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“The Lord spake unto me, saying: … my grace is sufficient for the meek, that they shall 

take no advantage of your weakness; And if men come unto me I will show unto them 

their weakness. I give unto men weakness that they may be humble; and my grace is 

sufficient for all men that humble themselves before me; for if they humble themselves 

before me, and have faith in me, then will I make weak things become strong unto them.” 

 Ether 12:26-27 
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ratio from A-2 upon T10. The data is compared at a bulkhead 

temperature of 640 K. 

168 

Figure B. 27: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the kinematic viscosity. The data is 

compared at a bulkhead temperature of 640 K. 
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Figure B. 28: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the surface tension. The data is compared at 

a bulkhead temperature of 640 K. 
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Figure B. 29: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the fuel density. The data is compared at a 

bulkhead temperature of 640 K. 
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Figure B. 30: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the H/C ratio. The data is compared at a 

bulkhead temperature of 640 K. 
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Figure B. 31: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the molecular weight. The data is compared 

at a bulkhead temperature of 640 K. 
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Figure B. 32: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the lower heating value. The data is 

compared at a bulkhead temperature of 640 K. 
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Figure B. 33: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the percentage of aromatics in the fuel. The 

data is compared at a bulkhead temperature of 640 K. 
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Figure B. 34: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the percentage of iso-paraffins in the fuel. 

The data is compared at a bulkhead temperature of 640 K. 
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Figure B. 35: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the smoke point. The data is compared at a 

bulkhead temperature of 640 K. 
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Figure B. 36: Dependence of the percent difference in blowout equivalence 

ratio from A-2 upon the radical index. The data is compared at a 

bulkhead temperature of 640 K. 
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Figure C. 1: %vup < -30 m/s at 450 K plotted against the DCN. These results 

are shown using slightly lower thresholds than the values used in 

Section 6.4. Since the role of preferential vaporization on re-

ignition is unclear, both the 20% DCN and the DCN based on the 

entire fuel composition are shown for fuel S2. Error bars 

represent 95% confidence intervals. 
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Figure C. 2: %vup < -30 m/s at 450 K plotted against the DCN. These results 

are shown using slightly higher thresholds than the values used 

in Section 6.4. Since the role of preferential vaporization on re-

ignition is unclear, both the 20% DCN and the DCN based on the 

entire fuel composition are shown for fuel S2. Error bars 

represent 95% confidence intervals. 
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Figure D. 1 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 2 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 3 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 4 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 5 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 6 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 7 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 8 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 9 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 10 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 11 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 12 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 13 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 14 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 15 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. A-2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 16 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 17 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 18 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 19 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 

194 

Figure D. 20 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 21 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 22 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 23 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 24 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. C-1 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 25 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 26 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 27 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 28 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 29 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 30 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 31 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 32 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. N-dodecane is burning in these 

images with an air inlet temperature of 450 K. 
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Figure D. 33 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 34 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 35 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 36 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 37 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure D. 38 Twelve successive CH* chemiluminescence images taken during 

an LBO precursor event. The star denotes the most upstream 

spatial location of luminosity. S2 is burning in these images with 

an air inlet temperature of 450 K. 
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Figure E. 1 PDFs of vup for A-2, C-1, n-dodecane, and S2 at 450 K, taken as 

ϕ-ϕLBO→0. The axial flow velocity PDFs UTotal and UCRZ are also 

shown. 
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Figure E. 2 PDFs of vup for A-2, C-1, n-dodecane, and S2 at 450 K, taken as 

ϕ-ϕLBO≈0.025. The axial flow velocity PDFs UTotal and UCRZ are 

also shown. 

215 

Figure E. 3 PDFs of vup for A-2, C-5, n-dodecane, and S2 at 300 K, taken as 

ϕ-ϕLBO→0. 
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Figure E. 4 PDFs of vup for A-2 at 450 K, taken as ϕ-ϕLBO→0. The axial flow 

velocity PDFs UTotal are also shown. 
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Figure E. 5 PDFs of vup for C-1 at 450 K, taken as ϕ-ϕLBO→0. The axial flow 

velocity PDFs UTotal are also shown. 
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Figure E. 6 PDFs of vup for n-dodecane at 450 K, taken as ϕ-ϕLBO→0. The 
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Figure E. 7 PDFs of vup for S2 at 450 K, taken as ϕ-ϕLBO→0. The axial flow 
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SUMMARY 

 Lean blowout is a process whereby a previously stable flame is either extinguished 

or advected out of its combustor. In aviation applications, blowout is a direct threat to 

passenger safety and it therefore sets operational limits on a combustor. Understanding the 

blowout problem is a key prerequisite to the deployment of alternative aviation fuels, as 

these fuels are expected to have comparable flame stability characteristics as traditional jet 

fuels. In order for a new jet fuel to be certified, it must satisfy a series of performance 

criteria, one of which is lean blowout. Although much research has been done to understand 

lean blowout in premixed gaseous combustors, fewer studies have investigated this 

phenomenon in liquid fueled systems. Furthermore, the liquid blowout studies that do exist 

have often come to different conclusions, as part of the researchers argue that blowout is 

limited by fuel vaporization characteristics and the others conclude that chemical properties 

control the blowout physics. Consequently, the effect that different fuel physical and 

chemical properties have on the stability of spray flames remains a scientific unknown. 

This knowledge gap hinders the ability of chemists to develop optimized fuels and raises 

the risk that a prospective fuel will fail the certification process, thereby discouraging 

potential investors. The objective of this work is to identify the fuel properties that govern 

lean blowout and to characterize their effect on the physics involved in the blowout process. 

 The blowout performance of 18 different liquid fuels were experimentally 

compared in an aircraft relevant combustor. The methodology that was used clearly 

demonstrated differences in the fuel-air ratio at blowout between fuels. Identifying the fuel 

properties that are responsible for these fuel-air ratio differences is challenging for three 



 xxx 

primary reasons. First, the fuel properties themselves are often correlated with each other, 

making it difficult to isolate which properties actually limit lean blowout. Second, the 

sensitivity of blowout to fuel physical properties is likely to change with combustor 

operating conditions, as differences in air inlet temperature can significantly affect droplet 

evaporation rates. Third, some of the fuels have unique preferential vaporization 

characteristics which can cause the combustion chemistry to vary as the droplets evaporate. 

In other words, local fuel properties may not represent the characteristics based on the 

entire composition of the fuel. A number of approaches were used in this work to address 

each of these issues. Custom fuels were introduced that were specifically designed to 

decouple interrelated fuel properties and to accentuate the significance of preferential 

vaporization on lean blowout. Additionally, the experiments were repeated at 3 different 

air inlet temperatures: 300 K, 450 K, and 550 K. These different temperatures are intended 

to vary the effect of fuel physical properties. Lastly, a multiple linear regression analysis 

was performed to determine the relative contributions of each of the fuel properties on the 

lean blowout equivalence ratio. This regression was performed using a machine learning 

technique that accounted for correlations between variables and eliminated insignificant 

variables from consideration. 

This work additionally seeks to characterize the effect of fuel properties on the 

processes that precede blowout of the flame, thereby providing an explanation for why 

certain fuel properties govern lean blowout boundaries. It is motivated by prior work on 

gaseous systems, showing that the blowout phenomenon is a culmination of several 

intermediate processes, initiating with local extinction of reactions (“stage 1”), followed 

by large scale flame and flow disruption (“stage 2”), finally leading to blowout. By 
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quantifying the time variation of flame luminosity and extinction “events” as a function of 

blowout proximity, it was demonstrated that similar local extinction processes are 

operative in and lead to blowout in spray flames. In addition, high speed imaging was used 

to analyze the space-time evolution of the most upstream point of the flame near blowout.  

Fast motion of these points upstream relative to the flow velocity were interpreted as flame 

re-ignition. These re-ignition processes become manifest when the stability of the flame is 

severely threatened by local extinction and often allow for recoveries that extend flame 

burning. Specific fuel properties were shown to have a clear effect on a flame’s propensity 

for extinction and re-ignition.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Conventional jet fuel is a refined fraction of crude oil that is selected to have the 

appropriate freeze point and distillation characteristics to avoid phase changes at high 

altitude. As of 2007, the global aviation demand required the consumption of 177 million 

gallons of jet fuel each day, with 40% of this usage coming from the United States [1]. The 

dependence of global transportation on oil has historically made it the most coveted 

resource in world trade. For example, in 2006, oil exports constituted 13% of world trade 

expenditures [2]. This consumption rate can only be expected to continue increasing, as the 

global energy demand is projected to double by 2050 [3]. Since oil is a finite resource, this 

creates problems in terms of forecasting the limits of its supply. Scholars are divided about 

the imminent risk of oil reserve depletion [4-7]. However, most predict that between the 

years 2030-2070 the demand for oil will begin to exceed its supply [4, 7]. A range of 

asymmetric predictions for this oil production peak, along with estimates for when the 

world’s petroleum reserves will be exhausted, are shown in Figure 1.1. 

Climate change is another key issue that pressures the transportation industry to 

improve its existing technology. Reports estimate that by the year 2100, the average global 

temperature will increase 2-11.5 degrees Fahrenheit [8]. Other deleterious ecological 

effects are expected to result from climate change, including an estimated 7-23 inch rise in 

the average sea level, increased forest fires, droughts, heat waves, and diminished forest 

populations.  
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Figure 1.1: Timeline and forecasting of oil production, taken from [7]. 

Aviation contributes to climate change through a variety of ways, including 

greenhouse gas emissions, ozone production, and contrail formation. 9-11% of the United 

States’ greenhouse gas output comes from aviation [9, 10], and the high altitude conditions 

where airplanes operate cause their pollutant emissions to be especially harmful [9, 11]. 

For example, NOx emissions in the lower stratosphere and upper troposphere lead to ozone 

production, which has a significant global warming effect [8]. Furthermore, soot emissions 

from aircraft engines are dangerous because they reduce air quality, are a health hazard, 

and promote the formation of contrails that also raise the global temperature [12].  

These concerns over global climate change, air quality, and flexibility in fuel 

sourcing continue to motivate interest in alternative jet fuels. Alternative fuels mitigate the 

oil supply issue and their low aromatic content [13] greatly reduces soot emissions in 

comparison with conventional jet fuels [11]. Although aromatics have the benefit of 

enhancing seal swelling capacity, they are generally an undesirable jet fuel compound [14]. 
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In addition to promoting soot formation [15], aromatics lower the H/C ratio of the fuel, 

which increases greenhouse gas emissions [8] and generally lowers the heating value.   

However, the fuel certification process is a major hurdle toward the broader 

implementation of alternative fuels.  The process is costly, time consuming, and may not 

be ultimately successful, which adds significant risk for potential suppliers [9]. In addition 

to a host of physical properties, certification depends upon the fuel’s impact on engine 

operational characteristics, including altitude re-light, cold start, and lean blowout. Lean 

blowout is a process whereby a previously stable flame can no longer be sustained in a 

combustor. It manifests itself as either the complete extinction of the flame or the advection 

of the flame out of the combustor. The sensitivity of lean blowout to different fuel 

properties makes understanding the relationship between fuel properties and flame stability 

a scientific imperative for expediting the fuel certification process.  

Independent of its relevance for implementing alternative fuels, lean blowout is a 

major concern for the broader aviation industry because it is a significant threat to 

passenger safety. In the event that an engine does blow out, its propulsive capacity is lost 

and a difficult high altitude relight process is required to restore engine operation. Lean 

blowout is most likely to occur in practice either during transients (i.e., rapid accelerations, 

rapid decelerations, or sudden changes in external aerodynamic conditions) [16-18] or as 

an engine’s fuel-air ratio is decreased while slowing the plane down before landing [9, 19]. 

Engine control systems avoid these issues by operating engines in a quasi-steady state 

manner [20] and keeping the fuel-air ratio well above the lean blowout limit. However, 

these strategies limit engine performance, reduce available operating ranges, and increase 

NOx emissions. Ideally, engines would operate at the leanest conditions that are safely 
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achievable in order to reduce thermal NOx. Furthermore, selecting appropriate engine 

operating conditions is complicated by the fact that the lean blowout limit is not precisely 

known [17]. Developing a deeper understanding of the physics associated with the lean 

blowout process is a prerequisite for achieving improvements in these areas. The objective 

of this work is to identify the fuel properties that govern lean blowout and to characterize 

their effect on the physics involved in the blowout process. 

The manner in which fuel properties influence blowout is a strong function of the 

degree of vaporization of the fuel and its degree of mixing with air. Chemical kinetic rates, 

ignitability, fuel-air mixing quality, atomization, and the vaporization characteristics of a 

fuel can all influence blowoff limits. Although each of these factors are involved in the 

blowoff phenomenon, a smaller number of these physical processes may be dominantly 

responsible for controlling the blowoff fuel-air ratio. This dominant limiting process 

depends on the type of combustion system and the operating conditions. For example, 

gaseous premixed, gaseous nonpremixed, and liquid fueled systems can all have different 

fuel property sensitivities. Furthermore, the blowout boundaries of these different systems 

are also sensitive to the air inlet temperature, as this can amplify or suppress certain 

physical processes. Therefore, blowoff will be discussed individually from the perspective 

of gaseous premixed (Section 1.2), gaseous nonpremixed (Section 1.3), and liquid fueled 

combustors (Section 1.4) in order to prepare the reader for the content of this thesis. 

Combustor geometry considerations become important because they influence the 

flow field involved in the flameholding process. As incoming reactant velocities in gas 

turbine combustors can be 100+ times greater than the turbulent flame speed [21], 

recirculation zones are used to slow the approach flow down and enhance the flame speed 
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by heating incoming reactants with hot products [14]. These hot recirculating products also 

provide a constant ignition source for the incoming mixture [21]. Two common techniques 

for creating these recirculation zones are swirling the incoming flow to promote the vortex 

breakdown process and introducing a blockage in the flow using a bluff-body. Details 

about the flame stabilization physics associated with both of these approaches will be 

discussed in Sections 1.2.2 and 1.2.3.  

1.2 Premixed Gaseous Lean Blowout Studies 

In purely premixed and pre-vaporized systems, blowout is a kinetically limited 

phenomenon, controlled by the relative balance of chemical rates and fluid mechanic time 

scales, i.e., a Damköhler number.  

 𝐷𝑎 =
𝜏𝑓𝑙𝑜𝑤

𝜏𝑐ℎ𝑒𝑚
 (1.1) 

Beginning with DeZubay [22], many correlations have been proposed in the 

literature to predict lean blowoff limits. DeZubay’s correlation has since been modified 

slightly to account for air inlet temperature effects, and the accepted form is shown below 

[23]. 

 
𝐷𝑒𝑍 =

𝑈 ∗ 104

𝑃0.95𝐷0.85𝑇1.2
 (1.2) 

It is essentially a ratio between a flow time (~U/D) and a chemical time (~PT). Correlations 

proposed by other researchers are similar in form and all relate back to the basic Damköhler 
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number relationship [22-27]. These scalings are effective at predicting lean blowout limits 

under a variety of different pressures, temperatures, and combustor geometries.   

Open debate continues within the combustion community about the chemical time 

scale that should be used in the Damköhler number relationship. Different 

phenomenological ideas have been put forth in the literature for the details, including (1) 

well-stirred or perfectly stirred reactor (PSR) descriptions for the recirculating flow field 

[28-31], (2) autoignition scaling based upon the relative time that reactants are exposed to 

hot products in shear layers [32, 33], and (3) aerodynamic straining, where shear layer 

stabilized flames can only withstand certain levels of flame stretch before extinguishing 

[27, 34-36]. The different controlling kinetic scalings identified in these theories, i.e., the 

blowout time scale of a PSR, the autoignition time scale and the extinction stretch rate, can 

have quite different sensitivities to fuel composition, through both kinetic and, in the latter 

case, differential diffusion effects. However, determining which of these parameters is 

governing is complicated by the fact that they are often somewhat correlated with each 

other. 

The autoignition based scaling was originally developed by Zukoski in his 1954 

PhD thesis [32]. Zukoski concluded that the key region for flame stabilization is the 

combusting shear layer that separates the recirculation zone behind a bluff-body from the 

incoming reactants. A subequent study by Zukoski and Marble [33] concluded that flame 

stability depends on the amount of time that the fresh reactants spend in this combusting 

shear layer. In this model, blowoff occurs when the fresh gas spends insufficient time in 

the shear layer for ignition to occur. Heulskamp et al. [26] synthesized a wide range of 

bluff-body blowoff data available in the literature and found that the Damköhler number 
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scalings were most effective when the ignition delay time of the fuel was used as the 

chemical time. Potter and Wong came to a different conclusion when they performed a 

study very similar to that of Zukoski and Marble, but with a different fuel [37]. They found 

that for a similar geometry combustor and flameholder, the critical flame stability time was 

almost identical with that determined by Zukoski and Marble. Considering that different 

fuels were compared in both studies, they concluded that the key chemical time scale must 

depend on something like the flame speed, which is similar between hydrocarbon fuels, 

rather than the autoignition time which varies greatly between hydrocarbons.  

Other researchers have questioned [34, 38] whether this ignition based model is 

physically realizable. The main issue is that it describes a mechanism of interaction 

between hot recirculating products and incoming reactants that can’t occur for a continuous 

flame sheet. Premixed flames serve as a boundary between reactants and products, and they 

can only interact at holes in the flame. However, detailed PIV and CH-PLIF measurements 

by Foley [39] showed that the mixing of hot products with incoming reactants upstream of 

the flame attachment point was critical for flame stability.  

Longwell et al. [28] viewed the recirculation zone behind a bluff-body as a well-

stirred reactor. They argue that the high heat release rates inside of the recirculation zone 

can only be attained by homogeneous combustion. In this model, flame stability depends 

on the residence time within this homogeneously combusting region. In other words, the 

flame blows out when the mass flow rate of the incoming reactants exceeds the 

consumption speed of this homogeneous mixture. Others who supported this well-stirred 

reactor model include Blust et al. [29], Williams et al. [30], and Kundu et al. [31], although 

the latter two groups modified the flame stability condition to be a budget between heat 
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gained by the recirculation zone through combustion and lost by igniting incoming 

reactants. The results of Kundu et al. [31] showed support for this model as the lean blowoff 

velocity increased linearly with the recirculation zone strength. Furthermore, using a few 

of the fuels that were considered in this work, the experimental well-stirred reactor results 

of Stachler et al. [40] showed that the derived cetane number (DCN) was the fuel property 

that correlated best with lean blowout boundaries. It will be shown later that multiple liquid 

fueled studies have come to the same conclusion. However, support for the well-stirred 

reactor model has weakened as detailed diagnostics measurements show no evidence of 

reactions in the recirculation zone, except very near blowoff [41, 42]. In a review paper on 

flamelet structures, Driscoll [42] cites a number of papers which conclude that strong 

recirculation zones cause the flame to extinguish before reactions can occur 

homogeneously over a broad spatial region.  

Yamaguchi et al. [35] were the first to suggest an extinction based blowoff 

mechanism. Both this group and Pan and Ballal [43] postulated that excessive stretch rates 

near the end of the bluff-body recirculation zone cause the flame to extinguish in this 

region. Once this occurs, the flame blows out shortly thereafter. Zhang et al. [38] 

experimentally tested the blowoff limits of swirl stabilized flames fueled by a range of 

H2/CH4 mixtures with very different diffusivities. They showed that extinction/re-ignition 

processes precede blowoff and begin at different equivalence ratios for each of the fuels. 

The Damköhler number, calculated using the inverse of the extinction stretch rate for the 

chemical time scale, was able to account for the fuel composition dependence on the rate 

at which these extinction/re-ignition processes occurred. However, the extinction/re-

ignition rate did not have a consistent dependence between fuels on the Damköhler number 
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when the residence time of a well-stirred reactor or the ratio of the premixed flame 

thickness and laminar flame speed was used as the chemical time scale. Further support for 

the extinction model came from a study by Stwalley and Lefebvre [44], which tested lean 

blowoff boundaries using a variety of irregularly shaped flameholders. Many of the shapes 

that they used included notches that were intended to disrupt the flame stabilizing shear 

layers. They found that flameholder shape had little effect on the recirculation zone size 

but shapes which disrupted the shear layers always led to diminished flame stability. 

According to the well-stirred reactor and ignition models, increased shear layer stretch rates 

should not promote blowoff as long as the recirculation zone strength and size are 

maintained.  

Foley [39] examined the flame attachment process in detail for a shear layer 

stabilized flame. Although the extinction stretch rate correlated well with lean blowout 

boundaries, detailed flame stretch measurements were much lower than the extinction 

stretch rate and actually decreased as the equivalence ratio was reduced. Evidence of a 

stabilizing edge flame with increasing velocity near blowoff caused him to conclude that 

blowoff likely occurs when the local flow speed is greater than the edge flame speed, rather 

than local extinction resulting from excessive stretch rates.  

Having considered the processes that control blowoff, consider next the dynamics 

of flames as they approach blowoff.  In premixed systems, it is known that flames go 

through multiple stages as blowoff is approached.  As summarized in Shanbhogue et al. 

[34], the flame first passes through “stage 1” on the route to blowoff, where local extinction 

occurs on the flame, but the flame overall resembles its features from well-stabilized 

conditions. Local extinction manifests itself as holes that develop in the flame sheet. These 
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holes can either heal or grow larger before re-igniting. Moreover, the flame can persist 

indefinitely under such conditions, as long as the fraction of extinguished flame does not 

exceed some critical limit. As the flame is brought closer to blowoff it passes into “stage 

2”, where large scale flame and flow disruption occurs, manifested as clear changes in 

behavior, including large scale flame flapping, entrainment and subsequent burning of 

reactants into the wake, and permanent extinction of the flame downstream. Finally, the 

ultimate blowoff event occurs. Figure 1.2 shows a conceptual illustration of these points. 

The details of the dynamical processes that ultimately result in complete blowout of the 

flame, including the “stage 1” and “stage 2” processes, will now be discussed.  

 

Figure 1.2: Conceptual illustration of the blowoff process in premixed systems, 

adapted from [34].  

1.2.1  Blowoff Dynamics: Stage 1 

Stage 1 of the blowout process is characterized by the initiation of local extinction 

processes in a flame that essentially maintains the same shape and structure as a stable 

burning flame. Whether these flame holes grow or heal depends on their edge flame 

velocity. Growing flame holes can cause regions of the flame to extinguish that would 

otherwise have continued burning. Once initiated, flame holes can also correct themselves, 
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as they create a passageway for mixing between hot products and reactants that can increase 

their edge flame velocity sufficiently for recovery [34, 45]. Nair and Lieuwen [46] 

observed these localized extinction processes in planar measurements taken from bluff-

body stabilized flames. They found that the fraction of images that contained these local 

extinction processes increased as blowoff was approached. Furthermore, they showed a 

causal relationship between the instantaneous stretch rate exceeding the extinction stretch 

rate value and these local extinction processes. Smith et al. [47] also observed local 

extinction, manifested as breaks in the reaction rate contours of an otherwise stable flame, 

in an LES simulation of a bluff-body stabilized flame approaching blowoff.  

Flames are able to operate indefinitely during this “stage 1” of blowoff because re-

ignition processes follow local extinction. Researchers have shown that non-periodic 

oscillations, ostensibly caused by extinction/re-ignition processes of the flame, occur in the 

time series from acoustic [17], chemiluminescence [38, 48-51], and even ion measurements 

[52] prior to blowoff. Each of these different measurement techniques have shown that 

extinction/re-ignition processes, termed LBO precursors by Muruganandam [50], increase 

in frequency and duration as blowout is approached. However, Muruganandam et al. [49] 

caution that these LBO precursors should not be viewed as complete extinction and re-

ignition of the flame. They compared simultaneous chemiluminescence measurements 

taken using both high speed imaging and a photomultiplier tube. Although there were some 

instances where data from the high speed camera showed no indication of a flame, the PMT 

signal did not drop completely to zero prior to LBO. Therefore, a weak flame which 

continued burning below the detection limit of the camera existed and possibly played a 

role in re-igniting the flame. Furthermore, Nair and Lieuwen [46] showed that the average 



 12 

stretch rate at blowoff was much lower than the extinction stretch rate, suggesting that 

complete blowout occurs when local extinction processes constitute a large enough fraction 

of the flame topology that re-ignition is no longer possible.   

As noted above, studies have shown that the stability of premixed systems can be 

correlated with bulk ratios of inferred chemical time and residence time scales, and other 

parameters [33, 53-55].  Given the above points, however, it is clear that multiple kinetic 

processes (e.g., both extinction and re-ignition) and fluid mechanic (e.g., the fluid 

mechanic straining time scales appear to be different in “stage 1” and “stage 2”) influence 

the ultimate blowoff event. Shanbhogue et al. [34] suggested that single chemical/flow time 

scale blowoff correlations likely capture the physics associated with the extinction 

processes that happen near blowoff, and not blowoff itself- i.e., they are correlations for 

the onset of “stage 1” [34].  This is an important distinction, as the flame can exist near 

blowoff with significant local extinction events apparently indefinitely; i.e., while 

extinction and blowoff are related, they are quite distinct. 

Although “stage 2” has been observed in both bluff-body and swirl stabilized 

flames, the physics associated with each of these different flow fields is different. 

Therefore, “stage 2” of blowoff will be discussed in each of these configurations separately. 

1.2.2 Blowoff Dynamics: Stage 2 in Premixed Bluff-Body Stabilized Flames 

Flame stabilization by bluff-bodies is of interest to the combustion community 

because this is the flameholder used in combustor augmentors and it provides a simplified 

2D geometry for studying the complex blowoff problem. The blowoff “stage 2” process 

for bluff-body stabilized flames involves a range of flow features varying, and sometimes 
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alternating, between the reacting and non-reacting flow fields. It is understood that for 

sufficiently high Reynolds numbers, the non-reacting flow behind a bluff-body will form 

into a periodic-sinuous flow structure known as von Karman vortex shedding. However, 

the flow behind reacting bluff-bodies generally has a symmetric topology [56-58]. Nair 

and Lieuwen [46] demonstrated that the symmetric reacting flow structure becomes 

interrupted as blowoff is approached. Once the flame transitioned from “stage 1” to “stage 

2”, it began to resemble a von Karman vortex shedding wake. Nair and Lieuwen [46] warn, 

however, that the “stage 2” flow field should not be considered analogous to the non-

reacting flow field. This is because the “stage 2” flame intermittently takes the shape of 

both a sinuous vortex shedding wake and two shear layers that are distorted independently 

of each other. In other words, even in “stage 2” the flow field alternates between its reacting 

and non-reacting form.  

The nature of this flow field transition can be understood by considering the 

vorticity transport equation. 
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The same equation can be written in vector form as:  
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The physics represented by this equation can be dissected by discussing each of 

these terms individually. The two terms on the left hand side of the equation constitute the 

material time derivative of vorticity. They represent the spatio-temporal changes in 

vorticity. The first term on the right hand side is the vortex stretching and bending term. 

This term does not produce vorticity, it simply modifies vorticity that already exists in the 

flow. The second term on the right hand side of the equation is the flow dilatation term. 

Flow dilatation in reacting flows is caused by the gas expansion produced by chemical heat 

release. This term is a clear vorticity sink in combustion applications. The third term on 

the right hand side represents the baroclinic mechanism of vorticity production. It is caused 

by the misalignment of pressure and density gradients in the flow which create a torque 

that produces vorticity. This is very common in combustion applications where a pressure 

gradient is required to drive the flow and a density gradient of a different orientation is 

caused by the temperature increase across the flame. Although the exact nature of this 

mechanism depends on the flame temperature and position, for most conditions 

experienced by bluff-body stabilized flames this term produces vorticity that rotates in the 

opposite direction of the vorticity produced by the boundary layer on the bluff-body. In 

other words, it is generally a vorticity sink that tends to stabilize the flow. The strength of 

this baroclinic mechanism is related to the pressure and density ratios across the flame [34]. 

The fourth term on the right hand side represents the viscous diffusion of vorticity. The 

chemical heat release in reacting flows raises the gas temperature and therefore the 

kinematic viscosity of the gas, thereby enhancing the viscous diffusion of vorticity [34]. 

The terms that play the largest role in stabilizing the flow and suppressing the von Karman 

vortex shedding behavior are the dilatation term and the baroclinic torque term.  
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Multiple researchers have performed studies which isolate the effects of the 

baroclinic and dilatation terms on the flow dynamics of bluff-body stabilized flames. 

Erickson and Soteriou [58] simulated bluff-body stabilized flames with varying reactant 

temperatures and flame speeds. As the density ratio across the flame is directly related to 

the ratio of the product to reactant temperatures, this process essentially varied the 

baroclinic vorticity production and dilatation. They have shown that as the temperature 

ratio approaches unity, the initiation of the von Karman vortex shedding behavior moves 

upstream towards the bluff-body. In other words, as the reactant temperature approaches 

the flame temperature, the initially stable wake develops a convective instability that 

eventually transitions to the absolute Bernard-von Karman instability [34, 45]. They found 

that for temperature ratios greater than approximately 2, the vortex shedding behavior will 

not be present. However, consistent with the observations of Nair and Lieuwen [46], the 

reacting wake possessed at least some aperiodicity for temperature ratios between 1-2, as 

intermittent combustion processes irregularly interrupted vortex shedding. Furthermore, 

they showed that for a fixed temperature ratio of 2, the oscillating vortex phenomenon 

could also be adjusted by changes in the flame speed. For turbulent flame speeds that are 

approximately 60% of the incoming reactant velocity, the flame angle increased such that 

the flame dynamics become decoupled from the wake dynamics and the vortex shedding 

behavior was again observed. Emerson et al. [59] experimentally verified these findings of 

Erickson and Soteriou [58]. Their data showed that bluff-body stabilized flames indeed 

experience greater vortex shedding as the density ratio is reduced. Furthermore, they also 

saw that this process was intermittent for reacting flows with sufficiently low density ratios. 

Emerson et al. [59] demonstrated that these decreasing density ratio trends are the result of 
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a supercritical Hopf bifurcation, as the intermittency of the sinusoidal motions decreased 

and their amplitude increased as the density ratio approached unity. Morales et al. [60] 

studied bluff-body flame dynamics in a combustor using three different duct geometries. 

A straight duct, converging (nozzle) duct, and expanding (diffuser) duct were used to vary 

the pressure gradient in the flow and thereby induce changes in the baroclinic vorticity 

mechanism. They found that the converging duct, which had the largest pressure gradient, 

produced the most baroclinic vorticity and had the best flame stability characteristics.    

A general picture of the “stage 2” dynamics begins to emerge from these studies. 

As lean blowoff is approached, the temperature ratio across the flame decreases due to the 

lowered equivalence ratio and local extinction processes in the flame. This weakens the 

influence of the dilatation and baroclinic vorticity terms which are responsible for 

suppressing the vortex shedding behavior in reacting flows. Therefore, the flame begins 

experiencing an intermittent vortex shedding process that increases in amplitude and 

becomes less intermittent as blowoff is approached. The “stage 2” process, however, 

should not be mistaken as the mechanism that causes the flame to finally blowout. Khosla 

et al. [61] simulated the blowoff process behind bluff-body stabilized flames using two 

different flameholder geometries, one where von Karman vortex shedding was present and 

another where it was not. They showed that the blowout equivalence ratio was the same in 

both cases and that increased stretch rates did not seem to cause the extinction locations 

observed in near blowoff reaction rate contours. This discussion of the “stage 1” and “stage 

2” processes will therefore be supplemented with arguments regarding what ultimately 

causes the flame to blowout. However, as noted by Shanbhogue and Lieuwen [34], it 
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should be understood that identifying the final cause of blowout remains inconclusive and 

is still an area of active research.  

This discussion of the mechanism for complete blowout will begin by outlining the 

processes that are agreed upon by almost all researchers who have studied this problem 

using modern experimental diagnostic techniques. Under stable operation, bluff-body 

stabilized flames are comprised of a thin flame front that resides outside of the fluid 

mechanic shear layers [41, 57, 62-64]. The recirculation zone contains hot products but 

there is no evidence of chemical reactions in this region while the flame is far from blowoff. 

As the equivalence ratio decreases towards its blowoff value, the flame speed decreases 

accordingly and the flame moves inward to stabilize in low velocity regions in the shear 

layers [35, 57, 63, 64]. The flame then goes through a pinching/constricting process near 

the downstream end of the bluff-body recirculation zone, where it is eventually severed 

[34, 35, 41, 43, 57, 63]. All burning downstream of this pinching location is terminated and 

combustion only remains in the recirculation zone, which is sometimes referred to as the 

residual flame. Continued reactant entrainment cools the residual flame such that the 

recirculation zone eventually becomes a soup of fresh reactants, partially burned reactants, 

and local heat release parcels that are unable to ignite the incoming mixture [21, 35, 65].  

Researchers disagree, however, on the cause of the pinching process and how reactants are 

entrained into the recirculation zone such that it begins burning. 

Stretch induced extinction, flame speed gradients, and flame intersection arguments 

have all been used to explain the flame pinching process. Each of these processes is related 

to the decreased heat release and density ratio across the flame as blowoff is approached. 

Yamaguchi et al. [35] and Pan and Ballal [43] argued that the pinching process was caused 
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by excessive stretch rates near the downstream end of the recirculation zone. Fugger et al. 

[63] took OH-PLIF and CH2O-PLIF measurements of a bluff-body stabilized flame near 

blowoff. They showed that under stable operation, the flame experienced the greatest flame 

stretch and had the largest CH2O thickness near the shear layer attachment point. However, 

as blowoff was approached, the flame stretch rates were roughly the same throughout the 

entire measurement domain (0.5<x/D<3.5) and the CH2O thickness was greatest near the 

pinching/constricting region. Kedia et al. [66] argued that blowoff depends on the 

following dynamic stability criterion  
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where Sd is the flame displacement speed, n is the direction normal to the flame front, and 

vn is the incoming reactant velocity in the direction normal to the flame front. Using a bluff-

body stabilized flame simulation, they showed that this criterion fails first at the pinching 

location. Khosla et al. [61] argued that the reduced recirculation zone size and decreased 

flame speed near blowoff cause the two shear layers to eventually intersect each other, 

thereby pinching the flame. 

Perhaps the largest source of debate surrounding the ultimate blowout process is 

regarding the pathway by which reactants enter the recirculation zone. Pan and Ballal [43] 

took measurements of the flow pressure gradient near the end of the recirculation zone 

behind a bluff-body stabilized flame. They found that this pressure gradient became 

increasingly adverse as the equivalence ratio was decreased, something they interpreted to 

represent increased entrainment of cold reactants. In order to observe the entrainment 
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process in near-blowoff flames, Dawson et al. [41] seeded the reactants with an aerosol. 

Unburned reactants were first observed approximately 1.5 diameters downstream of the 

bluff body. No reactants were observed to enter the recirculation zone through the shear 

layers, however. Instead, the flame assumed an “M” shape near blowoff as reactants were 

first entrained in the recirculation zone by passing through the pinching location, then they 

were convected upstream, and finally they began burning. The partially reacting 

recirculation zone retracted towards the bluff-body as the flame came closer to blowing 

out, and the flame was completely lost once the shear layers extinguished. Kariuki et al. 

[62] observed infrequent holes in the shear layer flames which they believed were caused 

by heat losses from entrained reactants, rather than by high stretch rates. They mostly 

observed reactants entering the recirculation zone from its downstream pinching location, 

after which they were found to quench the shear layer flames by convecting into them. 

However, these quenching instances were not fatal for the shear layer flames, as they 

continued to burn until the recirculation zone had completely filled with cold reactants. A 

more recent study by Kariuki et al. [65] used simultaneous OH-PLIF and CH2O-PLIF 

measurements to get an indication of combustion products, preheated reactants, and the 

flame reaction zone. Again, they found stretch induced breaks in the reaction zone to be 

more common downstream of the recirculation zone than in the shear layers. They 

observed heat release, preheated reactants (represented by CH2O that failed to overlap with 

OH), and fresh reactants (regions without either OH or CH2O) all in the recirculation zone 

near blowoff, although the reactants were more likely to be preheated than fresh. A final 

study by Kariuki et al. [67] repeated the same experiment and measurements used in their 

previous studies, except with an ethylene-air flame. This ethylene-air mixture had a Lewis 
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number greater than one, which theoretically made it more prone to stretch based extinction 

than the unity Lewis number methane-air mixtures that they used previously [68]. They 

again saw no evidence of CH2O entering the recirculation zone through holes in the shear 

layers and concluded that the blowout behavior of this flame was qualitatively similar to 

their previously studied methane-air flame. 

Chaudhuri et al. [57, 69], on the other hand, did observe stretch induced extinction 

in the shear layer flames and argued that this is the opening through which reactants enter 

the recirculation zone. They believed that blowoff occurred when the residual flame failed 

to reignite the shear layers. However, it should be noted that their planar measurements 

were only acquired at 2.5 Hz and so it is difficult to conclude how frequently these 

observations actually happen. Chowdhury and Cetegen [64] used simultaneous OH-PLIF 

and CH2O-PLIF to study the effects of different freestream turbulence levels on bluff-body 

stabilized flames. They found that increasing the turbulence intensity decreased the 

recirculation zone length and flame stability. Velocity measurements taken simultaneously 

with the PLIF measurements indicate that heated reactants are indeed transported into the 

recirculation zone through holes near the flame attachment point in the shear layers. 

Furthermore, they noticed instances where the shear layer flame extinguished and 

stabilized briefly in the pinching region, before the shear layer re-ignited. However, 

entrainment of preheated reactants near the downstream end of the recirculation zone, 

along with the associated heat release in this region, was also observed near blowoff. These 

authors acknowledge that it cannot be concluded whether reactants enter the recirculation 

zone primarily through the shear layer or the pinching region, as their flow field 

measurements show evidence of both processes.  
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In order to validate the mechanisms developed in their previous studies [57, 69], 

Chaudhuri et al. repeated their experiments using the same configuration but under 

acoustically forced [70] and vitiated [71] conditions. In conflict with their unforced-

unvitiated mechanism, the shear layers remained burning and following the pinching 

process the reactants entered the recirculation zone from the downstream end in both cases 

[70, 71]. In reference to these observations, Kariuki et al. [62] concluded that whether local 

extinction/reactant entrainment first happens in the shear layer or at the downstream end 

of the recirculation zone depends on the combustor geometry and the particular flow field 

involved.  

1.2.3 Blowoff Dynamics: Stage 2 in Premixed Swirl Stabilized Flames 

Main stage combustors usually rely on recirculation zones developed by swirling 

the incoming flow to stabilize flames. Swirl flames are advantageous because they are 

shorter, which allows for a reduced combustor length [72], and they have improved flame 

stability characteristics over other flameholder geometries [73]. The conversion of axial 

vorticity to azimuthal vorticity induces a reverse flow velocity and the vortex breakdown 

process ensues. Vortex breakdown is a global hydrodynamic instability that creates a 

stagnation point in an otherwise unobstructed flow [45], and for sufficiently high swirl 

numbers, a complete recirculation zone is developed. Swirl combustors are often of the 

dump combustor type where the flow is suddenly expanded once it enters the combustion 

chamber. This results in both an inner and a toroidal outer zone of recirculating hot 

products. In general, increased swirl levels result in a monotonic improvement in flame 

stability [16], as it requires extremely high swirl levels to cause the flame to blow off due 

to azimuthal stretch rates [74].  
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Characterizing the “stage 2” blowoff process in swirl flames is complicated by 

different degrees to which changes in the vortex breakdown process occur. Muruganandam 

[50] observed that as the heat release decreases near blowout, due to local extinction and 

entrained reactants in the inner recirculation zone, the vortex breakdown mechanism 

changed from a bubble type to a spiral/helical type. This helical vortex breakdown mode 

enhances the reverse flow velocity and transports hot products upstream that are often able 

to re-ignite the flame. The survival of these “stage 2” flames depends on the success of 

these re-ignition processes. Zhang [75] found that fuel composition has an influence on 

whether the vortex breakdown mode changes near blowoff. He used fuels with a range of 

CH4/H2 compositions to vary the thermal expansion across the flame. Fuels with high flame 

temperatures (i.e., pure methane) maintained a vortex breakdown bubble throughout the 

blowoff process, whereas the low flame temperature mixtures (high H2 content, e.g., 75% 

H2 25% CH4) transitioned to a spiral vortex breakdown mode near LBO. However, the 

flow structures remained identical between the different compositions when burning with 

a fixed adiabatic flame temperature. In addition to vortex breakdown mode changes, Zhang 

[75] also saw large scale vortices develop and surround the central recirculation zone of 

flames that had locally extinguished and lifted downstream. Prakash et al. [51] used two 

photomultiplier tubes, one located near the dump plane and the other far downstream, to 

identify LBO precursors that involved vortex breakdown mode changes. They found that 

the duration of these LBO precursors depended more on the local condition in the flow 

than the amount of chemical heat release (i.e., equivalence ratio) that preceded them. 

Although these studies show that the flow features of swirl flames can change significantly 

near blowoff, it is difficult to make general inferences about heat release effects on vortex 
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breakdown dynamics [76]. This is because the dynamics of the vortex breakdown process 

are highly dependent on the combustor geometry and operating conditions involved.  

Despite their practical significance, much less is known about what ultimately 

causes swirl flames to blow out than the bluff-body counterpart. Using simultaneous OH-

PLIF and CH2O-PLIF measurements, Manosh Kumar et al. [77] were able to isolate 

unburned reactants from recirculating products in the central recirculation zone of a swirl 

stabilized flame. They found that reactants are not entrained far into the recirculation zone 

and that those that are entrained are quickly consumed. This suggests that the bluff-body 

blowoff arguments surrounding cooling of the recirculation zone by entrained reactants 

may not apply to their particular swirl flame. Stöhr et al. [78] showed that the stabilization 

of swirl flames depends on whether the flame root remains burning. Excessive strain rates 

at the flame root location make it susceptible to extinguishing, and this was observed to 

occur even during stable operation. These researchers showed that blowout occurs in the 

event that the flame root fails to reignite within 2 ms of extinguishing.  

1.3 Nonpremixed Gaseous Lean Blowout Studies 

In nonpremixed gaseous systems, the picture is complicated by the potentially 

different degrees of fuel/air premixing, as well as variations in local fuel/air ratio in regions 

where premixing has occurred. In such cases, blowout can range between being mixing 

limited and kinetically limited. For example, Shih et al. [79] studied the effects of fuel-air 

mixedness on lean blowout limits. They found that a partially (50%) premixed flame 

actually blew out at a lower global equivalence ratio than a completely premixed flame. 
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However, a flame without any premixing had a much higher global blowout equivalence 

ratio than either of the other cases. 

In a review article by Lyons [80], five concepts are presented to describe the 

stability of nonpremixed flames. They include (1) a premixed flame stabilizing the base of 

the nonpremixed flame, (2) stabilization by diffusion flamelets unless a critical scalar 

dissipation rate is exceeded, (3) turbulence intensity increasing the burning velocity at the 

flame leading edge, (4) transport of the flame leading edge upstream by large eddies, and 

(5) a partially premixed edge flame stabilizing the base of the nonpremixed flame. A few 

of the key studies that contributed to these models will be discussed below. 

Vanquickenborne and Van Tiggelen [81], along with Kalghatgi [82], supported the 

premixed flame concept and argued that flame stability is maintained by a kinematic 

balance between the flow speed and the local flame speed. Broadwell et al. [83] used a 

Damköhler number argument, defined as the ratio of a mixing time to a chemical time, to 

predict the blowout velocity of jet flames. They argue that the root of the flame is stabilized 

by large vortical structures that transport hot products from the center to the edges of the 

jet. These hot products are then entrained back into the jet, along with fresh air, and ignite 

the incoming fuel supply. Blowout then occurs when the hot products and reactants are 

mixed so rapidly that the mixture temperature and composition descends below a critical 

value before ignition can occur. Roquemore et al. [84] conflated the ideas of 

Vanquickenborne and Van Tiggelen [81] with those of Broadwell et al. [83]. In their model, 

the flame is stabilized near the lip of the burner by hot recirculating fuel and products in an 

outer recirculation zone. However, once the flame lifts, they believe that it acts more like 

a premixed flame. Driscoll and Rasmussen [85] used the previously described kinematic 
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balance concept to develop a modified Damköhler number that was successful in scaling 

nonpremixed flame blowout limits. Peters and Williams [86] hypothesized that blowoff in 

nonpremixed flames is caused by excessive scalar dissipation rates near the flame leading 

edge. The role of scalar dissipation in the stability of nonpremixed flames was challenged 

somewhat in a study by Stärner et al. [87]. They found that the mean scalar dissipation rate 

counterintuitively decreased near blowout and decreases in the flame temperature were 

only weakly correlated with increasing scalar dissipation rates. Using advanced diagnostics 

techniques to measure the mixture fraction and scalar dissipation rate fields, Sutton and 

Driscoll [88] determined that scalar dissipation is effective in extinguishing the flame if it 

occurs at the location of the stoichiometric mixture fraction contour.   

The near-blowoff dynamics of nonpremixed flames primarily involve the initiation 

of, and recovery from, flame holes. OH-PLIF measurements by Juddoo and Masri [89] 

showed that increasing the fuel jet velocity was accompanied by enhanced local extinction 

processes that eventually cause the flame to blow out. Hult et al. [90] found that the 

occurrence of local extinction is somewhat self-correcting, as fuel and hot products are 

allowed to escape through these flame holes to form partially premixed regions that can 

later re-ignite. Very similar studies by Juddoo and Masri [89] and Steinberg et al. [91], 

identified two mechanisms whereby the flame can recover from local extinction. First, 

flame holes can heal through edge flame propagation, and second, growing kernels that 

initiated upstream can advect and re-ignite downstream regions of the flame. Steinberg et 

al. [91] argue that the vast majority of extinction recoveries are caused by edge flame 

propagation. However, Juddoo and Masri [89] conclude that re-igition through advected 
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kernels becomes increasingly significant as blowout is approached, and eventually 

becomes the dominant recovery mechanism very near blowout. 

A significant difference in the near-blowoff behavior between gaseous premixed 

and nonpremixed flames is that nonpremixed flames lift off the burner, with a liftoff height 

that grows as blowoff is approached.  In contrast, bluff-body stabilized premixed flames 

permanently extinguish downstream, with this extinction region retracting toward the 

burner exit as blowoff is approached [34]. However, both types of flames experience an 

unsteady process prior to complete blowout. For premixed flames this is manifested as the 

previously described “stage 1” and “stage 2” processes. On the other hand, nonpremixed 

flames lift off the burner and the flame base experiences an intermittent oscillatory 

behavior prior to complete extinction [84]. Chen et al. [92] observed that the lifted flame 

base fluctuated 20% of the liftoff height at 100-150 Hz prior to blowing out. Murugesan 

and Sujith [93] describe this intermittency phenomenon as a competition between 

extinction/re-ignition processes and acoustic oscillations. They argue that the flame lifts 

due to local extinction processes near the burner exit and re-stabilizes downstream. As the 

incoming gases regain sufficient heat, the flame again moves upstream. However, as the 

flame travels upstream it creates an increase in the acoustic pressure. High-amplitude 

periodic oscillations of the flame begin to occur, which result in new local extinction 

processes and a repetition of this cycle.  

1.4 Liquid Fueled Lean Blowout Studies 

In liquid-fueled systems, the additional physics associated with atomization and 

vaporization of the fuel come into play.  As such, additional physical properties of the fuel 
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and its constituents, such as viscosity, surface tension, boiling points, and latent heats of 

vaporization are relevant. In addition, most liquid fuels have a complex range of 

constituents, implying that the gaseous vaporized fuel composition around a droplet can 

differ from the “average” fuel composition, due to preferential vaporization [94]. Previous 

work investigating the influence of liquid fuel physical properties on aircraft engine 

blowout performance has led to a variety of conclusions, the differences probably due to 

different ambient conditions under which data was taken and fuel-injector technology [55, 

95-103].  These studies are discussed next. 

Consider fuel-injector technology first, which strongly influences droplet sizes. 

Somewhat counterintuitively, Lefebvre [95] suggested that blowout characteristics become 

more problematic as atomization quality improves, such as with better fuel injectors. He 

noted that one advantage of poor mixing quality injectors is that they allow combustors to 

operate at much lower global fuel-air ratios than would be possible in a premixed 

combustor with a single, spatially uniform value of fuel-air ratio. Mellor [55] supported 

this conclusion and explained the phenomenon using a fuel penetration argument. 

However, this fuel penetration effect was only observed to be significant for fuels with 

lower volatility and higher viscosity than Jet-A.  

Burger et al. [96] described a study with very similar approach and goals to the 

present work, as they looked at the effect of fuel properties on blowout. They looked at 

sixteen different fuels using a pressure-simplex atomizer and an in-house combustor based 

upon the primary zone of an Allison T63 combustor at an air inlet temperature of 310 K.  

They found that the easiest to vaporize fuels (those with the lowest T10 values, defined as 

the temperature at which 10% of the liquid volume had vaporized) were the most blowout 
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resistant.  A strong correlation with the fuel density was also observed in their blowout 

data. However, it is difficult to provide a physical explanation for the density effect, as 

their data shows a much weaker dependence on other atomization related properties, such 

as the kinematic viscosity or Sauter mean diameter. Corporan et al. [103] also used an 

Allison T63 combustor to experimentally test the lean blowout limits of eight of the fuels 

used in the present study.  Their experiment was unique in that it was performed using a 

full-scale engine. Rather than defining a loss of engine power as the lean blowout limit, 

they named it the lean operational limit because they were unsure whether the flame blew 

out or the compressor stalled. As the rotational speed of the compressor decreased with the 

fuel flow rate, i.e., as blowoff was approached, the compressor discharge temperature also 

decreased accordingly. Therefore, although their experiments started at an air inlet 

temperature of approximately 380 K before the fuel flow rate was reduced, the actual air 

inlet temperature was approximately 310 K at the threshold of operation. Consistent with 

the Burger et al. [96] study, their lean operational limits correlated best with T10, and T50 

was their strongest correlation when including the single component fuel n-dodecane. 

Grohmann et al. [100] similarly studied the blowout limits of multiple fuels at air inlet 

temperatures of both 323 K and 423 K. Their 323 K data differed qualitatively with the 

Burger et al. [96] results, as it showed that the most difficult to vaporize fuels were more 

blowout resistant. The 423 K data from the Grohmann et al. [100] study failed to correlate 

strongly with any fuel properties. These differences could potentially be due to fuel injector 

hardware, as a prefilming airblast atomizer was used in the Grohmann et al. [100] study. 

Several studies have attempted to incorporate kinetic properties into scaling 

blowout limits for liquid fueled systems. Mellor [55] used time scale correlations, much 
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like the premixed Damköhler number scalings, to approach the liquid-fueled blowout 

problem. He used ignition delay times with a correction for droplet evaporation effects to 

fit predicted blowout fuel-air ratios with experimental data. Similarly, Lefebvre [95] 

combined an empirical expression for the weak extinction of bluff body stabilized flames 

with a fuel vaporization factor to predict blowout fuel-air ratios in liquid combustors. 

Colket et al. [104] showed that the derived cetane number (DCN), which is an inverted 

indicator of a fuel’s ignition delay, closely correlated with blowout boundaries. A recent 

study by Stouffer et al. [105], using a subset of the fuels considered in the present work, 

also found that their data correlated best with the DCN. Using three of the fuels in this 

study and three single component fuels, Allison et al. [106] performed blowout 

experiments at an air inlet temperature of 340 K and a bulkhead temperature of 425 K. 

Consistent with the observations of other researchers, their data showed a trend with the 

DCN. However, by using Damköhler number scalings, with the ratio of the premixed flame 

thickness and laminar flame speed as the chemical time scale, they showed that the data 

followed distinct groupings. In other words, their data admitted two hypotheses.  

Although recent studies [102, 104, 105] have shown a strong correlation between 

the DCN and blowout boundaries, this does not necessarily imply that blowout is controlled 

by the ignition propensity of a fuel. Due to the thermodynamic condition in which the DCN 

is determined in a pressurized/heated constant volume combustion chamber (Ignition 

Quality Tester) according to the ASTM D6890 standard, the DCN has a strong correlation 

with low temperature reactivity measured in a flow reactor experiment for both petroleum-

derived and alternative jet fuels [107]. Nevertheless, the DCN also reflects the global 

combustion reactivity relevant to high-temperature chemistry (e.g. flame speed and 
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extinction) due to its strong sensitivity to the CH2 chemical functional group [94]. The 

higher mass/mole fraction of the CH2 chemical functional group in real and surrogate fuels, 

corresponding to a higher DCN value, indicates that n-paraffinic components are dominant 

over other molecular classes, which can enrich the radical pool effectively through the 

dominant thermal decomposition reactions. The use of the DCN as a global chemical 

kinetic indicator has been widely implemented in surrogate approaches [108-112], where 

both high- and low-temperature combustion behaviors of a target real fuel are successfully 

emulated by a surrogate mixture. 

From the above points it is clear that far less general conclusions on controlling 

physical process for liquid fueled systems are possible than in gaseous premixed systems. 

This is due to the fact that the degree of atomization and vaporization is a function of 

injector technology and operating conditions, which controls the extent to which the 

blowout phenomenon is kinetically vs. mixing/physical property limited. Furthermore, 

while multiple different blowout mechanisms are plausible, determining their precise roles 

is confounded by the fact that they are often correlated with each other (e.g., see Refs. [95, 

102, 107]). However, it is possible to categorize the limiting physics according to the rate 

of fuel-air mixing relative to the time required for chemical heat release. A conceptual 

schematic of this blowout grouping is shown in Figure 1.3. When fuel-air mixing occurs 

fast relative to the combustion chemistry, the blowout phenomenon approaches a 

kinetically limited premixed gaseous system. However, when chemistry happens much 

faster than the fuel-air mixing process, which is dependent on atomization and vaporization 

in liquid systems, blowout is limited by fuel-air mixing rates. It is highly likely that the 

majority of systems in operation lie in an intermediate zone where both kinetic and 
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mixing/atomization/vaporization influence the results, as evidenced by the inability of 

most studies to come up with completely definitive correlations when considering a broad 

range of fuels [34]. 

 

Figure 1.3: Conceptual illustration of the physics limiting LBO across different 

combustion regimes. 

Both experiments [113-116] and simulations [117, 118] have shown that swirl-

stabilized spray flames near blowoff consist of a partially premixed flame along the spray 

trajectory and a nonpremixed flame in the outer recirculation zone. Using simultaneous 

CH2O-PLIF and OH-PLIF measurements, Yuan et al. [113] observed an “M” shaped flame 

with a thin OH layer that did not contain elevated levels of OH in the central recirculation 

zone. Therefore, the authors concluded that their particular spray flame behaved more like 

a nonpremixed flame that blew out as a result of increased local extinction. Evans et al. 

[114] took additional temperature and OH-PLIF measurements in the same Yuan et al. 

burner. Although they also saw minimal OH in the central recirculation zone, their 

measurements showed that this was a high temperature region. They concluded that the 
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partially premixed inner flame was highly diluted by hot products in the central 

recirculation zone that originated elsewhere. The LES simulation of Esclapez et al. [119] 

showed that the outer nonpremixed flame appeared intermittently near blowoff and formed 

around pockets of fuel droplets.  

Although little is known about what ultimately causes lean blowout in spray flames, 

studies have investigated the local extinction processes that precede it. Verdier et al. [115] 

observed three different local extinction mechanisms in their detailed PIV and OH-PLIF 

data. They included (1) large stretch rates in the shear layer locally extinguishing the inner 

premixed flame, (2) large high velocity droplets penetrating and extinguishing the flame 

leading edge, and (3) disturbances in the outer nonpremixed flame caused by the sudden 

evaporation of droplets that extend into the outer recirculation zone. A recent LES 

simulation by Giusti and Mastorakos [118] matched the local extinction characteristics of 

detailed experimental measurements. Local extinctions in the outer flame appeared 

frequently and were believed to be caused by turbulent transport/mixing because they 

occurred at scalar dissipation rates less than the critical value. Breaks in the inner flame 

were rarely observed and those that did happen were caused by excessive scalar dissipation 

of the evaporated fuel. However, an additional study by Yuan et al. [116] showed that 

extinction processes in the inner flame increase in frequency as blowoff is approached. 

Evans et al. [114] observed that the inner flame weakened and the outer flame strengthened 

as the incoming air velocity was increased towards the blowout value. The LES simulation 

of Hasti et al. [120] showed that partially completed chemical reactions and decreased 

product temperatures in the central recirculation zone are indicators of a spray flame 

approaching blowoff.  
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This study was motivated by the great discrepancy amongst various authors, as 

discussed above. For this study, experiments were obtained with a large range of fuels with 

significant differences in physical properties, chemical properties, and distillation curves.  

The experiments were performed at multiple air preheat temperatures in order to better 

understand the relative roles of physical and chemical properties; this is likely the reason 

for the seemingly contradictory vaporization temperature sensitivities observed by past 

researchers [55, 95-102].  Data was obtained with several custom fuel blends that were 

specifically formulated in order to break the correlation between chemical and physical 

properties, which makes differentiation of them difficult. These efforts involved correlating 

both the transient dynamics near blowoff, and the actual blowoff condition itself, with fuel 

properties.  
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CHAPTER 2. EXPERIMENTAL OVERVIEW 

This section describes the facility, experimental procedure, diagnostic techniques, 

and fuels that were used in this work. Measurements were taken using two different 

experimental approaches. The first were fuel screening measurements that identified 

blowout equivalence ratios as a function of fuel properties and the air inlet temperature. 

These data had a large sample size and the experiments were repeated across many different 

days. Second, detailed measurements were acquired that provided insight into the dynamics 

of the lean blowout process. Due to the difficulty involved in obtaining these 

measurements, a fewer number of detailed data samples were taken. Information about the 

fuel screening experiments is presented in Sections 2.1-2.5 and the detailed measurements 

are discussed in Sections 2.6-2.9. 

2.1 Facility 

Figure 2.1 illustrates the facility that was used for these experiments. Key 

components include air supply and preconditioning, fuel supply, the optically accessible 

pressure vessel and liner, fuel injector, and exhaust section. Each of these is detailed below. 

Figure 2.2 shows a diagram of the air flow system.  Compressed air at pressures up 

to 20 atm is heated to temperatures from 350 to 750 K. A portion of the heated air is sent 

to the test section and the remainder is cooled to approximately 320 K in a heat exchanger. 

This secondary air flows around the liner and keeps the pressure vessel structure and 

windows cool.  Hot combustion products mix with the cooling air downstream of the test 

section and exit through a water cooled exhaust. A choked orifice plug of variable size is 
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installed at the exhaust exit in order to maintain elevated pressure in the combustion 

chamber. Air mass flow rates are measured using a Rosemount vortex flowmeter.  The air 

temperature is measured 35 cm upstream of the dump plane and its value was continuously 

recorded during measurements.  Its value typically remained within ±10 K of the nominal 

during a measurement.  Uncertainties in air flow rate are estimated to be 2 % with a bias 

error of 0.1 %. 

a) 

 
 b) 

 

Figure 2.1: Image (a) and schematic (b) of the experimental combustor. 

 

Figure 2.2: Air preparation and routing diagram. 
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The combustor liner consists of a 30.5 cm long, 105 mm inner diameter quartz 

section. The front end of the liner, or nozzle outlet, referred to as the “bulkhead” in this 

paper, consists of a stainless steel wall without secondary cooling passages, and is shown 

in Figure 2.3. This bulkhead face contains four thermocouples situated flush with the 

surface for monitoring bulkhead temperature, a static pressure transducer, and an ignitor.  

Uncertainties in combustor pressure are estimated to be 0.4% with a bias error of 0.08% 

FS. The pressure vessel that houses the liner has optical access on all four sides and four 

quartz windows with dimensions 20.3 × 10.8 × 5.1 cm (Figure 2.1).   

The fuel nozzle is similar to the one described in Cohen and Rosfjord [121] and is 

depicted in Figure 2.4. Prior to entering the test section, the pressurized-preheated air 

passes through a swirler. As can be seen in Figure 2.4, air travels through two separate 

swirler passages. There is a pressure drop across the swirler of approximately 6.7 kPa and 

the air exits the nozzle with a velocity of 63 m/s, calculated using the air mass flow rate, 

the air density (using the air temperature measurement described above), and nozzle exit 

area.  

Modern aircraft fuel injectors often have a hybrid design that includes two fuel 

circuits. The first is a prefilming airblast atomizer that sprays fuel onto a prefilming surface 

and relies on co-flowing air to break up the fuel into droplets. Second, a pressure atomizer 

is also used that sprays finely atomized droplets directly into the flow. The atomization 

quality of airblast atomizers is greatly impaired when the co-flow velocity is low, such as 

during takeoff, landing, and idle conditions [122]. However, pressure atomizers continue 

to perform well at these conditions and are critical for flame stabilization, as flames are 

most susceptible to blowout when planes prepare to land [9, 19]. Therefore, the fuel injector 
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used for these experiments was a pressure type atomizer. It was purchased from McMaster-

Carr (product number 3178K45) and had an orifice diameter of 0.51 mm.  

 

Figure 2.3: Bulkhead instrumentation placement schematic. 

 

 

Figure 2.4: Schematic of the swirler and fuel injector configuration. 

Because the focus of this study was on fuel composition influences, special 

consideration was given to abilities to rapidly switch between fuels. A custom fuel cart was 

developed and is shown in Figure 2.5, consisting of 10 cylinders, each capable of 

containing a different fuel. Compressed nitrogen was directed to advance the fuel of 

interest using electrically actuated ball valves. A ball valve corresponding to each fuel 

cylinder allowed for fuels to be changed easily without interrupting the experiment. The 

fuel cart was only operated when the cylinders were filled to at least one quarter of their 

total capacity. Therefore, a sufficient volume of liquid fuel was maintained between the 
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nitrogen-fuel interface and the fuel injector to prevent nitrogen from interfering with the 

fuel spray. The residence time of the fuel in the cart metering system and fuel lines 

upstream of the nozzle is approximately 1 minute, and the combustor was run for 5-10 

minutes between fuel changes to ensure that the fuel from the prior run was purged.  Fuel 

flow rates were initially measured using an AW-Lake positive displacement gear meter and 

an upgrade was later made to a Cox Turbine meter. Fuel temperatures were measured at 

the fuel inlet depicted in Figure 2.1 and varied between 300 and 305 K. Estimated 

uncertainties in overall measured fuel/air ratio are 3%. 

Detailed procedures were followed to ensure that mixing between fuels was 

avoided. The fuel cart was loaded using separate, dedicated portable fuel safe containers 

for each fuel. Fuel was transferred from its respective barrel to these portable containers 

using dedicated fuel pumps for each fuel.   

 

Figure 2.5: Photograph of the fuel cart used to supply fuel for these experiments. 
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2.2 Fuel Screening Procedure 

Repeatability is a significant challenge in blowout experiments as there are many 

confounding variables involved. The fuel-air ratio, air inlet temperature, combustor 

pressure, nozzle velocity, heat transfer from the combustor hardware, acoustic fluctuations, 

and combustor hardware type may all influence blowout boundaries. It was intended to 

either fix or parametrize as many of these variables as possible. One of the more difficult 

variables to control is the dependence of blowout on combustor thermal state – e.g., 

blowout occurs at a different condition when a combustor is brought to thermal equilibrium 

than if it is still cold.  The combustor heat transfer characteristics are difficult to control 

and so the bulkhead temperature (see Figure 2.3) was used as a parameter to characterize 

the thermal state of the combustor, as detailed next.   

 

Figure 2.6: Time history of temperature and fuel flow rate during a series of 

blowout measurements, illustrating the blowout measurement procedure. 

Figure 2.6 demonstrates the experimental procedure for a given fuel, plotting the 

time history of the bulkhead temperature and fuel flow rate. This procedure was adapted 

from previous work done by Tim Lieuwen’s group [123]. The key experimental observable 

extracted from these data was the equivalence ratio at which the flame blew out. This value 
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was calculated using the minimum volume flow rate of fuel within a 5 second interval 

preceding LBO. The fuel specific equivalence ratio was then calculated from this volume 

flow rate using the density and stoichiometric fuel-air ratio for each fuel. In order to gather 

equivalence ratio measurements across a range of combustor thermal states (i.e., “hot”, 

“cold”), the experimental process included three different phases, as shown in Figure 2.6. 

Phase 1 is used as a heat-up period that raised the combustor to high bulkhead temperature 

values. This allowed blowout equivalence ratios to be measured at a super-equilibrium 

thermal state. Phase 1 also served the secondary purpose of operating the combustor at a 

high fuel flow rate to flush any previously used fuel through the system, thus ensuring that 

only the fuel of interest was being supplied to the combustion chamber. Once the 

combustor was sufficiently warm, the fuel flow rate was reduced and the procedure 

transitioned into Phase 2. Here, blowout equivalence ratios were gathered at high bulkhead 

temperatures. The fuel ramp rate was controlled by bringing the flame to a near extinction 

condition and then manually reducing the fuel flow rate by the smallest increments 

allowable until blowout occurred. The flame was then immediately re-ignited and this 

process was repeated while further blowout points were acquired. As Phase 2 continued, 

the combustor bulkhead temperature cooled, and eventually reached an equilibrium value. 

As such, blowout measurements were obtained for a range of combustor thermal 

conditions. In order to gather blowout measurements at low bulkhead temperatures, in 

Phase 3 the combustor was turned off and allowed to cool. Following a few minutes, the 

combustor was re-ignited and the blowout measurement procedure resumed. As this 

process continued, the combustor heated up and blowout measurements were obtained for 

a range of “cold” thermal conditions. In this way, blowout was measured over a range of 
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combustor thermal conditions. In order to avoid coking the fuel injector while terminating 

the fuel flow, Phase 3 was not included in the 550 K experiments.  

This three phase process was then repeated for each of the fuels during an 

experimental operation.  The fuel cart reduced the time required to consecutively test all of 

the fuels down to a single day – a requirement that was imposed on all runs to avoid 

additional uncontrolled variations in ambient conditions. This process was then repeated 

on other days, reversing the direction over which the fuels were tested, to verify 

repeatability.   

Further details on these data are presented in Appendix A and a sample of the results 

from this procedure is shown in Figure A.1. Here the equivalence ratio at blowout is plotted 

as a function of the bulkhead temperature for fuel C-4. Results are shown for the three air 

inlet temperatures, 300 K, 450 K, and 550 K. It can be seen that blowout resistance is 

enhanced by an increase in either air inlet or bulkhead temperature. 

Using this procedure, blowout results were quite repeatable for the majority of the 

fuels. By comparing day to day differences in blowout equivalence ratios at fixed bulkhead 

temperature intervals, the standard deviation in blowout equivalence ratio varied between 

0.5-8% of the mean. 

  However, evidence for an additional uncontrolled variable did surface for certain 

fuels. Specifically, deviation in results from day to day were consistently observed for fuels 

A-2, A-3, C-3, C-5, C-7, and C-8, indicating additional uncontrolled variables that were a 

function of fuel composition. In addition, these same fuels displayed a non-monotonic 

dependence between the blowout fuel-air ratio and the bulkhead temperature, whereas 
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others showed a linear dependence. Although these issues are conceptually independent 

from each other, they both manifested themselves in a decrease of the correlation 

coefficient (quantified as the R2 value) from a linear least squares fit of the blowout 

equivalence ratio vs. bulkhead temperature data.  This issue is discussed in further detail 

in the Appendix A, see Figure A.1 and Figure A.2, but the results indicate that the average 

R2 value is related to the combined percentage of aromatics and cycloalkanes in the fuel 

(see Figure A.3). In other words, the fuels with the lowest R2 values had the highest 

percentages of ring-shaped compounds. Two potential causes of this dependence are 

thermal cracking of the fuel in the injector or back-heating of the fuel spray by radiation, 

with the latter augmented by increased soot radiation from these fuels with higher aromatic 

concentrations.  

 A key output from these results was controlling the influence of the combustor 

thermal state upon blowout conditions.  Due to the previously discussed issues, only data 

that had a negatively sloped relationship between the blowout equivalence ratio and 

bulkhead temperature (e.g., less than 600 K for the 450 K data shown in Figure A.2) is 

compared in the following sections. Measured blowout results presented in Chapter 4 

compare blowout trends across fuels at a fixed bulkhead temperature. Results from the 300 

K, 450 K, and 550 K data sets are compared at bulkhead temperatures of 500 K, 550 K, 

and 640 K, respectively.  

2.3 Operating Conditions 

In practice, lean blowout is most likely to occur when an airplane is reducing its 

speed to prepare for landing [9, 19]. Figure 2.7 shows the typical engine operating pressures 
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and inlet air temperatures across a flight path [9]. The operating conditions for these 

experiments were selected to be representative of low power engine conditions where 

blowout is most probable. These considerations led to selecting nominal operating 

conditions of 345 kPa combustor pressure, a 1.3% pressure drop across the swirler, a nozzle 

velocity of 63 m/s, and an air inlet temperature of 450 K. In order to vary the effects of fuel 

physical properties on LBO results, the experiment was also run above and below this 

nominal temperature, at 300 K and 550 K, for the same pressure and air mass flow splits. 

Moreover, the study by Corporan et al. [103] demonstrated that it is important to evaluate 

blowout results at multiple air inlet temperatures from a practical standpoint because the 

compressor discharge temperature will drop as blowout is approached. The experimental 

operating conditions are summarized by the boxed region in Figure 2.7, where the stars 

represent the conditions where data was acquired.  

 

Figure 2.7: Engine inlet conditions and regions where primary figures of merit 

correspond to the flight operating range. The stars represent conditions for data 

acquisition. Taken from [9].  

Although the experiments were only compared at a single operating pressure, 

estimates of the relevant characteristic time scales allow for inferences to be made about 
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the effects of pressure on lean blowout sensitivities. Measurements taken of the liquid 

droplet size distributions [122, 124] for the fuels used in this study showed that the Sauter 

Mean Diameter varied between 15-35 microns for a fuel temperature of 322 K and an 

atomizing gas temperature of 394 K. The Sauter Mean Diameter range increased to 18-42 

microns when these measurements were repeated [125] with a fuel temperature of 280 K 

and an atomizing gas temperature of 259 K. Using the same combustor pressure and fuels 

as these referenced spray measurements , a gas temperature of 1000 K, and an initial droplet 

diameter of 50 microns, the LES simulation of Esclapez et al. [119] predicted a droplet 

evaporation time of ~5 ms. Other models for gasoline, ethanol, and diesel fuel droplets 

[126, 127] with an initial diameter of 24 microns predict evaporation times between 1-10 

ms, with the range depending on the pressure and temperature of the combustor. These 

evaporation times are compared against the relevant fluid mechanic and chemical times in 

Table 2-1. The characteristic ignition time is calculated using the Ignitition Quality Tester 

conversion for the derived cetane number [128]. 

 𝐷𝐶𝑁 = 83.99(𝜏𝑖𝑔𝑛[𝑚𝑠] − 1.512)
−0.658

+ 3.547 (2.1) 

As the derived cetane number for each of the fuels in this study was determined using an 

IQT, this equation allowed for an accurate estimate of the ignition delay time. However, it 

should be noted that these estimates are greater than the expected ignition delay times for 

pre-vaporized fuels, as the time required for atomization and vaporization of the liquid fuel 

is included in the IQT measurement. Although the values listed in Table 2-1 are only rough 

estimates, it can be seen that the characteristic ignition and evaporation times are most 

likely comparable at the operating conditions that were chosen in this work. However, this 
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may not be the case at high pressure conditions, as the droplet sizes [125] and evaporation 

times [126, 127] will certainly decrease as the pressure is increased. Furthermore, the 

enhanced fuel-air mixing rates that will be caused by the increased turbulence intensities 

at high pressure will likely augment the sensitivity of lean blowout to fuel chemical 

properties at high pressure. 

Table 2-1: Relevant characteristic time scales.  

τevap (ms) τflow,D/U (ms) τflow,res (ms) τign (ms) 

1-10 ~ 0.3 ~ 6 3-18 

 

2.4 Fuels 

Fuels for this study were specifically selected to determine the influence of various 

fuel properties on blowout performance. Currently certified jet fuels were included as a 

reference to compare against. These fuels were obtained from the US Air Force as part of 

the National Jet Fuels Combustion Program. Extensive documentation has been published 

about these fuels [9, 129-131].  

The standard aviation fuels JP-8, Jet-A, and JP-5 were included in this study and 

will be referred to by the names A-1, A-2, and A-3, respectively. Those fuels which are not 

currently certified are called the “C” fuels. Fuel C-1 is almost entirely composed of iso-

paraffins with carbon numbers of 12 (C12) and 16 (C16) [132]. C-2 has bimodal distillation 

characteristics, where the aromatics evaporate first, followed by the iso-paraffins. C-3 is a 

high viscosity fuel composed of JP-5 and farnesane. C-4 is a mixture of the Sasol IPK 

alternative fuel and fuel C-1. C-5 has a low viscosity and single value boiling point 
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temperature. The maximum allowable aromatics percentage within the existing jet fuel 

specification is possessed by fuel C-8. C-9 is a fuel with a high derived cetane number that 

was attained by adding n-alkanes until its other fuel properties approached the boundaries 

of the existing jet fuel specification. 

 

Figure 2.8: Relationship between T50 (i.e., the temperature at which 50% of the 

liquid volume had vaporized) and derived cetane number for investigated fuels. 

As detailed in the Introduction, alternative fuels studies have long been plagued by 

the interdependence between fuel properties. For example, previous work found the 90% 

boiling point temperature (T90), percentage of aromatics in the fuel, percentage of iso-

paraffins in the fuel, and the derived cetane number to all be well-correlated with blowout 

boundaries [101]. This point is illustrated in Figure 2.8, where it can be seen that the 

derived cetane number of the studied fuels is correlated with the T50 value for several of 

the fuels. Two surrogate fuels, denoted S1 and S2, were specifically designed by Won et 

al. [94] to disrupt the correlation between physical and chemical fuel properties (However, 

as will be shown later, the unique preferential vaporization characteristics of these fuels 

make their effective DCN unclear – i.e., quantities based on average fuel properties may 

not capture local properties). These fuels have nearly the same derived cetane number, 
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threshold sooting index (TSI), molecular weight, and H/C ratio as Jet-A, but their 

vaporization characteristics are much different. Furthermore, n-dodecane and a high TSI 

fuel were used because they decoupled the correlation between the derived cetane number 

and aromatic content that is present in most of the other fuels [102].  

Turning to the interrelationships between fuel kinetic properties, the derived cetane 

number is well correlated with the laminar flame speed, extinction stretch rate, and the fuel 

ignition delay for many of the studied fuels. Fuels C-7 and C-8 were designed to break 

these correlations. In particular, these fuels have essentially the same DCN but different 

extinction characteristics. Fuel C-7 is composed of 62% cycloalkanes, a compound 

exhibiting a high-temperature reactivity similar to n-alkanes but which is relatively less 

reactive at low temperature conditions, as captured by the ASTM derived cetane number 

test (ASTM D6890) [133]. Thus, a comparison of the blowout limits of fuels C-7 and C-8 

to others may demonstrate the role of extinction related high-temperature flame chemistry 

on flame stability.  

Understanding blending sensitivities is also important for fundamental and 

practical reasons.  From a fundamental perspective, it is important to understand the linear 

or nonlinear influences of certain species on blowout characteristics.  For example, the 

traditional hydrocarbon (“A”) fuels contain many compounds that are not present in the 

synthetic (“C”) fuels.  From a practical perspective, the current supply of candidate 

alternative aviation fuels is insufficient for them to be the sole fuel source on a commercial 

aircraft. All potential alternative fuels would be implemented in blended proportions with 

a presently certified fuel, such as Jet-A. Consequently, there is great interest in 
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understanding blending sensitivities. For this reason, blends of A-2 and C-1 were tested in 

volume proportions of 80% A-2 20% C-1, 50% A-2 50% C-1, and 20% A-2 80% C-1.  

Table 2-2 summarizes the chemical compositions and physical properties of each 

of the fuels. A detailed reference on these fuels is provided in Ref. [129]. 

As mentioned above, preferential vaporization can cause the fuel properties that are 

effective for lean blowout to be different than those based on the entire fuel composition. 

A key consideration in this work was the degree to preferential vaporization affects LBO 

boundaries. Preferential vaporization effects were accentuated by testing two fuels with 

identical DCNs but very different preferential vaporization characteristics. These fuels 

were designed by Professor Sang Hee Won at the University of South Carolina (USC). 

Preliminary measurements have confirmed that their actual DCNs approximate the 

estimated DCN values of 28. The first fuel was comprised of 91.8% C-1 and 8.2% n-

heptane by volume. N-heptane has a much lower boiling point temperature (i.e., 371.6 K) 

than C-1 (i.e., 447.3-536.5 K). It is also much more reactive, with a DCN of 53.8 compared 

to the C-1 value of 17.1. Therefore, if preferential vaporization does influence lean blowout 

boundaries, the reactive n-heptane should vaporize first from this fuel and improve the 

LBO performance. The other fuel was made of 93.6% C-1 and 6.4% n-dodecane. N-

dodecane has a boiling point temperature (i.e., 489.0 K) that is within the C-1 distillation 

range (i.e., 447.3-536.5 K). Therefore, the chemical properties of this fuel remain relatively 

constant across the distillation curve and preferential vaporization effects are not expected 

to be present.
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Table 2-2: Chemical composition and physical property summary of the fuels, as detailed in Ref. [129]. The smoke point of the 

High TSI fuel was determined using the TSI constants of Mensch et al. [134, 135] (i.e., a=4.07, b=-4.8). The virtual smoke point 

of Haas et al. [136] is reported below for n-dodecane. The kinematic viscosities at 313 K for fuels C-7, C-8, and C-9 are 

estimated by Opacich et al. [137]. 

Fuel T90 (K) T50 (K) T10 (K) H/C 
% 

Aromatics 

% iso-

Paraffins 

% n-

Paraffins 

% 

Cycloalkanes 

Smoke  

Point (mm) 
DCN MW Ri 

σ @ 300 K 

(mN/m) 

ρ @ 288 K 

(kg/m3) 

ν @ 313 K 

(mm2/s) 

Flash  

Point (K) 

LHV  

(MJ/kg) 

A-1 (JP8) 506.9 462.7 437.3 2.02 13.4 39.7 26.8 20.1 28.5 48.8 151.9 0.80 23.6 779.9 1.14 315 43.2 

A-2 (Jet-A) 517.6 478.4 449.8 1.94 18.7 29.5 20.0 31.9 24.0 48.3 158.6 0.75 24.6 803.2 1.31 321 43.1 

A-3 (JP5) 518.8 492.6 467.2 1.90 20.6 18.1 13.9 47.4 20.0 39.2 166.1 0.67 25.5 826.8 1.57 333 42.9 

80% A-2, 20% C-1 516.0 471.0 449.0 1.99 14.9 43.5 16.0 25.5 26.1 42.1 162.6 0.74 24.3 794.5 1.34 321 43.3 

50% A-2, 50% C-1 513.0 464.0 449.0 2.05 9.3 64.5 10.0 16.0 29.3 32.7 168.6 0.73 23.8 781.5 1.39 323 43.5 

20% A-2, 80% C-1 507.0 458.0 450.0 2.12 3.7 85.6 4.0 6.4 32.4 23.3 174.5 0.72 23.3 768.4 1.45 323 43.8 

C-1 497.4 456.3 451.9 2.16 0.0 99.6 0.0 0.1 34.5 17.1 178.0 0.70 23.0 759.7 1.50 323 43.9 

C-2 506.8 498.5 463.9 2.08 17.1 77.5 5.2 0.1 26.9 50.4 181.9 0.71 24.9 781.2 1.38 331 43.4 

C-3 519.8 505.0 479.8 1.98 13.6 45.2 9.2 31.7 25.2 47.0 179.6 0.70 25.8 807.7 1.78 339 43.3 

C-4 479.5 452.7 442.4 2.18 0.4 98.9 0.2 0.4 37.2 28.0 162.2 0.72 22.4 759.2 1.25 318 43.8 

C-5 437.4 435.6 434.5 1.93 30.7 51.6 17.7 0.1 21.4 39.6 135.4 0.68 23.5 768.9 0.83 317 43.0 

C-7 517.0 489.0 469.0 1.98 4.9 29.5 3.3 62.3 N/A 42.6 170.0 0.75 25.7 817.0 1.71 337 43.3 

C-8 519.0 485.0 463.0 1.85 27.3 21.0 13.7 38.0 N/A 43.5 160.0 0.74 26.1 823.0 1.43 329 42.9 

C-9 527.0 488.0 459.0 2.16 0.2 85.8 12.5 1.5 N/A 63.3 174.5 0.90 24.0 759.0 1.58 321 44.0 

Surrogate 1 499.0 467.0 412.0 1.96 25.1 16.7 58.1 0.0 20.4 50.0 143.2 0.80 24.4 769.0 0.99 297 43.0 

Surrogate 2 551.0 507.0 394.0 1.95 24.9 22.5 52.6 0.0 21.1 50.6 156.9 0.78 24.6 778.0 1.28 289 42.9 

High TSI 535.7 474.9 441.8 1.91 28.8 53.7 17.6 0.0 17.6 48.4 149.3 N/A N/A 796.2 N/A N/A N/A 

n-Dodecane 489.0 489.0 489.0 2.17 0.0 0.0 100.0 0.0 60.0 73.5 170.3 1.00 25.0 753.0 1.29 344 44.2 
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2.5 Characterization of Preferential Vaporization Potential 

Much of the preferential vaporization work conducted in this study was done in 

collaboration with Professor Sang Hee Won at the University of South Carolina (USC). 

The preferential vaporization potentials of six of the tested fuels have been evaluated at 

USC. This involved preparing distillation cuts through an ASTM D86 distillation device 

[138] and measuring the derived cetane number (DCN) of both the entire fuel composition, 

and each distillation cut, according to the ASTM D6980 standard [139]. These 

measurements were taken for fuels A-2, A-3, C-1, n-dodecane, S1, and S2. 

The ASTM D86 distillation method requires heating a glass container (~ 250 mL) 

of liquid fuel with an electric heater, while determining the vaporization temperature at the 

top exit of the container. The vapor is then introduced to a heat exchanger tube, which is 

located in a chilled water bath. This chilled water is maintained at 273 K by a Cole-Parmer 

Polystat UX-12122-62 circulating bath and ensures that there is complete condensation of 

the vaporized sample by time it reaches the collection glass container. Five distillation cuts, 

each of ~20 % volume, of the original fuel sample are then obtained, along with their 

beginning and ending vapor temperatures.  
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Figure 2.9: Distillation characteristics of Jet-A POSF 10325 determined by the 

boiling point temperature as a function of the liquid volume recovered by the ASTM 

D86 method. Insets are direct photographs of five distillation cuts collected for each 

of the 20% volume samples. 

Figure 2.9 compares the measured distillation characteristics of A-2 to those 

reported by US Air Force Research Laboratory (AFRL) [9]. Considering that the current 

ASTM D86 methodology has inevitable uncertainty associated with both its configuration 

and the liquid volume measurement, as discussed in [140-142], the results have a maximum 

deviation of 9 K, which is sufficiently accurate for the present work. During the distillation 

measurement, the five individual distillation cuts are collected along the distillation curve 

by replacing the receiving container at every 20% liquid volume recovered point, as seen 

in the inset of Figure 2.9. Interestingly, the initial four distillation cuts of A-2 were essentially 

colorless, whereas the last bin sample exhibited a brownish yellow color (perhaps due to sulfur-

containing species or fuel additives). Although not shown in the figure, the distillation 

characteristics of two other real fuels (A-3 and C-1) have been similarly produced and their 

distillation curve data has been compared to the results reported by AFRL. 
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The chemical reactivity potential of the actual fuels, as well as each of their distillation 

cuts, were characterized by DCN measurements performed using an ignition quality tester 

(IQT). The DCN is a global/relative measure of the autoignition propensity of a fuel determined 

by an IQT, which records ignition delay time associated with the injection of a liquid fuel 

sample into a heated (~ 830 K) constant volume chamber containing pressurized air at ~ 22 

atm. Though cetane number variants, such as the DCN, have been historically developed for 

diesel applications, they have also been extensively utilized to compare the chemical kinetic 

reactivity potential of single fuel components, component mixtures, petroleum-derived jet 

fuels, alternative jet fuels, and their mixtures. Furthermore, the DCN acts as one of the 

Combustion Property Targets (CPT’s) in the surrogate mixture formulation [108-111] to 

emulate the fully pre-vaporized combustion behaviors of real fuels. The DCN has a direct 

correlation with low-temperature reactivity due to the thermodynamic condition employed in 

the IQT [107], but it has also been shown that the value reflects high-temperature reactivity as 

well, due to the strong sensitivity of the DCN to the (CH2)n functional group presence in the 

fuel [94]. A large fraction of (CH2)n functional groups indicates the prevalence of normal-

alkanes, or straight-chain alkyl groups added to cyclic compounds, that rapidly produce a 

highly reactive radical pool at high temperatures through oxidative pyrolysis [94, 107]. 

Although the relevance of low-temperature reactivity for gas turbine applications is still in 

debate, there is strong evidence that intermediate temperature chemistry, occurring above ~750 

K, also affects radical pool development at higher pressures. Here, the DCN values of both the 

entire fuel composition and their distillation cuts are used as a chemical reactivity potential 

indicator. 
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2.6 CH* Chemiluminescence 

The detailed measurements that were taken will now be introduced, including high 

speed CH* chemiluminescence videos, OH* time series from a photomultiplier tube 

(PMT), dynamic pressure measurements used to characterize acoustics, and OH-PLIF and 

stereo-PIV measurements. Fuels C-1, A-2, S2 and n-dodecane were included in the 450 K 

LBO videos. The same fuels were used in the 300 K high speed videos, except fuel C-1 

which was exchanged for C-5. Ten fuels in total were used for the PMT and acoustic 

measurements and are shown in Table 2-3. The fuels labeled with an asterisk in this table 

are those for which CH* chemiluminescence videos were acquired. Fuels A-2, C-1, and C-

5 were included in the planar measurements. The fuels which were studied further using 

detailed measurements were selected because they spanned the lean blowout limit range. 

CH* chemiluminescence videos were taken as the blowoff process occurred. The 

images were acquired at 4 kHz with a 12 bit Photron SA5 camera. Each recorded video 

captured between 2,000-3,000 images. The camera resolution was set to 1024x1024 pixels, 

which resulted in a final resolution of approximately 97 μm/pixel. An AT-X M100 Tokina 

lens with f=100 mm and a f/D=2.8 setting was used with the camera. A 434 nm centered 

spectral filter with a 17 nm bandwidth was used to capture the emission from the CH* 

radical.  

In order to record a blowoff process, a photomultiplier tube (PMT) signal was used 

to activate the high speed camera. Using the falling edge from a PMT signal following a 

blowoff event, a timing box was used to trigger the camera. A 50 μs delay was set on the 

timing box in order to ensure that the flame had fully extinguished before the camera began 
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recording. The camera was back triggered, such that it retained the images that were stored 

in its buffer during the viewing window preceding the receipt of the PMT signal’s 

indication of blowoff. This procedure was repeated 2-8 times for each of the four fuels at 

the two different air inlet temperatures. Table 2-4 shows the conditions where 

chemiluminescence measurements were taken. Conditions A, B correspond to PMT 

measurements and conditions C, D were taken using high speed videos. Both the 

chemiluminescence videos and the PMT measurements were recorded during the blowout 

transient (ϕ-ϕLBO→0). Videos were also recorded at an equivalence ratio slightly above the 

blowout value (ϕ-ϕLBO≈0.025), in order to study the flame behavior during the pre-blowoff 

stages. 
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Table 2-3: Fuels used for the detailed measurements. Acoustic and PMT measurements were taken for each of these fuels, 

whereas CH* chemiluminescence videos were acquired for the fuels with an asterisk. 

Fuel T90 (K) T50 (K) T10 (K) H/C 
% 

Aromatics 

% iso-

Paraffins 

% n-

Paraffins 

% 

Cycloalkanes 

Smoke  

Point (mm) 
DCN MW Ri 

σ @ 300 K 

(mN/m) 

ρ @ 288 K 

(kg/m3) 

ν @ 313 K 

(mm2/s) 

Flash  

Point (K) 

LHV  

(MJ/kg) 

A-2 (Jet-A)* 517.6 478.4 449.8 1.94 18.7 29.5 20.0 31.9 24.0 48.3 158.6 0.75 24.6 803.2 1.31 321 43.1 

C-1* 497.4 456.3 451.9 2.16 0.0 99.6 0.0 0.1 34.5 17.1 178.0 0.70 23.0 759.7 1.50 323 43.9 

C-4 479.5 452.7 442.4 2.18 0.4 98.9 0.2 0.4 37.2 28.0 162.2 0.72 22.4 759.2 1.25 318 43.8 

C-5* 437.4 435.6 434.5 1.93 30.7 51.6 17.7 0.1 21.4 39.6 135.4 0.68 23.5 768.9 0.83 317 43.0 

C-7 517.0 489.0 469.0 1.98 4.9 29.5 3.3 62.3 N/A 42.6 170.0 0.75 25.7 817.0 1.71 337 43.3 

C-8 519.0 485.0 463.0 1.85 27.3 21.0 13.7 38.0 N/A 43.5 160.0 0.74 26.1 823.0 1.43 329 42.9 

C-9 527.0 488.0 459.0 2.16 0.2 85.8 12.5 1.5 N/A 63.3 174.5 0.90 24.0 759.0 1.58 321 44.0 

Surrogate 2* 551.0 507.0 394.0 1.95 24.9 22.5 52.6 0.0 21.1 50.6 156.9 0.78 24.6 778.0 1.28 289 42.9 

High TSI 535.7 474.9 441.8 1.91 28.8 53.7 17.6 0.0 17.6 48.4 149.3 N/A N/A 796.2 N/A N/A N/A 

n-Dodecane* 489.0 489.0 489.0 2.17 0.0 0.0 100.0 0.0 60.0 73.5 170.3 1.00 25.0 753.0 1.29 344 44.2 

Table 2-4: Conditions where PMT measurements (A, B) and CH* chemiluminescence videos (C, D) were acquired. 

Condition Equivalence Ratio Temperature (K) Fuels (Repeats) Recording Time 

A 0.1>ϕ-ϕLBO→0 450 All fuels in Table 2-3 50 seconds 

B 0.1>ϕ-ϕLBO→0 300 All fuels in Table 2-3 50 seconds 

C ϕ-ϕLBO→0 450 A-2 (8), C-1 (7), n-Dodecane (7), S2 (6) Less than 1 sec 

D ϕ-ϕLBO→0 300 A-2 (2), C-5 (3), n-Dodecane (2), S2 (2) Less than 1 sec 
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2.7 Photomultiplier Tube (PMT) Measurements 

Photomultiplier tube (PMT) measurements were used to acquire OH* 

chemiluminescence signals over longer time intervals than would be possible using 

cameras alone, allowing better estimates of event statistics near blowoff. By integrating all 

of the intensity in its field of view, the PMT outputted a single intensity point value taken 

at 10 kHz over a 50 second interval. This involved beginning the measurements at an 

equivalence ratio of ϕ-ϕLBO≈0.1 and gradually reducing the fuel flow rate until blowoff 

occurred. These cases are labeled conditions A (450 K) and B (300 K) in Table 2-4. The 

Hamamatsu H5784-04 PMT was stored inside of a box during data acquisition in order to 

prevent background light from interfering with the chemiluminescence measurements. 

Also, as shown in Figure 2.10, this box configuration allowed for easy determination of 

the measurement’s field of view. Light was able to enter the PMT housing box through a 

0.115” aperture in a bulkhead optical fiber connector. A Newport spectral filter was placed 

between the bulkhead connector and the PMT in order to reject emission that wasn’t 

associated with the OH* radical. It had a center frequency of 310 nm and a half width of 

10 nm. The PMT had an effective diameter of 8 mm and, based on the distances shown in 

Figure 2.10, the half angle at which light enters the PMT housing box through the bulkhead 

connector port is 6 degrees. Figure 2.11 shows images of the test section and the PMT 

configuration. Based on the 6 degree viewing half angle and the width of the windows 

providing optical access into the test section, the opening port of the PMT needed to be 

placed at least 533 mm away from the desired field of view. For this reason, the PMT was 

placed 546 mm from the outermost edge of the test section, thereby capturing all of the 



 57 

luminosity that was observable in the combustor. These distances were measured prior to 

operation and did not change significantly during the data acquisition process. 

 

Figure 2.10: Schematic of the PMT configuration and the corresponding viewing 

angles. Taken from [143]. 

 

Figure 2.11: PMT placement and associated distances to the test section. The image 

on the left is a side view of the combustor and the right image represents a top down 

view of the combustor. 

These PMT time series data were acquired 10 times, at both the 300 K and 450 K 

air inlet temperatures, for each of the ten fuels that were considered, resulting in 200 total 

cases that were analyzed. Data was also taken at 550 K but were there non-negligible 

acoustic oscillation levels (p’/P~0.7%, as opposed to 0.25% at 300 K and 450 K). This 

point will be discussed in more detail later in Section 5.3. Given the potential influence of 
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thermoacoustic coupling on blowoff, PMT results are only shown for the 300 K and 450 K 

data. 

2.8 Acoustic Measurements 

Dynamic pressure measurements were taken both upstream of the swirler, and also 

downstream of the test section, as shown in Figure 2.1. These measurements were acquired 

using Kistler Type 6023A differential pressure sensors that were mounted flush with the 

inner diameter of the pressure vessel piping. These piezoelectric sensors are capable of 

operating in temperatures up to 973 K and account for vibrations or shocks that would 

otherwise interfere with their measurements. The response of the sensors is temperature 

dependent, but the thermal sensitivity shift varies less than ± 5% over the operating 

temperature range. The sensors’ signal is outputted in picocoulombs (pC) with a conversion 

factor of 1.006 pC/kPa. A Kistler Type 5181A differential charge amplifier is then used to 

convert the signal from picocoulombs to millivolts, in 10 mV/pC proportions. These 

measurements were also taken at 10 kHz over a 50 second interval. 10 repetitions of these 

data were taken for each fuel and air inlet temperature, resulting in 300 total acoustic time 

series. 

2.9 Planar Measurements 

Simultaneous OH-PLIF and PIV measurements were taken at 5 kHz to characterize 

the details of the flame and flow structure. These data were acquired at an air inlet 

temperature of 450 K and the nominal operating pressure of 345 kPa. Both stable burning 

cases (ϕ-ϕLBO≈0.1) and a blowout transient case were included in this data set. Data was 

obtained for the stable burning case with fuels A-2, C-1, and C-5. Fuel A-2 was used for 
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the blowout transient case. Due to allowable operating time limitations for the OH-PLIF 

camera intensifier, it was not possible to back trigger the planar measurements for the 

blowout transient case as was done for the CH* chemiluminescence videos. Therefore, this 

case was captured by operating the combustor on the threshold of lean blowout and then 

simultaneously closing the fuel valve and triggering the camera. Although this was not an 

authentic blowout process, fuel continued to be injected into the combustor throughout the 

entire series of recorded images, including after the flame blew out. Assuming that the fuel 

spray was not significantly altered by the fuel valve’s closure, the images that were 

captured likely represent a blowout transient with a rapid fuel ramp rate. Details of the 

diagnostic techniques that were used to acquire this data can be found in these references 

[76, 144, 145].  
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CHAPTER 3. DATA ANALYSIS TECHNIQUES 

This section introduces and provides details for the data analysis techniques that 

will be used in the following results sections. The types of analysis that will be discussed 

include a multiple linear regression that was applied to the fuel screening data, flame edge 

tracking for CH* chemiluminescence images, and thresholding of the PMT time series. 

3.1 Hierarchical Non-negative Garrote Regression 

A multiple linear regression analysis was performed to identify the relative 

contributions of each of the fuel properties on the fuel screening LBO boundaries. 

Obtaining regression results that both accurately represent the data and are physically 

meaningful depends on including only the causal variables for the problem under 

consideration [146]. Therefore, variable selection techniques were used to identify the most 

important variables for lean blowout and obtain an estimate of their regression coefficients. 

This problem is represented by the following equation: 

 

𝑌𝑖 = ∑𝑋𝑖𝑗𝛽𝑗

𝐽

𝑗=1

+ 𝜖𝑖 (3.1) 

where Yi is an n x 1 vector of outputs, Xij is an n x p matrix of input variables, βj is a p x 1 

vector of regression coefficients, and ϵi is the error. In this nomenclature, n represents the 

sample size and p is the number of variables. 

The most effective variable selection approaches are those that are able to 

completely eliminate the influence of insignificant variables. Such approaches include the 
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Non-negative Garrote (NNG) method [147], Least Absolute Shrinkage and Selection 

Operator (LASSO) Regression [148], and Least Angle Regression (LARS) [149]. As each 

of these are supervised learning techniques, the results depend on appropriately chosen 

tuning parameters for the optimization algorithm. For example, in Breiman’s [147] original 

Non-negative Garrote method 

 

𝑑𝑗(𝜆) = argmin
𝑑𝑗

(
1

2
‖𝑌𝑖 − 𝑋𝑖𝑗(𝛽𝑗

𝑂𝐿𝑆 ⊙ 𝑑𝑗)‖
2
+ 𝜆∑𝑑𝑗

𝐽

𝑗=1

) ; 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑑𝑗 ≥ 0, ∀𝑗 (3.2) 

where “⊙” represents the element-wise vector product, the shrinkage factor, dj, 

depends on the value of tuning parameter, λ, which is a required input for optimizing this 

equation. Therefore, obtaining a consistent solution path across a range of tuning 

parameters is a key variable selection issue. Yuan and Lin [150] define a consistent solution 

path as one that includes at least a single desirable estimate of the regression coefficients 

and relevant variables. By including artificial variables in their set of predictors and 

applying these methods to data sets with known regression coefficients, they showed that 

the path consistency performance of the Non-negative Garrote method is superior to other 

methods, provided that it receives an accurate initial estimate [150]. The ordinary least 

squares regression coefficients, βj
OLS, are used as the initial estimate in equation (3.2). 

 𝛽𝑗
𝑂𝐿𝑆 = (𝑋𝑖𝑗

𝑇𝑋𝑖𝑗)
−1

𝑋𝑖𝑗
𝑇𝑌𝑖 (3.3) 

Cross-validation is among the most popular model selection techniques and was 

applied here to select the optimal tuning parameters. This procedure involves separating a 

data set into multiple groups and assigning a single group to act as test data, while the data 
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in the remaining groups serve as the training data. The model is developed on the training 

data for a single tuning parameter input (some models involve multiple tuning parameters, 

but only one value for each tuning parameter can be cross-validated at a time) and its error 

is then calculated using the test data. Cross-validation performs this training/testing process 

in an iterative fashion, where the testing/training sets are successively re-assigned until 

each portion of the data has acted as both training and test data. The mean squared error 

associated with the different test data sets is determined and this value represents the 

quality of the model developed using the inputted tuning parameter(s). This cross-

validation procedure is then repeated for a range of tuning parameters and the tuning 

parameter(s) is selected which minimizes the mean squared error. 

Determining the number of groups to use is a key consideration in cross-validation. 

Using a small number of groups causes large bias errors, where the estimated mean squared 

error of the model varies significantly with small changes in the tuning parameter(s). 

However, using too many groups shrinks the size of the test data and causes large variances 

in the calculated mean squared error [151]. Furthermore, the appropriate group size is also 

dependent on the size of the overall data set. For example, small data sets (n<20) are very 

sensitive to bias errors that can corrupt the cross-validation procedure. In such cases it is 

best to use leave-one-out cross-validation, where the group count is maximized by treating 

each individual sample as a group, and only one sample is used as the test data for each 

iteration of the procedure. Since 18 fuels were experimentally tested in this study, leave-

one-out cross-validation was used to select the tuning parameters for this small data set. 

Figure 3.1 illustrates this procedure, where each fuel acted as an individual cross-validation 
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group. The groups labeled in green represent the training data and the groups in red 

represent the test data. 

 

Figure 3.1: Conceptual illustration of the leave-one-out cross-validation procedure. 

The green groups represent the fuels used for the training data and the red groups 

represent the fuels used as the test data. 

Correcting for inter-correlated variables is a critical variable selection issue. Each 

of the previously mentioned variable selection techniques have limitations in their ability 

to circumvent this problem. However, Paynabar et al. [146] developed a two-step process, 

known as the Hierarchical Non-negative Garrote method, that has been shown to perform 

accurate variable selection while still accounting for correlations between variables. First, 

important groups of variables are identified and then the individual variables within these 

groups are regressed in the second step. Step 1 utilizes the Group Non-negative Garrote 

method of Yuan and Lin [152] 
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𝑑𝑘(𝜆) = argmin
𝑑𝑘

(
1

2
‖𝑌𝑖 − ∑ ( ∑ 𝑋𝑖𝑗𝛽𝑗

𝑂𝐿𝑆

𝑝𝑘(𝑘)
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)𝑑𝑘

𝐾

𝑘=1

‖

2

+ 𝜆 ∑ 𝑑𝑘

𝐾

𝑘=1

) ; 𝑑𝑘 ≥ 0, ∀𝑘 (3.4) 

where k represents the group number, pk is the number of variables within each group, and 

dk is the group shrinking factor. As dk indicates the relative importance of each group of 

variables, this step performs variable selection at the group level. Groups with a dk value 

greater than 10-5 advance to Step 2 in the method. As was mentioned earlier, the Non-

negative Garrote method relies heavily on receiving an accurate initial estimate of the 

regression coefficients. The ordinary least squares estimate, used in equation (3.4), is 

known to have poor prediction accuracy for data sets with a small sample size [150]. In 

such cases, Paynabar et al. [146] recommend substituting the ridge regression coefficients 

for the initial estimate in equation (3.4). 

 𝛽𝑗
𝑟𝑖𝑑𝑔𝑒

= (𝑋𝑖𝑗
𝑇𝑋𝑖𝑗 + 𝜆𝐼)

−1
𝑋𝑖𝑗

𝑇𝑌𝑖 (3.5) 

This ridge regression substitution was applied here, since n<20 for the data set under 

consideration. Following the approach of Yuan and Lin [150], cross-validation was applied 

first to equation (3.5) in order to determine the tuning parameter for the ridge regression. 

Using this initial estimate, equation (3.4) was cross-validated next to identify the optimal 

tuning parameter for the group selection step. A modified form of the Non-negative Garrote 

method that is not affected by correlations between individual variables is then solved in 

Step 2.  

 𝑑𝑗(𝜆1, 𝜆2 ) = argmin
𝑑𝑗

(
1

2
‖𝑌𝑖 − 𝑋𝑖𝑗 (𝛽𝑗

𝑟𝑖𝑑𝑔𝑒 ⊙ 𝑑𝑗)‖
2

+ 𝜆1‖𝑑𝑗‖1
+

𝜆2

2
‖𝑑𝑗‖

2
) ; 𝑑𝑗 ≥ 0, ∀𝑗 (3.6) 
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The solution to the previous equation depends on two tuning parameter, λ1 and λ2, 

where λ2 is also used as the tuning parameter for the ridge regression coefficients, βj
ridge, in 

equation (3.6). Therefore, the tuning parameters were chosen that minimized the mean 

squared cross-validation error on a solution surface. The optimization problems in 

equations (3.4) and (3.6) were solved using CVX, a Matlab software package for 

performing convex optimization [153, 154]. The final regression coefficients for the 

individual variables are calculated by the element-wise vector product between the 

shrinkage factors and βj
ridge used in equation (3.6). 

 𝛽𝑗
𝐻𝑁𝑁𝐺 = 𝑑𝑗(𝜆1, 𝜆2 ) ⊙ 𝛽𝑗

𝑟𝑖𝑑𝑔𝑒
 (3.7) 

It should be noted that each of the predictor variables were standardized to have 

zero mean and a standard deviation of one before the Hierarchical Non-negative Garrote 

method was applied. However, the response variables were not centered on the mean. 

Instead, they were referenced to the A-2 (Jet-A) fuel, as described in Section 4.1. As noted 

in Table 2-2, some fuel property measurements were unavailable for certain fuels. In such 

cases, linear interpolation between the missing variable and its most closely correlated 

variable was used to provide the needed estimates for these unavailable properties in the 

regression analysis. 

3.2 Edge Detection of CH* Chemiluminescence Images 

Near blowoff, the most upstream point of the flame jumps axially back and forth, 

presumably associated with extinction, re-ignition, and axial convection. Two separate 

examples of this phenomenon that each include an LBO precursor event are shown later in 
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Figure 6.2 and Figure 6.3. These figures show twelve consecutive images where the most 

upstream luminosity point is labeled, xup. Flame edge tracking techniques were used to 

identify xup in each image. This location was determined in the following manner.  First, 

the images were inverted in order to accentuate the flame edge. This procedure enhanced 

the contrast between the image background and the image area occupied by the flame. 

Image denoising techniques were then used in order to further sharpen the flame edge. 

Much of the noise was periodic due to the dim edges of these weakly burning flames being 

near the detection limit of the camera. Therefore, an automated filtering process developed 

by Sur et al. [155], that operated in the image frequency domain, was used to remove this 

periodic noise from the images.  

A Gaussian smoothing filter with a standard deviation of four was then applied to 

the images in order to prevent random noise from being picked up by the edge detection 

algorithm. A global threshold, determined by Otsu’s method [156], was then used to define 

the flame edge for each image. Unlike using a constant threshold value throughout all 

cases, this method accounted for differences in the CH* emission intensity between fuels. 

3.3 PMT Thresholding 

Spatially integrated measurements of filtered flame luminosity are a useful way to 

characterize the blowout process of a flame throughout its entire history, from stable 

burning to complete extinction. The same double threshold method described by 

Murganandam [50] was used here to identify LBO precursor events from PMT 

measurements. The thresholds are calculated as a fixed percentage of the moving average 

of the mean. The signal must descend below and recover above both thresholds in order 
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for a drop in intensity to be classified as an “event”. The upper threshold was 55% of the 

local mean and the lower threshold was 40% of the local mean for the 450 K data. The 

upper threshold was 65% of the local mean and the lower threshold was 50% of the local 

mean for the 300 K data. There is a certain level of arbitrariness in the values that were 

chosen for these thresholds. However, Nair and Lieuwen [17] provide some general criteria 

that can be used to select an appropriate threshold. These criteria will be illustrated using 

a figure from their paper, which is shown here as Figure 3.2, where Iv is an indicator of 

blowout proximity and PFS is a parameter that governs the flame stability. In this study, Iv 

is quantified by the number of LBO precursor events per second and the equivalence ratio 

serves as PFS. Their first criterion is that the blowoff indicator value must be much greater 

just before blowout than during stable operation (i.e., Iv,LBO>>Iv,safe). Second, Iv should 

increase monotonically as the equivalence ratio is reduced towards blowoff. Third, the 

gradient in Iv must increase near blowoff (i.e., dIv,LBO/dPFS>dIv,safe/dPFS). In reference to 

Figure 3.2, only curves 3, 4, and 5 satisfy this criterion. Fourth, the maximum gradient in 

Iv should not take place during stable operation or too close to blowout. Lastly, any results 

must not be overly sensitive to the selected threshold value. Therefore, the optimal 

threshold according to these criteria would be one that is situated between curves 3 and 4 

in Figure 3.2. The following discussion will demonstrate that each of these criteria were 

satisfied in this analysis.  
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Figure 3.2: Conceptual threshold selection illustration. Iv represents an indicator of 

blowout proximity and PFS governs flame stability. Taken from [17]. 

Figure 3.3 shows an example of the PMT time series and double thresholds for fuel 

A-2 operating at both air inlet temperatures. It is apparent that the number of threshold 

crossings increases near blowout. The contrast in event frequency and duration between 

stable operation and lean blowout, averaged across the 10 cases for each fuel, is shown in 

Figure 3.4. The equivalence ratio was measured in 1 second intervals as LBO was 

approached and the number of events in each of these intervals was counted. Similarly, the 

average duration of the events in each interval was determined. Consistent with criteria 1-

3, the events increased approximately monotonically in frequency and duration as LBO 

was approached.  
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Figure 3.3: PMT time series at a 450 K air inlet temperature (left) and a 300 K air 

inlet temperature (right). The upper and lower thresholds are represented by the 

orange and yellow dashed lines, respectively. The fuel is A-2 (Jet-A). 

 

Figure 3.4: Equivalence ratio dependence of the average event frequency and 

duration as blowout is approached at a 450 K air inlet temperature (left) and 300 K 

air inlet temperature (right). The fuel is A-2 (Jet-A) in both instances. 

Obtaining an accurate estimate of the equivalence ratio at which the events began, 

(ϕevent), is required to satisfy criteria 4. LBO precursor events were occasionally observed 

in the high speed videos that were taken at ϕ - ϕLBO≈0.025. Although Figure 3.4 shows that 

the selected thresholds indeed predict that LBO precursor events will begin at equivalence 

ratios greater than ϕ - ϕLBO≈0.025, determining the precise value for ϕevent is challenging 
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because the event frequency does not increase smoothly from zero to the blowoff value. In 

other words, the initial events that are detected may not be particularly informative about 

blowoff proximity because the flame is capable of returning to stable operation afterwards. 

The probability that registered events will be imminently followed by LBO was determined 

by fitting a monotonic curve to the equivalence ratio measurements and then calculating 

the cumulative distribution function of the event frequency. ϕevent was defined for each 

individual run as the equivalence ratio at which the events had at least 10% probability of 

causing blowout, and those with lower probabilities were discarded in the subsequent 

analysis. This procedure for defining ϕevent is illustrated in Figure 3.5, where it is applied 

to the 450 K time series that was shown previously in Figure 3.3. The contrast plot of the 

event frequency and duration is shown on the left and the corresponding event frequency 

CDF is shown on the right. The orange line on the right plot in Figure 3.5 represents 10% 

probability that events will be imminently followed by LBO and the associated equivalence 

ratio, ϕevent, is marked by the yellow data point. 
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Figure 3.5: Equivalence ratio dependence of the event frequency and duration as 

blowout is approached for a single 450 K air inlet temperature case (left) and the 

CDF of the event frequency (right). The orange line in the right plot represents 10% 

probability that an event will cause blowout and the corresponding equivalence 

ratio is marked by the yellow data point. The fuel is A-2 (Jet-A).  

The following information was extracted from the PMT data - the average duration 

of the events, τevent, the equivalence ratio at which the events began (ϕevent), and the 

percentage of burning time in the near blowoff stages (ϕevent  > ϕ > ϕLBO) that was constituted 

by extinction, %τext. Figure 3.6 uses the 450 K time series in Figure 3.3 as an example to 

demonstrate how the event duration and %τext were calculated. A small segment of the time 

series surrounding the 33.5 second mark, along with the upper and lower thresholds, are 

shown on the left in Figure 3.6. As there is only one instance in the left plot where the 

signal descends below and then recovers above both thresholds, a single LBO precursor 

event occurred within this portion of the time series. When an LBO precursor event does 

occur, the event duration is defined as the amount of time in which the signal remains 

below the upper threshold, as indicated by the red dimensions on the left plot in Figure 3.6. 

As the x-axes in Figure 3.6 can also be represented by the equivalence ratio, the recording 

time values corresponding to ϕevent and ϕLBO are indicated in the complete time series shown 

on the right in Figure 3.6. τevent represents the average duration of the events in the (ϕevent > 
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ϕ > ϕLBO) time interval and %τext represents the percentage of time in this interval that was 

comprised of LBO precursor events. These values were determined for each individual run 

and then averaged over the 10 cases for each fuel. The error bars that are shown in the plots 

in Sections 6.2-6.3 represent a combined uncertainty with two contributions. One is a 

thresholding contribution that comes from the difference between the values at the selected 

thresholds and those at ± 5% of the chosen thresholds. The other is a data variability 

contribution that was determined using 95% confidence intervals. Although the 

quantitative values (e.g., %τext) do depend on the threshold that was used, the general trends 

in each of the following plots were very insensitive to the threshold value. 

 

Figure 3.6: PMT time series at a 450 K air inlet temperature. A segment of the time 

series that includes a single LBO precursor event is shown on the left. This plot 

indicates how the duration of an LBO precursor event was defined. The complete 

time series, with indicators for the recording times corresponding to ϕevent and ϕLBO, 

is shown on the right. The fuel is A-2 (Jet-A). 
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CHAPTER 4. FUEL SCREENING 

The goal of this section is to understand the dependence of the lean blowout 

equivalence ratio on fuel properties. It will be shown that this dependence is a strong 

function of the air inlet temperature, as this can cause the relative significance of the 

physical and kinetic properties controlling LBO to change. Furthermore, it will be shown 

that physical and chemical properties can have a coupled effect on lean blowout, as 

preferential vaporization can cause the kinetic properties of a small fraction of the 

constituents to have a dominant effect on flame stability. Lastly, a multiple linear 

regression analysis was performed to accentuate the relative contributions of each of the 

fuel properties on LBO. 

 

4.1 Lean Blowout Results 

Blowout results were compared between 18 different fuels and were tested at three 

different air temperatures (300 K, 450 K, and 550 K). These blowout sensitivities are 

displayed as the percent difference in equivalence ratio between a given fuel and the 

reference fuel A-2, denoted as %ϕ from A-2. This percent difference, %ϕ, is calculated by 

averaging the blowout equivalence ratios within a fixed bulkhead temperature window of 

50 K, subtracting the corresponding average for A-2 from that value, dividing this 

difference by the average A-2 value, and then averaging these percent differences across 

each of the days that the experiment was performed (ranging between 3-12). This 

composite equivalence ratio percent difference, %ϕ, is the value that will be presented in 

the following plots.  
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The number of samples in the 50 K bulkhead temperature window are used to 

calculate 95% confidence intervals corresponding to each fuel and including all 

experimental days. Since results for each fuel are shown relative to the reference fuel, these 

95% confidence intervals are based on the percent difference between each data point and 

the corresponding average A-2 value on the day that the experiment was performed. This 

uncertainty in the composite %ϕ value for each fuel is represented by the error bars shown 

in Figure 4.1. Additional details about the uncertainty in %ϕ are included in Appendix B. 

 

Figure 4.1: Percent differences in the blowout equivalence ratio between each fuel 

and A-2. Error bars represent 95% confidence intervals. 

Table 4-1 provides an introduction to the plots that will be shown in the following 

sections. It follows the approach of Burger et al. [96] in displaying the correlation 

coefficients between different fuel properties and the blowout data. This is a helpful way 

to identify correlations between fuel properties and determine how they trend with blowout 

sensitivities. For example, this table shows that both the DCN and the radical index 

correlate with 550 K blowout equivalence ratios, with correlation coefficients of -0.76 and 
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-0.57, respectively (note also that these fuel properties are both correlated with each other, 

with a correlation coefficient of 0.77). Cells highlighted green in this table denote 

correlation coefficients with an absolute value greater than 0.5. 

As noted in the Introduction, blowout in liquid fueled combustors is a function of 

both fuel physical and chemical properties. The following results sections will be organized 

around physical and chemical property correlations. Although many different fuel 

properties were investigated, the focus of the discussion will be on the fuel properties that 

correlated best with blowout. A complete set of plots for %ϕ as a function of each of the 

available fuel properties, across all three air inlet temperatures, is shown in Appendix B. 

 

  



 76 

Table 4-1: Correlation coefficient table depicting the correlations between fuel properties and blowout boundaries, following 

Burger et al. [96]. Green highlighting accentuates coefficients greater than |±0.5|. 

 T10 (K) T50 (K) T90 (K) ν (mm2/s) σ (mN/m) ρ (kg/m3) H/C MW LHV % Arom. % iso-Par. SP (mm) DCN Ri 

T50 (K) 0.27   

  

  

  

  

  

  

  

  

  

  

  

  

T90 (K) -0.08 0.72 

ν (mm2/s) 0.57 0.60 0.60 

σ (mN/m) 0.41 0.77 0.45 0.45 

ρ (kg/m3) 0.26 0.44 0.43 0.46 0.75 

H/C 0.23 -0.20 -0.24 0.11 -0.61 -0.78 

Molecular Weight 0.63 0.46 0.31 0.84 0.17 0.01 0.54 

LHV (MJ/kg) 0.41 -0.16 -0.17 0.22 -0.45 -0.69 0.95 0.55 

% Aromatics -0.45 0.06 0.07 -0.46 0.37 0.45 -0.88 -0.68 -0.91 

% iso-Paraffins -0.01 -0.42 -0.19 0.14 -0.70 -0.45 0.61 0.37 0.52 -0.47 

Smoke Point (mm) 0.53 -0.04 -0.30 0.09 -0.16 -0.61 0.82 0.41 0.90 -0.80 0.02 

Cetane Number 0.17 0.55 0.21 -0.07 0.48 -0.03 -0.08 -0.09 0.03 0.13 -0.57 0.21 

Radical Index 0.14 0.24 0.12 -0.09 0.06 -0.45 0.40 0.03 0.51 -0.36 -0.32 0.71 0.77 

%φ LBO (450 K) -0.48 -0.45 -0.02 0.11 -0.66 -0.33 0.31 0.10 0.12 -0.21 0.56 -0.08 -0.79 -0.45 

%φ LBO (300 K) -0.15 0.35 0.62 0.44 0.24 0.39 -0.16 0.23 -0.18 -0.04 0.02 -0.21 -0.21 -0.18 

%φ LBO (550 K) -0.65 -0.43 -0.06 -0.25 -0.49 -0.04 -0.13 -0.29 -0.35 0.16 0.26 -0.44 -0.76 -0.57 
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4.2 Physical Property Correlations 

Liquid fuel physical properties govern the atomization and vaporization processes 

required to form a combustible gas-phase fuel-air mixture. The fuel viscosity, surface 

tension, and density impact the atomization process. Extensive studies on the spray 

characteristics of these fuels have shown no correlation between fuel physical properties 

and droplet sizes [122, 124, 125, 157]. Although these findings de-emphasize the expected 

role of fuel droplet sizes on LBO, they may not be directly applicable to this study, as these 

measurements were taken using a different pressure atomizer design. Furthermore, efforts 

are underway by these authors to reduce their measurement uncertainty. The fuel boiling 

point temperatures are the physical properties that correlate best with blowout trends and 

so they are the focus of this section. The strongest correlations were seen at air inlet 

temperatures below the various fuel flash points. This is consistent with the findings from 

previous studies [96, 100], although these prior studies disagree on whether improved 

vaporization quality helps or hinders flame stability. This consideration was a key 

motivator for the 300 K air inlet temperature test point, as all fuels except S1 and S2 had 

flash points above this value.    

The many different chemical species and compounds in jet fuels lead to a 

vaporization process that extends across a range of temperatures.  Blowout boundaries were 

compared along this distillation range at T90, T50, and T10, representing the temperatures at 

which 90%, 50%, and 10%, respectively, of the liquid volume had vaporized. Figure 4.2 

shows the blowout equivalence ratio sensitivity to T10. A linear least-squares curve fit of 

this data set produces a negatively sloped line, driven largely by S2 and n-dodecane. The 

resulting physical explanation is the same conclusion expressed by Grohmann et al. [100] 
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and Lefebvre [95] – i.e., that difficult to vaporize fuels may extend blowout boundaries 

because they create locally richer regions with locally elevated flame temperatures. 

However, with the exception of these two fuels, no correlation exists between T10 and %ϕ. 

Figure 4.3 and Figure 4.4 present plots of the dependence of %ϕ upon T50 and T90, showing 

a general trend that the easily vaporized fuels were more resistant to blowout. These trends 

are consistent with those observed by Burger et al. [96] and Corporan et al. [103]. Further 

insight into the physics associated with an evaporation limited blowout process can be 

gained from recent simulations [117, 158]. They show that when enough fuel droplets fail 

to evaporate, much of the fuel remains in liquid form and there is insufficient gaseous fuel 

to sustain combustion. The superior correlations between %ϕ and the higher distillation 

temperatures suggest that a majority of the liquid volume must vaporize for combustion to 

be sustained. 

 Section 4.3 will detail the significant correlation of LBO to the derived cetane 

number. However, it is important to note here that chemical property effects may compete 

with physical property effects at some conditions. It is suspected that the high DCN of n-

dodecane is responsible for its slight deviation from the T50 and T90 correlations that are 

seen with the remaining fuels. In other words, while physical properties are largely 

controlling at this T=300 K temperature, there are some kinetic effects which become 

evident with fuels that have extremely fast oxidation rates.  
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Figure 4.2: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon T10. The data is compared at a bulkhead temperature of 500 K. 

 

Figure 4.3: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon T50. The data is compared at a bulkhead temperature of 500 K. 

 

Figure 4.4: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon T90. The data is compared at a bulkhead temperature of 500 K. 
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Fuel vaporization effects were much less apparent in the 450 K and 550 K data. 

The blowout equivalence ratio was essentially uncorrelated with T50 and T90 at these higher 

air inlet temperatures. Table 4-1 shows that there was perhaps some relationship between 

%ϕ and T10 at 450 K and 550 K. However, the absence of a convincing physical explanation 

for these observed negative correlations suggests that this is caused by interrelated fuel 

properties, rather than representing limiting blowout physics. It will be shown later in 

Section 4.5 that these negative correlations with T10 are likely related to preferential 

vaporization. 

Results from the blended fuels were of particular interest because they demonstrate 

whether a small quantity of one species can significantly influence blowout. Figure 4.5 

shows the composite blowout equivalence ratio values for A-2/C-1 blends at both 300 K, 

450 K, and 550 K. Within experimental uncertainty, each of the fuels essentially blew out 

at the same equivalence ratio at 300 K. However, at 450 K there was a clear linear trend 

between the percentage of A-2 in the fuel and the equivalence ratio at blowout. A potential 

explanation for these results is that physical properties are rate limiting at low air inlet 

temperatures, but at 450 K chemical property differences become manifest. Since the A-

2/C-1 blends have essentially the same physical properties, they blew out at the same 300 

K equivalence ratio. However, when chemical kinetic rates are the rate limiting factor, a 

linear average between the constituents of a mixture is sufficient to predict their blended 

lean blowout behavior. The 550 K results show that there are additional physics associated 

with fuel blending that are not present at the other air inlet temperatures. A nonlinear 

blending trend is observed, as demonstrated by the fact that the fuels with 20% and 50% 

A-2 compositions blew out at higher equivalence ratios than either complete C-1 or A-2. 
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Although this is an interesting discovery, the cause of this nonlinear blending relationship 

is unknown. It may be related to the thermoacoustic instability that is only present at 550 

K, as discussed in Section 5.3. It is clear that predicting fuel blending effects on lean 

blowout limits is a complex problem, as blending can have no effect, a linear effect, or a 

nonlinear effect, depending on the air inlet temperature. It should also be noted that any 

plots including blended fuels should be interpreted with caution, as the linear 450 K 

relationship will show a correlation with any fuel property regardless of whether there is a 

physical basis for causality. In other words, five of the fuels are linearly related blends 

which may give the illusion of a correlation with a certain fuel property that would not hold 

if a different set of fuels were considered. Furthermore, interpreting results from the 550 K 

fuel blends is challenging because there are uncontrolled blending physics that are not 

manifest at the other temperatures. Therefore, blended fuels are not included in plots for 

the 450 K and 550 K data.  

  

Figure 4.5: Average equivalence ratio at blowout versus percentage of A-2 fuel 

composition for A-2/C-1 blends. Blue symbols represent 300 K data, red symbols 

represent 450 K data, and yellow symbols represent 550 K data. Error bars 

represent the RMS of daily 95% confidence intervals. See Figure B. 1 for more 

details on uncertainties of the blended fuels. 
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4.3 Chemical Composition and Kinetic Property Correlations 

Flame stability is often limited by chemical kinetics at limit combustion conditions. 

Chemical composition and kinetic properties govern a variety of physical processes that all 

influence the blowout phenomenon, such as autoignition delays, extinction stretch rates, 

species diffusion speeds, chemical heat release, and flame propagation speeds. Correlations 

between the blowout boundaries of the various fuels and their respective chemical 

properties are examined in this section. For space reasons, plots for all of the studied 

correlations will not be shown, but a few synthesis comments will be made.   

First, a majority of the fuels showed correlations with the percentages of certain 

chemical compounds, such as aromatics or iso-paraffins. For example, Figure 4.6 shows a 

plot of %ϕ versus the percentage of aromatics in a given fuel. However, these aromatic 

composition correlations do not hold when S1, S2, C-7, C-9, and n-dodecane were 

included. This suggests that a correlation between aromatics and another fuel property 

more closely related to blowout limits is driving the trend observed with some of the fuels.  

The radical index [159], which has been shown to be proportional to the extinction 

stretch rate, was also examined. It ranks the chemical kinetic rate at which a fuel’s radical 

pool is populated in a diffusion flame configuration. This radical production rate plays a 

central role in the flame heat release rate. Considering that the derived cetane number also 

reflects the oxidation rate of a fuel, it is expected that the radical index and DCN are inter-

correlated. As shown in Table 4-1, there is some correlation between blowout and the 

radical index. However, other fuel properties, such as the derived cetane number, correlate 

better with %ϕ. Both the fuel molecular weight and the H/C ratio were uncorrelated with 
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blowout results. The derived cetane number had the highest correlation with %ϕ across a 

range of fuels at the higher air inlet temperatures of 450 K and 550 K. For this reason, the 

rest of this section further analyzes DCN correlations.   

It was shown in the previous section that at 300 K, blowout limits can be correlated 

with fuel vaporization properties, with the caveat that kinetic effects are also present for 

high DCN fuels. Figure 4.7 shows the 300 K blowout results plotted as a function of the 

derived cetane number. As expected, there was no correlation at this air temperature. 

Similar results were seen in the Burger et al. [96] data. However, both studies agree that 

while a majority of the fuels were uncorrelated with the derived cetane number at below 

flash point air inlet temperatures, the highest DCN fuels were still among the most difficult 

fuels to blowout. 

 

Figure 4.6: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the percentage of aromatics in each fuel. The data is compared at a 

bulkhead temperature of 550 K. 
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Figure 4.7: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the derived cetane number. The data is compared at a bulkhead 

temperature of 500 K. 

DCN correlations become stronger as the air inlet temperature is increased.  Figure 

4.8 and Figure 4.9 show the relationship between %ϕ and the DCN at air inlet temperatures 

of 450 K and 550 K, respectively. Consistent with other studies [19, 104, 105], this was 

the strongest correlation with any of the fuel properties. Caution should be exercised, 

however, in relating the derived cetane number only to autoignition times, as studies have 

shown that it is also correlated with other fuel properties. In particular, fuel physical 

properties can influence the measurement, and they become especially impactful for high 

DCN fuels [94]. Furthermore, it can be seen that a few of the fuels, namely S1 and S2, 

didn’t follow the same trend. These fuels have unique preferential vaporization 

characteristics [94], which is a phenomenon that occurs when the initially vaporized 

constituents of a multi-component fuel impact the global combustion characteristics 

pertinent to LBO. This perspective considers the local DCN of the constituents that 

vaporize at a particular temperature along the distillation curve. The most easily vaporized 

constituents for fuel S2 have a DCN of approximately 19, and it is the species which 

vaporize last that raise its DCN to the average value [94]. These unreactive, easily 
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vaporized constituents are likely responsible for the behavior of S1 and S2 seen in Figure 

4.8 and Figure 4.9. 

A natural next question is whether the autoignition time is fundamentally the 

relevant quantity influencing blowout, or if it is simply a surrogate for another potentially 

correlated kinetic quantity, such as the extinction stretch rate or laminar flame speed. Some 

clarity into this question comes from Burger’s work [19], which showed a much stronger 

correlation between blowout proportionality constants and the derived cetane number 

(correlation coefficient=-0.71) than laminar flame speed (correlation coefficient=-0.08). 

Whether blowout is extinction or autoignition limited in liquid fueled systems is still open 

for debate. The nearly identical performance of fuel C-7 in the previous two figures, 

relative to other fuels with comparable derived cetane numbers, suggests that the large 

percentage of cycloalkanes in this fuel have little effect on its blowout performance. The 

merely mild correlation between the radical index and blowout equivalence ratios supports 

the conclusion that a fuel’s autoignition propensity cannot be disregarded when 

conceptualizing high air inlet temperature blowout, where the local flame extinction and 

ignition start to appear right before lean blowout.  
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Figure 4.8: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the derived cetane number. The data is compared at a bulkhead 

temperature of 550 K. 

 

Figure 4.9: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the derived cetane number. The data is compared at a bulkhead 

temperature of 640 K. 

 

4.4 Preferential Vaporization 

Jet fuels are comprised of many different chemical species which each have their 

own vaporization and kinetic characteristics. Preferential vaporization is a phenomenon 

that occurs when the more volatile fuel constituents are evaporated first and the less volatile 

constituents disproportionately remain in the liquid phase. In other words, the chemical or 
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reactive character of the initially vaporized fuel fraction is different than that of the original 

liquid fuel mixture. This can cause the effective kinetics of a jet fuel to be much different 

than those that would be predicted based on the entire fuel composition. As the 

characteristic evaporation time scale is expected to be larger than the characteristic flow 

time scale in this combustor (i.e., 1-10 ms vs ~0.3 ms, see Table 2-1), there is reason to 

believe that liquid droplets may reach the flame before completely vaporizing. The key 

consideration in this discussion is how the chemical reactivity of the initially vaporized 

constituents affects flame stability. For example, it was previously shown that the DCN is 

the dominant fuel property for determining lean blowout limits at high air inlet 

temperatures. The fact that the droplet heat-up time is expected to be comparable to the 

characteristic flow time (~0.3 ms) [127] raises the question of whether it is the DCN of the 

initially vaporized constituents that is actually responsible for governing the LBO 

phenomenon. Figure 4.10 illustrates these points by showing how the DCN for fuels A-2, 

A-3, S1, and S2 changes with the percentage of the liquid volume that has vaporized. 

Consider the comparison between fuels A-2 and A-3 in plot (a) in Figure 4.10. Although 

the DCN based on the entire fuel composition varies by about 10 between these fuels, the 

DCNs of their initially vaporized constituents are quite similar. Plot (b) in Figure 4.10 

shows that fuel S2 has the greatest potential for preferential vaporization effects, as the 

DCN of the initially vaporized constituents is only 19.1, compared with the value of 50.6 

based on the entire fuel composition. This potentially explains why S2 failed to follow the 

DCN correlation observed in Figure 4.8. 
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a) 

 

b) 

 

Figure 4.10: DCN values across the distillation range for fuels A-2 and A-3 (a), and 

A-2, S1, and S2 (b). 

This investigation into the role of preferential vaporization on lean blowout 

boundaries was done in close collaboration with Professor Sang Hee Won at the University 

of South Carolina (USC). As was introduced in Section 2.5, the DCN of the initial 20% of 

liquid volume to vaporize was measured for six of the fuels at USC and the LBO data was 

taken at Georgia Tech. Figure 4.11 shows %ϕ at 300 K plotted against the 20% DCN. There 

is a correlation coefficient of -0.74 between these two parameters and the 20% DCN seems 

to have a greater effect on %ϕ at 300 K than the entire composition DCN, shown in Figure 



 89 

4.7. However, the fact that fuels C-1 and S2 have very similar 20% DCNs and still blew 

out at different equivalence ratios belies the argument that preferential vaporization 

significantly influences LBO at 300 K. A stronger correlation coefficient of 0.83 exists 

between T90 and %ϕ at 300 K for these same six fuels. It may be that preferential 

vaporization is less important at 300 K because very little vaporization of the liquid fuel 

droplets occurs before they reach the flame. Although the role of preferential vaporization 

on 300 K LBO behavior is unclear, there is strong evidence that it matters at the higher air 

inlet temperatures. Figure 4.12 and Figure 4.13 show %ϕ plotted against the 20% DCN at 

450 K and 550 K, respectively. These correlations are extremely strong, with a -0.91 

correlation coefficient at 450 K and a -0.95 correlation coefficient at 550 K. 

 

Figure 4.11: Dependence of %ϕ from A-2 upon the 20% DCN. The data is compared 

at a bulkhead temperature of 500 K and has a correlation coefficient of -0.74. 
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Figure 4.12: Dependence of %ϕ from A-2 upon the 20% DCN. The data is compared 

at a bulkhead temperature of 550 K and has a correlation coefficient of -0.91. 

 

Figure 4.13: Dependence of %ϕ from A-2 upon the 20% DCN. The data is compared 

at a bulkhead temperature of 640 K and has a correlation coefficient of -0.95. 

The importance of preferential vaporization on LBO boundaries was further 

demonstrated by testing two fuels with identical DCNs but very different preferential 

vaporization characteristics. These fuels were designed by Professor Sang Hee Won at the 

University of South Carolina (USC) and were tested at Georgia Tech. The first fuel was 

comprised of 91.8% C-1 and 8.2% n-heptane by volume. N-heptane has a much lower 

boiling point temperature (i.e., 371.6 K) than C-1 (i.e., 447.3-536.5 K). It is also much 

more reactive, with a DCN of 53.8 compared to the C-1 value of 17.1. Therefore, if 

preferential vaporization does influence lean blowout boundaries, the reactive n-heptane 
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should vaporize first from this fuel and improve the LBO performance. The other fuel was 

made of 93.6% C-1 and 6.4% n-dodecane. The chemical properties of this fuel remain 

relatively constant across the distillation curve, and therefore preferential vaporization 

effects were not expected.  

      

Figure 4.14: %ϕ from A-2 at all three air inlet temperatures. The C-1/C7H16 and C-

1/C12H26 fuels are designed to accentuate preferential vaporization effects. 

Figure 4.14 shows a plot of the percent difference from A-2 for these two fuels, C-

1, and also C-4, which has the same DCN value of 28 as the preferential vaporization fuels. 

Across each of the air inlet temperatures, the C-1/n-heptane fuel performed better than the 

C-1/n-dodecane fuel. At 300 K and 450 K, the C-1/n-heptane fuel also blew out at a lower 

equivalence ratio than C-4. However, both the C-1/n-heptane and C-1/n-dodecane fuels 

blew out at a much higher equivalence ratio than either fuel C-4 or C-1 at 550 K. The cause 

of these peculiar 550 K results is unknown but they are consistent with the discussion 

surrounding nonlinear 550 K blending in Section 4.2. 



 92 

In summary, results from two fuels that were designed to accentuate preferential 

vaporization, along with strengthened LBO correlations using the 20% DCN, suggest that 

preferential vaporization does affect LBO boundaries. The evidence was strongest at 450 

K, where the C-1/n-heptane fuel blew out at a lower equivalence ratio than other fuels with 

identical DCNs, and the 20% DCN resulted in a very strong correlation with %ϕ. The C-

1/n-heptane fuel also blew out at the lowest equivalence ratio out of the 28 DCN fuels at 

300 K. However, preferential vaporization effects at this temperature are confounded by 

the fact that two fuels with very similar 20% DCNs blew out at much different equivalence 

ratios. At 550 K, C-1/n-heptane outperformed C-1/n-dodecane and the 20% DCN led to an 

improved correlation with %ϕ. However, the fact that C-1/n-heptane and C-1/n-dodecane 

blew out at much higher equivalence ratios than C-4, a fuel with a matching DCN, suggests 

that there may be additional physics associated with 550 K fuel blending that are not being 

taken into account. It is also possible that the differences in the LBO performance between 

the C-1/n-heptane and C-1/n-dodecane fuels at 550 K is caused by something other than 

preferential vaporization, as preferential vaporization effects would not be expected if the 

liquid fuel completely vaporizes before reaching the flame. 

4.5 Regression Analysis 

As there wasn’t a single fuel property that correlated perfectly with the data, it is 

believed that the combined influence of a variety of fuel properties are involved in 

determining the blowout equivalence ratio. Furthermore, as the fuel properties depend on 

the chemical structure of the fuel, they are intrinsically interrelated [95]. This creates 

problems when attempting to relate fuel properties with lean blowout causality, as certain 

fuel properties may be correlated with lean blowout boundaries that simply reflect inter-
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correlations between variables and have no physical basis. Therefore, a variable selection 

technique was used to perform a multiple linear regression on the fuel screening data while 

also eliminating insignificant fuel properties from consideration.  

The Hierarchical Non-negative Garrote method of Paynabar et al. [146] was applied 

to the fuel screening data in order to determine the relative contributions of each of the 

different variables on lean blowout. This is a two-step method that first identifies which 

groups of variables should be included in the regression and then selects the most important 

variables from those in the remaining groups. 15 fuel properties were used, and the data 

were divided into 5 groups of 3 fuel properties. These groups were chosen to include 

physically related sets of variables and are shown in Table 4-2. Group 1 contained the 3 

boiling point temperatures, Group 2 was comprised of the physical properties related to 

atomization, Group 3 was based on the chemical composition and molecular weight, Group 

4 involves the chemical energy of the fuel, and the properties most closely associated with 

chemical kinetics constitute Group 5. The A-2/C-1 blended fuels were included in this 

regression analysis in order to increase the sample size. Step 1 of the Hierarchical Non-

negative Garrote method selected the significant groups of variables. Step 2 accounted for 

correlations between these variables and calculated the appropriate regression coefficients. 

Leave-one-out cross-validation was used to select the appropriate tuning parameters for 

this model. 
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Table 4-2: Variable groups that were used for the Hierarchical Non-negative 

Garrote Regression. 

Group 1 Group 2 Group 3 Group 4 Group 5 

T10 ν (mm2/s) 313 (K) MW H/C Ratio % n-Parrafins 

T50 σ (mN/m) 300 K % Aromatics LHV (MJ/kg) DCN 

T90 ρ (kg/m3) 288 K % iso-Paraffins Smoke Point (mm) Radical Index 

Figure 4.15 shows the regression coefficients that were determined by the 

Hierarchical Non-negative Garrote method. It can be seen that T50 was the dominant fuel 

property governing LBO at 300 K and that the DCN had a secondary effect. This significant 

finding was postulated in Section 4.2 but was not obvious from the single variable 

correlations. The 450 K and 550 K regression results show that blowout is predominantly 

limited by the DCN and it is also influenced to a lesser extent by T10.  

 

Figure 4.15: Regression coefficients determined by the Hierarchical Non-negative 

Garrote method.  

 



 95 

The previous section presented evidence that preferential vaporization can cause a 

small fraction of initially vaporized constituents to dominate the chemical reactivity of 

near-blowoff flames. This raises the question of whether the T10 effect at 450 K and 550 

K, shown in Figure 4.15, is a consequence of the regression model capturing trends in the 

data caused by preferential vaporization. The fuels with the lowest T10 values (i.e., S1 and 

S2) often had the greatest preferential vaporization potential and, as was introduced in 

Section 4.2, a reasonable physical explanation for the high air temperature data to show a 

negative correlation with T10 is lacking. Therefore, the analysis was repeated using the 20% 

DCN for the six fuels for which these measurements were available and the DCN values 

based on the entire fuel composition were used for the remaining fuels. The regression 

results are not expected to change significantly when only using the 20% DCN where it is 

available rather than for all of the fuels. This is because the fuels with the greatest 

preferential vaporization potential are included in the group of 6 for which the 20% DCN 

measurements were made. Figure 4.16 shows the updated regression results with the 

preferential vaporization correction. The fuel boiling point temperatures are still predicted 

to dominate LBO at 300 K, with the largest contribution from T90 and a smaller dependence 

on T50. Again, chemical properties have a secondary effect at 300 K, as represented by the 

20/100% DCN and %n-paraffins. Another interpretation of these results is that the 

combined influence of the fuel boiling point temperature and kinetics properties on lean 

blowout is such that there is not a single fuel property that is completely rate limiting at 

300 K. For all intents and purposes, the 450 K lean blowout boundaries were solely 

dependent on the 20/100% DCN. This demonstrates that the previously shown influence 

of T10 at 450 K was simply caused by preferential vaporization. The 20/100% DCN is also 
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the dominant fuel property at 550 K. However, including the 20% DCN where available 

caused a negatively correlating dependence on T50 to appear. As will be discussed in 

Section 5.3, additional physics associated with thermoacoustic instabilities were present at 

550 K that did not exist at the other air inlet temperatures. Consistent with the 550 K 

regression results shown here in Figure 4.16, the dynamic pressure RMS was negatively 

correlated with T50 (see Figure 5.16). Therefore, these 550 K regression coefficients are 

likely indicating a secondary influence of acoustic oscillations on lean blowout boundaries 

at 550 K.  

 

Figure 4.16: Regression coefficients determined by the Hierarchical Non-negative 

Garrote method when the 20% DCN is used for the fuels where it is available.  
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4.6 Fuel Screening Summary 

This section has shown that there is not a single fuel property that governs blowout, 

but rather, that blowout is an operating condition dependent phenomenon. This was evident 

as blowout boundaries were observed to change when the experiment was conducted at 

different air inlet temperatures. At air inlet temperatures lower than the fuel flash point, 

blowout appears to be predominantly limited by fuel vaporization quality. Vaporizing the 

liquid fuel is especially challenging at such low air inlet temperatures. The flame will 

extinguish in the event that a flammable mixture fails to form, rendering fuel 

chemical/kinetic processes unimportant. What follows is that easily vaporized fuels are the 

most blowout resistant. When the experiment was repeated at air inlet temperatures of 450 

K and 550 K, fuel chemical properties represented by the DCN showed the strongest 

relationship with blowout boundaries. Fuels that had a high derived cetane number blew 

out at lower equivalence ratios. 

Another contribution of this work was separating interrelated fuel properties (e.g. 

vaporization temperatures and derived cetane numbers), which is an issue that has long 

plagued alternative fuels studies. This selection of fuels was carefully chosen to disrupt 

correlations between physical and chemical fuel properties, and also correlations between 

individual kinetics properties that describe different physics. For example, multiple 

kinetics properties correlate well with the DCN, including the laminar flame speed, 

autoignition delay time, and the extinction stretch rate. This motivated the use of two fuels 

which had the same DCN but very different stretch resistance characteristics. For the high 

air temperature conditions where chemistry was observed to dominate, it was found that 

these fuels had nearly identical blowout performance. This result, along with the absence 
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of an observed correlation with the radical index, suggests that for high air temperatures 

blowout might be limited by the autoignition propensity of a fuel rather than its extinction 

stretch rate. Furthermore, results from a multiple linear regression analysis showed that the 

DCN may have a secondary effect on LBO at 300 K, and acoustic oscillations may have a 

secondary influence on LBO at 550 K. 

Preferential vaporization effects were found to be at least partially responsible for 

the failure of some fuels to fit the previously described correlations. There is the strongest 

support for preferential vaporization at 450 K. It is also believed to be present at 550 K, 

however, the data appears to include some uncontrolled physics associated with fuel 

blending that may have an influence on the results. At 300 K there is both supporting and 

negating evidence for preferential vaporization effects. This is likely due to the role that 

fuel physical properties are known to have on LBO boundaries at this air inlet temperature.   

The effect of the flow field on the lean blowout phenomenon should not be 

overlooked. There is always a possibility that experimentally observed blowout boundaries 

are geometry specific due to differences in turbulence levels and flow structures between 

combustors. For this reason, flow field effects will be considered in greater detail in 

Chapter 5. However, the consistency between these results and those of other researchers 

who tested a smaller subset of these fuels suggests that fuel property effects are generally 

not overwhelmed by flow field differences.  
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CHAPTER 5. CHARACTERIZATION OF THE FLAME, FLOW 

FIELD, AND ACOUSTICS 

Understanding the flame, flow features, and background acoustics of this 

combustor was necessary to isolate the cause of blowout. A key initial question was the 

degree to which fuel properties influence the bulk flow field and acoustics. Planar 

measurements, including OH-PLIF and stereo-PIV, along with dynamic pressure 

measurements were used to gain insight into these details. 

5.1 Flame Characterization 

Figure 5.1 shows an instantaneous camcorder image of the flame at each of the air 

inlet temperatures. The baseline fuel A-2 is shown in this figure and it can be seen that a 

lifted flame existed near blowoff at each of the air inlet temperatures. The flame also 

become progressively less sooty as the air inlet temperature was increased. 

  

Figure 5.1: Instantaneous camcorder images of the A-2 flame at the 300 K (left), 450 

K (center), and 550 K (right) air inlet temperatures.   

Simultaneous OH-PLIF and PIV measurements were used to understand further 

details of the flame structure. Two instantaneous OH-PLIF images with overlaid PIV 

vectors are shown in Figure 5.2. Fuel A-2 is burning with a 450 K air inlet temperature and 
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a stable equivalence ratio in these images. Consistent with the observations of other 

researchers, Figure 5.2 illustrates a partially premixed flame that followed the fuel spray 

trajectory and a nonpremixed flame in the outer recirculation zone. It should be noted that 

fluorescence from the fuel spray and the OH radical is not clearly distinguished in these 

images. However, the fuel spray had a greater fluorescence emission intensity and therefore 

the bright red regions can be safely interpreted as fuel droplets. Large fuel droplets were 

observed to extend deep into the flame region, but it appears that most of the liquid fuel 

evaporated before reaching the flame. More fuel spray was generally observed in the 

bottom flame branch, as there was a slight asymmetry in the fuel injector. Interestingly, the 

outer recirculation zone flame was usually observed to be stronger in the upper flame 

branch.  

 

Figure 5.2: Instantaneous OH-PLIF images with overlaid PIV vectors. Fuel A-2 is 

burning at an air inlet temperature of 450 K and an equivalence ratio of 0.45. The 

dotted green line represents zero velocity stagnation contours.  
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One of the key contributions of these images was the insight that they provided into 

the flame stabilization mechanism. Figure 5.2 shows that the flame stabilized in the outer 

shear layer that separates the annular air jet from the outer recirculation zones. Burning 

was occasionally observed in the central recirculation zone, as evidenced by the image 

sequence shown in Figure 5.3. However, this was a rare occurrence.  

 

Figure 5.3: Four successive OH-PLIF images with overlaid PIV vectors. Fuel A-2 is 

burning at an air inlet temperature of 450 K and an equivalence ratio of 0.45. The 

dotted green line represents zero velocity stagnation contours. These images show 

evidence of flame burning in the central recirculation zone. 

Details of the flame during a lean blowout transient were also studied using these 

same planar measurements. Instantaneous OH-PLIF images from this lean blowout case 

are shown Figure 5.4. The flame again stabilized in the outer shear layer for the blowout 

transient case. However, the partially premixed flame along the spray path was much 

weaker near blowoff, and very little burning happened in the outer recirculation zone. 

Furthermore, larger volumes of liquid fuel can be observed in these images compared with 

those from the stable burning case, which likely reflects delays in droplet vaporization 
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caused by decreased flame temperatures. In contrast with the stable burning case, it appears 

that a majority of the liquid fuel vaporizes after reaching the flame. 

 

Figure 5.4: Instantaneous OH-PLIF images with overlaid PIV vectors. Fuel A-2 is 

burning at an air inlet temperature of 450 K during a blowout transient. The dotted 

green line represents zero velocity stagnation contours.  

Blowout must be related to processes that decrease the temperature of the gases that 

surround the incoming reactants such that they can no longer be ignited. In premixed bluff-

body stabilized flames, this happens when entrained reactants cool the temperature of the 

bluff-body recirculation zone below a critical level. Since measurements that represent 

entrained reactants were unavailable here, chemical reactions located in the central 

recirculation zone would be the best indicator that a similar mechanism causes spray flames 

to blow out. Figure 5.5 shows an image sequence shortly before complete blowout when a 

segment of the flame was transported into the central recirculation zone. Unlike premixed 

bluff-body stabilized flames, where reactions spread from the shear layers under stable 

operation to the recirculation zone as blowoff is approached, this flame segment was 



 103 

quickly extinguished. This suggests that reactants do not constitute a large fraction of the 

central recirculation zone chemical composition and agrees well with the findings of 

Manosh Kumar et al. [77], who observed minimal CH2O in the central recirculation zone 

of swirl-stabilized, premixed flames near blowoff. Furthermore, there was not a noticeable 

difference in the amount of burning in the central recirculation zone between the stable 

burning and transient blowout cases. It occurred infrequently in both instances. 

 

Figure 5.5: Four successive OH-PLIF images with overlaid PIV vectors. Fuel A-2 is 

burning at an air inlet temperature of 450 K shortly before the flame blew out. The 

dotted green line represents zero velocity stagnation contours. These images show 

that the flame quickly extinguished when it was transported into the central 

recirculation zone. 
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Figure 5.6: Six successive OH-PLIF images with overlaid PIV vectors. Fuel A-2 is 

burning at an air inlet temperature of 450 K and an equivalence ratio of 0.45. The 

dotted green line represents zero velocity stagnation contours. These images show 

evidence of local extinction and re-ignition. 

 

It is clear from these data that LBO precursor events precede complete blowout of 

the flame. Even during stable operation these precursor events are prone to occur, as shown 

in Figure 5.6. In this image sequence the upper flame branch locally extinguishes before 

being re-ignited. However, these LBO precursors are more threatening to the stability of 

near-blowoff flames, which locally extinguish more easily and are less capable of re-

igniting. Although there are many potential causes of these LBO precursors, two will be 

discussed in reference to the examples in Figure 5.7 and Figure 5.8, which are taken from 

the blowout transient case. Figure 5.7 shows an example where the flame is locally 

extinguished by a vortex in the outer shear layer. Since this flame stabilizes in the outer 

shear layer, it seems reasonable that it would be susceptible to extinction by vortices that 

are convected through this region. Figure 5.8 shows a separate case where the flame is 

extinguished by a vortex in the inner shear layer separating the annular air jet from the 

central recirculation zone. Previous work [160] has quantitatively shown that a helical 

vortex exists in this combustor and resides in the inner shear layer. It is present in most of 
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the available images, as evidenced by staggered vortices that convect downstream. 

Although this flame stabilizes in the outer shear layer, this helical vortex appears to grab 

part of the flame, as demonstrated by the flame being rolled up to resemble the hook-like 

feature in Figure 5.8. The portion of the flame that is subsequently extinguished by this 

vortex may have been critical for stabilizing the flame, as the entire flame branch locally 

extinguishes immediately afterwards. It should be noted that the absence of OH 

fluorescence is not necessarily evidence of local extinction. This can also be caused by 

burnout of the fuel, as super-equilibrium OH under near stoichiometric conditions will 

decay quickly when it is mixed with cold air. Therefore, a quantitative vortex tracking and 

flame stretch analysis would be required to rigorously characterize the local extinction 

processes in these planar measurements. 

 

Figure 5.7: Detailed view of five successive OH-PLIF images with overlaid PIV 

vectors. Fuel A-2 is burning at an air inlet temperature of 450 K during a blowout 

transient. The red circles surround a vortex in the outer shear layer that is believed 

to cause local extinction. 

 

Figure 5.8: Detailed view of five successive OH-PLIF images with overlaid PIV 

vectors. Fuel A-2 is burning at an air inlet temperature of 450 K during a blowout 

transient. The red circles surround a helical vortex in the inner shear layer that is 

believed to cause local extinction. 
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5.2 Flow Field Characterization 

The velocity field for the reacting flow in this combustor is shown in Figure 5.9. 

This data was taken using stereoscopic particle image velocimetry (sPIV) at an air inlet 

temperature of 450 K and an equivalence ratio of 0.45; details on the measurements and 

additional detailed measurements are provided in Chterev et al. [145]. Black vectors 

represent positive axial velocity and red vectors represent negative axial velocity. The 

azimuthal, or out of plane, velocity component is represented by the background color. 

Contour lines have been added to these plots to aid in visualizing topological flow features. 

The white lines represent the location of zero axial flow velocity and the black lines 

represent the jet core. As is expected for a swirling flow field, the flow involves both central 

and outer recirculation zones that are separated by a high velocity fluid jet. 

 

Figure 5.9: Instantaneous (left) and time-averaged (right) reacting velocity field for 

fuel A-2 at 345 kPa, 450 K, and a global equivalence ratio of 0.45. Color represents 

out of plane velocity. White lines denote locations with zero axial velocity and black 

lines represent the jet core. The arrow in the top left indicates a 25 m/s velocity 

vector for reference.  
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Figure 5.10: Central recirculation zone boundaries (solid lines) and jet cores 

(dashed lines) for the time averaged flow fields from fuels A-2, C-1, and C-5. (450 K 

air temperature, 345 kPa pressure, and ϕ=0.45)  

Contour lines representing the average central recirculation zone boundary and jet 

core are compared in Figure 5.10 for three fuels with significantly different fuel properties. 

It can be seen that the time averaged flow features are practically identical amongst the 

fuels. Therefore, it can be confidently concluded that differences in blowout boundaries 

between fuels result from changes in the combustion process rather than the bulk flow field. 

The reason for this flow field similarity is likely due to the similar heating values of all the 

fuels, implying similar flame temperatures. If there were significant differences in flame 

temperature or flame stabilization locations across the fuels, it could be expected that the 

flow fields would be more different for reasons of gas expansion and flow inhomogeneity 

[75]. 
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Large scale changes in the bulk flow features are known to immediately precede 

the complete blowout of premixed flames. These “stage 2” blowoff processes include the 

transition to a sinuous wake dominated by von Karman vortex shedding for bluff-body 

stabilized flames and changes in vortex breakdown modes for swirl-stabilized flames. 

Contour lines representing topological flow features were used to obtain information about 

the “stage 2” flow field of the studied spray flames. Figure 5.11 plots the average central 

recirculation zone contour lines on the left and the average jet core contour lines on the 

right for the non-reacting, stable burning A-2, and blowout transient cases. The nonlinear 

averaging techniques of Chterev et al. [161] were used to estimate the uncertainties in these 

average contour lines. The uncertainty in the central recirculation zone boundary is 

represented by 10% and 90% reverse flow probability contour lines. Following the 

approach of Ek et al. [160], the uncertainty in the jet core is denoted by contour lines 

representing 10% and 90% probability that the axial velocity is greater than two thirds of 

the average jet core velocity. It can be seen that the average non-reacting central 

recirculation zone is wider and begins further upstream than the reacting cases. 

Surprisingly, the average central recirculation zone of the blowout transient case does not 

approach the non-reacting case. Instead, it is almost identical with that of the stable burning 

flame. Two hypotheses provide explanations for the similarity between the stable burning 

and blowout transient average flow fields. First, this may be an artifact of the rapid fuel 

reduction rate that induced blowout for the transient case. The “stage 2” flow field 

alterations are caused by changes in heat release as the flame approaches blowout. It is 

possible that the fuel flow rate was ramped down so quickly that the temperature of the 

surrounding fluid didn’t change much between stable burning and LBO. Had an authentic 
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blowout process been recorded, such as those captured by the CH* chemiluminescence 

videos, greater differences may have been observed between these two average flow fields. 

Second, perhaps these flames don’t transition to “stage 2” until just before blowout. A 

careful examination of the OH-PLIF and PIV images for the blowout transient case 

indicates that large scale flame flapping does occur when blowout is imminent. However, 

the results in Figure 5.11 suggest that these instances constitute a small fraction of the 2820 

available flow field images for the blowout transient case, and the average flow field is 

dominated by features that mirror stable burning. It may be that the flame cannot survive 

long after “stage 2” begins and will blow out almost immediately afterwards. 

 

Figure 5.11: Central recirculation zone boundaries (left) and jet cores (right) for the 

time averaged flow fields from a stable burning A-2 case, a non-reacting case, and a 

blowout transient A-2 case. Uncertainty bounds are represented by 10% and 90% 

probability contours. They are calculated by the probability of reverse flow on the 

left and the probability that the axial velocity is greater than two thirds of the 

average jet core velocity on the right. (450 K air temperature, 345 kPa pressure) 
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5.3 Acoustics Characterization  

Dynamic pressure measurements were taken at all three air inlet temperatures to 

compare the acoustic response leading up to LBO. These measurements were initiated at 

an approximate equivalence ratio of ϕ-ϕLBO≈0.1 and continued throughout the transient 

blowout process. Ten repetitions were recorded at 10 kHz for each fuel over a 50 second 

time interval. 

Figure 5.12 shows the local RMS of the dynamic pressure plotted as a percentage 

of the mean pressure, %p’/P, at 300 K. %p’/P is plotted against ϕ-ϕLBO, which demonstrates 

how this value changes as blowout is approached. These p’ values were calculated over 1 

second intervals and are averaged across each of the 10 cases for a given fuel. It can be 

seen that throughout much of the operational history, the acoustic response was relatively 

constant at approximately 0.25% of the mean pressure. There is a slight increase in %p’/P 

just before the flame blows out. This is likely caused by low frequency pressure changes, 

due to LBO precursor events that increase in frequency and duration near blowoff (see 

Figure 3.4), rather than acoustic oscillations. These LBO precursor events will be discussed 

in detail in Section 6.3. Differences in fuel properties seem to have little effect on the 

acoustics and it is unlikely that thermoacoustics influenced the 300 K lean blowout 

boundaries. 
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Figure 5.12: RMS of the dynamic pressure plotted as a function of (ϕ - ϕLBO). This 

RMS pressure is plotted as a percentage of the mean combustor pressure and has 

been averaged over the 10 cases for each fuel. These measurements were taken at a 

300 K air inlet temperature. 

Figure 5.13 shows %p’/P plotted as a function of ϕ-ϕLBO for the 450 K data. It can 

be seen that the acoustics were almost completely constant throughout the transient 

blowout process. The consistent %p’/P value of 0.25% of the mean pressure was almost 

identical with the 300 K acoustics, although there does appear to be less of an increase just 

before LBO. Again, the possibility of thermoacoustic dynamics at 450 K can be safely 

disregarded. 
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Figure 5.13: RMS of the dynamic pressure plotted as a function of (ϕ - ϕLBO). This 

RMS pressure is plotted as a percentage of the mean combustor pressure and has 

been averaged over the 10 cases for each fuel. These measurements were taken at a 

450 K air inlet temperature. 

Contrary to the 450 K and 300 K flames, the 550 K flames passed through a 

thermoacoustic instability on their way to blowout. This can be seen by considering the 

550 K %p’/P versus ϕ-ϕLBO plot shown in Figure 5.14. The %p’/P values reach their peak 

at ϕ-ϕLBO≈0.13 and then converge to the 0.25% value where the acoustic oscillations 

settled at 300 K and 450 K. These observations are consistent with the findings of Unni 

and Sujith [162]. Their flames were initially unaffected by thermoacoustic dynamics at an 

equivalence ratio well away from LBO. As the equivalence ratio was reduced towards the 

blowout value, the flames then passed through a thermoacoustic instability. However, this 

instability ceased as the equivalence ratio was decreased further, and the flames 

experienced negligible acoustic interference before ultimately blowing out. This 

phenomenon is demonstrated in Figure 5.15 for the 550 K flames considered here. FFTs 

taken over 5 second time intervals are shown as the flame progressively approaches 
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blowout, where the top plot has the highest equivalence ratio and bottom plot is nearest 

LBO. The narrowband spectral peak at approximately 500 Hz that is apparent in the top 

three plots is indicative of the thermoacoustic instability in the combustor. This peak 

weakens in each subsequent plot until eventually there are negligible acoustic oscillations 

just before LBO.  

 

Figure 5.14: RMS of the dynamic pressure plotted as a function of (ϕ - ϕLBO). This 

RMS pressure is plotted as a percentage of the mean combustor pressure and has 

been averaged over the 10 cases for each fuel. These measurements were taken at a 

550 K air inlet temperature. 



 114 

 

Figure 5.15: FFTs of a dynamic pressure time series taken during a transient 

blowout process. Fuel C-5 is burning with an air inlet temperature of 550 K. These 

plots are shown in 5 second intervals as blowout is approached. The top plot is 

furthest from blowout and the bottom plot is nearest LBO. 

 

Figure 5.16: RMS of the dynamic pressure plotted as a function of T50. This RMS 

pressure is plotted as a percentage of the mean combustor pressure. The RMS 

pressure values in the left plot were calculated using the entire time series and have 

been averaged over the 10 cases for each fuel. The RMS pressure values in the plot 

on the right represent the RMS of the average lines in Figure 5.14, within the 

interval 0.11≥ϕ-ϕLBO≥0. These measurements were taken at a 550 K air inlet 

temperature. The error bars represent 95% confidence intervals. 
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The effects of fuel properties on %p’/P at 550 K were analyzed by calculating the 

dynamic pressure RMS over the entire 50 second time series. The plot on the left in Figure 

5.16 shows these %p’/P values, based on entire individual runs, that have been averaged 

over each of the 10 cases for a given fuel. In order to account for differences in fuel ramp 

rates and burning time before LBO, the RMS of the average %p’/P lines in Figure 5.14, 

with equivalence ratios between 0.11≥ϕ-ϕLBO≥0, are also plotted on the right in Figure 

5.16. It can be seen that %p’/P ranged between 0.5-0.9%, with most fuels having values of 

about 0.7%. %p’/P is plotted against T50 in both the left and right plots in Figure 5.16, as 

this is the fuel property with which %p’/P is most strongly correlated in both instances. 

This is interesting because the Hierarchical Non-negative Garrote Regression results, 

shown in Figure 4.16, predicted that T50 would have a mild negatively correlating effect on 

lean blowout boundaries. Similarly, %p’/P is shown here to have a mild negative 

correlation with T50. The most noticeable physical difference between the blowoff 

dynamics at 450 K and 550 K is the previously described thermoacoustic coupling. 

Therefore, these acoustic influences are likely responsible for the dependence of ϕLBO on 

T50 that was demonstrated by the regression analysis. However, it should be noted that 

these thermoacoustic dynamics are only expected to have a minor effect on lean blowout 

boundaries, as Figure 5.14 shows that the largest pressure oscillations have dampened by 

the time the flame blows out. Furthermore, the regression results in Figure 4.16 show that 

the 20/100% DCN is still the dominant fuel property at 550 K. 

5.4 Flame, Flow, and Acoustics Summary 

Planar measurements were used to characterize the flame and flow field of these 

near blowoff flames. OH-PLIF images with overlaid PIV vectors showed that the flames 
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stabilized in the outer shear layer and experienced minimal burning in the central 

recirculation zone. The traditional spray flame structure was observed, with a partially 

premixed flame that followed the fuel spray and a nonpremixed flame in the outer 

recirculation zone. Images taken during a blowout transient showed changes in the flame 

structure, including weakening of both the inner partially premixed flame and the outer 

nonpremixed flame, an increase in the amount of observable liquid fuel, and emerging 

evidence of local extinction processes. 

Fuel property differences were shown to have no effect on the bulk flow features 

of the average flow field. These average flow features were also compared for a non-

reacting, stable burning, and blowout transient case. Surprisingly, the average flow field 

for the blowout transient case closely resembled that during stable burning and did not 

approach the average non-reacting flow field. It is uncertain whether this says something 

about the “stage 2” dynamics of these spray flames or whether this is simply a consequence 

of the way that the data was taken. 

Dynamic pressure measurements were used to characterize the acoustics in this 

combustor. Negligible acoustic oscillations were detected at the 300 K and 450 K air inlet 

temperatures. However, at 550 K it was shown that the flame passes through a 

thermoacoustic instability as the equivalence ratio is reduced towards blowout. Although 

the flame recovers from this instability before blowing out, significant differences were 

observed in the dynamic pressure RMS between fuels, which may have had an effect on 

the 550 K lean blowout boundaries. 
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CHAPTER 6. NEAR-BLOWOFF DYNAMICS 

This section was motivated by a desire to correlate the transient dynamics of near-

blowoff flames with fuel properties, as opposed to Chapter 4 that focused on correlating 

the actual blowoff condition itself.  It may be that these correlations better describe the 

onset of “stage 1”, where local extinction and re-ignition occurs.  For this reason, data were 

obtained as part of this study for a subset of fuels and the actual blowoff process itself 

observed, which indicated not only the condition at which blowoff occurs but also where 

“stage 1” initiates.  These conditions, along with quantitative measures of the extinction 

and re-ignition processes, were then correlated against the same fuel physical and kinetic 

properties. Chemiluminescence measurements taken at the conditions shown in Table 2-4 

were used for these purposes.  

6.1 Flame Leading Edge Location and Velocity 

Videos were used to understand the spatio-temporal flame dynamics preceding 

complete blowout. Far from blowoff, the flame stabilized in a consistent spatial location. 

Figure 6.1 shows an instantaneous image of a stable flame burning at ϕ=0.41 (left). As the 

equivalence ratio was reduced towards the lean blowout limit, stable burning was 

interrupted by what appear to be extinction and re-ignition events. Two examples at ϕ=0.34 

are shown in the center and right images of the same figure. Local extinction is evident in 

these images but there is not an immediate risk that these flames will blow out; i.e., they 

are in “stage 1”.  Following the terminology of Muruganandam [50], these temporary 

extinction processes will be referred to as “LBO precursor events”.  
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Figure 6.1: Instantaneous CH* chemiluminescence images taken of the flame during 

both stable (left) and “stage 1” (center and right) conditions. A-2 (Jet-A) is burning 

in each of these images at 450 K. 

 

 

Figure 6.2: Twelve successive CH* chemiluminescence images taken during an LBO 

precursor event near blowoff. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images at 450 K. 
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Figure 6.3: Twelve successive CH* chemiluminescence images taken during an LBO 

precursor event near blowoff. The star denotes the most upstream spatial location of 

luminosity. A-2 (Jet-A) is burning in these images at 450 K. 

Near blowoff, the most upstream point of the flame jumps axially back and forth, 

presumably associated with extinction, re-ignition, and axial convection.  Two separate 

examples of this phenomenon, each including an LBO precursor event, are shown in Figure 

6.2 and Figure 6.3. Additional examples are included in Appendix D. An analysis of the 

most upstream spatial location where luminosity was detected (xup) was used to 

characterize these LBO precursors. Section 3.2 describes the method used to determine this 

location. 

Using this axial coordinate, xup, and the time interval between images, the distance 

that the most upstream part of the flame travels between images, Δxup, can be converted to 

a velocity, vup. Positive velocities represent the flame either being convected downstream 

or extinguishing. Comparison of these flame velocities with flow velocities provides some 
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insight into which Δxup distances may be associated with extinction and ignition. Two 

measured axial flow velocity PDFs are shown in Figure 6.4, obtained from stereo-PIV 

measurements. Both the axial flow velocity PDF based on the total measurement domain, 

UTotal, and the PDF of the axial velocities in the central recirculation zone (i.e., all spatial 

locations in the CRZ where the velocity is negative), UCRZ, are shown. These data indicate 

that the peak positive flow velocity is  approximately 52 m/s (see Figure 5.9 and Figure 

6.4) [145]. Any forward motion of the leading luminosity point at a velocity greater than 

this value is interpreted as extinction.  

Negative velocities represent either flame propagation, reverse flow, or re-ignition 

processes. Turbulent flame propagation speeds are O(1-10 m/s). The axial flow velocity 

measurements shown in Figure 6.4 indicate that the peak reverse flow velocity is around -

30 m/s [145, 163]. This implies that vup < ~-30 m/s, are potentially caused by re-ignition. 

However, vup < ~-30 m/s can also be caused by portions of the flame appearing that were 

previously undetected. Therefore, instances where vup < ~-30 m/s had to also coincide with 

an LBO precursor event in order for them to be considered a re-ignition occurrence. The 

LBO precursor events in these CH* chemiluminescence videos were identified by 

integrating the intensity in each image and applying the same double threshold method 

discussed previously in reference to the PMT measurements. Each of these integrated time 

series were standardized before the thresholds were applied to correct for intensity 

differences in the detected CH* emission between fuels. The images shown in Figure 6.2 

and Figure 6.3 constitute an example of re-ignition. Both occurred during an LBO 

precursor event and the velocity of the leading edge is too great for reverse flow convection 
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or flame propagation. Among the identified re-ignition instances, there were vup values that 

ranged between ~-30 m/s to ~-100 m/s. 

CH* chemiluminescence videos were also acquired at an equivalence ratio slightly 

above the blowout value (ϕ-ϕLBO≈0.025) in order to study the flame behavior during the 

pre-blowoff stages. However, none of the LBO precursor events that were detected here 

coincided with vup < ~-30 m/s. Therefore, the following discussion surrounding re-ignition 

will only focus on the dynamics within the blowout transient (i.e., conditions C and D 

where ϕ-ϕLBO→0). 

A word on nomenclature - the word “re-ignition”, not “autoignition”, is used in 

order to reserve the latter expression for low-temperature chemistry driven chemical 

induction processes. In contrast, there are multiple physical processes involved in the re-

ignition of a locally extinguished flame, including mixing, edge flame propagation, 

independently burning flame parcels, autoignition, and the contact of reactants with hot 

combustion products [45, 89, 164-166]. 

Figure 6.4 plots the average 450 K PDFs of vup taken at condition C.  Fuels A-2 and 

C-1 are overlaid on this plot, along with UTotal and UCRZ. These flame velocity distributions 

were all centered at or near 0 m/s, as must be the case for a flame that is neither completely 

blowing off nor flashing back. Moreover, the shape of the distributions is largely 

insensitive to fuel type and blowout equivalence ratio. The shape of the 300 K distributions 

are comparable to the 450 K cases, but the negative vup values are larger (i.e., the PDFs are 

narrower). The results for all fuels, including each of the individual runs at both 

temperatures, are presented in Appendix E. 
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Figure 6.4: Average 450 K PDF of vup at condition B for A-2 and C-1. The axial flow 

velocity PDFs UTotal and UCRZ are also shown. 

The following sections present results for the pre-LBO flame dynamics, such as 

when “events” are first observed or the fraction of time over which they occur, as a function 

of fuel properties. 

6.2 Onset of “events” 

Prior work has extensively correlated the conditions under which LBO occurs with 

kinetic and fluid mechanic parameters. As noted in the Introduction, it has been 

hypothesized  that these correlations likely capture the physics associated with the 

extinction processes that happen near blowoff, and not blowoff itself [34]. If this hypothesis 

is correct, it should be expected that the same correlations that work for ϕLBO should also 

work for ϕevent. 

Figure 6.5 shows the LBO boundaries of the cases where the OH* time series were 

acquired, similar to the previous results shown in Chapter 4, plotted against ϕevent. For 

reference a 1-1 is dropped in, indicating the limit where ϕevent = ϕLBO. The difference 
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between these two equivalence ratios, (ϕevent - ϕLBO), quantifies the key observations 

summarized in the Introduction – that blowoff is preceded by extinction– and quantifies 

the separation in  space between when they occur.  It is also important from an operational 

standpoint because it indicates how close a combustor can safely approach LBO with some 

warning that it is imminent.  

It can be seen that ϕevent has a nearly linear relationship to ϕLBO and the ϕevent = ϕLBO 

line at 300 K. The slope of the line at 450 K is slightly different, suggesting some 

systematic difference between ϕevent and ϕLBO. Further insight into these points can be 

gained from Figure 6.6, which plots the dependence of (ϕevent - ϕLBO) upon the DCN at 450 

K and T90 at 300 K. Figure 6.6 shows that at 450 K, (ϕevent - ϕLBO) increases for high DCN 

fuels, with C-9 being the largest exception. No clear correlation between (ϕevent - ϕLBO) and 

T90 exists at 300 K. 

 

 

Figure 6.5: Equivalence ratio at which blowoff occurs, ϕLBO, plotted against the 

equivalence ratio where events initiate, ϕevent. Results are included at both air inlet 

temperatures. 
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These results share similarities with the re-ignition measurements at conditions C 

and D, which are presented in Figure 6.13, and will be revisited in Section 6.4. It should 

be noted that less confidence should be placed in the ϕLBO values used in Figure 6.5 and 

Figure 6.6 than in the LBO boundaries shown in Chapter 4. This is because the process of 

acquiring PMT measurements introduced difficulties in controlling bulkhead temperatures, 

fuel ramp rates, and prevented more than 5 fuels from being tested on a given day. Each of 

these factors were well controlled, and many more samples were included, in the results 

from Chapter 4. 

An important question raised in the introduction is the degree to which (ϕevent - ϕLBO) 

changes with fuel properties and operating conditions. These results suggest that there is 

some effect but it is weak and only evident at 450 K. The fact that ϕLBO and ϕevent have the 

same behaviors lends further support to the hypothesis outlined in the Introduction – that 

correlations for LBO describe the physics associated with the onset of extinction and re-

ignition, “stage 1”. 
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a) 

 

 

b) 

 

Figure 6.6: (ϕevent - ϕLBO) plotted against the DCN at 450 K (a) and T90 at 300 K (b). 

The 20% DCN for fuel S2 is used here due to its potential for preferential 

vaporization. The error bars represent a combined uncertainty based on 95% 

confidence intervals and adjusting the double thresholds by ± 5%. 

6.3 Extinction Behaviors Under Near LBO Conditions 

This section analyzes extinction behaviors under conditions near LBO, including 

the effect of fuel properties. Interestingly, no instances of flame motion downstream at 

velocities faster than the peak flow velocity (see Figure 6.4) were observed; this indicates 

that the flame does not actually extinguish in some large region of space, so that the leading 

edge of the reaction volume jumps discontinuously downstream. Rather, “extinction 

events” are actually “downstream convection events”.  It is likely that a small region of the 
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flame responsible for flame stabilization extinguishes, leading to downstream convection 

of the flame.  In contrast, the data clearly indicates the presence of the leading edge of the 

flame traveling upstream at velocities significantly higher than would be associated with 

convection or flame propagation, as discussed in the next section. 

The duration of extinction events, and the extinction history of these flames in the 

near-blowoff stages, ϕevent > ϕ > ϕLBO, will now be considered. The extinction history was 

quantified as the percentage of time when the flame was in an extinguished condition 

(%τext). Consider first the average event duration. Figure 6.7 shows the average duration of 

extinction events, τevent, plotted against T50 (a) and T90 (b), at 300 K. τevent ranges in value 

from about 2-6 ms at 300 K, and Figure 6.9 (a) shows that it ranges from 1-2 ms at 450 K. 

In other words, the extinction event time interval at 450 K is less than half than at 300 K.  

For reference, a bulk fluid mechanic time scale associated with the nozzle exit diameter 

and velocity, τflow,D/U, is ~O(0.3 ms). %τext at 300 K is plotted in Figure 6.8 as a function of 

T50 (a) and T90 (b), and Figure 6.9 (b) shows %τext at 450 K. In both cases, the extinction 

events persist for about 0.8-1.3% of the time. 

At 300 K, there is a clear correlation between τevent and T50 (there is also a strong 

correlation with T90, as shown in Figure 6.7 (b), but the correlation is strongest here with 

T50).  Specifically, fuels that vaporized most easily have the shortest events and the fuels 

that were most difficult to vaporize had the longest events. Similarly, the fraction of 

extinction time, %τext, is also correlated with T90 at 300 K. The flames of difficult to 

vaporize fuels remain in an extinguished condition for a greater amount of time before they 

blow out than easily vaporized fuels.   
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Much weaker correlations are seen at 450 K. τevent perhaps depends on T90 

somewhat, but the differences between fuels are minor. %τext is also very similar between 

fuels and showed no correlation with the DCN, even though ϕLBO is highly correlated with 

the DCN at 450 K.  It is possible that C-1, the high TSI fuel, and n-dodecane experience 

slightly more extinction time than the other fuels, but these deviations are well within the 

uncertainty. 

 

 

a) 

 
b) 

 

Figure 6.7: Average duration of the LBO precursor events, τevent, plotted against T50 

(a) and T90 (b). The error bars represent a combined uncertainty based on 95% 

confidence intervals and adjusting the double thresholds by ± 5%. (Condition B) 
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a) 

 

b) 

 
 

Figure 6.8: Average percentage of time in the near-blowoff stages (ϕevent > ϕ > ϕLBO) 

constituted by extinction, %τext, plotted against T50 (a) and T90 (b). The error bars 

represent a combined uncertainty based on 95% confidence intervals and adjusting 

the double thresholds by ± 5%. (Condition B) 
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a) 

 
b) 

 

Figure 6.9: Average duration of the LBO precursor events, τevent, (a) and the 

percentage of time in the near-blowoff stages (ϕevent > ϕ > ϕLBO) constituted by 

extinction, %τext (b). These condition A results are plotted against T90 and the DCN, 

respectively. The 20% DCN for fuel S2 is used here due to its potential for 

preferential vaporization. The error bars represent a combined uncertainty based 

on 95% confidence intervals and adjusting the double thresholds by ± 5%. 

It is also of interest to note the similarity in ranges of the %τext values observed at 

both 300 K and 450 K, and across the fuels, all lying in the approximate range of 0.8-1.3%. 

There is no reason to expect that these percentages should be similar, given that ϕLBO occurs 

at substantially higher values at 300 K than 450 K, and that the length of extinction events 

is quite different as well.  However, this observation provides some clues into the 

relationship between ϕevent and ϕLBO.  As noted in Shanbhogue et al.’s review [34], it is clear 

that flames can withstand a certain fraction of extinction but still exist indefinitely without 
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blowing off.  However, it is also clear that the flame will blow off if the fraction of time 

and/or space over which extinction occurs is too large (this was referred to as the “critical 

extinction level” in Shanbhogue et al.’s review [34]). This is likely due to a reduction in 

temperature of the hot recirculating gases responsible for re-igniting the incoming mixture.  

What this “critical extinction value” should be is not currently understood. However, if this 

“critical extinction value” hypothesis is correct, then one would expect more universal 

behavior across operating conditions and fuel compositions right near blowoff. The fact 

that %τext has nearly the same value across all the fuels, and at both temperatures, is 

consistent with this idea. 

However, the above results are essentially an average over the range, ϕevent > ϕ > 

ϕLBO. In order to further evaluate the above “critical extinction value” hypothesis, these 

values were recalculated over a much narrower range of  values right on the edge of 

blowoff. This procedure reduces some of the averaging that is present over a broader range 

of equivalence ratios, but also increases the random error in the extinction event statistics, 

as there are fewer realizations to average over. Figure 6.10, Figure 6.11, and Figure 6.12 

plot τevent and %τext right on the edge of blowoff, ϕLBO+ > ϕ > ϕLBO, where  ~0.002 

(calculated by taking the final second of data before LBO). These figures show that even 

on the very edge of blowoff, extinction events are uncommon. The maximum value in %τext 

is always less than 10%, with values closer to 3-5% for most cases. Comparing these results 

with those in Figure 6.7, Figure 6.8, and Figure 6.9, note that the trends in τevent do not 

change qualitatively, although there is somewhat of an increase in τevent relative to its value 

when averaged over ϕevent > ϕ > ϕLBO. Similar conclusions apply for %τext at 450 K.  

However, the picture does change for %τext at 300 K; here we see that its value is now 



 131 

appreciably higher than at 450 K and does also seem to increase with T50 and T90. Taken 

together, these results suggest that the “critical extinction value” hypothesis is a helpful, 

but incomplete, characterization of why flames ultimately transition from local extinction 

to complete blowoff. 

a) 

 

b) 

 

Figure 6.10: Average duration of the LBO precursor events, τevent, plotted against 

T50 (a) and T90 (b). These τevent values represent the average event duration in the 

final second before LBO. The error bars represent a combined uncertainty based on 

95% confidence intervals and adjusting the double thresholds by ± 5%. (Condition 

D) 
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a) 

 

b) 

 

Figure 6.11: Average percentage of time in the near-blowoff stages (ϕevent > ϕ > ϕLBO) 

constituted by extinction, %τext, plotted against T50 (a) and T90 (b). These %τext 

values represent the average extinction percentage in the final second before LBO. 

The error bars represent a combined uncertainty based on 95% confidence 

intervals and adjusting the double thresholds by ± 5%. (Condition D) 
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a) 

 

b) 

 

Figure 6.12: Average duration of the LBO precursor events, τevent, (a) and the %τext 

(b) in the final second before LBO. These condition C results are plotted against T90 

and the DCN, respectively. The 20% DCN for fuel S2 is used here due to its 

potential for preferential vaporization. The error bars represent a combined 

uncertainty based on 95% confidence intervals and adjusting the double thresholds 

by ± 5%. 

6.4 Re-ignition Behaviors Under Near LBO Conditions 

This section analyzes the re-ignition behaviors under conditions near LBO, 

including the effect of fuel properties. As noted earlier, the data clearly indicates the 

presence of the leading edge of the flame traveling upstream at velocities significantly 

higher than would be associated with convection or flame propagation. These realizations 

in the negative velocity tails of the vup PDFs, that also satisfied the LBO precursor event 

criterion, were used as an indicator of the near blowoff re-ignition propensity of these fuels. 
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Of course, these values must be referenced against the number of extinction events that the 

flame must recover from. Therefore, the number of re-ignition instances in each run was 

normalized by the corresponding number of extinction events. Appendix C demonstrates 

that the plots shown in this section are not a strong function of the thresholds that were 

used to determine the number of extinction events. 

Figure 6.13 plots the percentage of extinction events where vup < -30 m/s, averaged 

across each of the cases for a given fuel, at conditions C (a) and D (b). This percentage of 

vup is plotted against the DCN and T90, the fuel properties previously shown to correlate 

best with LBO at 450 K and 300 K, respectively (see Chapter 4). First, note that while the 

flame does recover from extinction events by re-ignition, this is relatively infrequent, 

occurring in most cases about 20-30% of the time. The peak value is around 50% for n-

dodecane at 450 K, and is only observed for fuel S2 at 300 K.  This indicates that with the 

exception of n-dodecane at 450 K, the flame recovers from the majority of extinction events 

through some other means than re-ignition – presumably simply upstream convection and 

propagation of the flame. 

Consider next the fuel property sensitivity. It can be seen that high DCN fuels have 

a much greater propensity for re-ignition recoveries at 450 K than low DCN fuels. As each 

of these fuels experiences approximately the same amount of extinction at 450 K (see 

Figure 6.9), this is a likely explanation for the positive correlation between (ϕevent - ϕLBO) 

and the DCN shown in Figure 6.6. Once the flame begins experiencing LBO precursor 

events, the operation of high DCN fuels is extended to lower equivalence ratios because 

these fuels are better able to recover through re-ignition. The superior LBO performance 

of high DCN fuels should not be limited to strictly re-ignition considerations, as Figure 6.5 
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also shows that these fuels also have lower ϕevent values. Therefore, it appears that high 

DCN fuels are better able to resist blowoff by delaying the onset of LBO precursor events, 

and then their improved re-ignition performance allows them to survive longer once these 

precursor events begin to threaten the stability of the flame. 

a) 

  

b) 

   

Figure 6.13: %vup < -30 m/s at condition C (a) and condition D (b). The 450 K data is 

plotted against the DCN and the 300 K data is plotted against T90. Since the role of 

preferential vaporization on re-ignition is unclear, both the 20% DCN and the DCN 

based on the entire fuel composition are shown for fuel S2. Error bars represent 

95% confidence intervals. 

Given that LBO is predominantly vaporization limited at 300 K, fuel property 

effects were not expected to be found in the re-ignition characteristics. The %vup < -30 m/s 

values shown in Figure 6.13 (b) indicate that re-ignition recoveries only occurred for the 
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highest T90 fuel, S2. This is likely related to the greater susceptibility of this fuel for 

extinction, as was discussed previously. Furthermore, the re-ignition instances that did 

occur for S2 at 300 K happened infrequently. As noted above, the flame recovers from the 

majority of extinction events through some other means than re-ignition – presumably 

simply upstream convection and propagation of the flame. 

 

6.5 Near LBO Dynamics Summary 

The lean blowout process of fuels with very different chemical compositions and 

physical properties were compared using detailed chemiluminescence measurements. High 

speed videos of the CH* chemiluminescence emission were recorded for four fuels during 

the blowout transient. Insight was extracted from these videos by analyzing the motion of 

the leading luminosity point throughout the entire image sequence. Photomultiplier tube 

(PMT) measurements were also used to monitor chemiluminescence during the 50 seconds 

preceding blowoff. These measurements were taken using ten fuels and a double threshold 

technique was used to identify LBO precursor events. Both types of chemiluminescence 

measurements were taken at air inlet temperatures of 300 K and 450 K. 

Clear physical differences were observed in the 300 K and 450 K near-blowoff 

dynamics. Fuel property differences seem to have a lesser effect on the 450 K extinction 

behavior, as quantified by τevent, and %τext. The amount of time that the flame spends in an 

extinguished condition, and the duration of its extinction events, was insensitive to fuel 

type. There was, however, evidence of a higher percentage of re-ignition recoveries for 

high DCN fuels. This finding, taken in conjunction with the lower ϕevent values for high 
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DCN fuels, suggests that high DCN fuels more successfully resist blowoff by delaying the 

onset of LBO precursor events and then they are more often able to recover from these 

precursor events through re-ignition. The 300 K PMT analysis showed that there is a strong 

correlation between a fuel’s boiling point temperature and the duration of its extinction 

history preceding LBO. Furthermore, the highest boiling point temperature fuel was also 

found to be more likely to experience re-ignition recoveries. A possible phenomenological 

explanation for lean blowout at 300 K can be developed by considering the relationship 

between extinction and droplet evaporation.  It was observed from the simultaneous OH-

PLIF and PIV measurements of the blowout transient case that most of the liquid fuel 

vaporizes after reaching the flame. Although these measurements were only taken at 450 

K, it is expected that even less of the liquid fuel will vaporize before reaching the flame at 

300 K due to the larger droplet sizes and lower surrounding gas temperature. Therefore, 

the liquid fuel is required to evaporate over a smaller time interval at 300 K than at the 

other operation conditions in order to maintain a combustible fuel-air mixture. The flame 

must recover quickly from any local extinction processes that occur, otherwise the 

subsequent reduction in surrounding gas temperature will cause droplet evaporation rates 

to decrease. This would result in a shortage of gaseous fuel and further extinguishing of 

the flame. Supporting evidence for this conceptual model comes from the fact that the high 

boiling point temperature fuels have longer extinction durations. Without gaseous fuel to 

burn, hot gases will be swept downstream until the liquid fuel sufficiently vaporizes. Since 

this is a slower process for high boiling point temperature fuels, these flames are more 

often required to re-ignite in order to re-establish a stable flame. 
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CHAPTER 7. CONCLUDING REMARKS 

The implementation of alternative jet fuels must be preceded by an understanding 

of the effects of fuel property differences on combustion limit phenomena, including lean 

blowout, altitude relight, and cold start. Lean blowout performance is among the most 

important considerations for certifying new jet fuels [9], as differences in fuel physical and 

chemical properties likely have the greatest effect on the combustion process under near-

blowout conditions. The work in this thesis has made novel contributions towards 

characterizing the role of fuel properties on lean blowout physics and understanding the 

mechanisms leading to the blowout of spray flames. This chapter includes a summary of 

these contributions, along with a discussion of their applications. Lastly, a set of 

recommendations for future work is presented. 

7.1 Summary of Contributions 

Determining whether differences in fuel properties affect the equivalence ratio at 

which flames blow out is among the most important considerations for certifying 

alternative jet fuels. As each of the fuels involved in this study have comparable heating 

values, it is not obvious that there should be differences. Furthermore, many of the earlier 

studies by other researchers failed to show fuel chemical property effects in lean blowout 

boundaries [95, 96, 98], although some of them did observe fuel physical property effects. 

The experimental results in this study showed clear differences in the blowout equivalence 

ratio with fuel type. This is likely related to the well-controlled experimental procedure 

that was used in this work, as the bulkhead temperature parametrization eliminated 
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systematic errors between runs caused by differences in the combustor hardware 

temperature. 

After establishing that fuel effects are present, the second key contribution of this 

work was identifying which fuel properties govern lean blowout boundaries. This task was 

complicated by the variety of different conclusions that are reported in the literature for 

similar studies. For example, even researchers who agree that a particular fuel property is 

flame stability limiting often disagree on the nature of the correlation, where one researcher 

may show a negative correlation with LBO boundaries and others show a positive 

correlation with the very same fuel property. It was shown in this study that many of these 

issues are caused by differences in experimental operating conditions, as the relative 

importance of the physical and kinetic fuel properties controlling LBO change with the air 

inlet temperature. Experiments were performed here at three different air inlet 

temperatures: 300 K, 450 K, and 550 K. At 300 K, lean blowout was shown to be a 

vaporization limited problem. In this case, fuels with higher boiling point temperatures, 

specifically T90, were observed to blow out more easily than those with low boiling point 

temperatures. At both 450 K and 550 K, blowout was observed to be kinetically limited. 

At these conditions, high DCN fuels blew out at lower equivalence ratios and low DCN 

fuels blew out at higher equivalence ratios. These conclusions are strengthened by the fact 

that the large number of repetitions involved, the variety of different conditions tested, and 

the well-explored fuel property space, constituted by the 18 different liquid fuels that were 

evaluated, make this the largest available data set on lean blowout sensitivities of spray 

flames.  
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Experimental results inherently have a dependence on the combustor geometry in 

which the data was acquired. In order for the results in this study to be applicable to real-

world scenarios, consideration should also be given to additional geometrical features that 

are incorporated in modern aircraft combustors. These features include a hybrid fuel 

injector, an effusion cooled combustor liner, and dilution air jets. Adding an airblast 

atomizer to the fuel injector configuration would most likely cause the flame to stabilize 

closer to the nozzle exit [101]. This would lead to hotter gases in the outer recirculation 

zone and increased droplet evaporation rates. The 323 K data of Grohmann et al. [100], 

taken using an airblast atomizer, showed that difficult to vaporize fuels blew out at the 

lowest equivalence ratios. Therefore, it seems reasonable that using an airblast atomizer at 

a low air inlet temperature would improve the relative flame stability performance of high 

boiling point temperature fuels, as their liquid fuel droplets would extend further into the 

outer recirculation zone and heat the recirculating gases. Increased cooling of the central 

and outer recirculation zones would result from a combustor with dilution air jets and an 

effusion cooled liner. Little evidence was found from the planar measurements in this work 

that gases in the central recirculation zone significantly affect flame stability. However, 

cooling of the outer recirculation zone would weaken the outer nonpremixed flame and 

cause blowoff to be more sensitive to extinction of the flame along the spray trajectory. 

The reverse effect would take place in a combustor configuration that had a higher swirl 

number, as fuel and hot gases would be pulled towards the outer recirculation zone [74, 

114]. Insight into whether the fuel property effects shown in this study would apply to a 

more realistic combustor with a similar fuel injector can be gained by considering the 

experimental results of Stouffer et al. [105] and Corporan et al. [103]. Both groups also 
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used a pressure atomizer to test a subset of the fuels in the present work. Consistent with 

the results in this study, the derived cetane number correlated best with the data of Stouffer 

et al. [105]. Their data was taken at an air inlet temperature of 394 K in a combustor with 

an effusion cooled liner, dilution air jets, and a different swirler configuration. The data of 

Corporan et al. [103] was taken in a full-scale engine at an air inlet temperature of 

approximately 310 K. They also found that easily vaporized fuels had the best lean blowout 

performance, with their data correlating most strongly with T50. 

Fuel blending is very important from a practical standpoint because alternative jet 

fuels will initially be implemented in blended proportions with traditional jet fuels. This is 

because the available supply of any alternative jet fuel is insufficient to meet the required 

demand. Three fuel blends of A-2 and C-1 were tested in 80/20, 50/50, and 20/80 

proportions. These fuels had very different properties and demonstrated how a traditional 

jet fuel will perform when blended with an alternative fuel. The lean blowout sensitivities 

of these blends were also shown to be dependent on the air inlet temperature. At 300 K, 

the blends each blew out at approximately the same equivalence ratio. This is likely caused 

by each of the blends having very similar boiling point temperatures. At 450 K, there was 

a linear relationship between the blowout equivalence ratio and fraction of fuel C-1 that 

was blended with A-2, which approximately correlated with the spread in derived cetane 

number between these fuels. Interestingly, at 550 K a nonlinear relationship existed 

between the blowout equivalence ratio and the fraction of C-1 in the blend. Even though 

this was known to be a kinetically limited regime, the addition of 20% A-2 to C-1 caused 

this blend to blow out at a higher equivalence ratio than either the complete A-2 or C-1 

fuels. An explanation for this observed phenomenon was not identified. 
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An interesting coupling between physical and chemical fuel properties, known as 

preferential vaporization, was also shown to influence lean blowout boundaries. 

Preferential vaporization occurs when a fraction of the fuel constituents evaporate quickly 

while the rest remain in liquid form. This can cause the chemical properties of these initially 

vaporized constituents to dominate the kinetics under threshold combustion conditions. 

Therefore, the fuel properties based on the entire fuel composition may not be as 

meaningful for the lean blowout problem as those of the initially vaporized fraction. 

Measurements of the 20% DCN were made for six of the fuels and were shown to improve 

the correlations with lean blowout boundaries across all of the air inlet temperatures. The 

greatest improvements in the correlations were observed for the kinetically limited 450 K 

and 550 K conditions. However, a weaker correlation between the blowout equivalence 

ratio and the 20% DCN was also observed at 300 K. In addition, two fuels with identical 

DCNs but very different potentials for preferential vaporization were also tested. The 

initially vaporized constituents of one of the fuels was very reactive, whereas the other fuel 

maintained constant kinetic properties throughout its distillation process. The fuel with the 

reactive front end, caused by preferential vaporization, always blew out at a lower 

equivalence ratio than the fuel with the constant chemical properties. These results suggest 

that preferential vaporization effects must be a key consideration in the design of 

alternative jet fuels. 

Distinguishing between correlation and causality is one of the key challenges in 

alternative fuels studies. Because the properties of a fuel are rooted in its chemical 

structure, each of these properties are at least partially dependent on, and correlated with, 

the others [95]. This creates challenges in identifying the cause of a certain phenomenon, 
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such as lean blowout, as an observed correlation with a particular fuel property may be in 

reality caused by a different fuel property with which it is correlated. A supervised machine 

learning technique, known as the Hierarchical Non-negative Garrote method, was used to 

circumvent these variable selection challenges and perform a multiple linear regression. 

This method is able to account for correlations within variables and identifies the relative 

contributions of a smaller number of significant variables on a particular outcome. The 

Hierarchical Non-negative Garrote method was applied to the fuel screening data and 

confirmed that the DCN is indeed the fuel property that governs the 450 K lean blowout 

behavior, without any other fuel properties making a significant contribution. Although the 

regression also confirmed the findings of the single variable correlations at 300 K and 550 

K, it additionally revealed fuel properties that have secondary effects on LBO that were 

not apparent otherwise. For example, even in the vaporization limited 300 K regime, the 

regression indicated that the DCN has a secondary effect. Furthermore, the DCN was 

shown to be the dominant fuel property at 550 K, with a secondary dependence on T50. 

This T50 dependence is likely caused by thermoacoustic dynamics that are only present at 

550 K, as the dynamic pressure RMS was most closely correlated with T50. 

Planar measurements were used to understand the details of the flame and flow 

structure for multiple fuel types and even during a blowout transient. As very few 

measurements of this kind have been published for spray flames at elevated pressure, the 

insights gained from these measurements were very valuable. Both under stable burning 

conditions and during the blowout transient, an outer shear layer stabilized flame was 

observed that rarely experienced burning in the central recirculation zone. This suggests a 

different mechanism for blowoff than the bluff-body stabilized flame case, where blowoff 
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occurs when reactant entrainment in the bluff-body recirculation zone cools the flame 

beyond a critical level. Furthermore, the bulk flow field boundaries were compared 

between three fuels with very different fuel properties. The average flow features of these 

fuels were found to be basically identical, suggesting that the flow field in this study did 

not change significantly with fuel composition.  

Lastly, the dynamics of these flames in the near-blowoff stages were also 

considered. It is understood that a series of extinction and re-ignition processes precede 

complete blowout of the flame. These processes were quantified using chemiluminescence 

measurements as a function of blowoff proximity and were compared at two air inlet 

temperatures: 300 K and 450 K. PMT measurements were used to characterize the 

extinction history of these flames using a double threshold method. In addition, high speed 

imaging was used to analyze the space-time evolution of the most upstream point of the 

flame near blowoff for four of the fuels.  Fast motion of these points upstream relative to 

the flow velocity were interpreted as flame re-ignition. It was found that local extinction 

processes preceding blowoff, known as LBO precursor events, increase in frequency and 

duration as LBO is approached. Furthermore, it was shown that 450 K flames will recover 

from these LBO precursors approximately 20-50% of the time by re-ignition when blowoff 

is imminent. Re-ignition recoveries were much rarer at 300 K. The equivalence ratio at 

which local extinction processes began, ϕevent, was determined and compared between 

fuels. This allowed for the determination of (ϕevent - ϕLBO), which is important from an 

operational standpoint because it determines how close a combustor can safely approach 

blowoff before passenger safety is threatened. At 300 K, (ϕevent - ϕLBO) was essentially 
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constant between fuels. However, at 450 K (ϕevent - ϕLBO) was positively correlated with the 

DCN.  

Although previous researchers have shown correlations between lean blowout 

boundaries and a particular fuel property, absent from the literature is a rigorous 

demonstration of why these fuel properties are critical for flame stability. Therefore, the 

fuel properties which were shown to be lean blowout limiting were correlated with 

extinction and re-ignition processes that precede complete blowout of the flame. The LBO 

precursor event analysis showed that high boiling point temperature fuels are much more 

likely to experience extinction, and their extinction events happen for a longer duration, 

compared to low boiling point temperature fuels at 300 K. Although recoveries from these 

LBO precursors through re-ignition were rare at 300 K, they happened most often for the 

fuel which had the greatest propensity for extinction. In contrast, re-ignition was more 

common at 450 K, and it was found that the highest DCN fuels recovered from LBO 

precursors through re-ignition much more often than low DCN fuels. A much weaker 

correlation was observed between either the event duration or flame extinction history and 

fuel properties at 450 K. This suggests that extinction characteristics are essentially 

uniform between fuels at 450 K. Therefore, the positive correlation between (ϕevent - ϕLBO) 

and the DCN is likely caused by re-ignition recoveries extending burning to lower 

equivalence ratios. It should also be noted that high DCN fuels also had lower ϕevent values. 

Therefore, it appears that high DCN fuels are better able to resist blowoff by delaying the 

onset of LBO precursor events, and then their improved re-ignition performance allows 

them to survive longer once these precursor events begin to threaten the stability of the 

flame.  
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7.2 Applications for Alternative Jet Fuel Certification, OEMs, and Engine 

Operators 

The findings in this thesis have value for a regulatory agency, such as the Federal 

Aviation Administration, because they provide helpful information for refining the jet fuel 

certification standards. It is suggested that the existing jet fuel specification be updated to 

include minimum DCN and maximum boiling point temperature limits. These limits will 

be beneficial for streamlining the alternative jet fuel certification process because they will 

improve the likelihood that a prospective fuel has sufficient flame stability performance.  

These contributions also add value for Original Equipment Manufacturers (OEMs) 

by demonstrating the effects of fuel blending and highlighting new possibilities for high 

performance fuels. OEMs are primarily interested in the effect that alternative fuels will 

have on their engines. Therefore, understanding the physics associated with fuel blending 

is of great concern for them because this is the most immediate way that engines will be 

affected by alternative fuels. From a long-term perspective, the design of high performance 

fuels has the potential to greatly improve engine performance. For example, the discussion 

surrounding preferential vaporization illustrates that only a small fraction of reactive 

constituents may be necessary for maintaining flame stability. Although high DCN fuels 

are advantageous from a low power perspective where lean blowout must be avoided, at 

high power conditions it is desirable to delay the ignition of a fuel for as long as possible 

to avoid pre-ignition and hardware damage. Therefore, low DCN fuels are better for high 

power conditions because they reduce harmful emissions by allowing sufficient time for 

fuel-air mixing. A promising idea initially proposed by Clarence Chang of NASA is that 

one can potentially design a fuel with a high 20% DCN but a low DCN based on the entire 



 147 

fuel composition. The high reactivity of the initially vaporized constituents would take 

effect near LBO and improve the likelihood that a stable flame is maintained. On the other 

hand, at high power conditions, where the fuel vaporizes rapidly, the low DCN of the entire 

fuel composition would result in improved mixing and good emissions performance. In 

addition, since high DCN fuels are generally high in n-paraffins, this strategy would avoid 

the effect of high molecular weight n-paraffins that cause waxing problems in the fuel at 

low temperatures. 

The findings in this work can also help engine operators to ensure the safe travel of 

their aircraft. In a real engine, the compressor driven air mass flow rate and the equivalence 

ratio are coupled. Therefore, as the equivalence ratio is reduced towards blowout, the air 

mass flow rate and the compressor discharge temperature will decrease. It was thereby 

shown in the findings of Corporan et al. [103] that although the combustor may be initially 

operating at a high air inlet temperature, the decrease in compressor discharge temperature 

as the equivalence ratio is reduced can cause the flame to transition to a regime where its 

stability is vaporization limited. As blowout equivalence ratios are higher for low air inlet 

temperatures, the flame may blow out at a higher equivalence ratio than expected based on 

high temperature considerations. This problem will be avoided if engine operators 

understand the lean blowout temperature dependence. Furthermore, values of (ϕevent - ϕLBO) 

were presented that will allow engine operators to estimate how close they can safely 

approach LBO. 
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7.3 Recommendations for Future Work 

This work has shown that the governing physics of the lean blowout problem 

changes with the combustor air inlet temperature. At 300 K, lean blowout was observed to 

be vaporization limited, whereas at 450 K and 550 K lean blowout was found to be 

kinetically limited. Determining the exact temperature where the governing physics 

transitions from being dominated by vaporization to chemical kinetics would be beneficial. 

Since the effects of combustor pressure were not tested, repeating these experiments at high 

pressure conditions would complement the conclusions that were drawn about the effects 

of operating conditions on lean blowout. It would be interesting to know whether the 

combustor pressure also causes a change in the sensitivity of lean blowout to fuel properties 

and if the observed air temperature dependence is influenced by the combustor pressure. 

As the fuel droplet evaporation rates will likely increase with the combustor pressure, it 

may be that lean blowout is no longer vaporization limited for a high pressure-300 K 

operating condition and instead is governed by the secondary dependence on the DCN at 

300 K. Extending this data set to a variety of combustor pressures would also provide 

insight into combustor geometry effects on lean blowout, as a more complete set of 

operating conditions would allow for a direct comparison with the existing data sets in the 

literature. 

Characterizing the dynamics near-blowoff was one of the novel contributions of 

this work. However, the quantified flame re-ignition behavior was a high variance process. 

Therefore, it would be beneficial to gather a larger number of CH* chemiluminescence 

videos to reduce the uncertainty. Furthermore, 10 PMT samples were gathered at both the 

300 K and 450 K air temperatures for each of the ten fuels for which these measurements 
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were taken, in contrast to the hundreds of fuel screening data points. Therefore, an 

increased number of PMT data samples would also be helpful for solidifying the reported 

conclusions. 

The LBO precursors that precede the lean blowout process were quantified by 

applying a double threshold technique to PMT measurements. These thresholds were 

calculated based on a percentage of the moving average of the signal, and this percentage 

was determined according to a set of published thresholding criteria [17]. The conclusions 

that were drawn from this analysis could be strengthened by selecting these thresholds in 

a statistically rigorous way, such as using machine learning techniques. 

Although much progress has been made towards characterizing fuel property 

effects on lean blowout, there is still a great deal of work that must be done towards 

understanding a mechanism for blowoff in spray flames. It is recommended that the 

detailed planar measurements that were taken are rigorously analyzed to draw quantitative 

conclusions and develop a mechanism for blowout. Furthermore, it is needful to analyze 

the cause of LBO precursor events. These planar measurements were only taken at 450 K. 

It would be beneficial to gather simultaneous OH-PLIF and PIV data at 300 K as well. This 

would provide insight into the effects of air inlet temperature on near-blowoff flames and 

their flow fields. In order for this analysis to be definitive, a rigorous technique must be 

developed to separate the OH-PLIF signal from the fuel spray fluorescence. Lastly, it is 

also unclear what effect the sudden closure of the fuel valve had on the OH-PLIF and PIV 

data for the blowout transient case. Therefore, it would be desirable to obtain these planar 

measurements during an authentic blowout transient.  
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APPENDIX A. S-CURVE: NONMONOTONIC BULKHEAD 

TEMPERATURE DEPENDENCE 

This appendix details the blowout measurement approach and the sensitivity of the 

blowout equivalence ratio to the thermal state of the combustor. It is an extension of Section 

2.2 and shows samples of the data that was acquired. As discussed previously, the 

combustor hardware was intentionally heated and cooled to capture blowout measurements 

across a range of bulkhead temperatures. Once a heating or cooling phase was completed, 

the fuel flow rate was gradually decreased until the flame extinguished. It was then 

immediately re-ignited and the process continued until an equilibrium bulkhead 

temperature was reached. Figure A.1 shows the resulting data for fuel C-4 at each of the 

three air inlet temperatures. Only a single air inlet temperature was ever tested on a given 

experimental day. Data from two separate days of experiments at each air inlet temperature, 

including six days in total, are overlaid. It can be seen that the data achieved good day-to-

day repeatability and showed a linear dependence on the bulkhead temperature. Compare 

this plot with the corresponding data for fuel A-2, shown in Figure A.2. The data for this 

fuel is not repeatable and often depended non-monotonically on the bulkhead temperature, 

with an “S-curve” shape. Although these issues were never completely resolved, only 

comparing blowout equivalence ratios with a negatively sloped dependence on the 

bulkhead temperature (e.g., less than 600 K for the 450 K data shown in Figure A.2) 

prevented them from influencing the previously shown results. 

The experimental measurements showed that fuel composition differences 

influenced both the blowout sensitivity to bulkhead temperature, and the likelihood that 
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results were consistent across multiple repetitions of the experiment. Fuels that are 

composed almost entirely of either straight chain or branched alkanes maintain the near-

linear dependence upon bulkhead temperature that is observed in Figure A.1. Fuels with 

large quantities of aromatics and cycloalkanes often display the nonlinear behavior seen in 

Figure A.2. Whether a given fuel’s blowout performance was repeatable was often, but not 

always, related to this observed “S-curve” phenomenon. For example, at a fixed bulkhead 

temperature there was significant scatter in the blowout equivalence ratios for fuel A-1. 

Yet the data for this fuel had a mostly linear dependence on the bulkhead temperature. C-

2 generally followed a linear curve fit but the slope of this fit was not repeatable across 

different experimental days. However, the fuels which showed the greatest nonlinearity, 

A-2, A-3, C-3, C-5, C-7, and C-8, also had issues with repeatability. The repeatability of a 

given fuel was quantified using a composite R2 value. This value was calculated by 

averaging the individual R2 values for a fuel across each of the days that the experiment 

was performed. Data for each of the air inlet temperatures were combined in this average. 

 

Figure A.1: Dependence of bulkhead temperature on the equivalence ratio at 

blowout for fuel C-4. Orange symbols represent 300 K data, green symbols 

represent 450 K data, and blue symbols represent 550 K data. The different marker 

types represent data from separate days that the experiment was run. 
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Figure A.2: Dependence of bulkhead temperature on the equivalence ratio at 

blowout for fuel A-2. Orange symbols represent 300 K data, green symbols 

represent 450 K data, and blue symbols represent 550 K data. The different marker 

types represent data from separate days that the experiment was run. 

Two hypotheses will be presented for this “S-curve” phenomenon. First, aromatics 

and cycloalkanes tend to be the jet fuel-type compounds that are most prone to thermal 

cracking [167]. Therefore, fuels that contain these chemical structures in high quantities 

are more likely to begin experiencing oxidation reactions prematurely in the fuel injector, 

which may have some back heating due to radiation from the flame. Figure A.3 shows the 

dependence of the R2 value on the amount of mass accumulated in a Quartz Crystal 

Microbalance test. Consistent with this hypothesis, the fuels which this measurement 

deemed to be the least thermally stable also had the lowest R2 values. Furthermore, Figure 

A.4 shows data from the Jet Fuel Thermal Oxidation Test (ASTM 3241, JFTOT), 

performed at 285 C. The large deposits created by fuel C-5 are suspected to be a 

consequence of the very low boiling point temperature of this fuel (see Table 2-2). C-8 and 

A-3 showed a lesser sensitivity to the JFTOT, but the remaining fuels all appeared to be 

stable. 
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Second, certain hydrocarbon compounds promote soot formation and the 

subsequent flame radiation losses more than others. This could potentially result in lowered 

flame temperatures and back heating of the incoming fuel injector hardware; i.e., that the 

thermal state of the combustor is not well characterized by the bulkhead temperature alone. 

Zeuthen and Blunck [168] experimentally studied the radiation propensities of many of the 

fuels involved in the present work. They found that fuels with lower H/C ratios had the 

highest radiative heat losses. Figure A.5 shows the composite R2 value plotted versus the 

fuel H/C ratio. It can be seen that there is only a mild correlation between these values.  

 

Figure A.3: R2 value of the blowout equivalence ratio dependence on bulkhead 

temperature, as a function of the mass accumulated in the Quartz Crystal 

Microbalance test. 



 154 

 

Figure A.4: R2 value of the blowout equivalence ratio dependence on bulkhead 

temperature, as a function of the maximum deposit thickness measured by the 

JFTOT at 285 C. 

 

Figure A.5: R2 value of the blowout equivalence ratio dependence on bulkhead 

temperature, as a function of the H/C ratio. 
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APPENDIX B. COMPLETE SET OF FUEL SCREENING 

CORRELATION PLOTS 

This appendix includes the complete set of fuel screening plots, which for space 

reasons, could not be included in Chapter 4. The presentation of these plots will be 

organized around the air inlet temperature. The error bars associated with these plots were 

presented in Figure 4.1. These error bars were calculated using 95% confidence intervals 

for the day-to-day differences in the %ϕ from fuel A-2. Therefore, the uncertainty 

associated with fuel A-2 did not make a contribution to these error bars. Alternatively, the 

data can be presented as the average difference in blowout equivalence ratio between a 

given fuel and A-2, Δϕ. The same data that was shown previously is plotted in this manner 

in Figure B. 1. The error bars in this figure include a contribution from each individual fuel 

and A-2. They are calculated using the following equation. 
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where σΔϕ,i is the uncertainty in Δϕ for each fuel (excluding A-2), n is the number of fuels, 

m is the number of experimental days, si,j is the standard deviation corresponding to each 

fuel and day, and pi,j is the number of data points in the 50 K bulkhead temperature for each 

fuel on a given experimental day. Uncertainties in the fuel properties can be found in the 

detailed reference on these fuels by Dr. Tim Edwards [129]. 



 156 

 

Figure B. 1: Average differences in the blowout equivalence ratio between each fuel 

and A-2. Error bars represent the RMS of daily 95% confidence intervals. 

B.1  300 K Plots 

 

Figure B. 2: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the kinematic viscosity. The data is compared at a bulkhead temperature 

of 500 K. 
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Figure B. 3: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the surface tension. The data is compared at a bulkhead temperature of 

500 K. 

 

Figure B. 4: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the fuel density. The data is compared at a bulkhead temperature of 500 

K. 
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Figure B. 5: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the H/C ratio. The data is compared at a bulkhead temperature of 500 K. 

 

Figure B. 6: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the molecular weight. The data is compared at a bulkhead temperature of 

500 K. 
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Figure B. 7: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the lower heating value. The data is compared at a bulkhead temperature 

of 500 K. 

 

Figure B. 8: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the percentage of aromatics in the fuel. The data is compared at a 

bulkhead temperature of 500 K. 
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Figure B. 9: Dependence of the percent difference in blowout equivalence ratio from 

A-2 upon the percentage of iso-paraffins in the fuel. The data is compared at a 

bulkhead temperature of 500 K. 

 

Figure B. 10: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the smoke point. The data is compared at a bulkhead temperature of 

500 K. 
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Figure B. 11: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the radical index. The data is compared at a bulkhead temperature 

of 500 K. 

B.2  450 K Plots 

 

Figure B. 12: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T90. The data is compared at a bulkhead temperature of 550 K. 
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Figure B. 13: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T50. The data is compared at a bulkhead temperature of 550 K. 

 

 

Figure B. 14: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T10. The data is compared at a bulkhead temperature of 550 K. 
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Figure B. 15: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the kinematic viscosity. The data is compared at a bulkhead 

temperature of 550 K. 

 

Figure B. 16: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the surface tension. The data is compared at a bulkhead temperature 

of 550 K. 
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Figure B. 17: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the fuel density. The data is compared at a bulkhead temperature of 

550 K. 

 

Figure B. 18: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the H/C ratio. The data is compared at a bulkhead temperature of 

550 K. 
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Figure B. 19: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the molecular weight. The data is compared at a bulkhead 

temperature of 550 K. 

 

Figure B. 20: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the lower heating value. The data is compared at a bulkhead 

temperature of 550 K. 
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Figure B. 21: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the percentage of iso-paraffins in the fuel. The data is compared at a 

bulkhead temperature of 550 K. 

 

Figure B. 22: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the smoke point. The data is compared at a bulkhead temperature of 

550 K. 
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Figure B. 23: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the radical index. The data is compared at a bulkhead temperature 

of 550 K. 

B.3  550 K Plots 

 

Figure B. 24: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T90. The data is compared at a bulkhead temperature of 640 K. 
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Figure B. 25: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T50. The data is compared at a bulkhead temperature of 640 K. 

 

Figure B. 26: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon T10. The data is compared at a bulkhead temperature of 640 K. 
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Figure B. 27: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the kinematic viscosity. The data is compared at a bulkhead 

temperature of 640 K. 

 

 

Figure B. 28: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the surface tension. The data is compared at a bulkhead temperature 

of 640 K. 
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Figure B. 29: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the fuel density. The data is compared at a bulkhead temperature of 

640 K. 

 

Figure B. 30: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the H/C ratio. The data is compared at a bulkhead temperature of 

640 K. 
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Figure B. 31: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the molecular weight. The data is compared at a bulkhead 

temperature of 640 K. 

 

Figure B. 32: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the lower heating value. The data is compared at a bulkhead 

temperature of 640 K. 
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Figure B. 33: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the percentage of aromatics in the fuel. The data is compared at a 

bulkhead temperature of 640 K. 

 

Figure B. 34: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the percentage of iso-paraffins in the fuel. The data is compared at a 

bulkhead temperature of 640 K. 
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Figure B. 35: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the smoke point. The data is compared at a bulkhead temperature of 

640 K. 

 

Figure B. 36: Dependence of the percent difference in blowout equivalence ratio 

from A-2 upon the radical index. The data is compared at a bulkhead temperature 

of 640 K. 
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APPENDIX C. NEAR-BLOWOFF DYNAMICS PLOTS WITH 

ADJUSTED THRESHOLDS 

 Since the % vup < -30 m/s values shown in Section 6.4 depend on the number of 

LBO precursor events, they are a threshold dependent quantity. The number of these 

extinction events that occurred during each CH* chemiluminescence video was determined 

by integrating the intensity in each image and then applying the same double threshold 

method that was described in Section 3.3 in reference to the PMT measurements. This 

appendix demonstrates how the plots shown in Section 6.4 change when the double 

threshold values are adjusted slightly. Updated plots will only be shown for the 450 K air 

inlet temperature cases, as slight changes in the selected thresholds did not affect the 300 

K results. It can be seen that these % vup < -30 m/s plots are not a strong function of the 

chosen threshold. Furthermore, the %τext values calculated from the CH* 

chemiluminescence videos were comparable to those calculated from the PMT 

measurements, with average values ranging from 2.8-6.8% between fuels at 450 K and 1.5-

7% at 300 K. The uncertainty in this analysis is driven largely by the sample size, as 2-8 

CH* chemiluminescence videos were gathered for each fuel (see Table 2-4). The difficulty 

involved in obtaining these measurements prevented more data from being acquired. 
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Figure C. 1: %vup < -30 m/s at 450 K plotted against the DCN. These results are 

shown using slightly lower thresholds than the values used in Section 6.4. Since the 

role of preferential vaporization on re-ignition is unclear, both the 20% DCN and 

the DCN based on the entire fuel composition are shown for fuel S2. Error bars 

represent 95% confidence intervals. 

 

  

Figure C. 2: %vup < -30 m/s at 450 K plotted against the DCN. These results are 

shown using slightly higher thresholds than the values used in Section 6.4. Since the 

role of preferential vaporization on re-ignition is unclear, both the 20% DCN and 

the DCN based on the entire fuel composition are shown for fuel S2. Error bars 

represent 95% confidence intervals. 
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APPENDIX D. RE-IGNITION IMAGE SEQUENCES 

 This appendix includes additional examples of re-ignition image sequences for the 

450 K air inlet temperature cases. Rather than using a fixed threshold to define the flame 

edge, an automated technique that applied Otsu’s method [156] was used to set a global 

threshold for each image. This procedure accounted for differences in the CH* emission 

intensity between fuels. The edge detection method is described in more detail in Section 

3.2.  

 

Figure D. 1: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 2: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 3: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 4: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 



 180 

 

Figure D. 5: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 6: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 7: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 8: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 9: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 10: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 11: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 12: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 13: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 14: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 15: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. A-2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 16: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 17: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 18: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 19: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 20: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 21: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 22: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 23: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 24: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. C-1 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 25: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 26: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 27: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 28: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 29: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 30: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 31: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 32: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. N-dodecane is burning in these images with an air inlet temperature of 

450 K. 
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Figure D. 33: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 34: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 35: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 36: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 37: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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Figure D. 38: Twelve successive CH* chemiluminescence images taken during an 

LBO precursor event. The star denotes the most upstream spatial location of 

luminosity. S2 is burning in these images with an air inlet temperature of 450 K. 
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APPENDIX E. VUP PROBABILITY DENSITY FUNCTIONS 

 This appendix includes plots of the vup PDFs for the individual runs. 

 

Figure E. 1: PDFs of vup for A-2, C-1, n-dodecane, and S2 at 450 K, taken as ϕ-

ϕLBO→0. The axial flow velocity PDFs UTotal and UCRZ are also shown. 
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Figure E. 2: PDFs of vup for A-2, C-1, n-dodecane, and S2 at 450 K, taken as ϕ-

ϕLBO≈0.025. The axial flow velocity PDFs UTotal and UCRZ are also shown. 

 

 

Figure E. 3: PDFs of vup for A-2, C-5, n-dodecane, and S2 at 300 K, taken as ϕ-

ϕLBO→0. 
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Figure E. 4: PDFs of vup for A-2 at 450 K, taken as ϕ-ϕLBO→0. The axial flow velocity 

PDFs UTotal are also shown. 

 

Figure E. 5: PDFs of vup for C-1 at 450 K, taken as ϕ-ϕLBO→0. The axial flow velocity 

PDFs UTotal are also shown. 
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Figure E. 6: PDFs of vup for n-dodecane at 450 K, taken as ϕ-ϕLBO→0. The axial flow 

velocity PDFs UTotal are also shown. 

 

Figure E. 7: PDFs of vup for S2 at 450 K, taken as ϕ-ϕLBO→0. The axial flow velocity 

PDFs UTotal are also shown. 
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