y =Y] [7 ~g(gTg+nl) T g lgTg+ul) g+ (g g+ ud) T.(]T} Y.
Canceling out another set of terms, leaves us with

FTE+¢ =Y [7 g (gTg+pl) .QT} Y,
or, it may be restated as

ETE=Y] [7 —glgTg+ul) " .qT} Vo= Vg (gTg+ul) T ul (¢Tg+pul) gV
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Recalling that Y, = (ul + ¢7g) ' ¢7V4, yields:
prE=Y] [7 —g(gTg+pl) .QT} Vo= Y ulYa =Y [T —gg"| Vi — u¥]Ya
where gt = (_qT_q + ,uf) 1 g". Defining
f=- [V.;TVS — 2" (g7 g + ) 14

with z = ¢V, then

ETE = (f +nY, Ya)

and

D(ETE) = —Df — uD(Y]Yy).

Therefore the computation of the Jacobian of F7 F can be separated into computation

of Df and D(Y,]'Y,). So, dropping higher-order terms:
Af=AZT(gTg+ul) "4 2TA(¢Tg+ul) 42T (gTg +ul) A
Collecting algebraic expressions, we can rewrite as
Af=2TA(gTg+ul) 2427 (gTg+pl) Az
Noting that
Ag"g+ul) "= [g"g+A(g"g) +ul] ' (g"g+pl)

And that

[0Tg+A(gTg)+ul] " = (¢Tg+pl) " (gTg+ul) "A(g79) (¢Tg+ul)

+0 ([t

Then, dropping higher-order terms yields:

AlgTg+pl) "= (gTg+ul) "AgTg) (6Tg+ul)
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And we are left with
Af=2"(gTg+ul) Az 2" (gTg+ul) "A(gTg) (6Tg+ul) =
Noting that
Ag"g) = (" +29") (g+Ag) —g"g=g"g+ g "Ag+ Ag"g+Ag"Ag— gy,
Dropping higher order terms, yields

Ag"g) =g"Ag+ Ag"g.

Af = 22" (¢Tg+ul) Az 2T (gTg+ul) AgTg(g"g+pl) =
2" (gTg+ul) gTAG (gTg+pl) 2
Since g* = (¢"g+ul) ' g", Ya=g'V,, and z = ¢"V, then
Ya= (ul +4"9) 'z

Thus,

Af = QYdTAZ - Yd,TA.qT.QYd - Yd,T.qTA.QYd = 202"V, 2YdT_qTA_qu_
This can be rewritten as:

Af=2(0gY,) Va2V g " Agyy=2(V, — g¥a)" AgVy=28ETAgY,.

Because we are dealing with matrices, we will rewrite this in stack form as {Af}" =

2 (Y,;T ® ET) {Ag}®. As Ag — 0, we are left with
DF=2(V] & ) (Dg).

Since FTF = — (f 4+ pY,Va), then it follows that D (E7F) = —Df — uD (V]'Va).

So, now we must compute 1) (YJY,;) . Recall that Y; = ¢V}, where

gt =(gTg+ul) 4"
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So,
A V]V = AV Ya+ VAV, + O (|AYVL|?) = 2V, AV,

dropping higher order terms. Noting that AY,; = Ag*Y}, and (dropping higher order
terms) that
1 1
Agt=A(g"g+ul) g +(g"g+ul) AgT,
it follows that
1 1 1
Agt=(ul+9"g) Ag"—(ul+9"g) Alg"g) (I +9"g) g -
If we then recall that A (_qT_q> = Ag"g+¢"Ag, we can write the following expression:
1
Agt = (ul+g"g) Ag"
1 1 1
- [(M +97q) AgTg+ (ul+9"9g) .qTA.q} (ul+4g7q) ¢"
and we have that
1 1
Agt=(ul+9"g) Ag"—(ul+9"g) AgTggt —gtAggt.
This leads us to rewriting the expression A (YdTYd> = 2V AY,, as follows:
A (Yd,TYd> = QYJAYd = QY(;,F (Ni + .(JT.(]> 1 A.(]Tys
— oV (ul +g"g) ' AgTggtV, — 2V gt Agg'Y,
=V Ag (ul +97g) ' Ya— 2] g Ag (ul +g7g) V-2V gt AgVa

;
=2(Y,—gYa) Ag (ul +g"g)  Ya—2V] gt AgYy
Which leads us to a final expression:
T
A (Y Va) =2 l((lﬂ +49"9) 1Vd> CROME e Vf.q*} {Ag)".

Note that the Kronecker product is defined in the Appendix (A.1). Thus, we arrive

at our stated objective with an expression for 1 (Y]Y,;) as follows:

T T
DY,/ V) =2 { [(uf +97g) Vo F} - <Vd ® .(]+TV(1> } Dg
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where gt" = g (ul + g"g) ', So finally, recalling that D (F"E) = —Df—uD (Y]Va),
we arrive at:

D(ETE) =2V @ E")(Dg) 9 (17)
where
1 T . T
V= 2p { [(M +979) Ya® F} — <Yd ®g* Vd> } Dy.

Since JTe = D (ETF/> , the value we compute for this D (ETF/> will be used in our
optimization algorithm: Ry, = Ry — (H + ul) 'JTe. At this point, we have only

to compute the Hessian, H, for use in the algorithm.
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3.8.2.83  Derivation of the Approximate Hessian:

Recalling that F =Y, — g¥y, then
Al =AY, — AgYy — gAY,

But since AY, = 0, then
AR = —AgY, — gAY, (18)

Now we must solve for an expression for AY,. As one recalls: AY,; = Ag'Y, where

Agt=Aul+g7g) "g"+ (ul +497g) ' AgT

—(uT+97g) "AgT— (uT+979) A (gT9) (uT+979) 4"
Since A (g7g) = AgTg+ g7 Ag, then,

Agt = (ul+47g) 'AgT

1 1 1
- [(M +979) AgTg+ (uT+49"9) .qTA.q} (Wl +9"9) 4"
Thus, an expression for AY, can be written as
1 1 1
AYy= (ul+9"g) Ag"Y,— [(M +979) AgTg+ (ul+9"9) .qTA_q} \

Cleaning this up a bit by collecting appropriate terms, yields the following expression

for AY, :
AV = (ul+g"g) "AgTIYVs—gVal - (uT+4979) 9T AgYa
This can, in turn, be substituted into the equation (18) to show that
AB = -ANgYy—g(ul+g"g) "Ag"E+g(ul +479) g AgYa
Upon further inspection, the expression reduces to:

AR =—AgYy— g TAg"E + g g" AgYa.
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And so we have —AF = (7 — _q+T_qT> AgY;+g""Ag"E. Or written in stack form:

AR =Y o (T-g7g") Ag+ (7 @ ET) Ag.
Finally, we arrive at our expression for the Hessian:
H~ (DE)(DFE)"

where

DE*=-Y] @ (IT—g""¢") Dg*— (¢"" @ E") Dg*.
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CHAPTER 1V

THE DISCRETE PROJECTION PURSUIT

LEARNING MODEL (DPPLM)

4.1 Mathematical Framework
4.1.1 Problem Statement

(Given an unknown multivariate function of dimension n > 1, f € L,, our objective
is to approximate f to within a prescribed degree of accuracy based on a finite set, of
input output data (3, v;), k = 1,..., N by projecting f along a finite set of directions
and constructing a nonlinear model composed of the superposition of 1 dimensional

functions along the projection directions that best fit the input output data.
4.1.2 Theory

Before beginning the analysis, it is useful to first define the mathematical framework
within which we will be working. For approximation purposes, we consider a subset
of T.ebesgue measurable multi-dimensional functions f : 7 — R with rectangular
domain D = [aq, 5] X -+ X [, 5,] - Without loss of generality, by scaling and/or
shifting the coordinate axes if necessary, we shall assume that D = [0,1]". The L,
norm of f : ®” — R on the domain D is defined as, | f|l» = ([7) |f|2dm>1/2. The
notation L£9(D) denotes the space of functions where each function f is (T.ebesgue)
measurable and || fls < oo.

The scalar product of two functions f, g € £5(D) is defined as

< fig>— /ﬂ [ (@)g(x)da
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Motivated by the fact that we will be approximating multivariate functions on a
bounded compact domain, our analysis will be carried through by representing our
function in terms of its Fourier series. This seems well justified when considering
that the Fourier series representation of a function is intended for functions defined
on a bounded compact domain space. Analysis using the Fourier transform would
be equally valid but its ability to represent a function defined on all of " would

be largely unnecessary for purposes here. Tetting and Z” = Z X --- x Z then the
[ —
n times

Fourier series of f € L9(D) can be expressed by the series,

flx) =Y fue" (21)

ke Z7

where wy = 27k
fi= [ ra)e s
JD
From the well known L5 theory, the Fourier series of an L4 function converges in
the £y sense so that Hf — )‘:HQ = 0. Also by Parseval’s theorem the L9 of f and the
12
Jx

To develop the projection pursuit formulation let I be the following subset of Z"

2 norm of its coefficients coincide: ||f||g = Zk@;{n

K= {kEZ”:gcd(/ﬁ,...,kn) =1, k; >0, 7 = min k7¢7§0}

1<i<n
where ged(k, ..., kn) denotes the greatest common divisor of &y, ... k.
It can be easily seen that Z™ = U, zrK and consequently the Fourier series of f,
given that f is continuous, can be expressed as

f(x) = fo+ Z Z,fkre'm”, =Xz

keK\OrcZ

Defining

Jx (Z) = kar@j%m

reR

for k # 0 and fo(2) = fo (constant), then

f@) = felz), z=X"x

kel
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We can summarize the results obtained so far in form of the following theorem:

Theorem 20 A continuous function f € Lo(D) can be decomposed into an infinite
number of single variable, mutually orthogonal functions fy, i.e., < fi, fiw >= 0,
k # k’:

fle) =) h(z), z=X"z

kel

PROOF The only thing we need to prove is the orthogonality of these functions.

<fk, fm> = /,D (Z ']EkTF,jQqTrkTm) (Z fmse .727T.qum> d’)?

reR s€Z

- Z Z fkr,fms / 6’727‘-(“{ Sm)Tm

reEX s€ & S0

1
— § E fkr fmq / ej?ﬁ(’r‘]ﬂ smy )m1dm1 . / ej?ﬂ'r(rkn §Mp )T, d.’)?ﬂ
J0

1
reEX s€ & <0

The right hand side of the above expression is nonzero if only if
1 .
/ eIk M) g #0,i=1,...,n
Jo

or equivalently rk; = sm;, i = 1,...,n by the orthogonality of e/2™* functions. We
claim that k = m. If this is not the case, let d = ged(r, s), and put ' = r/d, and
s = s/d. Then r'k; = $'m; and since 1’ and s’ are relatively prime, they must divide
m,; and k; respectively. But this is a contradiction since elements of k and m are
relatively prime. By the definition of set K it is also impossible for k = —m unless

they are both zero (and consequently equal). Thus r = s and k = m implying that

" 2
Zréz‘fkr :H,ka?a k =m

<fkafm>:
0, k#m

4.2 Unaversal Approximation Capability

Within the context of our algorithmic implementation, we would like to show that

numerical integration over a selected set of directions can approximate the infinite set

80



to within an arbitrary degree of closeness. Or, in other words, it must be proven that
this discretized approach possesses universal approximation capabilities. Drawing
upon the concept of basis functions as described in section (3.3), the derivation of

universal approximation follows.

Theorem 21 For any function [ € L4(D) and e > 0, we can find a finite number of
directions and basis functions per direction such that the resulting approximation will

estimate [ to within &, such that Hf () = >, ,ﬂj (T)H <e.
PrOOF

By Theorem (20), we recall that f(z) = >, ¢ fx (2) , or redefining indices, f (z) =
fany # (7177“) . Since f;’s are mutually orthogonal ||f||2 = >, ||f7||2 < 00. 'Thus

= Z:C;MH ||fv||2 < £. For each

there exists M > 0 such that Hf - Z% fi 2

direction u,; , we shall choose enough basis functions {gbij}, 1 < 5 < n,, such that

f? = fi — Z?L1 0i5¢,; satisfies E

< 557- So, our approximation can be written as:

B NI WASESE

i—1 j—1
= M . . . . .
where f = f — > ", fi. Thus, the error associated with the approximation is:

€= Z;\L ﬁ (z) + F(Z) . And we have this error bounded by:

M
lell <3|
i—1

o] = v 5+

~ €
fi 5 B

= €.

The theorem is now proven by setting ?7\7 = 0;%,;-

4.8 Optimaization

There are alternative approaches for the optimization procedure that would be par-

ticularly useful for identifying functions with bounded domains. For instance, instead
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of using a multidimensional gradient search method to find the optimal directions, an
exhaustive search of the entire domain of projection directions could be employed. Or
if an exhaustive search would prove too computationally intensive for the domain of
interest, an efficient search scheme could be attempted after the linear trends are re-
moved to target the remaining effects. In this case, a genetic algorithm could be used
to identify the projection directions. Together with the use of limited coupling, the
genetic algorithm approach could determine the desired projection directions while

avoiding getting caught in local minima.

Recalling theorem(20) , the function to be modeled can be written simply as:
f=lf+th+fh+..= ka
k1
We note a partial sum of these low-dimensional functions:

]?r:,f0+,f1+,f2+---+fivi:z,fk

Thus the error given the orthogonality of these functions, (f;, f;) = 0, can be

expressed as:

o

=3 A (22)

k—M+1

|7

This expression for the 2-norm of the error can then be used as the evaluation
criterion of our approximation. This metric can be used in the development of
a random search routine, such as a genetic algorithm, for the optimal projection

directions.
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"Relatively Prime" Potential Projection Directions

Input #1

Figure 20: Relatively Prime Projection Directions

Such a random search approach could be coded to identify the contributions of
each projection direction to the overall governing function. As such, the norm of this
contribution for each attempted projection direction would be the fitness function
for evaluating the performance of a given direction. Further, by reducing coupling
and assuming the function is bandlimited, the search space of possible projection
directions is finite. Thus, the problem of finding the optimal projection directions
seems well-suited for a such a search technique. And, of course, once the directions
have been chosen, these can be fed back into the local basis function network to
accurately model the given system. In the example simulations to follow later in
this dissertation, an exhaustive search will be utilized with low-degree of coupling
assumed, as the dimensionality of the input space is small enough to do so. However,
we will briefly explore the potential implementation of a (A search routine given that
such a method would likely be necessary if the dimensionality of the problem space
truly quite high. Indeed, a brief simulation investigation of this GA adapted method

will also be presented following the comprehensive simulations.
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4.3.1 Genetic Algorithm

A genetic algorithm is an optimization procedure that searches a function’s solution
space via a simulated version of Darwinian evolution, i.e., the survival of the fittest
strategy. In fact, the algorithm works in a manner that is quite similar to the well-
known biological process upon which it is based. In general, the “fittest” individuals
of a population tend to reproduce and survive to the next generation, thus improving
the overall fitness of successive generations. However, there is still a chance that
“inferior” individuals might also survive and reproduce.

One advantage of genetic algorithms over some other potential optimization choices
is that genetic algorithms have been shown to solve linear and nonlinear problems by
exploring all regions of a search space and exponentially exploiting promising areas
through the procedures of mutation, crossover, and selection operations [63]. The ba-
sic steps of a genetic algorithm (GA) are summarized in the algorithm that follows.

We will touch on each of the major components in the paragraphs that follow.
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4.8.1.1 Algorithm

Basic Steps of the (Genetic Algorithm Scheme

1. Supply a population Fy of N individuals and respective function values.
2. 10+— 1

3. P/« selection_ function(P; — 1)

4. P, +— reproduction7,)‘”71,77,07‘,72077,(Pil)
5. evaluate(P!)

6. 1 «—1+1

7. Repeat step 3 until termination

8. Output rank-ordered population of best solutions found

The use of a genetic algorithm requires the determination of six fundamental
facets: chromosome representation, the selection function, the genetic operators mak-
ing up the reproduction function, the creation of the initial population, the termina-
tion criteria, and the evaluation function. The rest of this section describes each of

these issues.
4.3.1.2  Solution Representation

For any GA, a chromosome representation is needed to describe each individual in the
population. The representation scheme determines how the GA problem is structured
and also determines the genetic operators that are to be used. Fach individual, or
chromosome, is made up of a sequence of genes from a certain alphabet. In this case,
we use bounded integer values. Thus, each chromosome is bounded by the infinity

norm of its composite genes.
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4.3.1.8  Selection Function

The selection of individuals to produce successive generations plays an extremely im-
portant role in the genetic algorithm. Often, a probabilistic selection is performed
based upon the individual’s fitness such that the better individuals have an increased
chance of being selected. An individual in the population can be selected more than
once with all individuals in the population having a chance of being selected to repro-
duce into the next generation. There are several potential schemes for the selection
process: roulette wheel selection and its extensions, scaling techniques, tournament,
elitist models, and ranking methods [34], [63].

In our case, we enlist the services of the tournament selection method. Tournament,
selection only requires the evaluation function to map solutions to an ordered set and
does not assign probabilities. Tournament selection works by selecting 7 individuals
randomly, with replacement, from the population, and inserts the best of the j into the

new population. This procedure is repeated until N individuals have been selected.
4.3.1.4  Genetic Operators

Genetic Operators provide the basic search mechanism of the genetic algorithm. The
operators are used to create new solutions based on existing solutions in the popu-
lation. There are two basic types of operators: crossover and mutation. Crossover
takes two individuals and produces two new individuals while mutation alters one

individual to produce a single new solution.

Crossover For our purposes the crossover function works as demonstrated in the
accompanying figure, Figure (21). TIn the figure, we assume an initial input space
consisting of 5 dimensions. Thus, the chromosomes, or individuals, listed are the
vector representations of projection directions that we are mating to achieve a new

set of vector representations. For this example, the crossover point was randomly
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Parent(l): 0 1 0 2 0

Parent(2): -1 0 0 0 3

Crossover Point

Offspring(l): 0 1 0 0 3

Offspring(2): -1 0 0 2 0

Figure 21: Demonstration of Crossover Procedure

selected to be between the third and fourth components of the vectors. Note that
there will be some instances in which the crossover will naturally produce unchanged

offspring.

Mutation: Because of their inherent randomness, mutations have the unique ability
to keep the optimization procedure from getting stuck in a local minimum: This
provides one clear-cut advantage of the evolutionary approach to optimization over
its gradient descent and Newtonian cousins. The mutation scheme adopted for
use in our algorithm was governed by the type of chromosomes we used. Because
of the complexity of the projection direction chromosomes, in which each direction
is comprised of component genes with the non-zero components representing the
projection hyperplane and the magnitude of those components identifying the specific
direction within the hyperplane, a multi-attribute mutation scheme was employed.
Thus, mutations can occur in any one of 4 different ways, which are assigned randomly
and with equal probability. The first type of mutation is the simple switching of
vector components within a projection direction. This is illustrated in figure (22).

Another potential mutation is given in figure (23). With this flip-and-switch

87



Before Mutation: | () 1 0 2 0

After Mutation: | () 2 0 1 0

Figure 22: Tllustration of a "Switch" Mutation (Type T)

mutation, components are switched and signs are flipped.

Before Mutation: 0 -3 2 0 0

After Mutation: | () 2 -3 0 0

Figure 23: Tllustration of a "Flip-and-Switch" Mutation (Type IT)

A third mutation type involves shifting one non-zero direction component to an
unoccupied slot, where an unoccupied slot is defined as a component position having

a zero value. This is portrayed in figure (24).

Before Mutation: 1 0 3 0 0

After Mutation: 0 0 3 0 1

Figure 24: Tllustration of a "Shift" Mutation (Type TIT)

The fourth type of mutation employed is the flip-and-shift. An example of this

is provided in figure (25).
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Before Mutation: 2 0 -1 0 0

After Mutation: 0 0 1 -2 0

Figure 25: Tllustration of a "Flip-and-Shift" Mutation (Type IV)

4.3.1.5 Initial Population Generation:

The GA must be provided an initial population as indicated in step 1 of the algo-
rithm provided in section 4.3.1.1. The most common method is to randomly generate
solutions for the entire population. This is the technique we employ in our version of

the genetic algorithm.
4.3.1.6  Stopping Criteria:

The GA moves to each successive generation by selecting and reproducing parents
until the termination criterion is met. In our case, this stopping criterion is a specified

maximum number of 500 generations.
4.3.1.7  Fvaluation function:

The evaluation function was presented in equation (22) and is the same one used in
the other PPT.M algorithms we have implemented. Tt is provided again below, for

the reader’s convenience.

o

=3 IS

k—M+1

lr-7

Once again, the terms were as originally defined earlier in this chapter.
4.3.2 Projection Direction Optimization:

Fvaluating each individual direction separately, we choose the top myg,; directions

(a subset, of our total number of directions) based on our selection criterion of the
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minimization of the approximation error, from equation (22). From this subset
of selected directions, the forward selection procedure is performed to choose the
projection directions, adding sequentially those with the biggest impact on the error.

In this way, the model space is built up until the stopping criterion is reached.
4.3.3 Function Approximation

Problem Statement:
Giiven a high-dimensional, nonlinear dataset, we are seeking to accurately ap-
proximate the underlying response function, f () governing the sample space, S.

Specifically, we are seeking the directions, 1wy, usg, ..., 1y, and the one-dimensional

Mo 2
Yi — qu fur, (215) > )

" N
functions, f,, , along those directions that minimize < E

Jj—1

where

o~ Ne

S (ij) = E 1 “’j@j (Zki) )
zpi = Uy m;, and w is a vector of weights on the basis functions. Fach function, f.,,,
is an approximation of the underlying response surface along that direction and is
formulated by using a suitable set of bases, as described in section (3.3). The grid

spacing methodology upon which these bases will operate is as outlined in section

(3.3.4).

Because we are dealing with nonlinear, high-dimensional datasets, the task of
finding the optimal directions, u;, is difficult. Our approach will be to solve for them
individually, fitting the best 1-dimensional function along each, and then at the end,
put all of these directions together to find the optimal model.

Thus, we will attempt to solve our estimation problem with a two-stage opti-
mization. The first stage involves solving for the best fits given fixed directions,
U1, ...,up. Thisis a standard linear least squares problem to minimize the cost func-
tion ||®W — Y||27 with the solution given by Wrg = ®'Y, where Y is the response,

Pt = (@Tq)) 1(I)T and ® 1s an N X <Z;{VL1 nk> matrix defined as [®y; (24)] ST
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Note that each ®y; (24,) is a suitable basis function as described in section (3.3), and
the matrix W contains the individual weights for each of those bases. Details for
the stacking operation for matrices is provided in the appendix. The 2nd level of
the optimization is a nonlinear problem that involves finding the optimal projection

directions.

€rs — min (q)WT‘S — Y)T (q)WT‘S — Y) (23)

UL ooy U ER | 225 | —1

4.3.4 FExact Function Approximation an infinite sample

Before moving on, one should be careful to note the approximations being made when
characterizing the function estimation in the manner described above. To begin, the

least-squares error shall be defined as:

€rg = min / edr
Jx

where e = (I)W—]?, and f: PW. The terms @ and W are as described previously.
However, the basis function matrix for exact function approximation would consist
of infinite rows (in the continuous case) as ® contains as many elements as W. So,
we take ® (). By, basing our function estimation only on the available information,

we can then solve only for the row we need based on the data.

Rewriting our least squares error based on this information, we have:

€15 — min / @ ()W —V (@) [® ()W -V ()]

u, W .

For a given fixed u, the least-squares solution is

Wis=®" (2)Y (2) = < / d () d" (z) dT> | /X 7 (2)Y (x)dx
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So, the least-squares error can then be written as

;
erg = /Y2 (z)dr — P, </ O (z)®" (z) dT> =
. Js

where P, = fs O ()Y (x) dx. If we knew the values of the function, this is how
we would solve it for an exact function representation. However, in practice, we
do not know the exact values of the function for all possible inputs; hence, the
need for our function approximation in the first place. The discrete solution of
max H[X T (2)Y () dTH depends on the distribution of the data. We cannot sim-
ply take a summation of the terms, as, in this case, the summation is not a good
approximation for the integral we are trying to solve. Thus, unless the distribution
of the bases is exactly uniform or unless we have infinite data, then we do not have
strict orthogonality. So, as an approximation, we discretize the solution. Note that
this was the reason for the nonparametric technique of arranging the data into Order
statistics as described in section (3.3.4) and in the algorithm details. Such Order
statistics were employed to transform the bases into a uniform distribution that could
then be utilized to approximate the integrals in the equations above.

As a result of this, we must proceed with a finite approximation to the exact

solution.

erg = min (dW,s — V) (@W, g~ Y) (24)

U ooy U, € 25| —1

4.3.5 Nonlinear Optimization

The next theorem shows that the two-stage optimization problem can be reduced to

the following nonlinear optimization.

Theorem 22 Assuming there exists a function belonging to the class of universal

approzimators as stated in theorem (21), the optimization problem for finding the best
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function estimator associated with seeking the optimal projection pursuil directions
can be formulated as maximizing the explanatory power of the estimale, succinctly
stated as

Cop = max yToaty (25)

UT oo €, | 25| —1

PrOOF

The argument of equation (23) can be written as
(@Wrs V) (@Wis V) = (30'yY V) (901Y V)
= Y (12" (1 - d3*) YV
by plugging in for the least-squares solution. Noting that ((I)(I)+)T = (PPT), we have
y7 (f — (IDCI)+>T (f — (IDCI)+> y = v’ (f — (IDCI)+> (f — (IDCI)+> Y
= Y (- 30" — 20" + DDV
Given that ®T® = T, this leaves us with
y7 (f — Ot — PPT + (I>(I>+(I>(I>+> y=v" (f — (IDCI)+> Y.

Thus, the optimization problem of eq. (23) reduces to

Cop = max yToaty

UT oo €, | 25| —1

given that YTV is constant.

Corollary 23 If the bases, ¢, thal form the basis function matriz ® are orthogonal,
1 o S
then @+ = (CI)T@) T = ®7, and the optimization problem reduces to maximizing

the 2-norm of the coefficients:

Cp=  max Y7037V = ||o7Y|’

UL ooy U ER | 225 | —1

where again, ® is our matriz of basis functions along the given M directions and 'Y

18 the response vector.
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Corollary 24 If the basis function matriz ® is 1-dimensional then

Cop = MaX ch Y (26)
H = ¢
where & = ol
Proof. Noting that &7 = % in the 1-dimensional case, then it follows that
|o7Y||"
Cep = MAX e
v [T

which can be rewritten as equation (26). H

The algorithm used to implement this modeling technique transforms the raw
input data into a finite set of projection directions and assigns the grid spacing along
these directions. Sequentially, one-dimensional local basis function fits are generated
along these projections. The performance along these directions is evaluated and the
direction set is then winnowed down to a more manageable number for simultaneous

direction modeling. The final directions are chosen via a forward selection routine.

4.4 Algorithm

Note: m = number of projection directions
R = projection matrix
d = grid point subintervals per direction

The performance criterion is set to the M SF of the validation sample.

1. Initialization
a. Set the number of couplings (for systems with low degrees of coupling, 2
is a good choice)
b. Set the relatively-prime projection directions per hyperplane (integer di-

rections with a maximum infinity-norm of 3 are what we use in our simulations)
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c. Assign the number of projection directions on which to run the selection
procedure: m g,

d. Set the maximum number of projection directions to include, M.y, and
the maximum number of consecutive iterations without improvement, ifer,,.., as the
stopping criteria and loop through while performance criterion improves, m = m + 1.
Initialize R to be an n X m uniform random variable.

e. For d = dyin 10 dpay (good values of d might range from 3 to 10)

2. Assign grid spacing for each direction and store

a. Z =X x* R (setting transformed inputs and storing these for repeated use)

b. For each transformed input vector, Z;, create Order statistics for the
observations, Oy, , V Z; where k € [1, N] and set the nodes for that input.

3. Whittle down the total set of projection directions
a. Loop through each direction, reassigning the transformed inputs and nodes
b. Next, the basis functions can be set

(a). Compute distance of each data point to each node:

. — _ RGN
1. Z7"j.’] = —bij,l
.o —_ _ 27','7‘ ?77-"7-
11. 2’7"]'.’7, = —biy‘r

(b). Create local piecewise cubic basis functions for each projection

(Note: dropping projected input subscript, j, to avoid confusion):
i. For each projection direction, compute the first portion of the
basis function (to be designated as {¢}1 ), accounting for potential unequal base widths

along dimensions:

(|§7‘,.’]| — 1)2 (2 . |§7".’]| + 1) if —1<« 57‘,.’] < 0
{6} =% (Z,| - D)@ Za]+1) -+ if 0<%, <1
0 otherwise

1. For each projection direction, compute the derivative portion

of the basis function (to be designated as {¢}”):
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(|§7‘,.’]| — 1)2 . 57‘,.’] if —1< 57‘,.’] <0
{03 =4 (Bl -1z i 0<z, <1

0 otherwise

iii. Assign basis function for each projection direction:
—_ 1 2
¢ = l {o} {0} ]
iv. Append to full basis function matrix: ® = l d @ }

c. Fit least-squares derived weighting matrix, W: ®W =Y | where YV is the
response vector
(a). ot = (CI)T(I) + ’yf) 1 &7, where ~ is some small, positive constant
near zero
(b). W =d1Y

(c). Compute the error: F = ®W —Y

(d). Fwvaluate the strength of the fit along the direction:
(Note 1.) Since, f = BW,
Ifll, = [WTSTOW dz = W (_[01 cI>’fcI>dz) W
(Note 2.) For cubic basis functions

[ 13/35  9/70  11/210 13/420 |

0/70  13/35  13/420 —11/210

(_[01 cI>’fcI>dz) -

11/210  13/420 1/105 —1/140

—13/420 —11/210 —1/140 1/105

(e). Select top Mgy directions based on this strength criterion
4. Optimization (Build model from myg,, projection population, starting with
"best" individual direction, adding directions with the forward selection method),
m=1

a. While (m < Mmax) & (iter < itermax) ,
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b. T.oop through mg,; directions not yet in model direction population (ini-
tially assigned to null space)
i. Repeat Step 3a-3c for m — 1 total model directions, adding one m.,;
direction not yet in model direction population
1. Fwvaluate e;g
iii. Remove this added direction from the total model direction popula-
tion
¢. Choose the direction that had the lowest e;g in step 4b to be added to the
model direction population
d. Fit this same model to the test sample and evaluate e.g 05
e. If erstest (m) > €r.8 test (m - 1)
Then iter =iter + 1
Flse iter = 0

f. m=m+1

4.5 FExperitmental Results

As another test of the method’s effectiveness, we return to the bearing defect exper-
iment. In this case, the prediction accuracy of the DPPT.M model will be compared
with that of a continnous PPT.M methodology and a feedforward neural network
approach. Results for the same three response variables will be presented.

The test procedure is the same as in the continuous case. Once again, the input
data are a set of 29 different signal features based on accelerometer and acoustic
emissions data, with an n — 1 set of data being split into a 75% training sample and
25% validation sample for constructing the predictions on each individual observation.
The results are again displayed as cumulative (average across all observations) or, in
some cases, have been split up into cumulative within groups (average across all

defects of a certain defect size).
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4.5.1 FExperiment Set #1

For this experiment, the defect width was chosen as the response variable. As a
comparison of the results, we will illustrate the differences in performances by simply
comparing results across the & distinct levels of defect. Tt is clear from figure (26)

that the PPT.M and DPPT.M models estimate the defect widths more accurately than

does the best of the artificial neural networks.

Computing overall percent error yields the following:

Table 3: Overall defect width percentage error for Fxperiment 2
Model | %Error | (%Error)’
ANN 32.1% 10.3%
PPTM | 16.5% 2.7%
DPPTM | 13.1% 1.7%

For comparison purposes, [94] used (% 67“7“07“)2 as the calculated error and pro-
duced a prediction error of 11.8% (albeit on a somewhat different sample) using
a specialized back-propagation prediction network with parameters attuned to this
bearing defect problem. Thus, the results of the similar feedforward networks used
(ANN) in this analysis seem consistent with results produced by previous researchers.
Therefore, the improved prediction accuracy of the two new methods introduced in

this thesis are notable
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4.5.2 FExperiment Set #2

Using the same data and defect height as the response, the comparison group pre-

dictions for the various models are shown in figure (28). The errors by defect height
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Figure 28: Comparison of Actual Defect Heights and Predicted Defect Heights

size are displaying in figure (29).
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Table shows the overall percentage error is lowest for the DPPT.M approach.

100



Table 4: Overall defect height percentage error for Fxperiment 2
Model | %Error | (%Error)’
ANN 31% 0.095%
PPTM | 1.7% 0.029%
DPPTM | 1.5% 0.023%

Overall, the results show that both the continuous PPT.M and discrete projection
pursuit learning network perform quite well on the experimental data relative to the
best other available methods. The DPPIL.M even provides a slight improvement in

prediction accuracy over the continuous PPT.M method described earlier.
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CHAPTER V

COMPARISON OF METHODS - SIMULATION

RESULTS

Thus far, we have only examined the effectiveness of the newly-devised models with
a very limited set of test cases. It is in this chapter that the bulk of the simulation
results, a total of 96 separate test cases, will be presented. In the simulations that
follow this section, comparisons will be made of the performance of the two projection
pursuit learning methods presented in this thesis with various other methods. These
other methods used for comparison have been described in great detail earlier. They
are projection pursuit regression, MARS, and feedforward neural networks. But,
before getting into the simulation results, the issue of overfitting and the steps taken

to handle it, must first be addressed.

5.1 Bias-Variance Trade-off / Overfitting

"If you torture the data long enough, they will confess. " Thomas Mayer [61]

5.1.1 Overfitting

For most classes of models, we can reduce the prediction error of the estimation on the
model sample by increasing the complexity of the model structure. While this sharp-
ening of our predictive blade at first may seem advantageous in all circumstances, it
is in fact dangerous as the complexity blade is a double-edged sword. We can get
a model that is as accurate as we’d like on the model sample by simply making its
structure more complicated; but this increased accuracy is gained at a price. While

our very flexible model produces a relatively small bias (yields an average prediction
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for each snapshot of input values that is close to the true response), this increased
model complexity result in an increase in the number of parameters to be estimated.
This results in a higher variance of each parameter estimation generated from different

datasets.
5.1.2 Bias-Variance Trade-off

The response can be written as y = f (x;0)+e¢. So, u, = F [y | x| represents the actnal
expected value of the response for a given input state space. Similarly, y = f <X; 5)
is the estimate provided by our model and its corresponding fitted parameters. Thus,

the mean squared error at x is defined as:

2

MSFE (x) = FE[j— u,]

which can be rewritten as

MSEx)=E[j—F@))]+ 5 [F@ —n) (27)

where the expectation, F, is taken over the probability distribution p(1) of all
potential datasets of size n. In this way, ¥ is a random variable allowing for the
random sampling responsible for generating the particular set of training data, /),
from amongst all possible choices from within the theoretical population. Note that
different, datasets, 1), would have led to different models with different estimation
parameters and a different set of predictions, 7. Thus, the expectation, F, in the
equation for the mean squared error above represents the expected value of the given
random variable over different potential datasets of equivalent size n, each chosen
randomly from the source population.

Note that this relationship is written in such a form as to provide us with insights

into the bias variance trade-off. Fssentially, what we have written is:
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MSFE (x) = variance + bias®

So a closer inspection of equation (27) now unveils insights into each of its major
constituents. The variance term, F [y — F ({/\)]2, provides an expectation for the de-
viation of our estimate, 7, across different potential datasets of size n. It measures
the sensitivity of ¥ to the specific dataset being used to train the model. To glean a
better understanding of this term, let us choose a couple of examples. For instance, if
the constant, y,., was always chosen as our predicted response, without consideration
for the data, this variance would be zero. Choosing the other extreme, if we select a
very complicated model with many parameters, our predictions, 7/, will tend to vary
greatly given a different choice of training dataset.

The bias term, F [E (9) — ,uy} 2, reflects the systemic error in our prediction: the
deviation of our average predicted response, F (), from the true population mean,. i,
If we again choose a constant, y., as our predicted response, irrespective of the data,
we might expect this model to have a large bias term. On the other hand, if a more
complex model is employed, our bias (or average prediction) may be substantively
lower. This battle of the countervailing forces of bias and variance quantifies the
tension between the choice of a simple model (one with low variance and high bias)
and a more complicated one (with low bias and high variance).

From a practical standpoint, the average mean squared error over the entire do-
main of the function being estimated is of interest to us. Thus, we might define the
expected MSF with respect to the input distribution, p(x), as [ MSFE (x) p(x) dx .
While this quantification of the bias-variance trade-off is of interest theoretically, it
is not possible to calculate it in practice because we cannot measure the bias term.
Nevertheless, the theoretical bias-variance formulation is quite instructive, as it illu-
minates the need to choose a model flexible enough to handle variations within the

input data, yet not too complex so as to result in the overfitting of the variations of
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the noise present in the dataset.
5.1.3 How to Handle Overfitting

While we have measures in place to try to improve the overall fit of the model, what
can be done to reduce the possibility of overfitting the training set? One method is
choosing a score function with two components: one to measure the goodness-of-fit of
the predictions, and the other component that penalizes model complexity [1]. The
problem with this approach is that its effectiveness depends greatly on a good choice
of the relative weighting of the two score function components, which can be quite
difficult to select appropriately.

Another approach to use is that of external validation. This is the approach,
we will be using in the simulations that follow. This approach will be used for the
selection of the "best" model within each of the various model types in the comparison.
The idea here is to split the data into two mutually exclusive sets: the training set
and the validation set. The training set is used to construct the model; the validation
set is used to test the effectiveness of the model generated from the training set.

Thus, the validation set is used to choose from among candidate models offered by
the training set. After building the model on the training dataset, the score function,
which often is a measure of the SSF between the predicted and actual response, is
reevaluated on the validation set. Thus, the score function is, itself, a random variable
where the randomness has two sources. The first is from the training dataset, while
the second is from the data being used to validate it.

Ideally, we would like an unbiased estimate of the score function on future data
for each model considered. Here, since the two datasets are assumed independent
and randomly selected, the validation score for a given model provides an unbiased
estimate of the score for that model for an out-of-sample dataset. So the bias from

training is absent, from the independent validation estimate.
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With this approach, we have a data-driven method for handling the problem of
overfitting. Now, when comparing the validation scores, we should better be able to
distinguish between a high quality and a low quality model, as a model better able
to fit the response surface should produce a lower score. This process deters against

choosing those models unduly influenced by the noise of the training set.

5.2 Stmulation Procedures

To compare the effectiveness of the newly-formulated continuous and discrete projec-
tion pursuit learning methods with other high-dimensional prediction methodologies,
several sets of simulation examples are presented. As was mentioned previously, the
PPT.M and DPPT.M methods are not restricted to a single choice of bases. 'Thus,
for the simulations that follow, they were allowed their choice of basis functions to
be determined from the data: either a global harmonic basis function set or set of
a local cubic basis functions. Tt should be noted that for the case of the global
harmonic bases, the T.evenberg-Marquardt PPT.M algorithm required a good set of
starting conditions. Much work has been done in this area, including [48]. For our
purposes, a simple 2-degree of coupling (A was run to establish the initial projection
direction matrix. With the local cubic bases, this procedure was not necessary. With
the DPPT.M, this procedure was not necessary for any choice of bases the method
was capable of converging regardless of initial conditions. Fxperiments were run on
simulated datasets with different forms of the response function, varying numbers of
observations, different distributions of the data, and varied levels of noise introduced
into the dataset. The examples presented below were chosen to give the reader a feel
for the varying effectiveness of the distinct modeling methodologies across different

types of functions and different data conditions. With each example, a compari-

son of the normalized mean-squared errors <77,]\//SF7 = 7)%‘?%) of the models will be

provided.
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For all of the simulations presented here, each modeling methodology utilized the
same training sample of data. Two separate samples of equal size were used across
each modeling methodology for validation and testing purposes. As each of the models
are dependent, on specific user-defined parameters, a data-driven approach, with the
aid of the cross-validation sample, was used to select these optimal parameters. Model
training continued, building up models of greater and greater complexity, until no
further improvement was achieved on the validation sample. Thus, each model was
brought to the highest level of complexity that produced not only a low training
error, but also the lowest validation data error as well. The same training, cross-
validation, and holdout (test) samples were used for all models. The prediction results
of the discretized projection pursuit learning network were then compared to those
of the other models. In each case, the results presented are for the holdout sample
without noise, to isolate the model’s effectiveness at predicting the intended response.
For each simulated response function, both a high noise (7 = 0.90) and a low noise

(r* = 0.99) case were run. Noise levels have been parametrized by the coefficient of

2

2
. . ag ag . . . .
determination, defined as r? = —t—=id where o, is the standard deviation of the

Yy

response and 7,44 18 the standard deviation of the residual error. Noise has been

added to the training and validation response in such a way as to frame 7, =

2
a . . . .
——2d—. Thus, the noise is always scaled to the variance of the response such that
Yy resid

2

noise

a

= co*f/, where ¢ = & — 1. [83]

For each of the simulations, two different levels of the number of observations
(low=1000 observations, high=2,700 observations), along with two distinct distribu-
tions for the noise and the input data (normal and uniform) were tested along with the
two noise levels described above. In this manner, we can gain a better insight into the
predictive abilities of each of the methodologies tested. The different testing regimes

along with their designation is now provided. Results will be presented grouped by
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low and high observation number groupings. Then, three letter combinations repre-
senting the noise level, the input distribution, and then the noise distribution will be
provided. Thus, 'T.NU’ will refer, for instance, to the low noise, normally-distributed
inputs, uniformly distributed noise condition, whereas a designation of "THUN’ would
refer to the high noise condition with uniform inputs and where the noise is normally-
distributed. The specific input distribution used is N(0,1) for the normalized input
condition and UU(—4.5,4.5) for the uniform case. The noise levels are determined

from the data as described previously.

5.3 Stmulation Results

5.3.1 Simulation Set 1

For the first set of simulations, the response function utilized was the following har-

monic function:

1
Yy = f (Xh ---,X5) = 5Sih (7TX1)sin (WXQ)

+ sin (7 X3) cos (7 X4) + noise

The results of each of these simulations is provided in table (5) as a set of nor-

malized mean-squared error comparisons.

As can be seen from table (5), both the DPPT.M and PPT.M approaches pro-
vide considerable improvement on the results of the projection pursuit regression
(PPR), feedforward artificial neural networks (ANN), and MARS models.  The
MARS method was allowed up to 5-degrees of coupling and an unlimited number
of terms.  With all three of the comparison methods (MARS, projection pursuit

regression, and the neural network), the method was allowed as many terms and as
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Table 5: nMSFE Comparison of 5-Dimensional Harmonic Response Simulations

| # of Obs | Data Distr | MARS | PPR. | ANN | PPLM | DPPLM
Obs = 1000 | LNN 1.01205 | 1.03688 | 0.40579 | 0.00008 | 0.00065
LNU 1.01407 | 1.05473 | 0.24158 | 0.00015 | 0.00060
LUN 1.01210 | 1.08882 | 0.96785 | 0.00011 | 0.00066
LUU 1.00980 | 1.03957 | 0.93544 | 0.00014 | 0.00077
HNN 1.01231 | 1.06851 | 0.27598 | 0.00153 | 0.00817
HNU 1.04108 | 0.54479 | 0.58958 | 0.00102 | 0.00530
HUN 1.01375 | 1.02688 | 0.96635 | 0.00120 | 0.00599
HUU 1.01030 | 1.01713 | 0.91333 | 0.00156 | 0.00850
Obs = 2700 | TNN 1.00089 | 1.01788 | 0.14809 | 0.00009 | 0.00024
LNU 1.00154 | 1.01060 | 0.52295 | 0.00003 | 0.00021
LUN 0.99904 | 1.01476 | 1.00282 | 0.00009 | 0.00017
LUU 1.00510 | 1.02732 | 1.00667 | 0.00006 | 0.00027
HNN 1.00253 | 1.02490 | 0.55273 | 0.00035 | 0.00109
HNU 1.01074 | 1.02080 | 0.47061 | 0.00033 | 0.00292
HUN 1.00462 | 1.01677 | 0.87353 | 0.00032 | 0.00125
HUU 1.01262 | 1.02897 | 1.00866 | 0.00070 | 0.00292

many degrees of coupling as it wanted until it could no longer improve upon the
performance criterion. The DPPT.M approach worked very well on these rather low
dimensional harmonic datasets.

To give the reader a sense for the modeling on these projections, figure (30) is
included. From the response function, we see can the important directions. Thus,
one of these is now plotted in figure (30), with the data projected onto it. The portion
of the response function lying along that direction is displayed along with that of the
predictions from the DPPT.M approach, which fits the response quite nicely along

this direction.

109



Solution Projected Onta [00 1 1 0] Direction
25 T T T T I+ T T T

+ actual data

2 1 prediction projection |4
response projection
15 T
_|+
1 +
045 Ch
3 o
2 0 L I
o
a5 ¥ i
Ty
-1 i
-1.5 8
2 i
25
-10 2] &

Z=¥00110]

Figure 30: Solution Along a Projection Direction

5.3.2 Simulation Set 2

For the second set of simulations, the harmonic response function was made a bit

more complicated, and the dimension of the input space was doubled:

4
y=f(X1,..., X10) = noise + R sin (mX71) sin (7X5)
8
+ sin (7 X73) cos (mX,) — £ sin (7 X5) cos (27 X¢)

1
— % sin (27X ;) cos (37 Xg) + R sin (7 X) sin (7 Xg)

Under these conditions, the performance of all of the modeling methodologies suf-
fered. Once again, looking at table (6), the MARS and PPR methods had trouble
uncovering any useful information about the response surface. This time, the feedfor-

ward neural network was also ineffective at predicting response. The PPT.M approach
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Table 6: nMSE Comparison of 10-Dimensional Harmonic Response Simulations

| # of Obs | Data Distr | MARS | PPR. | ANN | PPLM | DPPLM
Obs = 1000 | LNN 1.02963 | 1.06282 | 1.00525 | 0.92335 | 0.33605
L.NU 1.01566 | 1.08564 | 1.00738 | 0.87920 | 0.37324
LUN 1.01819 | 1.14552 | 1.01847 | 0.81122 | 0.35239
LUU 1.02323 | 1.10336 | 1.02319 | 0.80768 | 0.34996
HNN 1.03423 | 1.06936 | 1.01660 | 0.71133 | 0.35320
HNU 1.03540 | 1.06042 | 1.04583 | 0.85169 | 0.34261
HUN 1.02826 | 1.20014 | 1.03256 | 0.90877 | 0.38122
HUU 1.01912 | 1.09495 | 1.01638 | 0.86690 | 0.35624
Obs = 2700 | TNN 1.01115 | 1.01612 | 1.01729 | 0.78675 | 0.28828
LNU 1.01296 | 1.01304 | 1.01417 | 0.87350 | 0.30172
LUN 1.00504 | 1.01708 | 1.01271 | 0.80769 | 0.35072
LUU 1.00671 | 1.03233 | 1.01211 | 0.89499 | 0.34385
HNN 1.00376 | 1.02066 | 1.01134 | 0.78543 | 0.30855
HNU 1.00793 | 1.02914 | 1.00864 | 0.77420 | 0.30291
HUN 1.00795 | 1.03343 | 1.00888 | 0.82148 | 0.34802
HUU 1.00758 | 1.01373 | 1.01862 | 0.84112 | 0.34719

was still moderately effective at estimating the response function, while the DPPT.M
did a fine job of identifying this complicated response surface. The primary cause
for the success of the DPPT.M methodology is quite likely largely due to its ability to
employ any basis function. For the past two sets of simulations, the method chose a

set of Fourier basis functions for each of the models it constructed.
5.3.3 Simulation Set 3

So, the question arises: how will the PPT.M and DPPT.M methods perform when re-
stricted to a single choice of bases and on conditions well-suited to the other modeling
techniques. For this reason, a two additional sets of simulations were run. For these
sets, a polynomial response was chosen, as the other methods are especially good at

making predictions on such data. Below, we explore the lower-dimensional case.

X1Xy

y=f(X1,.., X5) = —2X1X3 — Xp X3+ + noise

To constrain the PPT.M and DPPT.M approaches, the choice of the set of local

cubic basis functions was enforced. Tt should be noted that when employing these
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approaches, the researcher could easily choose a polynomial response which would
likely generate even better predictions. However, in practice, one does not often
know what the functional form of the predictive model should be. Hence, the choice

of local cubic bases, which are general all-around good predictors.

Table 7: nMSFE(x100) of 5-Dimensional Polynomial Response Simulations
| # of Obs | Data Distr | MARS | PPR. | ANN | PPLM | DPPLM

Obs = 1000 | TLNN 0.01962 | 0.16352 | 0.12224 | 0.10020 | 0.05812
LNU 0.04289 | 0.32450 | 0.16333 | 0.11022 | 0.06814
LUN 0.01678 | 0.08648 | 0.06713 | 0.09519 | 0.02705
LUU 0.03892 | 0.11448 | 0.08617 | 0.09619 | 0.05812
HNN 0.36920 | 1.14155 | 1.14028 | 1.38577 | 0.53507
HNU 0.33972 | 1.75962 | 0.66132 | 0.91283 | 0.44890
HUN 0.13551 | 0.81362 | 1.03206 | 1.50501 | 0.42485
HUU 0.24475 | 1.48668 | 0.76152 | 1.67836 | 0.64228
Obs = 2700 | LNN 0.00669 | 0.11669 | 0.02409 | 0.07932 | 0.01631
LNU 0.00767 | 0.10682 | 0.02372 | 0.02113 | 0.01297
LUN 0.00317 | 0.03744 | 0.02780 | 0.03521 | 0.01964
LUU 0.00448 | 0.04387 | 0.02261 | 0.03558 | 0.01371
HNN 0.11417 | 0.50362 | 0.14789 | 0.43365 | 0.15530
HNU 0.05156 | 0.78966 | 0.15048 | 0.34433 | 0.14900
HUN 0.07728 | 0.51021 | 0.28725 | 0.24574 | 0.18310
HUU 0.00420 | 0.47413 | 0.33840 | 0.31690 | 0.19125

With this set of samples, all of the methods performed incredibly well (note that
the numbers in table (7) are scaled up by a factor of 100). The continuous PPT.M
approach provided some slight advantage in performance over PPR, but was generally
outpaced by the feedforward neural networks. DPPTLM performed quite well versus
all of these three, but was unable to match the stellar performance of the MARS
models.  Still, given the constraints placed on the DPPT.M method, it performed
admirably. MARS is particularly well suited for approximating relatively simple

low-dimensional polynomial response surfaces.
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5.3.4 Simulation Set 4

However, this test was for a relatively low-dimensional input space: four important
input variables plus one extraneous input. T.et us now investigate performance for

amore complicated higher-dimensional polynomial response surface.

Yy = f (X17“'7X10) = X1 +X2 - X1X2 — 2X1X3

XX X5 X
X, Xa 1247 5267)(7
4X, XX 3 XXX,
n 758 L 6107 9 1 hoise

To constrain the PPT.M and DPPT.M approaches, the choice of the set of local cubic

basis functions was enforced once again.

Table 8: nMSFE Comparison of 10-Dimensional Polynomial Response Simulations

| # of Obs | Data Distr | MARS | PPR. | ANN | PPLM | DPPLM

Obs = 1000 | LNN 0.1518 [ 0.1468 | 0.0110 | 0.0046 | 0.0024
LNU 0.1254 | 0.0880 | 0.0123 | 0.0043 | 0.0209
LLUN 0.2935 | 0.1652 | 0.0105 | 0.0018 | 0.0014
LUU 0.2914 | 0.2693 | 0.0138 | 0.0050 | 0.0012
HNN 0.0873 | 0.1155 | 0.0460 | 0.0760 | 0.0218
HNU 0.1514 | 0.1116 | 0.0213 | 0.0671 | 0.0300
HUN 0.2579 | 0.1673 | 0.0424 | 0.0308 | 0.0166
HUU 0.2626 | 0.1043 | 0.0265 | 0.0494 | 0.0310

Obs = 2700 | LNN 0.1396 | 0.0746 | 0.0048 | 0.0013 | 0.0007
LNU 0.1113 | 0.0744 | 0.0029 | 0.0007 | 0.0006
LUN 0.2002 | 0.0557 | 0.0124 | 0.0006 | 0.0003
LUU 0.2459 | 0.0987 | 0.0024 | 0.0020 | 0.0004
HNN 0.1233 | 0.0729 | 0.0151 | 0.0172 | 0.0257
HNU 0.0979 | 0.0761 | 0.0101 | 0.0074 | 0.0043
HUN 0.2567 | 0.1399 | 0.0094 | 0.0077 | 0.0057
HUU 0.2893 | 0.0706 | 0.0086 | 0.0060 | 0.0034

With this set of samples, both the MARS and the projection pursuit regres-

sion methods performed admirably, but their respective performances appear to have
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suffered severely with the increase in dimensionality and the corresponding expand-
ing complexity of the response surface. They were both outpaced by the feedfor-
ward neural network, PPT.M, and DPPT.M approaches as is evidenced from table (8).
While the discretized projection pursuit learning model and the continuous PPT.M
managed to generally achieve the best fit of the simulated response surfaces, they
also took the most computation time. Thus, if online CPU time is a factor, then
either the projection pursuit regression or neural network approaches might prove

more suitable for the researcher.

5.3.5 Simulation Set 5

Yet, thus far, we have looked only at response surfaces consisting purely of lower
dimensional superpositions of functions of the same form: harmonic in the first two
sets and polynomial in the next two sets of simulations. The question of performance
on other types of response surfaces still remains. Thus, the last two sets of simulations
were run with unusual response surfaces consisting of mixtures of different types of

functions. For the first of these sets, let us investigate the low-dimensional case.

XX, 3 2
_ XX _
g To) Tttty

Yy = f(X1,...,X5)_1]’]<

1
— X7 - sign (Xy) — ng? + noise

All of the methods performed well (note that the numbers in table (9) are scaled
by a factor of 100). The ANN, PPT.M, and DPPT.M approaches produce the best

results overall, with DPPT.M consistently achieving the best performance.
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Table 9: nMSFE(x100) of 5-Dimensional Nonlinear Response Simulations

| # of Obs | Data Distr | MARS | PPR | ANN | PPLM | DPPLM |

Obs = 1000 | .NN 3.4939 [ 2.8827 | 1.0050 | 0.6493 | 0.3076
LNU 41143 | 2.4604 | 0.5601 | 0.5581 | 0.2906
LUN 1.4347 | 1.7756 | 0.4900 | 0.6343 | 0.2826
LUU 1.8082 | 3.9834 | 0.5451 | 0.5511 | 0.2585
HNN 3.5200 | 7.8786 | 2.0731 | 2.4379 | 1.1894
HNU 2.5183 | 6.6348 | 2.0822 | 2.3828 | 1.3918
HUN 1.6731 | 4.3674 | 3.2285 | 2.7014 | 1.3076
HUU 1.6046 | 3.3031 | 2.5411 | 2.2545 | 1.6994

Obs = 2700 | T.NN 4.2739 | 1.9636 | 0.6201 | 0.4522 | 0.2413
LNU 2.8221 | 2.1333 | 0.6234 | 0.2557 | 0.2561
LUN 1.5489 | 1.4339 | 0.4059 | 0.3354 | 0.1271
LUU 1.6030 | 1.3755 | 0.3328 | 0.3714 | 0.1423
HNN 2.9740 | 1.9548 | 1.7250 | 1.6723 | 1.0174
HNU 3.2455 | 2.2868 | 0.9559 | 0.8784 | 0.4689
HUN 1.7386 | 3.8024 | 0.9970 | 1.3903 | 0.4859
HUU 1.9665 | 2.4337 | 1.0467 | 1.3736 | 0.5619

5.3.6 Simulation Set 6

For the final set of simulations, we expand the dimensionality and complexity of the

response surface.

X1 X 3

y = [f(Xi,...,X40) = noise —In <|1722|+§>
2 . 1y 1
+ X3X4+g fsz_qn(X;;)—gXﬁ - Xﬁ)(?fg

9 2 2
1 — | XX — —sign (X
+ n<20 | Xs 9|+5>+597.q77( 7)

Relative to the prior set of simulations, table (10) shows that the prediction per-
formance of each of the methods deteriorates. The multivariate adaptive regression
splines, projection pursuit regression, artificial neural network, and the PPT.M ap-

proaches all seem to achieve similar performance with a small number of observations.
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Table 10: nMSF, Comparison of 10-Dimensional Nonlinear Response Simulations

| # of Obs | Data Distr | MARS | PPR. | ANN | PPLM | DPPLM

Obs = 1000 | TLNN 0.22659 | 0.32261 | 0.14285 | 0.14197 | 0.04839
LNU 0.23510 | 0.29065 | 0.10220 | 0.10769 | 0.04633
LUN 0.10914 | 0.21986 | 0.17577 | 0.05966 | 0.02028
LUU 0.12980 | 0.16989 | 0.20783 | 0.08871 | 0.01961
HNN 0.23797 | 0.33263 | 0.22984 | 0.21703 | 0.08676
HNU 0.23360 | 0.28718 | 0.25080 | 0.28681 | 0.08884
HUN 0.10641 | 0.26644 | 0.21387 | 0.17400 | 0.04427
HUU 0.11321 | 0.22751 | 0.17431 | 0.08848 | 0.03839
Obs = 2700 | LNN 0.20486 | 0.23808 | 0.09210 | 0.06131 | 0.05543
LNU 0.19906 | 0.24333 | 0.08534 | 0.06645 | 0.05956
LUN 0.10120 | 0.19676 | 0.13347 | 0.05655 | 0.02145
LUU 0.10029 | 0.19024 | 0.07432 | 0.05814 | 0.02226
HNN 0.19299 | 0.23727 | 0.10056 | 0.08930 | 0.06275
HNU 0.19451 | 0.24274 | 0.10772 | 0.08430 | 0.06883
HUN 0.12149 | 0.22036 | 0.17326 | 0.08376 | 0.03176
HUU 0.11153 | 0.19191 | 0.10980 | 0.08671 | 0.03745

However, PPT.M and ANN outpace the other two with more observations. Across
the board, though, the DPPT.M clearly achieves the best results.

But, this type of analysis bring ups an interesting question: with all of this data,
can any clear trends be gleaned? TIs one type of model well-suited for a certain type
of problem, while another is the best choice for a different type of problem? To

answer these questions, we now peruse the data more carefully.

5.4 Comprehensive Comparison

For a more comprehensive investigation, we now turn to the composite results of all
of the simulations. In figure (31), we can see the average performance of the various
methods.

Overall, the DPPT.M and PPTL.M approaches outperformed. However, a closer
investigation may shed some light on how differences in the response surface being

modeled or in the input conditions might change the performance amongst each of
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Figure 31: Overall Average Performance By Modeling Methodology

these methodologies. We begin by looking at the noise condition in figures (32) and
On the whole, adjusting the noise amplitude has little effect on performance re-
sults. As shown in Figure (33), the average nMSE of the predictions are very similar

within each specific model type.

An investigation of the distribution of the noise, figures (34) and (35), shows
similar results. All of the modeling methods tested seem to be quite insensitive to

noise.

Next, a look at the distribution of the inputs, figures (36) and (37), shows that
each of the models are insensitive to changes in the condition as well. The sole
exception is the feedforward neural network, which had superior performance when
presented with input data that were normally distributed. Still, the relative rank

ordering of performance of the models remained the same across input distribution

type, with the neural nets outpacing both the MARS and PPR models, and the
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Figure 36: Performance Comparison Within Input Distribution Groups
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Figure 38: Performance Comparison Within Sample Size Groups

projection pursuit, learning methods improving upon these performances.

An investigation of the numbers of observation in figures (38) and (39) reveals a
similar trend across all model types: an increase in performance with the higher ob-
servation condition (n = 2,700). Intuitively, this makes sense the models performed

better when presented with more data.

Turning to the effects of the response surface, figures (40) and (41), the same
graph is presented twice. Because of the vast differences in magnitude of performance
across response surface type, the graph grouping by model type is left out while the
performance chart that groups by response is presented a second time. This is done
to re-scale the chart such that we might better be able to discern average performance
on the polynomial response functions.

From these performance graphs, the DPPT.M performs best across all response

function types tested. However, the feedforward neural network modeling approach
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Figure 41: Performance Comparison Within Response Function Groups (Rescaled)

does appear to achieve a slight improvement in results relative to the Tevenberg-
Marquardt PPT.M model. Once again, all three of these approaches produce better

predictions on average than PPR or MARS.

Investigating the effects of dimensionality and function complexity on performance
reveal dramatic results. Figures (42) and (43) illustrate these results. Figure (43),
especially, shows the expected effect of dimensionality: performance suffers with in-
creasing dimensionality. This is what would be anticipated from our earlier investiga-
tion into the phenomenon of data sparsity. Perhaps, more surprising is the dramatic
improvement in modeling capability of the continuous and discrete PPT.M models
when dimensions are reduced.

A closer look reveals more insight into this phenomenon. As was done earlier,

the same figure was replicated and re-scaledto magnify the effects.

From figure (44) and (45), we see what’s going on. While all of the models
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perform better with reduced dimensionality and reduced response surface complexity,
what is clear is that the PPI.M and DPPT.M models worked exceedingly well in the
case of a low-dimensional harmonic response function.  Discounting for this, the
other modeling approaches actually tended to experience a greater deterioration in
performance with increased dimensionality and subsequent model complexity. While
this is not evident for the harmonic response function simulations, perhaps this is
due to the ceiling effect of the nMSE. Fssentially, an nMSFE of approximately 1.0 is
what would be obtained by predicting the response with only its true mean value.
Thus, each of these modeling methodologies, each fully capable of at least predicting
the mean value of the response, will tend to generate nMSFE values of approximately
1.0 when faced with a response surface they cannot approximate. Thus, the error is
capped to an extent. So, we cannot gauge the true deterioration of the MARS and
PPR models on predictions of the harmonic response simulation functions when faced
with increasing dimensionality because their respective prediction errors were already
maxed out in the lower dimensional cases. Tikewise, the feedforward neural network’s
performance degradation cannot be quantified either in the case of harmonic response
given that its error was capped in the higher dimensional simulations. Thus, we can
only base our conclusions about this dimensionality performance deterioration on the
cases of nonharmonic response surfaces. For these cases, it is clear that both the
PPT.M and DPPT.M approaches seem, to some extent, to have mitigated the effects

of the curse of dimensionality.

A comparison of computation time for the artificial neural networks, PPT.M, and
DPPT.M models is provided in figure (46) and figure (47). The PPR and MARS
models were left off of the comparison because they were run using the R software
package. These runs were very quick, however such comparison in CPU time across

different, platforms would be spurious, at best. Thus, the other three models were
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compared for computation time, as all three were coded and implemented in Matlab.
This comparison shows that the feedforward neural network is computational quicker
to train and score than either of the two approaches developed for this dissertation.
Part of this is due to inefficiencies in coding. A more computationally efficient
algorithm could be coded for the PPT.M and DPPT.M approaches, however this was
not the goal of this research. Yet, a further perusal of the charts show something
intriguing. In particular, the DPPT.M shows a dramatic increase in processing time
with an increase in dimensionality. The culprit here lies with the approach to choosing
the initial population of potential discrete projection directions. For the simulations,
a low-dimensional exhaustive search of the direction search space was conducted.
This was done for greater reproducibility of results and because the dimensionality was
low enough to do so without great computational inconveniences. In an even higher-
dimensional space, for instance, the direction search routine could easily be switched
to a computationally more efficient search method such as a genetic algorithm. This
change would bring the computation time in line with the other methods.

As an illustration of this, two of the sets of simulations (the harmonic response
simulations) were rerun with a GA search algorithm in place of the exhaustive search
method that had been employed for the DPPT.M approach. Implementing this genetic
algorithm version of DPPT.M brings a marked increase in computational efficiency
over the original version. Computational times of the GA approach are cut in
half (to an average of only 45% of those for the exhaustive search DPPT.M) on low
dimensional search spaces and are shrunk over 12-fold to just 7.7% of the average time
for DPPT.M over the 10-dimensional input space problems. In fact, the improvement
is so substantial that the GA implementation clocks in at even faster times than the

neural nets, as shown in the table that follows:

But an improvement in computation speed is meaningless without the ability to
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Table 11: Average CPU Times for Harmonic Response Simulations

still achieve good performance.

Model ANN | DPPLM(GA)
low # obs, low dim. | 1.5 1.0
low # obs, high dim. | 3.5 1.0
high # obs, low dim. | 3.9 2.8
high # obs, high dim | 10.5 2.8

Thus, table (12) is provided in an attempt to help

quantify the performance degradation cost of the speedier implementation. Figure

(4R8) also beautifully illustrate these results.

Table 12: Average nMSF on Harmonic Response Simulations

Model MARS | PPR ANN PPTM | DPPT.M | DPPT.M(GA)
low obs & dim | 1.01568 | 0.98466 | 0.66199 | 0.00073 | 0.00383 | 0.01112
low obs & dim | 1.02546 | 1.10278 | 1.02071 | 0.84502 | 0.35561 | 0.59587
high obs & dim | 1.00463 | 1.02025 | 0.69826 | 0.00025 | 0.00113 | 0.00113
high obs & dim | 1.00788 | 1.02194 | 1.01297 | 0.82315 | 0.32390 | 0.44004

As can be seen from chart (48) and table (12), performance is comparable to the

exhaustive search DPPT.M method. Thus, if computational speed is an issue, one

could still implement a version of the DPPT.M method, such as one with a genetic al-

gorithm directional search scheme, that would provide improvement over a traditional

feedforward network.

5.5 Stmulation Conclusions

Overall, both the PPT.M and DPPT.M methods worked quite well when presented

with a multitude of varied simulation conditions.

From the individual simulation

run tables provided earlier in this chapter, it would appear that the discretized para-

metric projection pursuit method presented in Chapter 4 generally outperformed
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Figure 48: Harmonic Response Performance Comparison of Genetic Algorithm DP-
PTM with Other Modeling Types

each of the other methods Only in the cases of the low-dimensional harmonic re-
sponse simulations and the low-dimensional polynomial response was the DPPT.M
method outpaced by another modeling methodology. In the first of these cases, the
iterative continuous PPT.M approach described in Chapter 3 slightly bettered the
DPPILM in terms of average performance. In the second case, the MARS model
performed surprisingly well, achieving a slight error improvement over DPPT.M for
low-dimensional, polynomial functions. But, overall, both PPT.M and DPPT.M were
quite robust, and suffered only a disadvantage in computation time when compared
against the commonly-used high-dimensional modeling methods tested in these sim-
ulations. However, certain modifications to the optimization scheme could be im-
plemented to alleviate the lengthy computation time of the DPPT.M methodology

without suffering greatly in terms of overall performance.
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CHAPTER VI

CASE STUDY: STOCK MARKET MODELING

6.1 Background

6.1.1 Overview

Financial markets provide a rich source of data. And indeed, an analysis of such
data can lead to some very interesting and useful findings. With this case study,
we tap into this abundant source of data. Our approach will be to investigate the
efficient market hypothesis (FMH) from the context of our newly-formulated DPPT.M
approach. According to KMH, stock prices should not be predictable as information
is freely and widely disseminated. Thus, new information should be incorporated into
current stock prices making the direction of future prices unpredictable. To test this
hypothesis, we will build a predictive model to anticipate intraday price changes. The

data used in this endeavor is raw H-minute price and volume data for one security.
6.1.2 Pockets of Predictability

While the efficient market hypothesis in economics might tend to suggest that the
market is not predictable, some researchers feel that there are certain regions within
an otherwise complicated phenomenon such as the stock market that can be pre-
dicted accurately [50]. TIn other words, the distribution of unpredictability is not
uniform throughout systems. Most of the time, most of a complex system may not
be forecastable, but some small part of it may be for short times.

David Berreby, writing in the March 1993 issue of Discover magazine [8], puts

the search for pockets of predictability in terms of a lovely metaphor: "T.ooking at
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market chaos is like looking at a raging white-water river filled with wildly tossing
waves and unpredictably swirling eddies. But suddenly, in one part of the river, you
spot a familiar swirl of current, and for the next five or ten seconds you know the

" So, while we may not be

direction the water will move in that section of the river.'
able to predict where the water will go a half-mile downstream, for a short period of

time on a small section of the river, we may be able to forecast such movement

6.2 FExperiment Preparation

6.2.1 Data Acquisition

To acquire the data, a PERI. script was written that seeks out and downloads the raw
variables from the internet. However, during the process of contacting trading firms
to work with in partnership, T managed to secure via Joel T.ander another method for
acquiring the data. A zipped file of archived data consisting of the dates mentioned
was emailed to me for use with the analysis. This data was procured by Dr. T.ander

from an intraday data vendor: Tick Data, a division of Nexa Technologies, Inc.
6.2.2 Potential Modeling Pitfalls:

Before getting into the model-building process, there is a potential problem to address
which could lead us to poor results: the issue of omitted variables. When building
financial models, variable omission is to be expected. Tt would be virtually impossible
to include all potential variables. Thus, extreme precaution must be taken in the
formulation of our model sample and the construction of our explanatory variables to
limit the number of omitted variables. To combat this, we shall limit the effects of
economic conditions and underlying company fundamentals on our response variable
by focusing on a very short outcome period. A 4-hour outcome period has been
chosen for this analysis. Furthermore, our data will be comprised of a single security

the semiconductor holders exchange traded fund (SMH). The SMH is an exchange
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traded fund (KTF) designed to track the price movements of 20 semiconductor stocks.
So, it is very similar to a stock index, but it is also tradeable. With this focus on
a security that averages the price performance of many stocks within a single sector,

we are able to alleviate many of the omitted variables concerned addressed earlier.

6.3 Modeling Procedures

For the intraday stock market modeling experiments, The input variables consist of
the raw price and volume information with some simple transformations being applied
to these data. Unfortunately, the specific variables used cannot be disclosed as they
remain the proprietary possession of the investment firms which have so graciously
lent their assistance and expertise for this academic investigation. For all of the
experiments run on this data, the data consisted of 5-minutes intraday data collected
on one security (SMH) over a 23 year period (6/3/2002-1/31/2005). From this data,
the training, validation, and test samples were constructed as follows:

training sample = (6/3/2002-10/17/2003)

validation sample = (10/20/2003-5/24/2004)

testing sample = (5/25/2004-1/31/2005)

The response variable is:

Y = The % change in the stock price over the next 4 trading hours

For this case study, the feedforward artificial neural networks is compared with
the DPPT.M approach (this time, also allowing for polynomial bases as the choice of
basis functions). As each of the models have a number of varying parameters to be
set, the validation sample is again used as a data-driven selection method for choosing
the appropriate parameters. Fach time the experiment was run, the training and
cross-validation samples are held constant for all of the methods tested in order to
give a fair comparison of the results. Once again, the best neural network and the

DPPT.M with parameters optimized by this validation sample were thus chosen and
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then applied to the holdout (test) sample. This process should provide an accurate

reflection of the prediction capabilities of the compared modeling methodologies.

6.4 Results

A summary of the results on the test sample is provided in table (13).

Table 13: nMSFE on Test Sample
ANN | DPPLM
0.9926 | 0.9791

From these results, it is obvious that neither model can predict this sample of
stock market data with impeccable accuracy. But, this is to be expected. The stock
market is notorious for being highly unpredictable. However, looking at this data in
another way, as 1—nMS'F, we can gauge how much of the variability in the response is
effectively forecasted by each method. From this, we see that the feedforward neural
nets can only predict a fraction of a percent of this variability, whereas DPPT.M is
capable of forecasting over 2% of the variability. Still, this nMSFE metric that we have
used so effectively as a performance comparison for past simulations may not be the
best comparison tool for this sample given its very limited degree of predictability.

But the question still remains: obviously, predicting on this sample is very difficult,
but how effective are these results? Is this apparently slight improvement in predictive
power really that significant? To answer this question, we have devised an interesting

method to test the effectiveness of the predictions for this data.

6.5 Trading Strategy - a model tmplementation

In practice, the implementation of such a model would not be confined to just looking
at nMSF, results. A trading strategy built around the model predictions would be

constructed in order to implement the results on the actual stock data.
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Thus, we have set up a simple trading strategy as follows:

Trade Initiations:

If score < —0.1,  then short sell
elseif score > 0.1, then buy

else do not initiate trade

Exit Criteria:
1.) Exit initiated trades 4 hours after time of initiation, unless there is a new
initiation triggered.
2.) On New Initiation trigger
a.) If new initiation triggered in opposite direction, then exit trade and follow
new signal.
b.) If new initiation triggered in same direction, then maintain position but

use this new pseudo-initiation for initiation time.

The reasoning behind the trading strategy is as follows. Due to commissions
and slippage (caused by bid-ask spread), a score cut-off is used for initiations. This
enables the investor to only put on trades that would overcome the costs of trading.
The exit time of 4 hours corresponds to the outcome variable used by the model. The
modifications to the exit strategy are implemented because the strategy is trading at

full-exposure on a first initiation.

6.6 Strategy Simulations

Using the trading strategy outlined in the prior section, both the results of the neural
network and those of the DPPT.M were then simulated on the test sample. An
illustration of these results is provided in figures (49) and (50) for the ANN and

DPPT.M approaches, respectively.
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Figure 49: Simulated returns using trading strategy based on ANN model predictions
(05/25/04-01/31/05)

There are a couple of items to note with these graphs. The first is the x-axis.
Results are plotted by each initiated trade. The time period of the test sample is
identical for both of the graphs. So, it stands out that the ANN is initiating quite a
few more trades than is the DPPT.M. For the DPPT.M approach, the average trade
duration is 7 hours, or just over 1 trading day. But, the trade duration can vary
quite a bit  the longest over this test period is about 5.5 days, while the shortest is
15 minutes. With the ANN model, the average trade duration is only 50 minutes,
with some trades lasting as long as a couple of days with other lasting only 5 minutes.
However, the same score cutoff of +0.1 was used as the criterion for initiating trades.

Another point to note is that each figure consists of the graph of trading strategy
with and without estimated commissions. For this graph, commissions and slip-
page have been estimated to have a combined effect of 1.5 cents per share for each
trade. Note that in practice, this is a highly achievable and quite realistic estimate
of commissions rates given a reasonable amount of trading capital is dedicated to the

strategy.
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Figure 50: Simulated returns using trading strategy based on DPPT.M predictions
(05/25/04-01/31/05)

Without commissions, we see from the graphs, that both models can be imple-
mented profitability.  However, when taking commissions into account, only the
DPPT.M is profitable. In fact, commissions take a much larger toll on the ANN
approach since there are nearly ten times the number of trades being initiated with
that approach over the same simulation time period. While these results seem quite
encouraging as a measure of the of the DPPT.M, still, a more extensive investigation

1s 1n order.

6.7 Comprehensive Statistical Investigation

For this investigation, we will perform a number of statistical tests in an effort to
gauge how effective the DPPT.M approach was at making predictions on this data.
To do this, we will first pose a series of question, each in turn, to be answered by a

specific statistical test designed to address that question.
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6.7.1 Statistical Test #1

Our first question is: "Are the DDPLM trading results just the result of lucky
guesses?"
To address this question, a bootstrap of 10,000 replications (w/o replacement)
was run given our distribution of long/short /neutral signals over the specified period.
Hgq : The returns achieved by our trading strategy are the result of random guesses
Hy : The trading strategy returns are statistically higher than the mean returns

given the distribution of signal directions

1500 T T
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: commizsion pottfolio :
walue during simulated
trading {from 5/25/04-
131/05) = 1.699

Ezpected
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Figure 51: Bootstrap of DPPTL.M trading results on test sample

FEmploying the bootstrap test yielded a mean return of 0.21% over the period.
we see from figure (51) that the returns achieved over this period are statistically
significantly higher than the mean returns at the 5% significance level. In fact, only

57 of the 10,000 replications would have yielded a return equal to or higher than those
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achieved by the trading strategy over the specified period. Thus, we reject the null

hypothesis.

6.7.2 Statistical Test #2

Is this trading strategy capable of picking the direction of the market more accurately

than a random guess?

Over the simulated period, the trading strategy correctly identifies the direction

of the intraday move in the SMH with the majority of its signals.

Table 14: Classification of accuracy of DPPT.M trading strategy signal directions

Pred. Direction | #: of Trades | Avg. Return
Correct, 84 1.52%
Incorrect 48 -1.50%
Neutral 1 (N/A)

The Upper-Tailed Sign Test, which is a nonparametric statistical test, was used to

determine if the increased frequency of positive return days is statistically significant.

Ho : P(correct _signal _direction) < P(incorrect signal _direction)

Hy: P(correct _signal _direction) > P(incorrect signal _direction)

The significance level used for this test was a = 0.01. So,

1
=3 (132 _ 2.3263\/132> — 59.64.

Since, n —t = 79.36, and T" = 84, where T is the number of positive signals,
then we reject the null hypothesis at a 1% significance level (99% confidence level) as
T >n —t. Therefore, the Sign Test suggests that the trading strategy is capable of

correctly predicting the direction of the SMH more frequently than not.
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6.7.3 Statistical Test #3
Is the magnitude of the trading strategy score correlated with actual SMH returns?

First, we state our null and alternate hypotheses in an attempt to address this

question.

Hy : SMH signal returns are independent of trading strategy model scores
Hy : SMH signal returns are correlated with trading strategy model scores (i.e.,

high predicted scores tend to lead to higher price moves)

Now, to answer this question, we can employ the Spearman’s Rho test. This is a
nonparametric test, selected specifically so as not to depend on an implied distribu-

tion.

Spearman’s rho, is computed by:

P= "= ' z
\/Z R(X0)" = n (50 [ RO =0 (351)

i—1 i—1

The overall significance then is written as:
p—wvalue = P (7 > pvn—1) = P (7 > 0.1320v/132 — 1) << 0.01

Thus, we easily reject the null hypothesis at the 1% significance level.

6.8 Summary

Fven without running any of these statistical tests, we can intuitively see the signifi-
cance of the DPPT.M model results with a graph of model predictions versus actual

returns, as is provided in figure (52):

Thus, this case study gives us further affirmation of the effectiveness of the DP-

PT.M technique to address a wide array of modeling problems.
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CHAPTER VII

CONCLUSIONS

This thesis presented two new learning algorithms, PPT.M and DPPTL.M: both nonlin-
ear function approximation models that are particularly well-suited for high- dimen-
sional nonlinear datasets. Theorems were presented that established the methods’
mathematical foundations, and proofs were detailed to provide insight into the both of
the methods” approximation capabilities. The essence of these novel approaches is to
approximate functions with the superposition of a series of piecewise one-dimensional
models that are fit to specific projection directions. The key to their effectiveness
lies in their ability to find efficient projections for reducing the dimensionality of the
input space to best fit the underlying response surface. Moreover, these methods
are capable of effectively selecting appropriate projections from the input data in
the presence of relatively high levels of noise. For illustration purposes, this paper
demonstrated how PPT.M leads to excellent function approximation results on two
simulated datasets, each exhibiting very different characteristics.

This was accomplished by formulating algorithms that rigorously adhere to the
theoretical conditions of approximating the solution space, taking full advantage of
the principles of optimization for maximizing the efficiency of the algorithms, deriv-
ing the theory of function construction from a series of low-dimensional projections,
developing a new universal approximation theorem for each of the methods to prove
their convergence, and constructing such algorithms capable of hedging against the

curse of dimensionality.
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7.1 Contributions

The contributions of this work in the realm of nonlinear modeling and function ap-

proximation can be outlined as follows:

1. In Chapter 2, the "curse of dimensionality" was rigorously examined to derive
some theoretical results showing the properties of data distributions in high-

dimensional space.

2. In Chapter 3, the projection pursuit learning model (PPT.M) was fully developed

from theoretical underpinning to the construction of the algorithm

a.) The theory was derived to show that a function f € F,, can be decom-
posed into an infinite number of single variable, mutually orthogonal functions.
This forms the basis for the development of a class of projection pursuit learning
models capable of approximating high-dimensional functions by the construc-

tion of lower-dimensional projections.

b.) As an extension of this, a theorem for the universal approximation
capabilities of this approach to function approximation is rigorously derived.
This theorem provides an enhancement over existing universal approximation
theorems in the field today as it extends the approximation abilities to a wider

class of functions.

c.) Based on the prior theory, a theorem for optimizing the selection of
optimal projections is developed. This is central to the algorithms in this

thesis.

d.) An algorithm is constructed that employs all of the foundational theory

of the chapter to effectively model high-dimensional response surfaces

3. Given that many real-world response surface may be approximated by func-

tions of low-degrees of coupling, Chapter 4 presented the discretized projection
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pursuit learning model (DPPT.M). The theory behind this method and the sub-
sequent implementation of the algorithm are provided. Also, given the unique
properties of this discrete projection search space, a more efficient method of

optimization is described.

a.) The theory was derived to show a continuous function f € £5(D) can
be decomposed into an infinite number of single variable, mutually orthogonal

functions.

b.) A universal approximation theorem is derived to prove the approxima-

tion capabilities of this approach to function approximation.

c.) A theorem for optimizing the selection of optimal projections is devel-

oped that has its basis in the prior theory.

d.) The culmination of the foundational theory of the chapter is an algo-
rithm that effectively incorporates this theory into a method of function ap-

proximation capable of mitigating the effects of data sparsity.

e.) Another possible construction of the algorithm based on a GA projec-
tion direction search routine is suggested that could achieve similar approxima-

tion results with substantial computational savings.

4. Drudging through an extensive series of simulations in Chapter 5 and the case
study of Chapter 6, it is shown that the algorithms presented in the thesis are
quite capable of approximating a wide array of response surfaces under various

sample conditions.

7.2 Major Creative Contributions

The major creative contributions are as delineated below.

1. A theorem for the universal approximation capabilities of the continuous PPT.M
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approach to function approximation is rigorously derived. This theorem pro-
vides an enhancement over existing universal approximation theorems in the
field today as it extends the approximation abilities to a wider class of func-
tions. Specifically, the class of functions for which the universal approximation
theorem holds has been expanded to include unbounded, £, space. In the liter-
ature, universal approximaton theorems, [38], [39], [54], are proven for functions
restricted to the class of bounded, £, functions or are even more restrictive, such

as is the case of [16], which is confined to L4 space.

. 'The structure of the optimization procedure is an expansion upon the current

literature for both of the learning models presented. Specifically, neural network
algorithms focus on solving for both the magnitude and direction of their in-
tended projections with an iterative procedure. In the approaches described in
this thesis, the 1-dimensional basis functions are derived in closed-form. Thus,
the optimization can focus its reseources on only searching for optimal projec-

tion directions.

The DPPT.M approach offers another considerable creative contribution to opti-
mization that is not found elsewhere in the literature. Because of the constraints
on what the algorithm is trying to optimize (only the directions, and not also
the magnitude) and because of the discretization of these projections, the set
of possible projection directions is finite and countable. Therefore, a new set
of optimization routines can be used to search this space of potential projec-
tions. In this thesis, an exhaustive search and a genetic algorithm approach are
employed as possible optimization procedures. While genetic algorithms have
previously been used to optimize specific network topology parameters, such as
the network size, nowhere in the literature have we found a genetic algorithm

used for optimizing projection directions. In fact, as previously constructed,
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this problem would be intractable to solve with a (A given the infinite possibili-
ties of projections. Thus, constructing the problem in such a way that a random
search technique can be used to search for projection directions is a significant
contribution, particularly considering that the problem of finding the optimal

projection directions is key in projection pursuit function approximation.

4. Another significant contribution of this thesis is the comprehensive comparison
study of these new methods with the major high-dimensional function approx-
imation methodologies in use today. While a considerable number of other
resources [15], [20], [21], [22], [64], [84], [92], [93], [95] have previously presented
comparison studies of various different methodologies, we have found no study
as comprehensive in its investigation of the various attributes of the feature

space.

7.3 Impact of Work

1. The resulting algorithms constructed in this work have wide-ranging applica-
tions, each as a methods for improving prediction capabilities for problems in
high-dimensional space (problems with dozens of inputs). These methods can
easily be applied in such diverse fields as machine vision, speech recognition,
motor control, machine learning, financial prediction, economic forecasting, and

a range of other engineering and data mining applications.

2. The framing of the optimization problem into a discrete problem of finding
optimal projections from a choice of finitely many possibilities is a substantial
contribution that has a rather profound impact on the high-dimensional function
approximation problem. Because of this new framework, a whole new class
of optimization procedures is now available for use in optimizing projection

directions. The problem of finding the optimal projection directions has been
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stated to be the most difficult problem in function approximation for projection
pursuit methods [32], [83], and [84]. Thus, it is possible that this new framework
will spark a new area of research focused on finding the best discrete projection

direction optimization techniques.

7.4 Recommendations for Future Work

This research suggest a number of exciting future directions in both the theoretical

and implementation domains:

1.

a.

The methods could be extended into the realm of classification problems.

The convergence rates of the PPT.M and DPPT.M methods could be derived
to prove their computational advantages over other nonlinear high-dimensional

modeling techniques.

From a theoretical standpoint, it would appear that the continunous PPT.M
methodology should be able to achieve better performance than that of DPPT.M.
In practice, the opposite was shown to be the case. Thus if an improved method
of identifying the optimal directions could be found, than this method might

prove most effective for a wide array of high-dimensional prediction problems.

Algorithmic refinements to the Matlab code (or implementation in a lower-level

computing language) could improve the computational efficiency of both the

PPT.M and DPPTL.M models.

The parameters and structure of the genetic algorithm approach to DPPT.M
projection selection could be subjected to a comprehensive investigation. Such
an undertaking would likely yield a highly computationally efficient model that
retains the approximation capabilities of the original DPPT.M presented and
would enable the application of the method to be extended considerably, up to

even higher dimensional datasets than is presently possible with this method.
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APPENDIX A

ADDITIONAL INFORMATION

A.1 Appendix: Matrix Calculus

The first set of notations we introduce are the stacking operation and Kronecker

product used extensively in matrix calculus [11], [56].

Given a matrix A € ™", its stack, denoted by A®, is the column-wise vectoriza-

tion of A: ) )
Ay

A?ﬂ

'[ Az11 .- A;m w‘ Asm
| |

A’n,’n,
The Kronecker product of two matrices A € 87*” and B = RP*9 is
[ AnB e AwB 1
C=A®B= C
| |
| AwB o AwB |

A useful identity [56] used later in our matrix calculus is
(ABC)* = (C" @ A) B (28)

Next we define the Jacobian of vector and matrix valued functions. For a smooth

vector valued function f: R” — R™, Df is the m X n Jacobian matrix of f(z):




The differential of f(z) corresponding to Ax € 1" is defined to be
Af(r.Ar) = [(r 4 Ar) ()

The Jacobian of a matrix valued function, A(x) € R™*"is defined to be the

Jacobian of its vectorization: DA(x) := DA*® (z).

The following lemma extends the differentiation product rule to matrix multipli-

cation:

Lemma 25 Given smooth matriz valued functions A(x) € R™*" and B(x) € R

we have

D(AB) = (B" @ 1) DA+ (I ® A) DB
Proof. Tet FF= AR and let = be perturbed by Az. Then,

F+AF =(A+AA)(B+AB) = AB + AAB + AAB + AAAB.

Thus,
(A+ AA)(B+AB)— AB=AAB+AAB+O (HAT2H>

So, AF = AABT + TAAB + O (||Az?||) . Vectorizing both sides using identity (28),

we have

AF*= (T A)AB*+ (BT @ 1) AA* + O (||Ax?(])”
Taking the limit of both sides as Ax — 0 yields

DF=(IT®A)DB+ (BT & T)DA
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A.2 Bearing Experiment Data

Width (um) Height (um) |Speed (RPM) Load (PSI) Replication #
0 0 800 200 1

0 0 800 200 2

0 0 800 400 1

0 0 800 400 2

0 0 800 600 1

0 0 800 600 2

0 0 1200 200 1

0 0 1200 200 2

0 0 1200 400 1

0 0 1200 400 2

0 0 1200 600 1

0 0 1200 600 2

0 0 1600 200 1

0 0 1600 200 2

0 0 1600 400 1

0 0 1600 400 2

0 0 1600 600 1

0 0 1600 600 2
35.33 2.46 800 200 1
35.33 2.46 800 200 2
35.33 2.46 800 400 1
35.33 2.46 800 400 2
35.33 2.46 800 600 1
35.33 2.46 800 600 2
35.33 2.46 1200 200 1
35.33 2.46 1200 200 2
35.33 2.46 1200 400 1
35.33 2.46 1200 400 2
35.33 2.46 1200 600 1
35.33 2.46 1200 600 2
35.33 2.46 1600 200 1
35.33 2.46 1600 200 2
35.33 2.46 1600 400 1
35.33 2.46 1600 400 2
35.33 2.46 1600 600 1
35.33 2.46 1600 600 2
37.67 10.56 800 200 1
37.67 10.56 800 200 2
37.67 10.56 800 400 1
37.67 10.56 800 400 2
37.67 10.56 800 600 1
37.67 10.56 800 600 2
37.67 10.56 1200 200 1
37.67 10.56 1200 200 2
37.67 10.56 1200 400 1
37.67 10.56 1200 400 2
37.67 10.56 1200 600 1
37.67 10.56 1200 600 2
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37.67
37.67
37.67
37.67
37.67
37.67
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
48.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33
49.33

61

61

61

61

61

61

Width (um) Height (um)

Speed (RPM) Load (PSI) Replication #

10.56
10.56
10.56
10.56
10.56
10.56
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
4.88
58
58
58
58
58
5.8

1600
1600
1600
1600
1600
1600
800
800
800
800
800
800
1200
1200
1200
1200
1200
1200
1600
1600
1600
1600
1600
1600
800
800
800
800
800
800
1200
1200
1200
1200
1200
1200
1600
1600
1600
1600
1600
1600
800
800
800
800
800
800

200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
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Width (um) Height (um)

Speed (RPM) Load (PSI) Replication #

61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
61 5.8
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
64 11
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4
131.33 1.4

1200
1200
1200
1200
1200
1200
1600
1600
1600
1600
1600

800

800

800

800

800

800
1200
1200
1200
1200
1200
1200
1600
1600
1600
1600
1600
1600

800

800

800

800

800

800
1200
1200
1200
1200
1200
1200
1600
1600
1600
1600
1600
1600

200
200
400
400
600
600
200
200
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
200
200
400
400
600
600
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A.3 Bearing Defect Experiment Inputs

Table 15: Full Tist of Inputs Used In Bearing Defect Fxperiment

Speed yRMS bandpass zKurtosis bandpass
T.oad yVpeak bandpass zKurtosis over
Replication yRMS over 7Crest  bandpass

xRMS bandpass

yKurtosis bandpass

7Crest _over

xVpeak bandpass

yKurtosis over

ae RMS

xRMS  over

yCrest bandpass

ae_Vpeak over

xKurtosis  bandpass

yCrest _over

ae_Vpeak bandpass

xKurtosis over

zRMS  bandpass

ae Kurtosis

xCrest bandpass

zVpeak bandpass

ae_Crest

xCrest over

zRMS  over
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