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(57) ABSTRACT 

Disclosed are multivariate paraunitary asymmetric crypto­
graphic systems and methods based on paraunitary matrices. 
The cryptographic systems and methods are based on formu­
lating a system of multivariate polynomial equations by 
paraunitary matrices. These matrices are a family of invert­
ible polynomial matrices that can be completely parameter­
ized and efficiently generated by primitive building blocks. 
Using a general formulation involving paraunitary matrices, a 
one-way function is designed that operates over the fields of 
characteristic two. Approximations made to a paraunitary 
matrix result in a trapdoor one-way function that is efficient to 
evaluate, but hard to invert without secret information about 
the trapdoor. An exemplary implementation operates on the 
finite field GF(256). In this example, the message block 
includes 16 to 32 symbols from GF(256), i.e., the block size 
is an integer between 16 and 32. The ciphertext block takes its 
elements from the same field and has at least 10 extra sym­
bols. 
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ASYMMETRIC CRYPTOSYSTEM 
EMPLOYING PARAUNITARY MATRICES 

BACKGROUND 

The present invention relates generally to cryptographic 
primitives and more particularly, to public-key (asymmetric) 
cryptographic systems and digital signature algorithms that 
are based on paraunitary matrices. 

2 
between ECDSA and RSA in a field with prime characteristic 
shows that for practical sizes of fields and moduli, signature 
verification with ECDSA is 40 times slower than that using 
RSA. 

Considering the shortcomings of the RSA and ECDSA, it 
would be desirable to have practical cryptosystems based on 
problems other than the assumptions currently in use. One 
might be in a safer state against possibilities such as the 
emergence of an efficient algorithm for factoring or comput-

The principal of public-key cryptography involves 
exchanging information between parties without requiring a 
secure channel. Public-key cryptography is different from 
secret-key cryptosystems in which both parties must share a 
secret key. In a public-key system, each party has a pair of 
secret and public keys. Everyone can send encrypted message 

10 ing discrete logarithms. An alternative approach is multivari­
ate cryptography that includes systems based on multivariate 
polynomials over small fields. Multivariate cryptography is 
considered to be the cryptography of the 21st century. Cryp­
tosystems based on multivariate polynomials over small 

15 fields arefasterthanRSAandECC. These are schemes whose 
to a designated party using its public key. However, only the 
designated party can decrypt using his corresponding secret 
key. Public-key systems are used for the exchange or the 
distribution of secret keys that are used in symmetric crypto­
systems. Except for the key exchange, other applications of 20 

public-key cryptography are digital signature and data 
authentication schemes. A well-known public-key cryptosys­
tem, RSA, uses a univariate monomial over a very large ring. 
The public key consists of the exponent of a monomial and a 
composite number obtained by multiplying two large prime 25 

numbers. The security of RSA is believed to be based on the 
problem of factoring large composite numbers. Although 
after its conception in 1978, RSA has not been broken yet, 
there are some practical problems in its implementation. The 
first problem is the key-setup time that is too long for com- 30 

putationally-limited processors used in some applications 
such as pervasive computing. For example, it takes tens of 
minutes on a Palm V that uses a 16.6 MHz Dragonball pro­
cessor to generate 1024 bits RSA key. Another problem is the 
size of the key that is too long in applications where band- 35 

width is limited. It must also be increased every year because 
of improvements in the factorization algorithms and compu­
tational power. Currently, the minimum recommended size of 
RSA key is 1024 bits. As suggested by Schneier in Applied 
Cryptography: Protocols, Algorithms, and Source Code in 40 

C." rd ed. New York, Wiley. 1996, the minimum size must be 
4096 bits by 2015 and 8192 bits by 2025. This implies more 
complicated computations and longer key-setup time in the 
future. 

In an attempt to remedy these problems, two paths are 45 

taken: 1) using monomials as the public key and hiding infor­
mation in the exponent that leads to the discrete logarithm 
over complicated groups (e.g., points on elliptic curves) and 

public information is a set of multivariate polynomials. Their 
security is based on the difficulty of solving systems of mul­
tivariate polynomial equations. The main challenge in design-
ing such systems is including a trapdoor in the public poly­
nomials without using polynomials with very specific forms. 
However, systems of random polynomials are usually very 
hard to invert as this difficulty is the security basis of multi­
variate cryptosystems. To solve this paradigm, schemes have 
been proposed whose public polynomials are attempted to 
look random while the special structure is somehow hidden 
from the view of cryptanalyst. For example, hidden field 
equations (HFE) scheme uses a quadratic univariate mono­
mial over an extension field of a small finite field. The repre­
sentation of the monomial over the small field gives a set of 
quadratic homogenous polynomials. Unfortunately, this 
scheme and many of its variants have been broken because of 
the special form of the public polynomials. There are some 
other designs, which are reviewed below, that are all broken. 

Previous Work in Multivariate Cryptography 
The outline of a public-key cryptosystem based on iterative 

polynomial substitution is discussed by H. Fell et al., in 
"Analysis of a public key approach based on polynomial 
substitution," Adv. Cryptol.-CRYPT0'85, 1986, vol. 218, 
Lecture Notes in Computer Science, pp. 340-349. The idea is 
attractive and simple, but as the authors mention, the number 
of terms in polynomials astronomically increase even after a 
few iterations. A few solutions are provided to limit the num­
ber of terms, but some solutions are not very practical and 
none of them gives an efficient cryptosystem. 

The idea of using homogenous quadratic polynomials as 
the public information is discussed by T. Matsumoto et al., in 
"Public quadratic polynomial-tuples for efficient signature­
verification and message-encryption," Adv. Cryptol.-EU­
ROCRYPT'88, Berlin, Germany, 1988. To generate the public 2) considering multivariate polynomials over small fields 

(e.g., GF(r) for some small m). Comparing to RSA, systems 
based on the discrete logarithm over elliptic curves are able to 
maintain the same security level with shorter key sizes. 
Hence, elliptic curve cryptography (ECC) seems to be suit­
able for devices with low computational power such as smart 
cards. However, ECC also has some problems and draw­
backs. The shortest signature that one can generate using an 
elliptic curve digital signature algorithm (ECDSA) is 320 
bits, which is still long for many applications. Elliptic curves 
over fields of characteristic two can be easily implemented in 
hardware, but in order to maintain security, one must employ 
a very large finite field, which implies a long signature. The 
Koblitz curves are special elliptic curves used to reduce the 
complexity ofECC. However, some cryptographers are con­
cerned that the special structure in these curves (to facilitate 
an efficient implementation) may actually be used to effi­
ciently attack them. Another problem is the complexity of the 
elliptic curve signature-verification algorithm. A comparison 

50 polynomials, an invertible quadratic monomial over GF(qn), 
a degree n extension field of GF( q), is chosen. Here, q is a 
powerof2. The fieldGF(q) can be considered as ann-dimen­
sional vector space over GF(q). Using basis vectors, the qua­
dratic monomial is converted to n quadratic homogenous 

55 polynomials in n variables. The encryption is performed by 
evaluating public polynomials at the plaintext block. For 
decryption, the ciphertext block is transformed back to 
GF(qn) and the monomial is inverted. Unfortunately, this 
scheme has been broken because of some unexpected alge-

60 braic relations. 
Two generalizations of this scheme, called hidden field 

equations (HFE) and isomorphisms of polynomials (IP) were 
developed. The HFE scheme has been broken. The attack uses 
the simple fact that every quadratic homogenous multivariate 

65 polynomial has a matrix representation. Using this represen­
tation, a highly overdefined system of quadratic homogenous 
equations in the secret information is obtained. A new tech-
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nique called relinearization for solving such systems was 
proposed by Kipnis. Running numerous experiments showed 
that this technique for solving overdefined systems ofhomog­
enous quadratic polynomials is not as efficient as one may 
expect. Hence, it was improved as XL and FXL algorithms. 5 

These algorithms are efficient only when the number of poly­
nomial equations is proportional to the square of the number 
of unknown variables. 

Other attacks on the HFE scheme have been developed. 
These attacks take advantage of the special format of the 10 

public polynomials. The latest attack on the HFE family is the 
fast algorithm ofFaugere for computing Grabner basis. It has 
been shown that the system of public polynomials ofHFE can 
be solved in a reasonable time using this algorithm. 

The signature scheme QUARTZ is based on a variant of 15 

HFE. QUARTZ can generate signatures of length 128 bits 
with the security level 280

. The security of QUARTZ is stud­
ied by Courtois and some generic attacks are provided. The 
signature schemes FLASH and SPLASH are based on the 
C*-algorithm that can be regarded as a special case of the 20 

more general HFE scheme. It was claimed that these schemes 
can generate signatures of lengths 296 and 259 bits with the 
security level 280

, respectively. However, SPLASH has been 
broken. 

A signature scheme based on birational permutations is 25 

based on using a quadratic homogenous tame automorphism 
and hiding its coefficients by applying two affine transforms 
one at the input and one at the output. The public key in this 
scheme consists of a number of multivariate quadratic poly­
nomials over the ring Zn where n=pq is a positive composite 30 

integer consisting of two distinct large prime factors p and q. 
Although the security of this scheme is based on the integer­
factorization problem, it can be regarded as a multivariate 
cryptographic scheme because of its structure. This scheme 
has been broken by Coppersmith. 35 

A public-key cryptosystem and signature scheme based on 
the composition of four tame automorphisms, called tame 
transformation method (TTM), was introduced by Moh. This 
scheme was broken by Goubin where the cryptanalysis is 
reduced to an instance of the MinRank problem that can be 40 

solved in feasible time. 

4 
Key Cryptography Using Paraunitary Matrices," IEEE Trans­
actions on Signal Processing, Vol, 54, No. 9, September 2006, 
and "Multivariate Signature Using Algebraic Techniques," 
ISIT 2006, Seattle, USA, Jul. 9-14, 2006. 

Public-Key Cryptography 
Public-key cryptography is usually used to exchange secret 

keys between two parties who have had no prior acquain­
tance. The secret key is used for encrypting information using 
secret-key cryptosystems. The reason public-key cryptosys­
tems are not used to encrypt all information is that they are 
usually much more computationally complex whereas secret­
key cryptosystems are much faster. 

FIG. 1 illustrates an exemplary paraunitary asymmetric 
cryptographic system 10. In the system 10, a document or 
information, referred to as plaintext (x), is encrypted to pro­
duce the ciphertext (y). Encryption is performed using a 
paraunitary matrix and a bijection polynomial vector. 

Paraunitary matrices are used for the very first time to 
design public-key cryptosystems. The paraunitary asymmet­
ric cryptosystem (PAC), at the core, comprises of a parauni­
tary (PU) matrix over a Galois field specifically GF(256). To 
define a paraunitary matrix, consider a polynomial matrix 
P(x), i.e., a matrix of the form 

r

p11:(x) ·:: p1~(x)j 

P(x) = . . . 

Pn! (x) · · · Pnn (x) 

in which x is a short form for representing n variables 
(x1 , ... , xn) and p,/x)'s are all polynomials inn variables. 
Such a matrix is paraunitary if and only if 

where the superscript T denotes the matrix transposition and 
I is the identity matrix. 

In the following, a very simplified description of the PAC is 
provided (with some mathematical details trimmed off). To 
specify the PAC for his own use, an identity A takes the 
following steps. 

(1) Deigns a paraunitary matrix P(x) inn variables 
BRIEF DESCRIPTION OF THE DRAWINGS 

The various features and advantages of the present inven­
tion may be more readily understood with reference to the 
following detailed description taken in conjunction with the 
accompanying drawings, wherein like reference numerals 
designate like structural elements, and in which: 

(2) Designs a polynomial vector (a vector with its entries 
being polynomials) t(x) such that it is a bijection, i.e., know-

45 ing (Yv K, Yn)=t(x1 , K, xn), one uniquely determines the 
values ofxl, ... 'xn. 

(3) Carries out the following multiplication (masking) 

FIG. 1 illustrates construction of an exemplary paraunitary 50 

asymmetric cryptographic system; 
-r1h(x)j-rp11:(x) ·.:· P1~(x)jrt1(x)j 

~W- . - . . . . 
FIG. 2 is a flow diagram that illustrates encryption and 

decryption operations in an exemplary paraunitary asymmet­
ric cryptographic method. 

i/Jn(x) Pn! (x) ··· Pnn(x) tn(x) 

FIG. 3 illustrates construction of an exemplary digital sig- 55 

nature system; and 
( 4) Makes the polynomial vector 1jJ A(x) public and keeps 

the paraunitary matrix P(x) secret. 
FIG. 4 is a flow diagram that illustrates the signature gen­

eration and verification of an exemplary digital signature 
method. 

DETAILED DESCRIPTION 

Referring to the drawing figures, disclosed are public-key 
asymmetric cryptographic systems and methods and digital 
signature systems and methods that employ paraunitary 
matrices. Two papers by the present inventors are incorpo­
rated herein in their entirety by references. These are "Public-

Everyone can encrypt information and send to A. To 
encrypt a message x (also referred to as the plaintext), one 
simply evaluates the polynomials 1.jJ 1 (x), K, 1.j!n(x) at x. Let 

60 y=Enc A(x) denote the encryption algorithm provided by A. 
As is illustrated in FIG. 1, Plaintext x~Enc y=ljJ A(x)~ci­

phertext y. 
The decryption process requires knowledge of the secret 

information that consist of the PU matrix P and the polyno-
65 mial vector t. Hence, it cannot be performed by everybody, 

except A. Let SA denote the secret information of A. The 
decryption algorithm is represented by x=DecsA(y). 
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Key exchange between two parties through public-key 
cryptography, in its simplest form, is as follows. Consider two 
parties A and B. One of them, say A, randomly picks a secret 
key k. Moreover, A obtains the authentic encryption algo­
rithm ofB from a trusted third party. A sends y=EncB(k) to B. 
Upon receiving y, B retrieves the secret key through k=Dec sB 

(y). 

6 

FIG. 2 is a flow diagram that illustrates operations in an 
exemplary paraunitary asymmetric cryptographic method 20. 
FIG. 2 also illustrates components of the system 10. The 10 

exemplary system 10 and method 20 may be implemented as 
follows. 

mented as follows. At a first site, an encryption algorithm and 
the corresponding decryption algorithm are provided 41. A 
hash of an electronic document that is to be signed is gener­
ated 42. A signature for the electronic document is generated 
43 at the first site by decrypting the hash using the decryption 
algorithm. The signature, the hash, and the encryption algo­
rithm are transmitted 44 to a second site. The transmitted 
signature is encrypted 45 at the second site and the result is 
compared 46 with the hash to verify the signature. 

The Cryptographic System 
Disclosed is a novel approach for deigning practical pub­

lic-key cryptosystems. In this approach, paraunitary (PU) 
matrices are employed to design a one-way function (OWF). 
The entries of a PU matrix are polynomials with coefficients 

Apparatus is provided for creating 21 a paraunitary matrix 
over a field of characteristic two. Apparatus is provided for 
creating 22 a polynomial vector whose entries are polynomi­
als and which is a bijection. Apparatus is provided for creat­
ing 23 a polynomial vector that is formed by multiplying the 
paraunitary matrix by the polynomial vector. Apparatus is 
provided for making 24 the polynomial vector public. Appa­
ratus is provided for encrypting 25 the plaintext information 
using the public polynomial vector. Apparatus is provided for 
decrypting 26 the encrypted plaintext information using the 
secret paraunitary matrix. 

The exemplary public-key cryptographic method may be 
implemented as follows. A paraunitary matrix over a field 
having characteristic two is defined. A plaintext vector x is 
generated. The plaintext vector x is masked by evaluating a 
bijective vector at x and multiplying the result by the parauni­
tary matrix evaluated at x. 

Digital Signature Algorithms 
One of the applications of public-key cryptography is the 

design of digital signature schemes. Since the length of the 
signature is desirable to be independent of the document 
length, a short digest of the document to be signed is gener­
ated using a hash function. A hash function or message digest 
code (MDC) generates a short constant-length digest of its 
input. To simplify explanations, it is assumed that xis the hash 
of the document to be signed and y is the signature. 

The main idea in the design of a signature scheme is as 
follows. Consider an identity A with the encryption algorithm 
Enc A(•) and the decryption algorithm DecsA(•). To sign x, A 
uses his decryption algorithm to generate the signature y as 
follows. 

Then, A provides y as the signature and EncA(•) as the 
verification algorithm (public information). Note that xis also 
available to public. The verification of a signature y' is per­
formed as follows. 

Verified if x=Enc A(y') 
Unverified ifx,.EncA(y') 
By this description, only A can generate an authentic sig­

nature while everyone else can verify the generated signature. 
Referring to FIG. 3, it illustrates an exemplary digital sig­

nature system 30. The exemplary system 30 comprises an 
encryption algorithm 31 and the corresponding decryption 
algorithm 32. Apparatus 33 is provided for generating a hash 

15 from a finite field. By their definition, all such matrices are 
invertible, and obtaining their inverses requires no computa­
tion. To include a trapdoor in the OWF, some simplifications 
in the PU matrix employed in the design of the OWF are 
made. The difficulty of inverting the designed OWF is con-

20 nected to the difficulty of solving systems of multivariate 
polynomial equations over finite fields. To establish this con­
nection, it is shown that any system of multivariate polyno­
mials is expressible in terms of PU matrices. This relationship 
along with some mathematical conjectures provide enough 

25 evidence for the computational security of the trapdoor OWF. 
A paraunitary asymmetric cryptosystem (PAC) is provided 

that is based on the developed trapdoor OWF. The public key 
in the paraunitary asymmetric cryptosystem consists of a 
number of multivariate polynomials with coefficients from a 

30 finite field F. For practical reasons, the Galois field GF(256) 
may be used as the field F although it can be any Galois field. 
To encrypt a message block, which is a vector xEFn for some 
fixed positive integer n, the public polynomials are evaluated 
at x. Since there are efficient algorithms for polynomial evalu-

35 ation, the encryption algorithm in the disclosed scheme is 
very efficient. The cipher text is a vector yEFn+r, where r is a 
fixed positive integer. The decryption algorithm involves 
matrix multiplication and polynomial evaluation that can be 
efficiently performed. Hence, the decryption is also very effi-

40 cient in the PAC. The typical choices of n and rare 32 and 10, 
respectively. 

PU matrices are a subclass of invertible matrix polynomi­
als whose inverses are guaranteed to exist by their definition. 
Because of their useful properties, PU matrices have found 

45 many applications in signal processing, filter banks, wavelets, 
and error-control coding. In fact, in earlier works, PU matri­
ces are shown to be promising building blocks to construct 
wavelet-based symmetric ciphers. It has been shown that 
every univariate PU matrix over a field of characteristic two 

50 can be constructed by multiplying a small number of param­
eterized PU building blocks. Since there are algorithms to 
efficiently generate the univariate building blocks, the key­
setup time in the PAC is shorter than that in RSA and ECC. 
Considering the efficiency of the key setup, the encryption, 

55 and the decryption in the PAC, its main application is in 
constrained environments where the computational power is 
limited. 

of an electronic document that is to be signed. Apparatus 34 
(including the decryption algorithm 32) is provided for gen­
erating a signature (y) for the electronic document by 60 

decrypting the hash using the decryption algorithm. Appara-

There exist a limited number of fully-parameterized build­
ing blocks, which are PU matrices themselves, that may be 
used to generate multivariate PU matrices. To generate an 
arbitrary PU matrix, one simply multiplies these building 

tus 34 is provided for transmitting the signature, the hash, and 
the encryption algorithm. Apparatus 35, 36 are provided for 
encrypting 35 the transmitted signature and comparing 36 the 
result with the hash to verify the signature. 

FIG. 4 is a flow diagram that illustrates an exemplary 
digital signature method 40. The method 40 may be imple-

blocks in an arbitrary order. In the PAC, the parameters of 
these building blocks are determined based on the secret key. 

In the system, the secret key provided by the user is a vector 
65 kEFn. A key-expansion algorithm is employed to expand the 

secret key into a finite set of vectors of the same length n. 
These vectors are employed as the design parameters for the 
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paraunitary building blocks required to construct the PU 
matrix. In addition, they serve as the design parameters for 
other matrices and vectors involved in the design of the PAC. 

To study the computational security of the PAC, it is argued 
that its public polynomials are indistinguishable from an arbi­
trary set of multivariate polynomials. For this purpose, a 
connection is established between an arbitrary system of mul­
tivariate polynomials and PU matrices. It is shown that the 
problem of expressing every set of multivariate polynomials 
in the form of the public polynomials in the PAC is equivalent 10 

to the PU completion problem that has strong ties with the 
Quillen-Suslin theorem. The PU completion problem is a 
well-known mathematical conjecture that is proved to be true 
in many cases. However, the validity of its general form is an 
open problem. Although this does not provide a solid proof 15 

for the security of the scheme, it is noted that no public-key 
cryptosystem including RSA and ECC have ever been proved 
to be secure. As a matter of fact, the existence of OWFs has 
not been formally proved. 

Disclosed is a practical instance of the PAC by providing 20 

specifications for the general description of the system. By 
comparing the complexities of the key setup, the encryption, 
and the decryption in the PAC and the HFE, it is shown that 
the former has comparable level of complexity. A complete 
cryptanalysis of the PAC is discussed which shows that none 25 

of the attacks applicable to the HFE presents a security threat 
to the PAC. 

The notation used herein is discussed below. Previous 
designs by algebraic techniques are briefly reviewed. Unitary 
and paraunitary matrices are reviewed. The relationship 30 

between general systems of multivariate polynomial equa­
tions and PU matrices is established. In addition, the public­
key generation, encryption, and decryption algorithms of 
PAC are described. The computational security of the dis­
closed scheme is discussed in a mathematical language. A 35 

practical instance of the general design is introduced and 
cryptanalyzed. 

Notation 
Boldfaced lowercase letters are used for vectors. Matrices 

are denoted by boldfaced uppercase letters. The symbol N is 40 

used for the set of natural numbers, and [ n]={ xEN: 1 ~x~n}. 
The set of all integers is denoted by Z. The Galois field 
GF(2m), for mEN, is denoted by F since mis fixed. The set of 
all permutations on n elements is denoted by Sn. If x= 
(x1, ... 'xn) anda=(a1, ... 'an), then the shorthand notation 45 

x"' is used to denote x1 "'
1
, K, xn "'n. Assuming Risa field or a 

ring, the vector space or the module of colunm vectors of 
length n with entries from R is denoted by Rn. The ring ofnxk 
matrices with entries from R is represented by Mn k(R). In the 
case n=k, the notation Mn(R) is used. The terms ~ector poly- 50 

nomial and matrix polynomial are used for polynomials 
whose coefficients are vectors or matrices, respectively. 
These terms are interchangeably used with the polynomial 
vector and polynomial matrix that refer to vectors and matri­
ces whose entries are polynomials. One can easily show that 55 

these terminologies address the same concept, but from dif­
ferent viewpoints. 

In order to facilitate future references, frequently used 
notations are listed below with their meanings. 

[n] {xEN:l~x~n}; 60 

F Galois field of characteristic two; 
Sn set of al permutations on n elements; 
x (x1' ... ' xn); 
a (a1' ... 'an); 
XaX1a1, ... ,Xnan; 65 

Mn k(R) ring of nxk matrices with entries from the ring R; 
F[x°±1] ring of Laurent polynomials F[x1 -1, ... , xn - 1]; 

8 
P(x1, ... 'xn) para-Hermitian conjugate PT(X1-1, ... 'xn -l) 

of the polynomial matrix P; 
Un(F) set of all nxn unitary matrices over the finite field F; 
uv.!; unitary building block defined by equation (1); 
PUn(R) set of all nxn paraunitary matrices over the ring R; 
B1 (x; v) degree-one paraunitary building block defined by 

equation (3); 
B2 (x; u, v) degree-two paraunitary building block defined 

by equation (4). 
Unitary and Paraunitary Matrices 
A matrixAEMn(F) is called unitary if AT A=I. The set of all 

nxn unitary matrices over the field F is denoted by Un(F). As 
an example, consider the matrix 

Uv,,=l+l;vvT, 

where sEF and VEFn such that vis self orthogonal, i.e., vTv=O. 
Since F is a finite field, nonzero self-orthogonal vectors exist 
in Fn. It is easily verified that Uv.~Tuv.~=I. In fact, it was 
proved by Fekri et al. in "Theory of Paraunitary Filter Banks 
over Fields of Characteristic Two," in IEEE Trans. Inform. 
Theory, vol. 48, No. 11, November 2002, pp. 2964-2979 that 
uv.~ is the generating building block for all unitary matrices. 

The natural generalization of unitary matrices is parauni­
tary matrices whose entries are polynomials. Before discuss­
ing paraunitary matrices, define the sesquilinearform (., ):Rnx 
Rn-;. Rn as follows. For f=[fu ... , fn]TERn and g=[gu ... , 
gn]TERn, define 

n 

(f, g) =Jg= 2= f;g;. 
i=l 

A set of vectors { f1, ... , fn} is called orthonormal if (f,,~ f=i\ 
for all i,jE[N], where llif is the Kronecker delta. Based on this 
definition, the set of colunm vectors of a paraunitary matrix in 
PUn(R) is an orthonormal basis for the module Rn. 
A matrix polynomial P(x)EMn(R) is called paraunitary if and 
only if PP=IP(x)P(x)=I or in other words, 

(2) 

for all Xu ... , xnEF\{O}. The set of all nxn paraunitary 
matrices over the ring R is denoted by PUn(R). 

A PU matrix over F[x-1] can be interpreted as the transfer 
function of a linear time-invariant system. In that context, the 
degree of a paraunitary matrix in every variable is the mini­
mum number of delay elements in the corresponding variable 
with which the system can be implemented. There are build­
ing blocks for univariate PU matrices over F[x]. It was proved 
by Fekri et al. in "Theory of Paraunitary Filter Banks over 
Fields of Characteristic Two," inIEEE Trans. Inform. Theory, 
vol. 48, No. 11, November 2002, pp. 2964-2979 that the 
elementary building blocks are: 

(1) degree-one paraunitary building block 

B 1 (x;v)=I+vvT+vvTx 

where vEFn is a design parameter such that, vT v= 1; 
(2) degree-two paraunitary building block 

(3) 

(4) 

where u, vEP are design parameters such that uTu=vT v=O and 
uTv=l; 

(3) degree-m: paraunitary building block 

(5) 

In equation (5), "tEN and V=[ v 1 ... v nlEMn(F), where v,EFn 
such that v,Tv1=0 for all i, jE[n]. Moreover, A=diag(Au ... , 
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"-n)EMn(F) is a diagonal matrix. Note that i:, V, and A are the 
design parameters of the degree-m building block. 

It is easily verified that the matrices defined in equations 
(3)-(5) are all paraunitary. Finding generating building blocks 
for general multivariate paraunitary matrices is an open prob- 5 

!em. Some of these matrices may be captured by multiplying 
univariate building blocks in different variables. Since these 
building blocks do not commute, the resulting multivariate 
paraunitary matrix is not separable. 

Below, the structure of the PAC is described and showed 10 

how PU matrices can be efficiently used to generate nonlinear 
equations. 

Paraunitary Asymmetric Cryptosystem 
The goal in multivariate cryptography is designing a one­

way function (OWF) using a system of multivariate polyno- 15 

mial equations. Solving such systems of equations, in gen­
eral, is an NP-hard problem since all the known algorithms 
have computational complexity exponential with respect to 
the number of variables. The OWF is used to design public­
key cryptosystems and digital signature schemes. The main 20 

challenge is how to include a trapdoor in the OWF without 
using polynomials of very special form because such poly­
nomials usually weaken the security of the OWF. Consider 
arbitrary multivariate polynomials f1(x), ... , fn(x)EF[x] 
where x=(xu ... , xn). They can be considered as the entries 25 

ofa vector f=[f1 , ... , fn]rERm where R=F[x±1
]. 

As discussed above, the columns p u ... , Pn of an arbitrary 
paraunitary matrix PEPUn(R) form an orthonormal basis for 
Rn. Hence, there exist polynomials t1 , ... , tnER such that 

n (6) 
f = 2,t;P; 

i=l 

or 

f(x) = P(x)t(x) (7) 

30 

35 

10 
By the definition of PU matrices in equation (2), P(z1 , ... , 

zr) is singular whenever z,=O for some iE[r]. Thus, none of the 
entries of the vector polynomial cp(x) must have a root in Fn. 
The polynomial cp(x) is appended to the vector polynomial 

,j,(xMPo<j>)(x)t(x) 

to form the new vector polynomial 

, [(P·\O)(x)t(x)l 
i/J(x) = . 

\O(X) 

(10) 

(11) 

To mix the equations, the secret affine transformation 
v(iji)=Aiji+b is used, whereAEUn+rCF) is a unitary matrix and 
bEFn+r is an arbitrary vector. A unitary matrix is used since: 1) 
it can be easily and efficiently generated using the unitary 
building block, 2) by its construction, it is guaranteed to be 
invertible, and 3) its inverse can be easily obtained with no 
computation. In a single formula, the paraunitary trapdoor 
OWF 1jJ is as follows. 

i/J: Rn (12) 

x --7 [ 
W \O)(x)t(x) l 

y =A +b 
\O(X) 

This is an OWF since evaluating 1.jJ(x) for a given xis easy, 
but inverting this function seems to be hard. In fact, there does 
not seem to exist an algorithm to solve the equation 1.jJ(x)=c, 
for given cEFn+r, more efficient than the general methods for 
solving systems of multivariate polynomial equations. The 
trapdoor information consist of the paraunitary matrix P, the 
unitary matrix A, the vector b, the automorphism t, and the 
multivariate polynomial ii. Hence, 1jJ is a trapdoor OWF. 

The composite matrix polynomial (Pocp)(x) in equation 
(12) approximates the PU matrix P(x) in equation (7). This 
approximation is in the sense that the entries of the PU matrix 

where t=[tu ... , tn]r. Since this equation holds for every 
paraunitary matrix, there is no unique t associated with a 
given f. 

40 P(x) in equation (7) are taken from the ring F[x] while those 
of (Pocp )(x) in equation (7) belong to the ring F[ cp(x)]. These 
two rings are both extensions of the finite field F, and their 
relationship is expressed by 

In the above, it was shown that given a vector f and a 
paraunitary matrix P, one can find a vector t such that equation 
(7) holds. In the design of the OWF 1.jl, equation (7) is used, but 
instead of finding t for given f and P, a secret automorphism is 45 
chosen (i.e., bijective vector polynomial) t and a PU matrix P, 
then the public vector-polynomial f=Pt is obtained. 

There is no general algorithm to generate all automor­
phisms over the vector space pn. However, it is possible to 
generate some of them by composing tame automorphisms. 50 
An automorphism t=[tu ... , tn]r of the form 

t;(x)~aiXa;r,f:;(Xaur ... ,Xcr;;-1i),'<fiE[n] (8) 

FcF[<j>(x)] cF[xj. (13) 
- -

The transcendence degree of the extension ring F[ cp(x)], that 
is an integer between 0 and n, determines whether this ring is 
close to For to F[x]. The transcendence degree of an exten­
sion ring generalizes the notion of the dimension of a vector 
space. Let d be the transcendence degree of F[ cp(x)]. If d=O, 
then F[cp(x)],,,F, and if d=n, F[ cp(x)],,,F[x]. In general, cp(x) is a 
mapping from pn to Fr; thus, it cannot be a bijection if r<n. 
However, the extension ring F[ cp(x)] obtains its highest tran-is tame where CTESm a,EF\{O}, andg,EF[xa(l)' ... , Xa(i-l)] for 

all iE[ n]. A tame automorphism can be efficiently inverted. To 
compute C 1(y) for y=(y1 , ... , Yn)EFn, the following formula 
is recursively used. 

55 scendence degree when cp(x) is "close to a bijection". This 
term implies that the pre-images of elements of pr under the 
mapping cjJ are subsets of P that all have the same number of 
elements. Mathematically, this means that the cardinality of 

To encrypt a message, the public polynomials f1 , ... , fn are 60 

evaluated at the message block. However, to decrypt the 
ciphertext block by inverting 1.jl, the value of P(x) at the 
message xis required. This implies the knowledge about x. 

To solve this problem, an r-variate, rE[n], paraunitary 
matrix PEPUn(F[z]) may be used, where z=(zu ... , zr), and 65 

compose it with the vector polynomial cjJE(F[ z ])r. To decrypt 
the ciphertext, only the value of ii(x) is required. 

the set cp- 1(z)={xEFn:cjJ(x)=z} is independent of the value ofz. 
If cp=[ cp 1 , ... , <Prlr, then the following composition is 

suggested 

<l>i'"'fOp;'<fiE{rj. (14) 

Here, p=[p 1 , ... , PnfE(F[x])' is close to a bijection. The 
vector polynomial 

(15) 
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may be used where CTESm and a,EF\{O}, and g,= 
F[xa(r-i+2 ), . .. , xa(n)l for all iE[r]. To invert pin equation (15), 
the values ofxa(r-i+2 ), ... , xa(n) can be arbitrarily chosen and 
then the values of Xa(r-i+2 ), ... , Xa(r) are obtained from a 
recursive equation similar to equation (9). Hence, lp- 1 

(z)l=IFln-r for any zEFr is "close" to a bijection. 
As explained before, none of the entries of the vector 

polynomial cjJ must have a root in pn. The irreducible polyno­
mial yEF[x] in equation (14) is used to guarantee that this does 
not happen. It is suggested that the polynomial 10 

y(x)~x2+x+w, wEF (16) 

be used, and which is irreducible whenever 

m-1 

Tr(w)= ~ 
k=O 

assuming F=GF(2m). Since y is not an automorphism, cjJ is not 
as close to a bijection asp is. However, y is a 2-1 mapping 
since y(x+l)=y(x) for every xEF. Hence, the vector polyno­
mial cjJ is not significantly deviated from a bijection. 

15 

20 

12 
corresponding s, is "1". There are also more complicated 
pseudo-random number generators based on one-way func­
tions. 

Algorithm 2 is used to generate the public and secret keys 
used in 1.jl. 

Algorithm 2: Key generation 

INPUT: Master key k E F" 
PUBLIC OUTPUT: Public polynomial vector 1P E (F[X])n+r 
SECRET OUTPUT: P : an r-variate paraunitary matrix in PUn(F[ z ]), 

<I> : a vector polynomial in (F[XJY, t : an automorphism over 
Fn, A : a unitary matrix in Un+r(F), b : a constant vector in F n+r· 

1. Using Algorithm 1, expand the master key k in order to 
generate the set K consisting of K vectors each oflengthn. The 
vectors in this set are used as the design parameters in every 
step of this algorithm. 

Before using the key-generation algorithm, an algorithm is 
required to expand the master key provided by the user. Algo­
rithm 1 is employed for this purpose. 

2. Generate an r-variate PU matrix PEPUn(F[z]) by multi­
plying arbitrarily chosen elementary building blocks given in 
equations (3)-(5). Note that each of these building blocks 
requires a number of parameters. Use the vectors in the 
expansion set K as the design parameters. 

25 3. Choose a vector polynomial cjJE(F[x])rthat is close to be 
a bijection (in the sense explained before) and none of its 
entries, as a polynomial in F[x], has a root in Fn. Use the 
vectors in K as the design parameters. 

Algorithm 1: Key expansion 

4. Choose an automorphism t: pn-;.pn whose coefficients 
30 are obtained from K. 

5. Construct the vector polynomials~ and ij:i as in equa­
tions (10) and (11), respectively. INPUT: The master key k ~ [ki, ... , knf E F" 

OUTPUT: The parameter set K ~ { k 1' ... , kk } c F" 
1. for i = 1 to n do kil -<--- ki 
2. k1 ~ [ku, ... , ~1f 
3. for j ~ 2 to K do 
4. kl)-<--- klJ-1 EB k1,;-1-l EB C;-1 

5. for i = 2 ton do kiJ-<--- kiJ-l EB ki-lJ -l 

6. Generate a unitary matrixAEUn+rCF) by multiplying the 
elementary building blocks given in equation (1) with differ-

35 ent design parameters. In addition, choose a vector bEFn+r 

using the vectors in K. 

6. kj ~ [klj, ... ,~if 
7. end 

7. Construct the vector polynomial 1.jJ(x) as in equation 
(12). 

Using the introduced 1.jl, the public-key PAC is imple-
40 mented using Algorithms 3 and 4 below. These algorithms are 

used to encrypt and decrypt in the PAC. This algorithm specifies how the vectors required in the 
key-generation algorithm are derived from the master key k. 
The vectors in the set K, the output of the key-expansion 
algorithm, are used to generate the elementary paraunitary 
building blocks, the vector polynomial cp, the automorphism t, 45 

the unitary building blocks, and the vector b. The structure of 
the key-expansion algorithm is very similar to that of the 
block cipher AES discussed by Daemen, et al., in The Design 
of Rijndael "AES-The Advanced Encryption Standard. Ber­
lin, Germany: Springer-Verlag, 2002. The design criteria, 50 

similarly, is having nonlinear relations between each output 
vector and the master key such that taking advantage of these 
relations in an attack is infeasible. In Algorithm 1, K is chosen 
such that there are enough vectors in K, the binary operation 
EB is the bitwise exclusive-OR, and Cu ... , cK-l are public 55 

constants. 
It is possible to replace the key-expansion algorithm with a 

pseudo-random number generator. For present purposes, a 
fast pseudo-random number generator such as the shrinking 
or self-shrinking generator is adequate. The shrinking gen- 60 

erator consists of two LFSRs that one clocks the other. The 

Algorithm 3: Encryption 

INPUT: Plaintext block x E F" 
OUTPUT: Ciphertext blocky E F"+r 
1. Evaluate the public vector-polynomial 1P (x) at x. 

Algorithm 4: Decryption 

INPUT: Ciphertext blocky E p+r 
OUTPUT: Plaintext block x E F" 
1. v ~ AT(y + b)E p+r 
2. V-<--- [v1, ... , VnJT where V = [v1, ... , Vm Zi, ... , zrJT 

3. x ~ C 1(PT(z1-
1, ... , zr-1)v) 

The PAC operates on any finite field GF(2m) with m~2. 
The reason it should not be used over GF(2) is that since none 
of the entries of the vector polynomial cp, must take the value 
zero, the only possible choice is cp(x)=l. With this choice, the 
paraunitary matrix P becomes a constant matrix independent 
of the values of x. Hence, the PAC becomes a constant matrix 
multiplied by a vector polynomial that is an automorphism. 
Instances of such schemes were proposed by A. Shamir, et al. 

idea is to generate a third source of pseudo-random bits that 
has better "quality" than the original sources. (Here, quality 
refers to the difficulty of predicting the pseudo-random 
sequence.) Let a0 , a1 , ... and s0 , s1 , ... be the outputs of the 
two LFSRs. The shrinking generator constructs a third 
sequence z0, Zu ... that includes those bits a1 for which the 

65 in "Efficient signature schemes based on birational permuta­
tions," Adv. Crypto.-CRYPT0'93, 1994, vol. 773, Lecture 
Notes in Computer Science, pp. 1-12 and broken by D. Cop-
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persmith, et al. in "Attacks on the birational permutation 
signature schemes," Adv. Crypto.-CRYPT0'93, 1994, vol. 
773, Lecture Notes in Computer Science, pp. 435-443. 
GF(256) may be used to enhance the implementation of the 
scheme. 

14 
2n+r is unavoidable. The adversary, without the trapdoor 
information, is unable to calculate u and hence x although G 
is public. 

Computational Security of the Paraunitary Asymmetric 
Cryptosystem 

The length of the ciphertext in the paraunitary asymmetric 
cryptosystem is n+r. By increasing r, the length of the cipher­
text increases, but as explained before, the general formula in 
equation (7) is approximated better since the transcendence 
degree ofF[cp(x)] increases. 

In the following, it is shown how to construct a probabilis­
tic scheme using the paraunitary asymmetric cryptosystem. 

Probabilistic PAC 

The computational security of the paraunitary asymmetric 
cryptosystem is evaluated by providing evidences that relate 
the difficulty of inverting the OWF in paraunitary asymmetric 
cryptosystem to a known computationally hard problem. The 

10 computational security measures the amount of computa­
tional effort required, by the best currently-known methods, 
to defeat a system. In general, it is very difficult to prove the 
security of public-key cryptosystems. For example, it is 

The PAC is a deterministic scheme, i.e., the mapping from 
the plaintext space to the ciphertext space is deterministic. In 
other words, given the plaintext, the corresponding ciphertext 

15 
known that ifthe public modulus in RSA is factored into its 
prime factors, then RSA can be broken. However, it is not 
proved that breaking RSA is equivalent to factoring the public 
modulus. By providing some theorems and conjectures, it is 
established that the connection between the hardness of 

is always the same. This determinism might cause some leak­
age of partial information to the adversary. For example, the 
RSA function preserves the Jacobi symbol of the plaintext, 
and with the discrete-log function, it is easy to compute the 
least significant bit of the plaintext from the ciphertext by a 
simple Legendre symbol calculation. In order to prevent the 
leakage of partial information, the notion of semantic security 
was proposed by S. Goldwasser, et al., in "Probabilistic 25 

encryption," J. Comput. System. Sci., vol. 28, no. 2, pp. 270-
299, 1984. Informally, a public-key cryptosystem is seman­
tically secure if, for all probability distributions over the 
message space, whatever a passive adversary can compute in 
expected polynomial time about the given ciphertext, it can 30 

compute in expected polynomial time without the ciphertext. 
Semantic security is the reminiscent of Shannon's perfect 
secrecy in which the adversary is given unbounded compu­
tational power. Although theoretically attractive, perfect 
secrecy is not achievable unless the key is as long as the 35 

message. This requirement hinders the practical usefulness of 
perfect secrecy. By contrast, semantic security can be viewed 

20 inverting the OWF 1jJ in the PAC and the difficulty of solving 
a general system of multivariate polynomial equations. 

as the polynomially-bounded version of perfect secrecy in 
which the adversary is given limited computational power. 

In a semantically secure cryptosystem, the mapping from 40 

the plaintext to the ciphertext is probabilistic. Hence, differ­
ent encryptions give different ciphertexts corresponding to a 
single plaintext. An efficient probabilistic public-key crypto­
system based on the RSA one-way function was discussed by 
M. Blum, et al. in "An efficient probabilistic public key 45 

encryption scheme which hides all partial information," Adv. 
Cryptol.-CRYPT0'84, 1984, vol. 196, Lecture Notes in 
Computer Science, pp. 289-302. In general, there are stan­
dard methods to construct probabilistic schemes based on 
deterministic one-way functions. In the following, the 50 

method proposed by M. Bellare et al. in "Random oracles are 
practical: A paradigm for designing efficient protocols," 
Proc. ACM Conj Comput. Commun. Security-CCS'93, 
New York, 1993, pp. 62-73 to achieve semantic security is 
briefly explained. This method is based on the random oracle 55 

model. 
Let G:Fn-;.F2n+r be a random generator that is public to 

everybody and 1jJ be an OWF such as the one in equation (12). 
Consider the following probabilistic encryption function. 

x~1j!(u)ll(G(u)+x) (17) 

60 

Here, uEFn is a randomly chosen vector and II denotes the 65 

concatenation of two vectors. The encryption function EG is 
semantically secure. Note that the data expansion factor of 

The paraunitary asymmetric cryptosystem is based on the 
formula 

j(x)~P(x)t(x) (18) 

where fERn is an arbitrary polynomial vector, PEPUn(R), and 
tERn is an automorphism over Fn. As explained previously, 
given an arbitrary polynomial vector f, the relation in equa­
tion (18) is valid when the condition on t is relaxed. The 
security of the scheme reduces to the difficulty of solving 
general systems of multivariate polynomial equations if the 
following conjecture is proved. 

Conjecture 1: Given an arbitrary polynomial vector fERn, 
there always exists a matrix PEPUn(R) and an automorphism 
tERn such that equation (18) holds. 

This conjecture implies that an arbitrary system of multi­
variate polynomials can always be represented in the form of 
equation (18). Hence, if this conjecture is true, the public 
polynomials of PAC are indistinguishable from an arbitrary 
system of multivariate polynomials. 

The group PUn(R) acts on the module Rn by matrix multi­
plication. Notice that paraunitary matrices preserve the norm, 
i.e., if PEPUn(R) and f, tERn such that f=Pt, then ff==it. Hence, 
PU nCR) acts on the set V n "'(R )={ fER n: ff=aa} for every aER. 
This group action is transitive if for every two arbitrary f, 
tEVn "'(R), there exists a matrix PEPUn(R) such that f=Pt. 
Conjecture 1 is a weaker statement than the transitivity of the 
action of PUn(R) on Vn "'(R) because, for the purpose of the 
PAC, t is always an automorphism. Hence, the following 
conjecture, if proved, suffices to prove the Conjecture 1. 

Conjecture 2: The group PUn(R) acts transitively on the set 
Vn "'(R). 

This conjecture has strong ties with the PU completion 
problem. This problem is as follows. 

Problem 1 (The PU Completion Problem) 
Given the vector tERn such that ff=aa where aER, does 

there exist a matrix PEPUn(R) such that fis the first column of 
aP? 

The following lemma gives the relationship between the 
Conjecture 2 and the PU completion problem. 

Lemma 1: The group PUn(R) acts transitively on Vn "'(R) 
for every aER, if and only ifthe PU completion problem has 
a positive answer. 

Proof: (=>)Let fERn such that ff=aa and e=[l, 0, ... , 
O]rERn. Since PUn(R) acts transitively on Vn "'(R), there exists 
a matrix PEPUn(R) such that f=Pae. The first colunm of aP is 
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f and aP is the PU completion off. (::::>)Let f, gEVn "'(R) be 
arbitrary polynomial vectors and e be a vector defined as the 
first part of the proof. 

Since every paraunitary polynomial vector has a parauni­
tary completion, there are paraunitary matrices P, QEPUn(R) 
such that f=aPe and g=aQe. This implies f=PQg. Thus, PUn 
(R) acts transitively on Vn "'(R). 

The paraunitary completion problem has a positive answer 
ifthe class of generalized-unitary matrices, denoted by GUn 10 

(R), is considered instead of the class of paraunitary matrices. 

16 
thevariablez, for all iE[r]. Then, theparaunitary matrix P(z) is 
obtained as follows 

rN 

P(z) = n Ca-c;J(Zro-Ul/Nl), 
i=l 

(19) 

where CTESrN is a public permutation and r • 1 is the ceiling 
function. Note that since these building blocks do not com­
mute, the order of terms in the above multiplication is impor­
tant. Theorem 3 (Quillen-Suslin): Every generalized-unitary 

polynomial-vector fERn has a completion in GUn(R). 

The matrix PEMn k(R) is called generalized unitary ifthere 
exists a matrix QEMn.k(R) such that QP=I. The set of nxn 
generalized unitary matrices is denoted by GUn(R). Note that 
PUn(R) c GUn(R). The paraunitary completion problem has 

The special structure of the B1 and B2 building blocks 
makes the multiplication of the C, matrices less complex than 

15 multiplying arbitrary matrices. By induction, it can be easily 
shown that these building blocks and their multiplications 
have the following form 

a positive answer for the case n=2, but for n>2, it is still an 
open problem. This problem also has a positive answer for 20 

arbitrary n when R =Cl x±1 J where <!'. is the field of complex 
numbers. 

C(z)= I+~~ 
liEA )El 

(20) 

Below, a practical instance of the PAC is provided by 
choosing the parameters in its general description. 

A Practical Instance of the PAC 

There are numerous ways to design paraunitary asymmet­
ric cryptosystem depending on the choices of the parameters 
in Algorithm 2 that is used to generate the key. A good design 

where uaJ' v aaEFn, Ac Z~ and Jc N such that A and J are 
25 finite sets. Note that the matrix C is completely determined if 

the sets A and J along with the following sets of vectors are 
known. 

is the one that meets the following criteria: 30 

(21a) 

(21b) 

Hence, if C is one of the intermediate matrices in the 
process of multiplying the matrices C, in equation (19), 

1. The public polynomials, entries of 1.jl, must look random; 
they should not have any special structure. Solving the system 
of public polynomials for the plaintext must be computation­
ally infeasible. 

2. It is desirable to have sparse public polynomials to keep 
down the complexity of the encryption. The number of terms 
of the vector polynomial cjJ has the most influence in the 
number of terms of the public polynomials. Therefore, cjJ 

should have a few terms. 

35 instead of multiplying the vectors uaJ and vaJ' the sets U(C) 
and V(C) are obtained. That is why the generating algorithms 
for the building blocks B1 and B2 , as described below, only 
compute the vector parameters of these building blocks. The 
advantage of this strategy is reducing the complexity of mul-

40 tiplying matrices. The following fact can be stated about the 
complexity of multiplying two matrices of this special form. 

3. The evaluation of the automorphism t and its inverse 
must be efficient. 

An instance of the PAC is presented in this section by provid­
ing specifications for the general description of the system in 45 

Algorithm 2. 

The resulting scheme is intended to meet the design crite­
ria. Choose F=GF(256) because of implementation consider­
ations. In addition, choose 16~32 for the block length that 
corresponds to 128 to 256 bits. However, the scheme is flex- 50 

ible and the order of the field F and value of n can be different 
without affecting the structure. The secret key consists of n 
symbols from F. r is fixed because its value exponentially 
affects the number of monomials of the PU matrix P. Consid-
ering the range of n, it is suggested that r= 10 for reasons that 55 

will become clear later in the paper. For this choice ofr, the 
size of the ciphertext block varies between 208 and 264 bits. 

A. Constructing the Vector Polynomial 1jJ 

Fact 1: Let Cv ... , CL be matrices each with the form of the 
special format of equation (20). Then, the complexities of 
computing U(II,~/C,) and V(II,~/C,) are both upper 
bounded by 

assuming that Land the cardinalities of all sets are indepen­
dent ofn. 

Using this procedure, after carrying out all the multiplica­
tions required to compute the PU matrix Pin equation (19), 
the sets U (P) and V (P) are obtained. Having these sets, by 
Fact 1, the following fact can be stated about the total com­
plexity of generating the matrix P. 

Fact 2: The complexities of constructing U (P) and V (P) 
For the PU matrix P, only B 1 and B2 building blocks defined 

in equations (3) and (4) are used because the number of their 
parameters is less than those of R""' defined in equation ( 5). 
Moreover, they can be generated with less complexity. To 
generate the PU matrix PEPUn(F[z]), where z=[z1 , ... , zr]r, 

60 are both upper bounded by 22rN[rN(n+ 1 )-2]=0(n) since rand 
N are constants. Having U (P) and V (P), the complexity of 
constructing P(z) is at most IU(P)ln2~22rNn2=0(n2). Hence, 
the total complexity of constructing P(z) is at most 22

rN[n
2 + 

N univariate building blocks are designed in each variable. 65 

The parameter N is independent of n, and its typical value is 
2. Let C(i-l)N+l (z,), ... , C,~z,) be the PU building blocks in 

rN(n+ 1 )-2]=0(n2
). 

Every entry of Pis a multivariate polynomial in z1 , ... , zr 
with the maximum degree of z, being N for all iE[r]. Hence, 
the following fact can be stated. 
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Fact 3: Entries of the PU matrix Parer-variate polynomials 
whose monomials are subsets of a maximal set of monomials. 
The cardinality ofthis maximal set is O((N+l)')=O(l) since 
both N and rare constants. 

Withr=lO andN=2, the size of the maximal set in Fact 3 is 
310 ""2 16

. It is feasible to generate and store a polynomial with 
this many monomials in practice. 

18 
and t2 are tame automorphisms over Fn. Ift1=[t1 u ... , t1n]r, 
then 

i-1 

t1;(x) = X; + 1]; n X~U + /;; Vi E [n], 
j=l 

(24) 

For cp, a structure is used as suggested in equation (14) for 
the irreducible polynomial y as in equation (16) (in which the 10 

value of co is public) and the vector polynomial p as follows. 

where r12, ... , lJnEF\{O}, 1;1 , ... , SnEF\{O}, and bi/EN for all 
iE={2, ... , n} andjE[i-1]. 

Similarly, ift2=[t2 u ... , t2n]r, then 

n 

p;(x) = !Y;X,_;+1 + /3; n Vi E [r] 
j=r-i+2 

(22) 

Here, ai/EN are public exponents and a,, ~,EF\{O}, for all 
iE[r], are secret coefficients whose values are obtained from 
the set Kin Algorithm 2. The exponents aif directly influence 
the degree of the final public polynomials. As will be 
explained later, to make sure that some attacks are not appli­
cable on the system, these exponents are chosen proportional 
to the block length n, i.e., 

(23) 

As the result, the total degree of the public polynomials 
becomes proportional ton. Note that since all the computa­
tions are performed in GF(2m), all exponents are modulo 
2m- 1

. Hence, if 2~n, equation (23) will not have the desired 
effect. The following fact gives the complexity of construct­
ing cp. 

15 
min(i,K) 

t2Jx) = Xn-i+l + µi n 
)=2 

(25) 
V iE [n] 

where µ2 , ... , µnEF\{O}, ci/EN, for iE{2, ... , n} and jE 

20 {2, ... , min(i,k)},and Kis a constant such that K<n (a typical 
value is K=5). 

25 

The coefficients ri, and I;, in equation (25) are kept secret 
and their values are obtained from the set Kin Algorithm 2 

The exponents bi/ and cif are public. 
To keep the complexity of the encryption low, the restric­

tion bi/ and ci/~B is imposed for all i and j, where B is a fixed 
integer independent of the block length n. The following 
important fact is noted. 

Fact 6: Each entry oft is a multivariate polynomial that has 
30 a constant number of monomials independent of n. 

The complexities of evaluating t and C 1 are given in the 
following facts. 

Fact 7: Complexities of evaluating t and C 1 are both O(n2
). 

35 
Fact 4: The complexity of constructing cjJ as in equation 

The next step in generating the OWF 1jJ is multiplying 
(PocjJA)(x) and t(x) to get the vector polynomial o(x) as in 
equation (10). By Facts 5 and 6, the complexity of carrying 
out this multiplication is O(n2

). The vector polynomial o(x) 
consists of n multivariate polynomials whose number of 
monomials, given by the following fact, influences the com-

(14) is O(r)=O(l) since r is constant. 

The next step is composing P(z) and cp(x) to get the matrix 
polynomial (P oii)(x). Let P(z)=[pi/(z)], where 

E F[z] 

andc c ~0'C c Z~0r is a finite set such that ICl=O(l) by Fact 
3. To construct 

P(cp(x)) = [~ PUa'Pa(x)], 
ace 

cp"'(x) for aEC must be computed. 

Since the exponents aEC are independent of n, the com­
plexity of computing (p,pcjl )(x) is O(ICI). Hence, the total 
complexity of constructing (Pocp )(x) is 0(1Cln2 )=0(n2

). 

Using Fact 3, the following fact can be stated. 

Fact 5: Entries of the matrix (Pocp)(x) are multivariate 
polynomials whose monomials are subsets of a maximal set 
of monomials. The cardinality of the maximal set is indepen­
dent ofn. 

40 plexity of the encryption. 
Fact 8: Entries of ~(x) are polynomials whose monomials 

are subsets of a maximal set of monomials. The cardinality of 
the maximal set is O(n). 

The final step is generating a unitary matrix A and multi-
45 plying it by the vector polynomial il (x) defined in equation 

(11 ). As explained above, all unitary matrices are generated 
by multiplying copies of the building block U v,~ defined in 
equation (1). To reduce the complexity, only one building 
block is used for A with s=l and v taken from K. The algo-

50 rithm presented below can be used to generate A with com­
plexity O((n+r)2 )=0(n2

). Once one has the unitary matrix A, 
the final step is performing the multiplicationAiji. Entries of 
the matrix A are constants, but those of iji are multivariate 
polynomials that have O(n) terms by Fact 8. Hence, the com-

55 plexity of carrying out the multiplicationAiji is O(n(n+r)2 )= 
O(n3

). The number of monomials of the entries of 1jJ is given 
in the following fact. 

Fact 9: Entries ofljJ are polynomials whose monomials are 
subsets of a maximal set of monomials. The cardinality of the 

60 maximal set is O(n). 
All the exponents involved in the construction of 1jJ are 

fixed integers except the exponents aif that are proportional to 
n. Hence, the following fact can be stated about the total 
degree ofljJ. 

Having the matrix polynomial (Pocp )(x), an automorphism 65 

t is required to obtain the public vector-polynomial 1.jl. It is 
suggested that the composite automorphism t=t2 ot1 where t 1 

Fact 10: The total degree of the public polynomials in 1jJ is 
proportional to n. The complexities computed in this subsec­
tion are summarized in Table I. 
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Com-
plexity 

p O(n2
) p 0 <I> 

<I> 0(1) 

19 
TABLE I 

Complexity Complexity 

O(n2
) 0 O(n2

) 

O(n) A O(n2
) 

Complexity 

AA O(n3
) 

O(n3
) 

A toy example of the paraunitary asymmetric cryptosys­
tem is presented below. It is noted that this is not a practical 
example of the paraunitary asymmetric cryptosystem, and the 
resulting public-key system is insecure in practice due to 
small choices for parameters. The purpose of this example is 
to show how the system is designed and illustrate the structure 
of public polynomials. 

20 
B. The Complexity of Paraunitary Asymmetric Cryptosys­

tem 
Below, complexities of the key generation are discussed, 

along with the encryption, and the decryption in the parauni­
tary asymmetric cryptosystem. Adding up the complexities 
listed in Table 1, it is concluded that the total complexity of 
the public-key generation is O(n3

). The secret key consists of 
the paraunitary matrix P, the automorphism t, the unitary 
matrix A, and the constant vector b. By Table 1, the total 

10 complexity of generating these matrices and vectors is O(n2
). 

To compute the complexity of Algorithm 3 that is the 
encryption algorithm, it is noted that by Fact 9, the public 
polynomials 1.jJ 1 , ... , 1.j!n+r (entries ofljJ) share the same set of 
monomials. 

In the design, the computer algebra software Singular has 15 

been used. 

Let this set be {x"';:a,EZ~0n, iE[Ml} where MEIN is the 
cardinality of this set. Then, 

The block size is n=3 and r= 1. 
The operating finite field is GF(256) with the primitive 

element E. M 

Since r=l, the vector polynomial pis a one-dimensional 20 

multivariate polynomial. Its coefficients and exponents are 
choose as follows. 

!/J;(x) = ~ l/lij(x) 
j=l 

(B.1) 

For the irreducible polynomial 1.jJ(x) in equation (16), ui=Es 
since Tr( Es),.Q. These choices give the following irreducible 
multivariate polynomial for the vector polynomial cp(x) in 
equation (14). 

(B.2) 

In the example, the PU matrix P consists of only one degree­
one building block as in equation (3) with the vector v=[ e es 
e47f. For the unitary matrix A, the building block Uv.r; in 
equation (1) is used with s=l and v=[l e es e2 e33]r. The 
constant vector bis chosen to be b=[ e3 e2 1 e6 e17f. 

As stated in Fact 9, the entries of the OWF 1jJ are polyno­
mials whose monomials are subsets of a maximal set of 
monomials. Hence, one of the public polynomials is given. 
The rest of them have similar structures. 

If cp(x)=[ cjl 1 (x) cp3 (x) cp3 (x) cjl4 (x)]r, then the polynomial 
cjl 1(x) is as follows. 

\01(x) = 

E33 + £233 XI + £67 Xl + £75 X 3 + £159 X4 

El49X1X2 +E39x~ +£87 X1X3 +E?Sx~ +E209xfx~ 

Ell4xi +El50xfx2 +E20SX1X~ +ESSxfx3 

E25X~X3 +El60X1X~ +El53x1 +El94x~ +E209X1X~X3 

El6lxix~ +EI54xi +EI95xfx~x3 +E47x7 +.s216xi 

E33 x? X3 + £217 x~ + E202 xi X3 + £203 x~ X3 

£75 xix~ +Es? x? x~ + Ess xix~ + E2s xix~ 

El94x?x~ +El95x~x~ +El95xix~ +El93X1X~X~ 

El5lxix~ +ES9x~x~ +E210xiox~ +El62X1X~X~ 

E33xFx~ +E1ssx~x~x~ +El96xiox~ +E202xFx~ 

£203 xP x~ + ,s21S x7x~x~ + ,s204 x7x~x~ + £78 x~oxi2 

El60xF xi2 + £161 xFxi2 + ES9xixi4x~ 

El96xixi6x~ +El9Sxi6xF +El63x1xi6xF 

El54xi7xF +E92xi6xP +E213xisxF +El65xi6x~4 

E204xFxi4x~ +E1ssxixi6xF +El99xisx~3 

£221 x? xi6x~2 + E201 x? xi6x~3 + E162x~1 x~ox~ 

E92 xi x~2 x~2 +El 99 xi x~4 x~2 + E201 xF x~2 xF 

El65x~ox~sxF. 

B(3) 

where1.jli/EF. 
Thus, 1.jJ(x) has the matrix formulation 1.jJ(x)=1PX where 

25 1¥=[1.jli/] is an (n+r)xM matrix and X=[x o;, ... , x 0 Mf is a 
vector of length M. The complexity of computing 1PX is 
M(n+r). Since M=O(n) by Fact 9, the total complexity is 
O(n2

). The complexity of evaluating the vector X at the plain­
text block is O(n3

) by Fact 10. Hence, the total complexity of 

30 the encryption is O(n3
). 

For the decryption, Algorithm 4 is employed. The com­
plexity of computing v in this algorithm is O((n+r)2)=0(n2

). 

Since by Fact 3 every entry of the paraunitary matrix P has 
constant number of monomials, the complexity of computing 
PT(zl -i, ... 'zr-l) in Algorithm 4 is O(n2

). Using Fact 7, the 
35 complexity of computing the plaintext vector x in this algo­

rithm is O(n2
). Hence, the total complexity of the decryption 

is O(n2
). 

In summary, the complexity of paraunitary asymmetric 
cryptosystem in Table II. The complexity ofHFE public-key 

40 scheme is also provided for comparison. The table shows that 
the computational complexity of the public-key generation 
and the decryption in the paraunitary asymmetric cryptosys­
tem is lower than those in the HFE. It is worth mentioning that 
the complexities of encryption and decryption in RSA are 

45 both O(m3n3
) for a block length of size nm bits. In Table II, m 

is the number of bits per field element. 

TABLE II 

50 
Public-key Secret-key 
generation generation Encryption Decryption 

PAC O(m2n 3
) O(m2n2

) O(m2n 3
) O(m2n2

) 

HFE O(m2n4
) O(m2n2

) O(m2n 3
) O(m2n2 (m + logn)) 

55 Cryptanalysis of the Instance of the Paraunitary Asymmet-
ric Cryptosystem 

The entries of the vector polynomial 1jJ are the public infor­
mation in paraunitary asymmetric cryptosystem. In order to 
attack this scheme, one approach is solving the system of 

60 polynomial equations y,=1.jJ,(x), iE[n+r], for x where y= 
(y 1 , ... , y n+r) is the ciphertext. The other approach is finding 
the secret key from the public polynomials. Below, the vul­
nerability of paraunitary asymmetric cryptosystem to alge­
braic attacks initially developed for the HFE family is inves-

65 ti gated. Some of these attacks are quite general and applicable 
on other schemes. The vulnerability of the paraunitary asym­
metric cryptosystem for some bad choices of parameters is 
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also investigated. These attacks follow one of the approaches 
mentioned above. Results show that the practical instance of 
the paraunitary asymmetric cryptosystem, discussed above, 
is resistant to all these attacks. Note that key exhaustive­
search has the complexity 1Fln~2 128 that is infeasible. 
Attacks studied include the Grabner basis, univariate poly­
nomial representation, relinearization, XL and FXL algo­
rithms, and an attack for small r. 

Since the public polynomials ofHFE are homogenous, all 
attacks developed for HFE are specialized for homogenous 10 

polynomials. The public polynomials in paraunitary asym­
metric cryptosystem are not homogenous. However, they can 
be converted into the homogenous form using a technique 
employed in algebraic geometry for going from the affine 

15 
space to the projective space. Let 8, be the total degree of the 
public polynomial 1.jl, in the PAC, where iE[n+r]. Suppose 
8=max{8v ... , 8n+J· 

To convert the system of public polynomials into a system 
ofhomogenous polynomial equations, replace x, by X/X0 for 20 

all iE[n] and multiply through each equation by X0 
8

• 

The result is the following system of homogenous equa­
tions of degree 8 that consists ofn+r equations in n+l vari­
ables X0 , ... , Xn 

22 
als of the paraunitary asymmetric cryptosystem using the 
Grabner basis method is infeasible. 

B. Univariate-Polynomial Representation of the Public 
Polynomials 

This attack is based on the observation that any system of 
n multivariate polynomials inn variables over a field F can be 
represented as a single sparse univariate polynomial of a 
special form over an extension field K of degree n over F. This 
is summarized in the following lemma. 

Lemma 2: Let f,(x1 , ... , xn),iE[n] be any system of n 
multivariate polynomials in n variables over F with the car­
dinality q. Then, there are coefficients a0 , ... aqn_ 1 EK such that 
the system of polynomials is equivalent to the univariate 
polynomial 

qn-i 

F(x) = ~ a;x'. 
i=O 

The drawback of this approach is that the number of terms 
of the equivalent univariate representation FEK[x] is expo­
nentially related to the number of variables. However, when 

e e (X1 Xn) . X0 y; = X0 1/1; -, ... , - , t E [n + r]. 
Xo Xo 

(26) 

25 the polynomials f, are homogenous, which is the case in HFE, 
the polynomial F is sparse. This fact, stated in the following 
lemma, significantly enhances the attack on the HFE using 
univariate polynomial representation. 

From Fact 10, it is noted that the total degree of the homog­
enous polynomials in this system is proportional to n, i.e., 
8=0(n). 

A. Grabner Basis 

Lemma 3: Let C be any collection of n homogenous mul-
30 tivariate polynomials of degree 8 inn variables over F. Then, 

the only powers of x that appear in the univariate polynomial 
representation F over Kare sums of exactly 8 (not necessarily 
distinct) powers of q, i.e., q'1+ ... +q''. Hence, the number of 
nonzero terms and the degree ofF are both O(n8

). 

To apply the above technique to solve the homogenous 
form of the public polynomials in the PAC in equation (26), 
recall that the degree of the homogenous polynomials 8 is 
proportional ton. Hence, the degree and the number of non­
zero terms of the univariate polynomial representation F are 

40 both O(nn). The complexity of root finding algorithms, e.g., 
Berlekamp algorithm, is polynomial in the degree of the 
polynomial. This results in an exponential time algorithm to 
find the roots of F. Therefore, this approach is less efficient 
than the exhaustive search. 

Grabner basis is the classical method for solving systems 35 

of polynomial equations. This technique can theoretically 
solve all systems of this kind. However, its complexity is 
exponential in the number of variables although there is no 
closed form formula for it. The complexity of computing a 
Grabner basis for the public polynomials of the HFE is infea­
sible using the Buchberger's algorithm that is the classical 
algorithm for computing the Grabner basis. However, it is 
completely feasible using the algorithm F 5 discussed by J. C. 
Faugere et al., in "Algebraic cryptalanalysis of hidden field 
equation (HFE) cryptosystems using Grabner bases," in Adv. 45 

Cryptol.-CRYPTOL '03, vol. 2729, Lecture Notes in com­
puter Science, pp. 44-60. The complexities of solving the 
public polynomials of several instances of the HFE using the 
algorithm F 5 are provided Faugere. The special form of the 
public polynomials in the HFE scheme makes it vulnerable to 
different attacks. In particular, it implies a relatively small 
upper bound on the degrees of the polynomials that occur 
during the Grabner basis computation. Moreover, as 
expressed by Faugere, "A crucial point in the cryptanalysis of 
HFE is the ability to distinguish a random algebraic system 
from an algebraic system coming from HFE." The public 
polynomials in the PAC are not homogenous. Moreover, they 
look random since they are derived from the general formula 

C. Relinearization, XL, and FXL Algorithms 
These techniques, developed to attack the HFE family, are 

methods for solving highly overdefined systems of polyno­
mial equations, i.e., systems consisting of En2 equations inn 
variables where E>O. In this situatio~ the complexity of these 

50 algorithms is approximately n°C11 'l. However, when the 
number of equations is n+r for some l~r~n, then these 
techniques are not efficient. In order to mount an attack on the 
HFE scheme using these methods, the equivalent univariate 
polynomial representation of the public polynomials are 

55 obtained using Lemma 2. By L
0
emma 3,niF has the form G(x)= 

xGxr where G=[gi/] and x=[ xq , ... , xq ] . It has been shown 
Thaf the cryptanalyst can use this matrix representation to 
obtain a system ofO(n2

) polynomial equations in O(n) vari­
ables. The relinearization, XL, and FXL algorithms are used in equation (7) relating an arbitrary system of polynomial 

equations to PU matrices. 
In order to apply the methods ofFaugere to the paraunitary 

asymmetric cryptosystem, the system ofhomogenous poly­
nomials in equation (26) is employed. However, the total 
degree of the resulting system is proportional to the numberof 
variables n. It is explained by Faugere that in this case, there 
does not seem to exist a polynomial time algorithm to com­
pute the Grabner basis. Hence, solving the public polynomi-

60 to solve this system. Sincethehomogenous form of the public 
polynomials of the PAC in equation (26) are not quadratic, 
their univariate polynomial representation is not quadratic. 
Hence, it does not have a matrix representation as G(x). 
Therefore, the attack developed by A. Kipnis et al., in "Cryp-

65 tanalysis of the HFE public key cryptosystem by relineariza­
tion," in Adv. Cryptol.-CRYPT0'99, 1999, vol. 1666, Lec­
ture Notes in Computer Science, pp. 19-30 is not applicable 
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on the PAC. However, the adversary may directly apply the 
relinearization, XL, or FXL algorithm, the system ofhomog­
enous polynomials in equation (26). In the following, it is 
shown that this approach is unsuccessful. 

The relinearization technique is developed Kipnis for solv­
ing overdefined systems of homogenous quadratic polyno­
mial equations. Unfortunately, it has been shown that the 
relinearization technique is not as efficient as one may expect 
since many of the newly generated equations are dependent. 
Hence, an extended relinearization (XL) algorithm was pro- 10 

posed by N. T. Courtois, et al., in "Efficient algorithms for 
solving overdefined systems of multivariate polynomial 
equations," Adv. Cryptol.-EUROCRYPT'OO, 2000, vol. 
1807, Lecture Notes in Computer Science, pp. 392-407. It is 
claimed to be the best algorithm for highly overdefined sys- 15 

terns of multivariate homogenous equations. Using the 
homogenous polynomials of equation (26), a system of n+r 
homogenous equations in n+l variables are provided where 
1 ~r~n. It has been that in this case, the XL has exponential 
complexity. Therefore, the XL algorithm cannot be directly 20 

used to mount an attack on the PAC. 
A variant of the XL algorithm, called fixing and XL (FXL ), 

was introduced by Courtois. In this algorithm, some variables 
are guessed to make the system slightly overdefined. Then, 
the XL algorithm is applied. The main question is how many 25 

variables must be guessed. Although more guesses make the 
system more unbalanced, they add to the complexity of the 
algorithm. The optimum number of guesses is provided by 
Courtois. Using this optimum value, the FXL has the expo­
nential complexity for solving the system of public polyno- 30 

mials in PAC. Hence, the FXL algorithm can not be efficiently 
applied on the PAC. 

D. An Attack for Small r 

24 
the PAC, introduced above, does not have this problem. The 
automorphism t employed in the practical instance is the 
composition of two tame automorphisms t 1 and t2 given in 
equations (24) and (25). By the special structure of these 
automorphisms, every variable appears in at least K entries of 
t. 

2. In the example given here, F[ cp(x)] has the lowest tran-
scendental degree. To avoid such attacks, the value of r should 
not be small. In general, in order to find D, the adversary must 
examine the set Fr that has cardinality 1Flr=28 r. For the typical 
choice r=lO, the size of this space is 280

. Thus, finding D 
becomes infeasible for the adversary. 

In summary, a framework was introduced to construct pub­
lic-key cryptosystems using paraunitary (PU) matrices over 
finite fields. This framework evolves from relating general 
systems of multivariate polynomial equations to the parauni-
tary matrices. Using the general formula expressing this rela­
tionship, a practical trapdoor one-way function (OWF) has 
been designed. The difficulty of inverting the OWF is based 
on the NP-hard problem of solving systems of multivariate 
polynomial equations. A new public-key cryptosystem 
paraunitary antisymmetric cryptosystem has been disclosed 
based on the trapdoor OWF. To encrypt a message using PAC, 
public multivariate polynomials are evaluated at the message. 
Hence, comparing to other public-key cryptosystems such as 
RSA and ElGamal the encryption algorithm is efficient. A 
practically efficient instance of the paraunitary antisymmetric 
cryptosystem was described by making simplifications to the 
general description. The PU matrix used in the instance of 
paraunitary antisymmetric cryptosystem can be generated 
using fully-parameterized elementary building blocks. There 
are algorithms to efficiently generate these building blocks. 
Therefore, the key setup is fast and efficient in PAC which is 
another distinguishing feature of the scheme. By developing This attack is applicable on the PAC when r is small, 

specially r=0.1, and also when t=[tvK, tn]rin equation (12) is 
a tame automorphism of the form 

(27) 

35 efficient realization of the instance of the paraunitary anti­
symmetric cryptosystem, it has been shown that the com­
plexities of the public-key generation and the decryption in 
the paraunitary antisymmetric cryptosystem are lower than 
those in the HFE. where g,EF[x1 , K, x,_ 1]. The attack for r=l is now briefly 

described. In this case, cjJ is a multivariate polynomial in x, 40 

denoted by cp(x), i.e., 

The adversary fixes x 1 , ... , x,_ 1 and computes the value of 1jJ 

Multivariate Signatures 
Disclosed below are details regarding techniques for gen­

erating multivariate signatures using algebraic techniques. 
More specifically, this involves an algebraic framework for 
designing trapdoor one-way functions with applications in 

45 multivariate signature schemes. The framework involves PU 
matrices (discussed above), which are a special subset of 
invertible polynomial-matrices. The algebraic framework is 
used to implement a paraunitary digital-signature scheme 

for all xnEF. There exists a subset D c F and a constant cjl0 EF 
such that for all xnED, cp(x)=cp0 . The PU matrix becomes the 50 

constant matrix P( cp0 ) over D. Because of the special structure 

(PDSS). 
In the disclosed approach, t is designed to be an arbitrary 

bijection over pn. The difficulty is that for any EFn, solving the 
equation y=P(x)t(x) for x requires knowledge of the value of 
P(x) atx that in turn requires the knowledge of x. To overcome 
this paradigm, an r-variate paraunitary matrix PEPUn(F 

of the automorphism t in equation (27), the values of the 
polynomials t1 , ... , tn-l do not change over D since they 
depend only on x1 , ... , xn_ 1 . The only polynomial that varies 
over Dis tn. This implies that E={ 1.jJ(x):xnED} is a one-dimen­
sional subspace ofpn+1

. Examination ofE gives the value of 
the last column of P up to scaling. 

In the next step, the adversary fixes Xv ... , xn_2 and 
computes the value ofv for all (xn_ 2 , xn)EF2

. Using a similar 
approach, the adversary can obtain some information about 
the next-to-the-last column of the PU matrix P. Repeating this 
process, the adversary is able to obtain useful information 
about the PU matrix. 

This attack works for two reasons: 

55 [ z1 , ... , zr]) is used for some rEN with the restriction 1 ~r~n. 
This paraunitary matrix is composed with a polynomial vec­
tor cp(x,x')E(F[x,x'JY where x'=(x\, ... , x'r). Let <PAx) and 
<PxCx') denote the polynomial vector cp(x,x') when x' and x are 
fixed, respectively. The only restriction imposed on cjJ is that 

60 for any xEFn, the polynomial mapping iix:Fr -;.pr must be a 
bijection. In a single formula, the following mapping is used: 

1. The variable xn appears only in the last entry of the 65 

automorphism t. Hence, by fixing x1 , ... , xn-1' the polyno­
mials tv ... , tn-l become constant. The practical instance of 

(x,x')~(Po<j> )(x,x')t(x) 

To prove that that this mapping satisfies all the properties 
required for a signature scheme, let yEFn be an arbitrary 
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vector. Randomly choose a vector z=(zu ... , zr)EFr such that 
z,,.o for all iE[r], and set o(x, x')=z. Since tis an efficiently 
inverti!;le bijection, the value of x is uniquely obtained as 
x=C 1 (P( z )y). In addition, uniquely obtain the value of x' from 
the equation <Px(x')=z. Since this procedure is valid for all 
yEFn, the mapping 1jJ is surjective. Moreover, by the presented 
procedure, the value of x depends on the random choice for z. 
Hence, 1jJ is a many-to-one function that can be efficiently 
inverted. 

The signature-generation algorithm of the PDSS is pre- 10 

sented in Algorithm 5. 

26 
The complexity of the PDSS is illustrated in Table III. 

TABLE III 

Public-key Secret-key Signature 
Generation generation generation Verification 

PDSS O(m2n3
) O(m2n2

) O(m2n3
) O(m2n3

) 

HFE O(m2n4
) O(m2n2

) O(m2n2
) O(m2n2

) 

Thus, cryptographic systems and methods that are based on 
paraunitary matrices have been disclosed. It is to be under­
sto~d that the above-described embodiments are merely illus­
trative of.son:e of the many specific embodiments that repre­
sent apphcat10ns of the principles discussed above. Clearly, 

Algorithm 5: Sign 

INPUT: Message y E F" y E F" 
OUTPUT: Signature (x, x') E F"+r 

15 numero1:'s an~ other arr~gements can be readily devised by 
~hose ~killed m the art without departing from the scope of the 
mvent10n. 

What is claimed is: 1. Randon:ly choose z = (z 1
, ... ,Zr) EV such that z;" 0 for all i E [r], 

2. x = C 1(P(z)y, x' ~ <i>x - 1(z) 
3. Return (x, x') 

For verification, the signature (x, x') of the message y is 
accepted if y=o(x, x'). Since the signature generation depends 

1. A computer program product embodied in a non-transi-
20 tory computer readable medium, the computer pro gram prod­

uct adapted to effectuate a public-key cryptographic method, 
the method comprising: 

on the random choice for z, the PDSS is a non-deterministic 
scheme. This is a desirable feature that was not possible in the 

25 

C* scheme and its variants. The verification algorithm of the 
PDSS consists only of evaluating the public polynomial­
vectorljJ at the signature. Since the polynomial evaluation can 
?e performed very fast and efficient, the signature verification 
m the PDSS has the same properties. This feature makes the 

30 

PDSS very attractive for many applications in which a mes­
sage is signed only once, but verified many times. It is worth 
noting that the PDSS operates on any finite field F. with 
m~2. ' 

The key-generation algorithm of the PDSS is presented in 
35 

Algorithm 6. 

Algorithm 2: Key generation 

INPUT: Master key k E F" 
PUBLIC OUTPUT: Polynomial vector 0 E (F[x, x'])n 
SECRET OUTPUT: An r-variate paraunitary matrix P E PUn(F[ z ]), 

a vector polynomial in <j> E (F[x, x'])r, 
an automorphism t EAut(F[x]). 

1. ?e~erate anr-variate paraunitary matrix PEPUn(F[ z]) by 
multiplymg elementary building blocks whose parameters 
are taken from the set K. 

40 
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2. Using the vectors in K as coefficients, construct a vector 50 

polynomi.al cjJE\F[x,x'JY with the following properties: (1) it 
mus~ .be m'.'ert1ble when xEFn is fixed, and (2) it must be 
sem1-mvert1ble when x'EFr is fixed. 

3. Construct an automorphism tEAut(F[x]) using the vec-
tors in K as coefficients. 55 

4. Construct the vector polynomial (Pocp )(x,x')t(x). 

defining a paraunitary matrix over a field having charac­
teristic two; 

generating a plaintext vector x; and 
masking the plaintext vector x by evaluating a bijective 

vector at x and multiplying the result by the paraunitary 
matrix evaluated at x. 

2. The computer program product recited in claim 1 
wherein the paraunitary matrix is derived by: ' 

multiplying a predetermined number of building blocks 
whose parameters are obtained from the plaintext vector 
and its bit permutations. 

3. A method comprising: 
creating a paraunitary matrix, P(x), in n variables of the 

form: 

r

Pu(x) 

P(x) = : 

Pn1(x) 

creatin? a polynomial vector t(x) whose entries are poly­
nomials and which is a bijection; 

creating a polynomial vector cjJ A(x) by multiplying the 
p~raunitary matrix P(x) by the polynomial vector t(x); 

makmg the polynomial vector cjJ A(x) public while keeping 
the paraunitary matrix P(x) secret; 

en~rypting,. by a. computer processing device, plaintext 
mfo~m_atJon usmg the polynomial vector cjJ A(x); 

transm1ttmg the encrypted plaintext information to a site 
having the paraunitary matrix P(x); and 

decrypting the encrypted plaintext information using the 
paraunitary matrix P(x). 

* * * * * 


