
 CCeenntteerr FFoorr RReesseeaarrcchh iinn EEmmbbeeddddeedd SSyysstteemmss aanndd TTeecchhnnoollooggiieess
 Technical Report

 CREST-TR-01-005
 GIT-CC-01-17
 June 2001

D

Daattaa PPrreetteecchhiinngg UUssiinngg OOfffflliinnee LLeeaarrnniinngg

Jinwoo Kim and Krishna V. Palem
Georgia Institute of Technology
Atlanta, Georgia

Weng Fai Wong
National University of Singapore
Singapore

�����������	
�������������������������

Jinwoo Kim*, Krishna V. Palem*, and Weng Fai Wong+

*Center for Research on Embedded Systems and Technology,
Georgia Institute of Technology

jinwoo@cc.gatech.edu

*Center for Research on Embedded Systems and Technology,
Georgia Institute of Technology

palem@ece.gatech.edu

+Dept. of Computer Science
National University of Singapore

wongwf@comp.nus.edu.sg

Abstract

An important technique for alleviating the memory bottleneck is data prefetching. Data

prefetching solutions ranging from insertion of prefetch instructions by means of program

analysis to strictly hardware prefetch mechanisms have been proposed. The former,

however, is less successful for pointer intensive applications. In this paper, we propose a

hardware solution that utilizes off-line learning algorithms. In essence, a sample trace of

the application is fed into various off-line learning schemes. The results from these

schemes are then loaded into a prefetching hardware at the appropriate point in the

execution of the application to drive the prefetching. We propose a general architecture

and scheme for such a process and report on the results of some of the experiments we

performed.

1. Introduction

It is a well-established fact that as processor speed increases, memory becomes a

serious performance bottleneck. While the introduction of caches significantly alleviated

the problem, caching alone will not bridge the increasing performance gap between

multi-issue processors running at very high clock speeds and memory. Data prefetching

has been proposed as an additional tool to bridge this gap. Almost all state-of-the-art

processors have some kind of data prefetching instructions. However, it is not easy to

utilize these instructions effectively as they usually come with significant overheads.

These include additional instruction processing, increased register pressure, the impact

of additional instructions in the instruction cache, and the inability to adapt to dynamically

changing demand for data. Due to these difficulties, various forms of hardware

prefetching techniques have also been proposed. Of particular interest to us are

techniques targeted at pointer intensive applications since these are significantly less

amenable to the kind of program analysis necessary for software prefetching methods.

Existing hardware prefetching techniques require the prefetching hardware to

perform some form of learning and prediction in real-time. This may necessitate a

significant investment in hardware, or there may be an impact on the critical path of

instruction processing. In the worst case, it can be both. In this paper, we propose a new

prefetching architecture and a paradigm for using such an architecture that utilizes

extensive profiling and powerful off-line learning algorithms.

In Section 2, we will describe some representative previous works on this subject. In

Section 3, we will discuss the use of off-line learning algorithms. Our proposed

architecture will be presented in Section 4 together with three learning algorithms that

we tested. This is followed by experimental setup, results and a conclusion.

2. Previous Work

Research on memory hierarchy optimization can be classified into three broad

categories: software approaches, hardware approaches and hybrid approaches. We will

briefly mention some representative work that is relevant to our discussion. We refer the

interested reader to a detailed survey on the matter that was recently published [26].

In the field of software prefetching early work include that done by Callahan,

Kennedy, and Porterfield [2], and Klaiber and Levy [15]. The former proposed the

insertion of data prefetch instructions in data intensive loops while the latter studied

efficient architectural support mechanisms for data prefetch instructions. Mowry, Lam

and Gupta [20] showed that careful analysis and selective prefetching could provide

significant performance improvements in programs with regular nested loops. Lipasti et.

al. [17] proposed a compile time heuristic called Speculatively Prefetching Anticipated

Interprocedural Dereference (SPAID), for inserting prefetches into the instruction stream

to reduce both the cost and the frequency of a certain class of data cache misses. Still

other approach is that of Ozawa et. al. [22] in which they used cache miss heuristics to

identify problematic loads and then to prefetch them. Luk and Mowry [18] introduced a

method by which the compiler can insert software prefetch instructions for recursive data

structures.

Perhaps aware of the potential difficulties of using software prefetching, there is

significantly more research on the alternative hardware approach to data prefetching.

One seminal work is Jouppi’s proposal [12] of adding “stream buffers” to prefetch

sequentially in conventional caches, there has been numerous suggestions for hardware

prefetching. Prefetch strategies for vector and scalar processors were studied by Fu and

Patel [8, 9]. Chen and Baer [4] proposed a lookahead data prefetching mechanism that

combined stride information and instruction lookahead.

They also investigated a mechanism [5], known as the Reference Prediction Table

(RPT), for prefetching data references characterized by regular strides. The RPT is a

cache tagged with the addresses of load instructions. For each load instruction, the

cache stores the previous memory address accessed by that instruction, the offset of

that address from the previous load and flags to track of the data access patterns in a

RPT. In this method, prefetches can be generated one iteration ahead of actual use but

the problem was that memory latency hiding is dependent upon the execution time of a

single loop iteration. Mehrota [19] proposed a hardware data prefetching scheme that

attempts to recognize and use recurrent relations that exist in address computation of

link list traversals. Extending the idea of correlation prefetchers [3], Joseph and

Grunwald [11] implemented a simple Markov model to dynamically prefetch address

references.

Hybrid approaches attempt to overcome drawbacks of pure software and

hardware approaches by combining both. Karlsson, Dahlgren, and Stenstrom [13]

proposed both a pure software version and a combination of software and hardware

prefetching technique called “prefetch arrays” which can prefetch even short sequences

linked data structure as the lists found in hash tables and trees where the traversal path

is not known a priori. VanderWiel and Lilja [25] proposed a data prefetch controller

(DPC), which combines low instruction overhead with the flexibility and accuracy of a

compiler-directed prefetch mechanism.

3. Off-line Learning

Hardware predictors operate in two phases – a learning phase and a prediction phase.

In the learning phase, the prediction facility is trained. Typically, this involves the

updating of a prediction table or automaton. In the prediction phase, the learned table or

automaton is used to make prefetch requests. In some schemes, during the prediction

phase, the prediction table or automaton may also be updated, i.e. the learning and

prediction phases are interleaved.

A major drawback of existing hardware schemes is the need to perform learning

and prediction both at run time. This severely limits the type of learning schemes that

one can use. We propose overcoming this limitation by taking the learning phase off-line.

By using sample traces collected from an application, prediction tables and automata

can be trained off-line. This rests on the important assumption that the sample trace

used for the training do correctly reflect the behavior of the application during its actual

run. The success of hardware prefetch mechanisms, all of which are based on learning

past patterns to predict future references, provides strong circumstantial evidence for

this.

 The factors determining the success of a prefetch scheme are accuracy,

timeliness, overhead and coverage. Accuracy refers to the percentage of prefetch

requests issued are actually used. An accurately predicted prefetch request is useless if

it is issued too early or too late relative to the actual use of the data. Any prefetch

mechanism will have an associated overhead (which may be in the form of additional

instructions, hardware investment, or increased bus utilization) that must not be too

significant. Finally, the scheme must be able to cover most of the loads. Unlike on-line

schemes, off-line schemes can consider a significantly larger window of the sample

trace and/or use more complex analysis and learning algorithms. This generally

improves the accuracy of the prediction. Furthermore, by staying focus on program

hotspots, coverage is improved. The issue of timeliness and overhead will be discussed

when we outline our architectural solution.

Fig. 1. Proposed Setup for Off-line Learning

4. The Proposed Architecture and System Setup

Fig. 1 shows the general structure of our proposed system. Sample traces of the

application of interest are collected. In our experiments, these traces are first processed

through a cache simulator so that we obtained only the miss traces. During the sample

trace collection phase, the application is also profiled to identify the “hotspot” – sections

of code that are frequently executed. Sections of the miss trace corresponding to a

particular hotspot form the training sequences for that hotspot. These training sequences

are then fed to a learning/analysis algorithm that outputs a prediction model for a

particular hotspot. The prediction model is essentially a table with entries

()nyyyx ,,,, 21 � where upon encountering miss address x, prefetch requests are issued

for address y1, y2, …, yn. The prediction models for each of the hotspot of an application

are consolidated in a setup file. When the application is executed, prior to the entry into

the hotspot, the prediction table is loaded into the prefetch hardware. The entry into a

hotspot is confirmed by means of checking the program counter. Once in a hotspot, the

prediction hardware with the loaded prediction model for the hotspot is turned on. When

a cache miss occurs, the prediction hardware simply checks the miss address against its

table. If it is present, it will issue the corresponding prefetch requests. Otherwise, it does

nothing. Note that it is possible to use either L1 or L2 data cache misses to drive the

predictor. Furthermore, we assume a separate prefetch buffer [12] that is distinct from

the L1 data cache in which prefetched data is stored. This is to prevent unnecessary

pollution of the L1 data cache.

Timeliness in our proposed architecture depends on three factors – whether the

prediction table can be loaded sufficiently ahead of time, whether there is sufficient

distance between prefetch requests and the actual uses of data, and whether they is

sufficient bandwidth to handle the prefetch requests. Since the prediction tables are pre-

calculated, it should be easy to preload the tables at a sufficiently early point of time. The

second factor will depend on the analysis/learning algorithm. The last factor will depend

on the memory architecture and the frequency of prefetch request. At this moment, we

are unable to estimate the hardware investment needed to build the proposed

architecture. To get a fairer picture, we have compared our scheme against that of using

significantly bigger caches. We further believe that the autonomy of the prefetch unit

implies a minimal impact on the critical path of instruction processing in the core

processor. We shall now describe the three learning/analysis algorithms we used in our

experiments. We wish to emphasize the generality of our proposed solution and that one

can implement many other off-line learning algorithms.

4.1 Simple Markov Predictor

This simple predictor is similar to the one used by Joseph and Grunwald [11]. Let T be

the sample miss trace of an application. For two miss addresses, x, y ∈ T say, the

probability P(y | x), i.e. the probability of x being followed immediately by miss address y,

is computed. For each x ∈ T in the miss trace, we compute N(x) = {P(y | x)} where , x, y ∈

T and y ≠ x. In addition, from the trace we compute f(x) which is the frequency of

occurrences of x in T.

Next, we fix the size of the prediction table. Since in practice, this will not

accommodate all miss addresses, we need a hashing algorithm to access the table. Let

h(x) be the hashing function that maps x to its entry in the prediction table. We used a

lookup mechanism that is similar to cache tag checking. This ensures that the prediction

table can be checked very quickly. We are now ready to construct the prediction table.

We iterate through the rows of the prediction table. Let k be a row in the prediction table.

From the set {x | h(x) = k, x ∈ T }, we select a miss address x with the highest f(x). In

other words, of all the miss addresses that map to the same row, we pick the one with

the highest frequency of occurrences in the sample trace. Let p be the number of

prefetch request entry per row. Having selected x, we simply use the p miss addresses

of N(x) with the highest probabilities. For our experiments, we chose p to be 4.

4.2 Windowed Markov Predictor

This is similar to the simple Markov predictor except that in the computation for N(x),

instead of considering only the miss addresses that immediately follows x, we use a

window of size w and consider all miss addresses within the window. In other words, if

y1, y2, …, is the sequence of miss addresses that follows x, then for the windowed

Markov predictor, we use N’(x) = { P(yi | x) | i ≤ w, x, yi ∈ T }. For our experiments, we

chose w to be five. Another important modification is that we do not necessarily use up

all p prefetch request slots. Of the p top probabilities of N’(x), we discard those that are

less than a threshold. The idea is to minimize bandwidth requirement by not prefetching

those addresses with low probabilities.

4.3 Hidden Markov Model (HMM) Predictor

The Hidden Markov Model (HMM) is a well-known technique that has a wide range of

applications [10, 16, 21]. Essentially, it is a Markov chain where each state generates an

observation. HMM are known to be very useful for time-series modeling since the

discrete state-space can be used to approximate many non-linear, non-Gaussian

systems.

A HMM can be characterize as follows. Let S be the number of states, and K be

the number of (unique) symbols. The model consists of three matrices:

• Ai,j is the probability of making a transition from state i to state j, with

the requirement that 1, =∑
j

jiA ;

• Bi,k is the probability of outputting symbol k when in state i, with the

requirement that 1, =∑
k

kiB ;

• πi is the probability of starting in state I, with 1=∑
i

iπ

There are established algorithms to train a HMM. These include the Viterbi and Baum-

Welch algorithms [6]. We used a modified version of a publicly available HMM code

used for speech recognition [7] to create HMMs of a sample trace, T. A unique HMM is

created for each hotspot. We set K to be the number of unique miss addresses in T.

Each pass through a hotspot is taken to be a unique training sequence.

 To obtain the prediction table from the trained HMM, we used the following

strategy. Given x ∈ T, we sort the set {Bi,x | i ∈ S} and obtain the states i1, i2, …, ik, …, iq

corresponding to the highest q members of the sorted set. For each of these states, we

sort the set { jik
A , | j ∈ S } and obtain the r highest probability next state. For each of

these next states, we again select the q highest probability from {Bj,y | j ∈ S, y ∈ K }. From

this we can construct a length two sequence (x, y) as well as its associated probability

P(x, y) where

yjjiix llkk
BAByxP ,,,),(××=

Proceeding in a similar manner, we can construct sequences of any length together with

their associated probabilities. In practice, for our experiments, we stopped at sequences

of length 3 as the longer the sequence, the lower its associated probability. With all

these sequences up to a certain length in hand, we sort them according to their

probabilities. We then proceed to pick p unique symbols that are members of the

sequences of highest probabilities as entries in the prediction table for x. To overcome

the problem of two miss addresses mapping to the same prediction table location, the

same technique outlined in section 4.1 is used.

5. Experimental Setup

We use the Trimaran compiler-EPIC architecture simulation infrastructure [24] to

evaluate the performance of our proposed system and of each of the three off-line

learning algorithms outlined above. We compared the performance of our system

against that of using larger caches, and the RPT hardware prefetch scheme of Chen and

Baer [5]. The following benchmarks were used for the evaluation:

• 052.alvin benchmark from SPEC 92 [23] which trains a neural network using

back propagation.

• 130.li from SPEC 95 which is a Xlisp interpreter.

• 181.mcf from SPEC CPU2000 which does combinatorial optimization / single-

depot vehicle scheduling

• 183.equake from SPECfp 2000 which does wave propagation simulation.

• bisort, mst, treeadd, health from Olden Pointer Benchmark suite.

Our baseline setup is an IA64-like EPIC machine [14] with four integer, two floating point

and two memory units and a 32Kbyte L1 cache and a 256Kbyte L2 cache. We computed

stall cycles for L1 and L2 load misses when L1 cache size is 32K, 64K and 128K with

256K L2 cache. In our experiments, the predictor is used to prefetch data from L2 into a

32Kbyte prefetch buffer co-located with the L1 cache.

Our main metric for characterizing the performance of the memory system is stall

cycles. Stall cycles account for a significant portion of actual data intensive program run-

time (up to 90% in some of modern architectures) and significant portion of stall cycles

comes from load misses. Reduction in stall cycles therefore directly leads to

performance improvement. Since our EPIC machine is an in-order machine, we

assumed a “stall-upon-use” latency model. In this stalling model, a load instruction that

causes a cache miss will not immediately block the pipeline. The pipeline is stall only at

the earliest attempt to use the data that is to be loaded.

There are three parameters used to compute stall cycles. First is the minimum

def-use latency which is the minimum number of cycles for a certain value to be used

after it is loaded by a load instruction. This is obtained from the compiler. The second set

of parameters consists of the miss penalties for load misses at the level one and the

level two caches. In our experiments, a L1 cache load miss costs 7 cycles and a L2

cache load miss costs 32 cycles. Finally, the clock cycles at each L1 load miss occurred

are also used.

The stall cycles for L1 load misses without prediction using profiling is computed

as follows:

For certain load X operation,

• If X results in a L1 cache hit

o Stall cycle += min (H - L, 0)

• If X results in a miss at L1 but a hit at L2

o Stall cycle += min (M1 - L, 0)

where H is the hit latency, L is minimum def-use latency and M1 is miss penalty

for L1 cache. The stall cycles for L1 load misses with our prediction is computed

as follows:

For certain load X operation that was correctly predicted

• And X results in a cache hit

o Stall cycle += min (H - L, 0)

• And X results in a cache miss at L1 but a hit at L2

o Stall cycle += min (M1 - d - L, 0)

where d is distance in terms of clock cycles between load X and the previous request to

prefetch X. If a load operation was not preceded by any prefetch request, then the

computation of stall cycles is same as that without prediction. We should point out that

we did not consider store misses as most load misses dominated in the benchmarks.

Furthermore, the same traces used to train the predictors were used in the evaluation.

(Results from using different inputs were still not available at the time of submission.) We

shall now present the results of our experiments.

6. Results

We measured how many load misses occurred during simulation (Fig. 2). The results

shows that increasing L1 cache size does not necessarily improve performance

especially for data intensive applications using dynamic data structures like pointers.

��������	

�
�������������
� �����������
�������������
�������������
� �������������
� �������������
��� �����������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

�����

�

��� ����� � �����

� � � ����� � �����

����� ����� � �����

��� � ����� � �����

� ��� ����� � �����

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	���	��������� ��� ��� 	 � 	��������� ��� ���

�������

�

� �����������

� �������������

��� �����������

���������������

� � �����������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

������

�
�������������
� �����������
�������������
�������������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

���

�
� ���������
� �����������
��� ���������
�������������
� � ���������
�������������
� � ���������
� �����������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	���	��������� ��� ��� 	 � 	��������� ��� ���

�����

�
�������������
� �����������
�������������
�������������
� �������������
� �������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

	��
	��������� ��� ��� 	 � 	��������� ��� ���

�
����

�
� �����������
 �������������
 �� �����������
!��������������
! � �����������
"��������������
" � �����������
�������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

$�
$�%�&�'�(�) *�* +�* $! $�%�&�'�(�) *�* +�*

�����

�
 �������������
!��������������
"��������������
�������������
� �������������
,��������������
- �������������
.��������������

32
K L1

 Cac
he

64
K L1

 Cac
he

12
8K

 L1
 Cac

he

RPT(32
K L1

)

MP(32
K L1

)

WIN(32
K L1

)

HMM(32
K L1

)

$�
$�%�&�'�(�) *�* +�* $! $�%�&�'�(�) *�* +�*

Fig. 2. Load misses with various L1 cache size, RPT, Markovian Predictor

Next we measure total dynamic cycles and stall cycles for L1 and L2 load misses. The

results are shown in Fig.3.

 052
alvin

130
li

183
equake

bisort mst Tree-
add

181
mcf

health

Total stall
cycles with

32K L1 cache

376M

407M

714M

299M

96M

266M

919M

1,813M

Total stall
cycles with

64K L1 cache

350M

338M

710M

298M

96M

266M

861M

1,778M

Total stall
cycles with
128K L1
cache

320M

298M

694M

291M

96M

244M

790M

1,705M

Total stall
cycles with

RPT

305M

350M

670M

292M

83M

266M

912M

1,794M

Total stall
cycles with

Markov
Predictor

335M

299M

637M

294M

81M

265M

917M

1,807M

Total stall
cycles with
Windowed

Markov
Predictor

284M

247M

582M

260M

74M

254M

806M

1,718M

Total stall
cycles with

Hidden
Markov

Predictor

224M

241M

622M

219M

62M

234M

751M

1,476M

Total
compute
cycles

57M

45M

61M

37M

23M

42M

92M

238M

Fig 3. Total stall cycles(L1 + L2 load miss cycles), and compute cycles (both in millions)
 for each benchmark

The percentage performance improvement is shown in normalized graph of Fig. 4 with

the base case being that of a machine with 32KByte L1 cache and 256KByte L2 cache

without using any prediction scheme. As can be seen, the Windowed Markov predictor

showed a bigger performance increase in compared to bigger cache size or RPT or

simple Markov Predictor scheme except one SPEC 2000 benchmmark(181mcf) and two

olden pointer benchmarks(treeadd and health). The HMM Predictor (HMP) in turn did

better than the Windowed Markov Predictor (WMP) or any other schemes in all

benchmark tests except one SPEC 2000fp benchmark(183equake) where Windowed

Markov Predictor was slightly better than Hidden Markov Predictor. In one instance, a

37% improvement in performance was recorded using Hidden Markov Predictor. In

almost all cases, the use of off-line learning algorithms gave a pronounced performance

improvement over that of simply increasing the cache size or a hardware prefetch

scheme like RPT.

Performance Improvement in Total Execution Cycles

0
5

10
15
20
25
30
35
40

05
2 a

lvin

13
0 l

i

18
3 e

qu
ak

e
bis

ort mst

tre
ea

dd

18
1m

cf
he

alt
h

%

64K L1 Cache 128K L1 Cache RPT (32K L1)
MP (32K L1) WMP (32K L1) HMP (32K L1)

Fig 4. Performance improvement in total cycles by percentage wise (normalized by 32K
L1 cache and 256K L2 cache without using any prefetching scheme).

7. Conclusion

In this paper, we proposed a paradigm and architectural framework for the use of off-line

learning algorithms in the prefetching of data. In most cases, the use of off-line learning

scheme gives a much better performance than merely increasing the size of the level 1

cache size. This trend will most likely appear as same in case of level 2 cache as well.

With one exception of 183.equake, the hidden Markov model outperforms other

implementations including Markov predictor with window size of 5. This result highlights

the potential of adapting the hidden Markov model which is already popular in many

other fields to overcome the memory bottleneck problem. The increasing L1 cache size

alone did not help much improving data cache performance and this trend is more

significant as application shows more data intensive characteristics as seen most of the

olden pointer benchmark suite. In those cases, using sophisticated off-line learning

scheme coupled with the generic architecture we proposed, has more advantage over

bigger caches. Our future research seeks to develop more powerful learning module

with effective hardware supported prediction engine.

References

[1] J.–L. Baer and T.–F. Chen, “An effective on-chip preloading scheme to reduce data access
penalty.” In Proceedings of Supercomputing ‘91, Pages 176 – 186. 1991.

[2] D. Callahan, K. Kennedy and A. Porterfield, “Software Prefetching,” In Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 40 – 52, 1991.

[3] M.J. Charney and A.P. Reeves, “Generalized correlation based hardware prefetching.”

Technical Report EE-CEG-95-1, Cornell University, Feb 1995.

[4] T.-F. Chen and J.-L. Baer, “A performance study of software and hardware data prefetching

schemes.” In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pp 223 – 232. 1994.

[5] T.-F. Chen, J.–L. Baer, “Effective hardware-based data prefetching for high-performance

processor Computers.” IEEE Transactions on Computers, Volume: 44-5, pp. 609-623. May
1995.

[6] J.R. Deller, Jr., J.G. Proakis, and J.H.L. Hansen, Discrete-time Processing of Speech

Signals. MacMillan 1993.

[7] Discrete HMM Toolkit.

http://www.isip.msstate.edu/projects/speech/software/discrete_hmm/index.html

[8] J. W. C. Fu and J. H. Patel, “Data prefetching strategies for vector cache memories.” In
International Parallel Processing Symposium, 1991.

[9] J. W. C. Fu and J. H. Patel, “Stride directed prefetching in scalar processors.” In In

Proceedings of the 25th International Symposium on Microarchitecture, pp. 102-110, 1992.

[10] F. Jelinek, “Self-organized language modeling for speech recognition.” Technical report,

IBM T. J. Watson Research Center, 1985.

[11] D. Joseph, D. Grunwald, “Prefetching using Markov predictors.” In Proceedings of the 24th

Annual International Symposium on Computer Architecture, pages 252-263, 1997.

[12] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a smally, fully

associative cache and prefetch buffers,” In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pp. 364-373, 1990.

[13] M. Karlsson, F. Dahlgren, and P. Stenstrom, “A prefetching technique for irregular

accesses to linked data structures.” In Proceedings of the Sixth International Sysmposium
on High-Performance Computer Architecture. pp. 206 –217. 2000.

[14] V. Kathail, M.S. Schlansker, and B.R. Rau, “HPL-PD Architectural Specifications: Version

1.1.” Hewlett-Packard Laboratories Technical Report HPL-93-80(R.1). Revised 2000.
http://www.trimaran.org/docs/hpl-pd.pdf.

[15] A. C. Klaiber, and H. M. Levy, “An architecture for software-controlled data prefetching,” In

Proceedings of the 18th Annual International Symposium on Computer Architecture, pp. 43
– 53, 1991.

[16] A. Krogh, S.I. Mian and D. Haussler, “A hidden Markov model that finds genes in E. Coli

DNA.” In Nucleic Acids Research, Vol. 22, No. 22, pp. 4769-4778, 1994.

[17] M. Lipasti, W. Schmidt, S. Kunkel, R. Roediger, “SPAID: Software prefetching in Pointer

and Call-intensive environment.” In Proceedings of the 28th International Symposium on
Microarchitecture, pp. 231 - 236, 1995.

[18] C.-K. Luk and T.C. Mowry, “Compiler-based prefetching for recursive data structures.” In
Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 222-233. 1996.

[19] S. Mehrota, and H. Luddy, “Examination of a memory classification scheme for pointer

intensive and numeric programs.” Technical Report CRSD Tech. Report 1351, CRSD,
University of Illinois, Dec 1995.

[20] T. C. Mowry, M. S. Lam and A. Gupta, “Design and Evaluation of a Compiler Algorithm for

Prefetching.” In Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 62-73, 1992.

[21] A. Nadas, “Estimation of probabilities in the language model of the IBM speech

recognition system.” In IEEE Transaction on Acoustics, Signal and Speech Processing,
32(4): 859 - 861, 1984.

[22] T. Ozawa, Y. Kimura, and S. Nishizaki, “Cache miss heuristics and preloading techniques

for general-purpose programs.” In Proceedings of the 28th International Symposium on
Microarchitecture, pp. 243 - 248, 1995.

[23] The SPEC benchmarks. http://www.spec.org

[24] The Trimaran Compiler Infrastructure. http://www.trimaran.org

[25] S.P. Vanderwiel, and D.J. Lilja, “A compiler-assisted data prefetch controller.” In

Proceedings of International Conference on Computer Design, pp. 372 –377. 1999.

[26] S.P. Vanderwiel and D. J. Lilja, “Data Prefetch Mechanisms”, ACM Computing Survey, vol.

32, no. 2, pp. 174 – 199. Jun 2000.

