
The 20th International Conference on Auditory Display (ICAD-2014) June 22-25, 2014, New York, USA

dataSonification Open Source Project for Real-Time Data Sonification

Edward P. Childs John Stephens

dataSonification,
24 Old South Rd.,

Aquinnah, MA 02535 USA
maestrovt@gmail.com

1110 Turnpike Rd.
Norwich, VT 05055

john_stephens@alum.mit.edu

Benjamin Childs

6849 26th Ave NE
Seattle, WA 98115

ben@bchilds.com

ABSTRACT

A software platform for real-time data sonification is
described in detail. The platform is designed primarily to
process multiple real-time data streams simultaneously. The
system was originally designed for processing financial data
with the general goal to be able to monitor up to 20 different
securities (stocks, bonds, financial indices) as their values were
changing during a trading session. The sonifications were
designed to make it easy to distinguish between different
securities, and to convey as much information about each
security’s activity using the shortest possible sound duration.
The software platform was designed using multiple threads with
a gatekeeper function to manage simultaneous sonifications
events without confusion or system failure. This paper
announces the release of this software together with its
financial data stream implementation to the open source
community. It is hoped that sonification researchers particularly
interested in real-time data will use and adapt the software to
their needs.

1. INTRODUCTION

Sonification can be used effectively to monitor real-time data.
As technology advances, more and more real-time data streams
are generated in fields as diverse as intelligence, industry,
medical, transport, financial, security, etc. While sophisticated
visual displays and analysis algorithms can be used to process
these data streams, the sheer time density of the data can
overwhelm the monitoring systems and significant actionable
events may be missed. Sonification can add the auditory faculty
to existing data monitoring tools.

It can be argued that the auditory sense is superior in
certain monitoring situations. For example, if a baseline state
exists in a sonic format, and the listener has assimilated the
sound of that baseline state, changes are easily discerned, even
if the subject is concentrating on some other task [1]. There are
many everyday examples of baseline monitoring, for example,
familiarity with the sounds of one’s automobile, computer,

home heating system, neighborhood, etc. and the attention
readily attracted to a “funny noise”. In these cases, the system
in question produces its own sounds by virtue of its physical or
natural composition.

Traders working in traditional exchanges, set up in large
rooms with hubbub and shouted bids and asks could get a
“sense of the market”, and even particulars on market
movements from the sounds only. In modern visual electronic
trading environments, however, traditional market sounds are
absent. The sonification strategies implemented in the
dataSonification software have been described
elsewhere [2] [3] [4] [5]. Lodhi, Stockman, et al. have recently
performed studies using the financial data implementation of
the dataSonification package [6].

dataSonification has a modular design and its
application is not limited to financial data. The system is
designed so that the timing of the sonification will match the
timing of the event to be sonified as closely as possible. In the
financial data implementation, the goal was to reduce the
latency of the system to less than a second, except in cases
where multiple events to be sonified occurred close to the same
time, in which case a Gatekeeper class would prioritize the
sonifications to occur sequentially with a configured pause time
between each.

2. SOFTWARE DESIGN

The core of the sonification software is written in the Java
language and makes full use of the class-based, object-oriented
structure. The design seeks to abstract the basic functionality of
real-time data sonification into basic tasks:

1. Receive data.
2. Analyze data.
3. Sonify data according to specified analysis criteria.
4. Training on sonification (optional).

mailto:john_stephens@alum.mit.edu

The 20th International Conference on Auditory Display (ICAD-2014) June 22-25, 2014, New York, USA

It is up to the developer to extend, inherit or implement
classes and interfaces, as appropriate to receive data from a
specific source, analyze the data in a particular way, choose a
sonification arrangement and configure the musical instrument
upon which the data sonification is to be played.

The software is setup in modular format:
1. Configuration.
2. Data format.
3. Data source.
4. Data analyzer.
5. Sonification arranger.
6. Trainer.
7. Musical instrument.

The details of each numbered item are described in the
following sections. Generic information will be provided, along
with details of the specific financial software implementation.
The reader should bear in mind that other implementations may
be added to the basic framework.

2.1. Configuration

Configuration of all specific aspects of the sonification software
is accomplished by extending the abstract class Config.
Two configuration classes have been implemented to read
configuration information either from a file or from an SQL
database. A screenshot of a typical configuration, as viewed in
the SQLite Database Browser, is shown in Figure 1. The reader
may refer to this figure as other components of the software are
described.

2.2. Data Format

The format of the data to be received for sonification is
implemented by extending the abstract class
MessageComponent. A generic XML format is available in
the current implementation.

2.3. Data Source

The source of the data to be received for sonification is

implemented by extending the abstract class DataSource. A
Socket Listener is available in the current implementation. The
external data source must be configured to send data to that
Listener in the correct format over an agreed port. An example
of a fully implemented data source, an Excel spreadsheet with a
sonification plug-in, is described in Section 4.

2.4. Data Analyzer and Sonification Arranger

Incoming data must be analyzed to see if it meets the
configured criteria for a sonification event. Those criteria
depend on the context in which the data is to be monitored and
the needs of the end user. In the financial data implementation,
the end users were day traders interested in the difference
between the current price of a security and its opening price.
Some traders also wished to set a target price at which they
would take some action, such as buying or selling. The target
sonification would alert them if one of their securities was
approaching the target price. Other traders were interested in
the size of the trade, or the difference between the bid and ask
prices in the case of government bond markets.

Both the analyzer and arranger components are constructed
from the Superclass SonificationComponent. The
abstract class Analyzer extends
SonificationComponent. Its job is to analyze an
incoming data event to see if the data is to be sonified,
returning true if “sonify” or false if “do not sonify”. Analyzers
for specific situations are created by extending abstract class
Analyzer.

The sonification arranger determines exactly what
sounds/notes should be played when the corresponding analysis
class returns true. Thus for every arranger class there must be a
corresponding analysis class. It is possible to have more than
one arrangement for a given analyzer. The abstract class
Arranger is constructed by extending the Superclass
SonificationComponent. Its job is to return the
appropriate instructions (i.e. notes) to the designated musical
instrument.

For example, the MovementAnalyzer class (which
extends the Analyzer class) calculates the difference between
a base field and a current field. In the context of financial
trading this could be the opening price and the current price.
This calculated difference or increment is monitored by the
MovementAnalyzer class until there is a change in that
increment that is considered significant (as configured by the

Figure 1 SQL Configuration Database

The 20th International Conference on Auditory Display (ICAD-2014) June 22-25, 2014, New York, USA

trader). This “significant move” could be sonified in several
ways. Traders interested only in up or down movement could
choose the TwoNoteArranger class, which produces two
pitches. The second pitch higher than the first indicates an
uptick and the converse indicates a downtick. The
ThreeNoteArranger class inserts a third reference pitch at
the beginning to indicate the relationship of the uptick or
downtick pitches to the security opening price. The
FourNoteArranger appends a fourth pitch to indicate that
a predetermined trading target is being approached. The
Beet5Arranger class generates a motive based on the
opening of Beethoven’s 5th symphony, with pitches analogous
to the TwoNoteArranger class, to slightly more dramatic
effect.

There are many non-financial data monitoring situations to
which the MovementAnalyzer class could be applied, such
as a change in patient statistics in a hospital ward, a change in
mass flow rate at some location in a processing plant, an
increase in internet traffic over a specified route, an increased
wind speed, etc.

The output of the arranger classes is a
SonifiableMusicShape class. This class extends the Java
Music Specification Language (JMSL) MusicShape class
[6]. The SonifiableMusicShape class also implements
the Sonifiable interface. This interface is necessary to
enable the Gatekeeper class to manage simultaneous
sonification events.

2.5. Trainer

The dataSonification software provides for an optional
training component, the purpose of which is to provide more
information on a specific sonification when it happens (perhaps
using speech). The trainer would be disabled as soon as the end
user no longer needs it. The abstract class Trainer extends
the Superclass SonificationComponent. In some cases,
the trainer could be used in lieu of a music-based sonification.

2.6. Musical Instruments

All musical instruments in the dataSonification package
are derived from the JMSL [7] [15] [16]
com.softsynth.jmsl.Instrument. The interface
ConfigurableInstrument extends Instrument and
adds a setConfig method which must be defined in any
instrument implementation. Two instruments have been
implemented in the com.dataSonification package, a
sample instrument and a MIDI instrument. The
SampleInstrument class extends the
TransposingSampleSustainingInstrument which
is part of the com.softsynth.jmsl.jsyn package [8].
The MIDI instrument JavaMidiInstrument extends
MidiScoreInstrument from the
com.softsynth.jmsl.score.midi package [7] and
implements ConfigurableInstrument.

Figure 2 Sample Excel Spreadsheet Data Source

The 20th International Conference on Auditory Display (ICAD-2014) June 22-25, 2014, New York, USA

The sample instrument contains the entire expected
infrastructure to load samples, interpolate between them, etc.
The MIDI instrument is configured to play an instrument from
the soundbank-deluxe.gm sound bank [9].

A large range of high quality orchestral samples originally
generated from the Vienna Symphonic Library [10] are
available along with more innovative sounds from the Acoustic
Branding Audio Consulting Group [11].

3. EVENT MANAGEMENT

When real-time data is to be sonified, particularly in mission-
critical applications, multiple sonifiable events may occur
simultaneously. When this happens, the events are added to a
queue in the Gatekeeper class and played in succession with
a configurable pause between each sonification.

The success of this scheme depends on the time required
for each sonification to play, and the configuration of the
“significant move” described in Section 2.4. In the financial
data implementation, the sonifications were designed to be
economical, conveying the most information in the least time.
For example the ThreeNoteArranger class, when played
on a specific instrument to be associated with a specific
security, would produce a sonification lasting about a 1 second
and convey something like “The Dow Jones Industrial Average
(DJIA) just moved up 10 points and is now 90 points above
today’s opening price.” The frequency of the sonification was
determined by the “significant move”, in this example set to 10.
Subsequent moves in the DJIA would not be sonified unless the
index moved above 100 points over open, or below 80 points
over open.

Judicious setting of this “significant move” for each
security to be sonified is critical. The best strategy is to set the
“significant move” high enough so that a quiet market would
produce relatively few sonifications with minutes between each.
A busy market would produce frequent sonifications, but in a
quantity that could still be queued and played by the
Gatekeeper class in a comprehensible fashion.

4. SPREADSHEET DATA SOURCE IMPLEMENTATION

The dataSonification package is setup to read a real-
time data stream from any source over a socket, provided that
the port number and data format are correctly configured.
Included in the open source release is an Excel spreadsheet
add-in, written in C#. It is assumed that real-time data from
some other source is being imported into Excel, typically via
another add-in. Many financial data providers include an Excel
add-in [12]. There are other free add-ins which are designed to
extract data from a wide range of financial data web sites [13].
The general methodology in [13] should however be applicable
to any other type of web site which provides data being updated
in real-time (e.g. weather data).

The C# Excel add-in provided with the package provides a
“Sonify” function that can be called from within the
spreadsheet. A sample spreadsheet using financial data is
shown as Figure 2. The text entries in column A with the

heading “Ticker” correspond to Yahoo ticker names. See
column K “Item Description” for the security name. The
numbers in columns B – G are imported from the Yahoo
Finance website using the smf_addin [13], and are labeled
accordingly. “Last” means the current price. Not all data items
are available for all securities, as indicated by “N/A”. Columns
H and I contain sample calculations of a target price that might
be set by a financial trader. If a given security reaches or
approaches either target (in this sheet 2% up or 2% down from
the opening price), the trader may wish to trigger a sonification,
using the FourNoteArranger as described in Section 2.4.
Column J is where the Sonify functions are called. The function
is invoked in the standard Excel fashion, e.g.
=Sonify(A6,D6,B6) in the case of the ^IXIC ticker. The first
argument of the Sonify function is always the name of the data
item, which also corresponds to the “ticker” field in SQL screen
shot shown as Figure 1. The remaining arguments are
numerical and depend on the specific data analysis to be
performed. Column L describes the instrument chosen for the
ticker and Column M identifies the sonification arrangement
chosen. Columns N – R are configuration parameters specific to
each ticker. Finally, Column S contains links to sound samples
to be used by someone just learning the sonifications.

5. AVAILABILITY OF SOFTWARE

The software for this system, including the source code and
documentation in both Java and C# may be downloaded from
www.datasonification.com. Documentation and instructional
videos are also available.

6. ACKNOWLEDGMENT

E.P.C thanks Ben Childs and John Stephens for their many
hours of work on the concept and execution of this software
system. The contribution of Kimo Johnson [14] to the original
Java class structure is also gratefully acknowledged. Nick
Didkovsky [7] and Phil Burk [8] provided extensive guidance
on the integration of their respective Java music and sound
libraries into dataSonification. Thanks also to Wilbert
Hirsch and Patrick Langeslag [11] for some high quality sound
samples and excellent suggestions for enhanced sonification
schemes.

7. REFERENCES

[1] R. Näätänen, Attention and Brain Function. Hillsdale:
Lawrence Erlbaum Associates, 1992

[2] P. Janata and E. Childs, “Marketbuzz: Sonification of Real-
Time Financial Data,” Proc. 10th Int. Conf. on Auditory
Display, Sydney, Australia, July 6-9, 2004

[3] E. Childs, “Auditory Graphs of Real-Time Data,” Proc.
11th Int. Conf. on Auditory Display, Limerick, Ireland, July
6-9, 2005

[4] Childs, Jr., E. P. et al., “System and Method for Musical
Sonification of Data,” US Patent 7,138,575 B2, Nov. 21,
2006

http://www.datasonification.com/

The 20th International Conference on Auditory Display (ICAD-2014) June 22-25, 2014, New York, USA

[5] Childs, E. P. et al., “System and Method for Musical
Sonification of Data Parameters in a Data Stream,” US
Patent 7,135,635 B2, Nov. 14, 2006

[6] Lodhi, A. “Sonification of Stock Market Data”, dissertation
submitted in partial fulfillment of the requirements for MSc
Software Engineering, Interactional Sound and Music
(ISAM) Group, Queen Mary College, University of
London, 2013

[7] http://www.algomusic.com, (Accessed 5/3/2014)
[8] http://www.softsynth.com, (Accessed 5/3/2014)
[9] http://www.oracle.com/technetwork/java/soundbanks-

135798.html, (Accessed 5/3/2014)
[10] http://vsl.co.at/, (Accessed 5/3/2014)
[11] http://www.acoustic-branding.com/en/,(Accessed

5/3/2014)
[12] http://www.bloomberg.com/markets/, (Accessed 5/3/2014)
[13] https://groups.yahoo.com/neo/groups/smf_addin/info,

(Accessed 5/3/2014)
[14] http://www.gelsight.com/, (Accessed 5/3/2014)
[15] N. Didkovsky and P.L. Burk, “Java Music Specification

Language, an introduction and overview”, Proc. Int. Comp.
Mus. Conf., 2001, pp. 123-126

[16] N. Didkovsky, “Java Music Specification Language, v103
update,” Proc. Int. Comp. Mus. Conf., 2004

http://www.algomusic.com/
http://www.softsynth.com/
http://www.oracle.com/technetwork/java/soundbanks-135798.html
http://www.oracle.com/technetwork/java/soundbanks-135798.html
http://vsl.co.at/
http://www.acoustic-branding.com/en/
http://www.bloomberg.com/markets/
https://groups.yahoo.com/neo/groups/smf_addin/info
http://www.gelsight.com/

	1. INTRODUCTION
	2. SOFTWARE DESIGN
	2.1. Configuration
	2.2. Data Format
	2.3. Data Source
	2.4. Data Analyzer and Sonification Arranger
	2.5. Trainer
	2.6. Musical Instruments

	3. EVENT MANAGEMENT
	4. SPREADSHEET DATA SOURCE IMPLEMENTATION
	5. AVAILABILITY OF SOFTWARE
	6. ACKNOWLEDGMENT
	7. REFERENCES

