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Abstract 

An important technique for alleviating the memory bottleneck is data prefetching. Data 

prefetching solutions ranging from insertion of prefetch instructions by means of program 

analysis to strictly hardware prefetch mechanisms have been proposed. The former, 

however, is less successful for pointer intensive applications. In this paper, we propose a 

hardware solution that utilizes off-line learning algorithms. In essence, a sample trace of 

the application is fed into various off-line learning schemes. The results from these 

schemes are then loaded into a prefetching hardware at the appropriate point in the 

execution of the application to drive the prefetching. We propose a general architecture 

and scheme for such a process and report on the results of some of the experiments we 

performed.

 

 



1. Introduction 

It is a well-established fact that as processor speed increases, memory becomes a 

serious performance bottleneck. While the introduction of caches significantly alleviated 

the problem, caching alone will not bridge the increasing performance gap between 

multi-issue processors running at very high clock speeds and memory. Data prefetching 

has been proposed as an additional tool to bridge this gap. Almost all state-of-the-art 

processors have some kind of data prefetching instructions. However, it is not easy to 

utilize these instructions effectively as they usually come with significant overheads. 

These include additional instruction processing, increased register pressure, the impact 

of additional instructions in the instruction cache, and the inability to adapt to dynamically 

changing demand for data. Due to these difficulties, various forms of hardware 

prefetching techniques have also been proposed. Of particular interest to us are 

techniques targeted at pointer intensive applications since these are significantly less 

amenable to the kind of program analysis necessary for software prefetching methods.  

Existing hardware prefetching techniques require the prefetching hardware to 

perform some form of learning and prediction in real-time. This may necessitate a 

significant investment in hardware, or there may be an impact on the critical path of 

instruction processing. In the worst case, it can be both. In this paper, we propose a new 

prefetching architecture and a paradigm for using such an architecture that utilizes 

extensive profiling and powerful off-line learning algorithms. 

In Section 2, we will describe some representative previous works on this subject. In 

Section 3, we will discuss the use of off-line learning algorithms. Our proposed 

architecture will be presented in Section 4 together with three learning algorithms that 

we tested. This is followed by experimental setup, results and a conclusion. 

 



2. Previous Work 

Research on memory hierarchy optimization can be classified into three broad 

categories: software approaches, hardware approaches and hybrid approaches. We will 

briefly mention some representative work that is relevant to our discussion. We refer the 

interested reader to a detailed survey on the matter that was recently published [26]. 

In the field of software prefetching early work include that done by Callahan, 

Kennedy, and Porterfield [2], and Klaiber and Levy [15]. The former proposed the 

insertion of data prefetch instructions in data intensive loops while the latter studied 

efficient architectural support mechanisms for data prefetch instructions. Mowry, Lam 

and Gupta [20] showed that careful analysis and selective prefetching could provide 

significant performance improvements in programs with regular nested loops. Lipasti et. 

al. [17] proposed a compile time heuristic called Speculatively Prefetching Anticipated 

Interprocedural Dereference (SPAID), for inserting prefetches into the instruction stream 

to reduce both the cost and the frequency of a certain class of data cache misses. Still 

other approach is that of Ozawa et. al. [22] in which they used cache miss heuristics to 

identify problematic loads and then to prefetch them. Luk and Mowry [18] introduced a 

method by which the compiler can insert software prefetch instructions for recursive data 

structures. 

Perhaps aware of the potential difficulties of using software prefetching, there is 

significantly more research on the alternative hardware approach to data prefetching. 

One seminal work is Jouppi’s proposal [12] of adding “stream buffers” to prefetch 

sequentially in conventional caches, there has been numerous suggestions for hardware 

prefetching. Prefetch strategies for vector and scalar processors were studied by Fu and 

Patel [8, 9]. Chen and Baer [4] proposed a lookahead data prefetching mechanism that 

combined stride information and instruction lookahead.



They also investigated a mechanism [5], known as the Reference Prediction Table 

(RPT), for prefetching data references characterized by regular strides. The RPT is a 

cache tagged with the addresses of load instructions. For each load instruction, the 

cache stores the previous memory address accessed by that instruction, the offset of 

that address from the previous load and flags to track of the data access patterns in a 

RPT. In this method, prefetches can be generated one iteration ahead of actual use but 

the problem was that memory latency hiding is dependent upon the execution time of a 

single loop iteration. Mehrota [19] proposed a hardware data prefetching scheme that 

attempts to recognize and use recurrent relations that exist in address computation of 

link list traversals. Extending the idea of correlation prefetchers [3], Joseph and 

Grunwald [11] implemented a simple Markov model to dynamically prefetch address 

references. 

Hybrid approaches attempt to overcome drawbacks of pure software and 

hardware approaches by combining both. Karlsson, Dahlgren, and Stenstrom [13] 

proposed both a pure software version and a combination of software and hardware 

prefetching technique called “prefetch arrays” which can prefetch even short sequences 

linked data structure as the lists found in hash tables and trees where the traversal path 

is not known a priori. VanderWiel and Lilja [25] proposed a data prefetch controller 

(DPC), which combines low instruction overhead with the flexibility and accuracy of a 

compiler-directed prefetch mechanism. 

 

3. Off-line Learning 

Hardware predictors operate in two phases – a learning phase and a prediction phase. 

In the learning phase, the prediction facility is trained. Typically, this involves the 

updating of a prediction table or automaton. In the prediction phase, the learned table or 



automaton is used to make prefetch requests. In some schemes, during the prediction 

phase, the prediction table or automaton may also be updated, i.e. the learning and 

prediction phases are interleaved. 

A major drawback of existing hardware schemes is the need to perform learning 

and prediction both at run time. This severely limits the type of learning schemes that 

one can use. We propose overcoming this limitation by taking the learning phase off-line. 

By using sample traces collected from an application, prediction tables and automata 

can be trained off-line. This rests on the important assumption that the sample trace 

used for the training do correctly reflect the behavior of the application during its actual 

run. The success of hardware prefetch mechanisms, all of which are based on learning 

past patterns to predict future references, provides strong circumstantial evidence for 

this. 

 The factors determining the success of a prefetch scheme are accuracy, 

timeliness, overhead and coverage.  Accuracy refers to the percentage of prefetch 

requests issued are actually used. An accurately predicted prefetch request is useless if 

it is issued too early or too late relative to the actual use of the data. Any prefetch 

mechanism will have an associated overhead (which may be in the form of additional 

instructions, hardware investment, or increased bus utilization) that must not be too 

significant. Finally, the scheme must be able to cover most of the loads. Unlike on-line 

schemes, off-line schemes can consider a significantly larger window of the sample 

trace and/or use more complex analysis and learning algorithms. This generally 

improves the accuracy of the prediction. Furthermore, by staying focus on program 

hotspots, coverage is improved. The issue of timeliness and overhead will be discussed 

when we outline our architectural solution. 



 

 

Fig. 1. Proposed Setup for Off-line Learning 

 

 

4. The Proposed Architecture and System Setup 

Fig. 1 shows the general structure of our proposed system. Sample traces of the 

application of interest are collected. In our experiments, these traces are first processed 

through a cache simulator so that we obtained only the miss traces. During the sample 

trace collection phase, the application is also profiled to identify the “hotspot” – sections 

of code that are frequently executed. Sections of the miss trace corresponding to a 

particular hotspot form the training sequences for that hotspot. These training sequences 

are then fed to a learning/analysis algorithm that outputs a prediction model for a 

particular hotspot. The prediction model is essentially a table with entries 

( )nyyyx ,,,, 21 �  where upon encountering miss address x, prefetch requests are issued 

for address y1, y2, …, yn. The prediction models for each of the hotspot of an application 

are consolidated in a setup file. When the application is executed, prior to the entry into 

the hotspot, the prediction table is loaded into the prefetch hardware. The entry into a 



hotspot is confirmed by means of checking the program counter. Once in a hotspot, the 

prediction hardware with the loaded prediction model for the hotspot is turned on.  When 

a cache miss occurs, the prediction hardware simply checks the miss address against its 

table. If it is present, it will issue the corresponding prefetch requests. Otherwise, it does 

nothing. Note that it is possible to use either L1 or L2 data cache misses to drive the 

predictor. Furthermore, we assume a separate prefetch buffer [12] that is distinct from 

the L1 data cache in which prefetched data is stored. This is to prevent unnecessary 

pollution of the L1 data cache.  

Timeliness in our proposed architecture depends on three factors – whether the 

prediction table can be loaded sufficiently ahead of time, whether there is sufficient 

distance between prefetch requests and the actual uses of data, and whether they is 

sufficient bandwidth to handle the prefetch requests. Since the prediction tables are pre-

calculated, it should be easy to preload the tables at a sufficiently early point of time. The 

second factor will depend on the analysis/learning algorithm. The last factor will depend 

on the memory architecture and the frequency of prefetch request.  At this moment, we 

are unable to estimate the hardware investment needed to build the proposed 

architecture. To get a fairer picture, we have compared our scheme against that of using 

significantly bigger caches. We further believe that the autonomy of the prefetch unit 

implies a minimal impact on the critical path of instruction processing in the core 

processor. We shall now describe the three learning/analysis algorithms we used in our 

experiments. We wish to emphasize the generality of our proposed solution and that one 

can implement many other off-line learning algorithms. 

 

4.1 Simple Markov Predictor 



This simple predictor is similar to the one used by Joseph and Grunwald [11]. Let T be 

the sample miss trace of an application. For two miss addresses, x, y ∈ T say, the 

probability P(y | x), i.e. the probability of x being followed immediately by miss address y, 

is computed. For each x ∈ T in the miss trace, we compute N(x) = {P(y | x)} where , x, y ∈ 

T and y ≠ x. In addition, from the trace we compute f(x) which is the frequency of 

occurrences of x in T.  

Next, we fix the size of the prediction table. Since in practice, this will not 

accommodate all miss addresses, we need a hashing algorithm to access the table. Let 

h(x) be the hashing function that maps x to its entry in the prediction table. We used a 

lookup mechanism that is similar to cache tag checking. This ensures that the prediction 

table can be checked very quickly. We are now ready to construct the prediction table. 

We iterate through the rows of the prediction table. Let k be a row in the prediction table. 

From the set {x | h(x) = k, x ∈ T }, we select a miss address x with the highest f(x). In 

other words, of all the miss addresses that map to the same row, we pick the one with 

the highest frequency of occurrences in the sample trace. Let p be the number of 

prefetch request entry per row. Having selected x, we simply use the p miss addresses 

of N(x) with the highest probabilities. For our experiments, we chose p to be 4. 

 

4.2 Windowed Markov Predictor 

This is similar to the simple Markov predictor except that in the computation for N(x), 

instead of considering only the miss addresses that immediately follows x, we use a 

window of size w and consider all miss addresses within the window. In other words, if 

y1, y2, …, is the sequence of miss addresses that follows x, then for the windowed 

Markov predictor, we use N’(x) = { P(yi | x) | i ≤ w, x, yi ∈ T }. For our experiments, we 

chose w to be five. Another important modification is that we do not necessarily use up 



all p prefetch request slots. Of the p top probabilities of N’(x), we discard those that are 

less than a threshold. The idea is to minimize bandwidth requirement by not prefetching 

those addresses with low probabilities. 

 

4.3 Hidden Markov Model (HMM) Predictor 

The Hidden Markov Model (HMM) is a well-known technique that has a wide range of 

applications [10, 16, 21]. Essentially, it is a Markov chain where each state generates an 

observation. HMM are known to be very useful for time-series modeling since the 

discrete state-space can be used to approximate many non-linear, non-Gaussian 

systems.   

A HMM can be characterize as follows. Let S be the number of states, and K be 

the number of (unique) symbols. The model consists of three matrices: 

• Ai,j is the probability of making a transition from state i to state j, with 

the requirement that 1, =∑
j

jiA ; 

• Bi,k is the probability of outputting symbol k when in state i, with the 

requirement that 1, =∑
k

kiB ; 

• πi is the probability of starting in state I, with 1=∑
i

iπ  

There are established algorithms to train a HMM. These include the Viterbi and Baum-

Welch algorithms [6]. We used a modified version of a publicly available HMM code 

used for speech recognition [7] to create HMMs of a sample trace, T. A unique HMM is 

created for each hotspot. We set K to be the number of unique miss addresses in T. 

Each pass through a hotspot is taken to be a unique training sequence.  

 To obtain the prediction table from the trained HMM, we used the following 

strategy. Given x ∈ T, we sort the set {Bi,x | i ∈ S} and obtain the states i1, i2, …, ik, …, iq 



corresponding to the highest q members of the sorted set. For each of these states, we 

sort the set { jik
A ,  | j ∈ S } and obtain the r highest probability next state. For each of 

these next states, we again select the q highest probability from {Bj,y | j ∈ S, y ∈ K }. From 

this we can construct a length two sequence (x, y) as well as its associated probability 

P(x, y) where 

yjjiix llkk
BAByxP ,,,),( ××=  

Proceeding in a similar manner, we can construct sequences of any length together with 

their associated probabilities. In practice, for our experiments, we stopped at sequences 

of length 3 as the longer the sequence, the lower its associated probability. With all 

these sequences up to a certain length in hand, we sort them according to their 

probabilities. We then proceed to pick p unique symbols that are members of the 

sequences of highest probabilities as entries in the prediction table for x. To overcome 

the problem of two miss addresses mapping to the same prediction table location, the 

same technique outlined in section 4.1 is used. 

 

5. Experimental Setup 

We use the Trimaran compiler-EPIC architecture simulation infrastructure [24] to 

evaluate the performance of our proposed system and of each of the three off-line 

learning algorithms outlined above. We compared the performance of our system 

against that of using larger caches, and the RPT hardware prefetch scheme of Chen and 

Baer [5]. The following benchmarks were used for the evaluation:  

• 052.alvin benchmark from SPEC 92 [23] which trains a neural network using 

back propagation. 

• 130.li  from SPEC 95 which is a Xlisp interpreter.  



• 181.mcf from SPEC CPU2000 which does combinatorial optimization / single-

depot vehicle scheduling 

• 183.equake from SPECfp 2000 which does wave propagation simulation. 

• bisort, mst, treeadd, health from Olden Pointer Benchmark suite. 

Our baseline setup is an IA64-like EPIC machine [14] with four integer, two floating point 

and two memory units and a 32Kbyte L1 cache and a 256Kbyte L2 cache. We computed 

stall cycles for L1 and L2 load misses when L1 cache size is 32K, 64K and 128K with 

256K L2 cache. In our experiments, the predictor is used to prefetch data from L2 into a 

32Kbyte prefetch buffer co-located with the L1 cache. 

Our main metric for characterizing the performance of the memory system is stall 

cycles. Stall cycles account for a significant portion of actual data intensive program run-

time (up to 90% in some of modern architectures) and significant portion of stall cycles 

comes from load misses. Reduction in stall cycles therefore directly leads to 

performance improvement.  Since our EPIC machine is an in-order machine, we 

assumed a “stall-upon-use” latency model. In this stalling model, a load instruction that 

causes a cache miss will not immediately block the pipeline. The pipeline is stall only at 

the earliest attempt to use the data that is to be loaded. 

There are three parameters used to compute stall cycles. First is the minimum 

def-use latency which is the minimum number of cycles for a certain value to be used 

after it is loaded by a load instruction. This is obtained from the compiler. The second set 

of parameters consists of the miss penalties for load misses at the level one and the 

level two caches. In our experiments, a L1 cache load miss costs 7 cycles and a L2 

cache load miss costs 32 cycles. Finally, the clock cycles at each L1 load miss occurred 

are also used. 

The stall cycles for L1 load misses without prediction using profiling is computed 

as follows: 



For certain load X operation, 

• If X results in a L1 cache hit 

o Stall cycle += min (H - L, 0) 

• If X results in a miss at L1 but a hit at L2 

o Stall cycle += min (M1 - L, 0) 

where H is the hit latency, L is minimum def-use latency and M1 is miss penalty 

for L1 cache. The stall cycles for L1 load misses with our prediction is computed 

as follows: 

For certain load X operation that was correctly predicted  

• And X results in a cache hit 

o Stall cycle += min (H - L, 0) 

• And X results in a cache miss at L1 but a hit at L2 

o Stall cycle += min (M1 - d - L, 0) 

where d is distance in terms of clock cycles between load X and the previous request to 

prefetch X. If a load operation was not preceded by any prefetch request, then the 

computation of stall cycles is same as that without prediction.  We should point out that 

we did not consider store misses as most load misses dominated in the benchmarks.  

Furthermore, the same traces used to train the predictors were used in the evaluation. 

(Results from using different inputs were still not available at the time of submission.) We 

shall now present the results of our experiments. 

 

6. Results 

We measured how many load misses occurred during simulation (Fig. 2). The results 

shows that increasing L1 cache size does not necessarily improve performance 

especially for data intensive applications using dynamic data structures like pointers.  



 

��������	

�
�������������
� �����������
�������������
�������������
� �������������
� �������������
��� �����������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

                  


�����

�

��� ����� � �����

� � � ����� � �����

����� ����� � �����

��� � ����� � �����

� ��� ����� � �����

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	���	��������� ��� ��� 	 � 	��������� ��� ���

 


�������

�

� �����������

� �������������

��� �����������

���������������

� � �����������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

                  

������

�
�������������
� �����������
�������������
�������������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

 

���

�
� ���������
� �����������
��� ���������
�������������
� � ���������
�������������
� � ���������
� �����������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	���	��������� ��� ��� 	 � 	��������� ��� ���

                  

�����

�
�������������
� �����������
�������������
�������������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

 




�
����

�
� �����������
 �������������
 �� �����������
!��������������
! � �����������
"��������������
" � �����������
# �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

$� 
$�%�&�'�(�) *�* +�* $ ! $�%�&�'�(�) *�* +�*

                  

�����

�
 �������������
!��������������
"��������������
# �������������
� �������������
,��������������
- �������������
.��������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

$� 
$�%�&�'�(�) *�* +�* $ ! $�%�&�'�(�) *�* +�*

         

 

Fig. 2. Load misses with various L1 cache size, RPT, Markovian Predictor 

 

Next we measure total dynamic cycles and stall cycles for L1 and L2 load misses. The 

results are shown in Fig.3.  
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Fig 3. Total stall cycles(L1 + L2 load miss cycles), and compute cycles (both in millions) 
           for each benchmark  
 
 
 
The percentage performance improvement is shown in normalized graph of Fig. 4 with 

the base case being that of a machine with 32KByte L1 cache and 256KByte L2 cache 

without using any prediction scheme. As can be seen, the Windowed Markov predictor 

showed a bigger performance increase in compared to bigger cache size or RPT or 

simple Markov Predictor scheme except one SPEC 2000 benchmmark(181mcf) and two  

olden pointer benchmarks(treeadd and health). The HMM Predictor (HMP) in turn did 

better than the Windowed Markov Predictor (WMP) or any other schemes in all 

benchmark tests except one SPEC 2000fp benchmark(183equake) where Windowed 

Markov Predictor was slightly better than Hidden Markov Predictor. In one instance, a 

37% improvement in performance was recorded using Hidden Markov Predictor. In 

almost all cases, the use of off-line learning algorithms gave a pronounced performance 

improvement over that of simply increasing the cache size or a hardware prefetch 

scheme like RPT. 
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Fig 4.  Performance improvement in total cycles by percentage wise (normalized by 32K     
L1 cache and 256K L2 cache without using any prefetching scheme). 
 

 

7. Conclusion 

In this paper, we proposed a paradigm and architectural framework for the use of off-line 

learning algorithms in the prefetching of data. In most cases, the use of off-line learning 

scheme gives a much better performance than merely increasing the size of the level 1 

cache size. This trend will most likely appear as same in case of level 2 cache as well. 

With one exception of 183.equake, the hidden Markov model outperforms other 

implementations including Markov predictor with window size of 5. This result highlights 

the potential of adapting the hidden Markov model which is already popular in many 



other fields to overcome the memory bottleneck problem. The increasing L1 cache size 

alone did not help much improving data cache performance and this trend is more 

significant as application shows more data intensive characteristics as seen most of the 

olden pointer benchmark suite. In those cases, using sophisticated off-line learning 

scheme coupled with the generic architecture we proposed, has more advantage over 

bigger caches. Our future research seeks to develop more powerful learning module 

with effective hardware supported prediction engine. 
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